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Ein Grundproblem der Algebra ist die Bestimmung der Galoisgruppe eines separablen
Polynoms in einer Variablen. Liegen die Koeffizienten des Polynoms in einem endlichen
Körper der Kardinalität qn, so ist diese Galoisgruppe erzeugt von dem Bild des Frobenius-
Automorphismus x 7→ xqn . Hat das Polynom zusätzlich die spezielle Form a0X + a1X

q +
. . . + adX

qd mit a0, ad 6= 0, so wird die Operation von Frobenius durch eine Matrix in
GLd(Fq) repräsentiert. Der vorliegende Artikel beantwortet die Frage, welche Matrizen auf
diese Weise auftreten können für gegebene q, n und d. In gewissem Sinn löst dies eine
Variante des “Umkehrproblems der Galoistheorie” über endlichen Körpern.
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Let q be a power of a prime number p. Many of the wonders of algebra in characteristic
p are based on the fact that the binomial coefficients

(

q
m

)

are divisible by p for all integers
0 < m < q. As a consequence, the map x 7→ xq on any unitary commutative ring R
with p · 1R = 0R satisfies not only the multiplicativity relation (xy)q = xqyq, but also
the additivity relation (x + y)q = xq + yq, and is therefore a ring homomorphism. This
homomorphism, called Frobenius, is an important tool for all questions concerning finite
fields of characteristic p.

In this short note we answer an elementary question about the action of Frobenius on
the zeros of a polynomial over a finite field that seems not to have been raised before. The
necessary prerequisites are nothing more than a standard two semester course in algebra.

Throughout this note we fix a finite field Fq of cardinality q, a finite field extension
k/Fq of degree n, and an algebraic closure k̄ of k. Let σq : x 7→ xq denote the Frobenius
map on k̄. Recall that σn

q : x 7→ xqn acts trivially on k and that the Galois group Gal(k̄/k)
is the free pro-cyclic group topologically generated by it.

Fix an integer d > 0, and consider a separable q-linear polynomial of degree qd over k,
that is, a polynomial in one variable of the form

f(X) =

d
∑

i=0

aiX
qi = a0X + a1X

q + . . .+ adX
qd

with coefficients ai ∈ k, for which a0 and ad are non-zero. Since σq : x 7→ xq is the identity
on Fq, the map k̄ → k̄ induced by f is Fq-linear, and so its kernel

Vf := {a ∈ k̄ | f(a) = 0}

is an Fq-subspace of k̄. On the other hand the formal derivative of f is the non-zero
constant polynomial a0; hence f has no multiple roots in k̄. Thus Vf has cardinality qd

and therefore dimension dimFq
Vf = d. Moreover, the fact that σn

q acts trivially on k implies
that Vf is mapped to itself under σn

q . Again the linearity of σn
q implies that σn

q induces an
automorphism of the Fq-vector space Vf . In any basis of Vf over Fq this automorphism is
represented by a matrix ϕf ∈ GLd(Fq), and the conjugacy class of ϕf depends only on the
data (q, k, f).

The question we are interested in is whether anything else can be said about ϕf if f is
arbitrary. In precise terms we mean:

Question 1 Which conjugacy classes in GLd(Fq) arise as ϕf for fixed Fq, k, d, and arbi-
trary f?

An answer to this question helps in constructing polynomials with given Galois groups,
as in Ziegler’s bachelor thesis on the so-called inverse Galois problem [3].

To help the reader develop a feeling for the situation we suggest the following special
cases as warmup exercises:
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Exercise 2 For k = Fq and f(X) = X + Xq + Xq2, show that Vf is contained in an
extension of k of degree 3 and that the associated matrix ϕf is conjugate to

(

0 −1

1 −1

)

.

Exercise 3 Show that f(X) = Xq − aX with a ∈ k× has the associated “matrix” ϕf =
α ∈ GL1(Fq) = F

×

q if and only if Normk/Fq
(a) = α.

Exercise 4 Show that the identity matrix in GLd(Fq) arises as ϕf if and only if d 6 n.

(For the last exercise observe that ϕf is the identity matrix if and only if Vf ⊂ k, and
apply Lemma 13. Note that the last exercise also shows that the question is non-trivial.)

Now we state our general answer to Question 1. For any matrix ϕ ∈ GLd(Fq) we let
Fq[ϕ] denote the Fq-subalgebra of the ring of d× d-matrices that is generated by ϕ.

Theorem 5 For any ϕ ∈ GLd(Fq) and any k/Fq of degree n the following are equivalent:

(a) F
d
q as a module over Fq[ϕ] is generated by 6 n elements.

(b) Every eigenvalue of ϕ in k̄ has geometric multiplicity 6 n.

(c) There exists a separable q-linear polynomial f over k with ϕf conjugate to ϕ.

It may be worthwhile to give yet another equivalent condition in a special case:

Corollary 6 If k = Fq, the conditions in Theorem 5 are also equivalent to:

(d) ϕ is conjugate to a matrix of the following form:









0 0 ∗
1

0

0

0 0 1 ∗









Proof. We prove that (d) is equivalent to condition (a) of Theorem 5. Since k = Fq, we
have n = 1; hence condition (a) means that F

d
q =

∑

i>0
Fq · ϕ

i(v) for some vector v. If
this holds, let e be the smallest integer > 0 such that ϕe(v) is an Fq-linear combination
of the vectors v, ϕ(v), . . . , ϕe−1(v). Then the subspace

∑e−1

i=0
Fq · ϕ

i(v) is mapped to itself
under ϕ, so it actually contains the elements ϕi(v) for all i > 0. On the other hand the
vectors v, ϕ(v), . . . , ϕe−1(v) are Fq-linearly independent by construction; hence the stated
condition is equivalent to saying that these vectors form an Fq-basis of F

d
q . Of course this

requires that e = d. To show that the condition is equivalent to (d), it remains to observe
that the matrix of ϕ associated to any basis of Fd

q has the indicated form if and only if
that basis is v, ϕ(v), . . . , ϕd−1(v) for some vector v. �

By Theorem 5 the matrices of the form in Corollary 6 (d) actually arise for any value
of n. Furthermore:
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Corollary 7 For any k/Fq of degree n the following are equivalent:

(a) d 6 n.

(b) For every ϕ ∈ GLd(Fq) there exists a separable q-linear polynomial f over k with ϕf

conjugate to ϕ.

Proof. By Theorem 5 the condition d 6 n is sufficient for (b). As the identity matrix in
GLd(Fq) satisfies condition 5 (a) if and only if d 6 n, the condition is also necessary. �

Now we begin with the preparations for the proof of Theorem 5. For any positive
integer r we let kr denote the finite subextension of k̄ of degree r over k. Then kr/k is
Galois, and its Galois group Γr := Gal(kr/k) is cyclic of order r with generator γr := σn

q |kr.
We are interested in the structure of kr as a representation of Γr over Fq. By general
principles this is equivalent to describing kr as a module over the group ring Fq[Γr].

Lemma 8 As an Fq[Γr]-module kr is free of rank n.

Proof. Since kr/k is a finite Galois extension, it possesses a normal basis, i.e., there exists
an element y ∈ kr such that the elements γ(y) for all γ ∈ Γr form a basis of kr over k. Let
x1, . . . , xn be a basis of k over Fq. Then the elements γ(y) · xi for all γ ∈ Γr and 1 6 i 6 n
form a basis of kr over Fq. Since the elements γ ∈ Γr form a basis of Fq[Γr] over Fq, it
follows that x1, . . . , xn is a basis of kr as a free module over Fq[Γr]. �

Next, for any finite dimensional representation W of Γr over Fq letW
∗ := HomFq

(W,Fq)
denote the dual vector space endowed with the contragredient representation of Γr defined
by Γr×W ∗ → W ∗, (γ, ℓ) 7→ ℓ◦γ−1. In the special case of the regular representation Fq[Γr]
we obtain:

Lemma 9 The dual representation Fq[Γr]
∗ is isomorphic to Fq[Γr].

Proof. This is a general fact about group rings of finite groups. Indeed, by direct
calculation one can show that the element ℓ ∈ Fq[Γr]

∗ defined by
∑

γ αγγ 7→ α1 is a basis
of Fq[Γr]

∗ as a free module of rank 1 over Fq[Γr]. �

Lemma 10 For any finite dimensional Fq[Γr]-module W the following are equivalent:

(a) W is generated by 6 n elements.

(b) Every eigenvalue of γr on W ⊗k k̄ has geometric multiplicity 6 n.

(c) Every eigenvalue of γr on W ∗ ⊗k k̄ has geometric multiplicity 6 n.

(d) W ∗ is generated by 6 n elements.
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Proof. These equivalences are special properties of representations of cyclic groups. We
deduce them from properties of the Jordan normal form in the guise of modules over the
polynomial ring Fq[X ].

First, we view W as a module over the polynomial ring R := Fq[X ] such that
∑

i aiX
i

acts as
∑

i aiγ
i
r. By the elementary divisor theorem there exist a non-negative integer m

and non-constant monic polynomials Pi ∈ R for all 1 6 i 6 m such that Pi divides Pi+1 for
all 1 6 i < m and that W ∼=

⊕m
i=1

R/RPi. Clearly W is then generated by m elements.
Conversely, any irreducible factor P of P1 divides every Pi; hence there exists a surjection
W ։

⊕m
i=1

R/RP ∼= (R/RP )m. The latter is a vector space of dimension m over the
residue field R/RP ; hence it cannot be generated by fewer than m elements. Together it
follows that m is the minimal number of generators of W as an R-module, or equivalently
as a module over Fq[Γr]. Thus (a) is equivalent to m 6 n.

Secondly, every Pi divides Pm; hence the minimal polynomial of γr as an endomorphism
of W is Pm; and so the eigenvalues of γr on W ⊗k k̄ are precisely the roots of Pm. Write
Pm(X) =

∏s
j=1

(X −αj)
µm,j with distinct α1, . . . , αs ∈ k̄ and multiplicities µm,j > 1. Since

each Pi divides Pm, we can also write Pi(X) =
∏s

j=1
(X−αj)

µi,j with multiplicities µi,j > 0.
By the Chinese remainder theorem we then have

W ⊗k k̄ ∼=

m
⊕

i=1

k̄[X ]/k̄[X ]Pi
∼=

m
⊕

i=1

s
⊕

j=1

k̄[X ]/k̄[X ](X − αj)
µi,j

as a module over k̄[X ]. For any 1 6 j 6 s, the geometric multiplicity of the eigenvalue
αj on k̄[X ]/k̄[X ](X − αj)

µi,j is 1 if µi,j > 1, and 0 otherwise. The geometric multiplicity
of αj on W ⊗k k̄ is therefore the number of indices 1 6 i 6 m with µi,j > 0. Of course
this number is always 6 m. Conversely, at least one of the eigenvalues is a root of the
non-constant polynomial P1 and hence of every Pi. The geometric multiplicity of this
eigenvalue is therefore equal to m, and together it follows that m is the maximum of the
geometric multiplicities of all eigenvalues of γr on W⊗k k̄. Thus (b) is equivalent to m 6 n.

Thirdly, the above decomposition of W ⊗k k̄ induces a decomposition

W ∗ ⊗k k̄ ∼=

m
⊕

i=1

(k̄[X ]/k̄[X ]Pi)
∗ ∼=

m
⊕

i=1

s
⊕

j=1

(k̄[X ]/k̄[X ](X − αj)
µi,j )∗,

where the dual vector spaces in the middle and on the right hand side are taken over k̄. This
decomposition is invariant under the natural endomorphism induced by γ∗

r : W
∗ → W ∗,

ℓ 7→ ℓ ◦ γr. But each non-zero summand k̄[X ]/k̄[X ](X − αj)
µi,j corresponds to a single

indecomposable Jordan block of γr onW⊗k k̄ with eigenvalue αj ; hence its dual corresponds
to an indecomposable Jordan block of γ∗

r onW ∗⊗kk̄ with the same eigenvalue αj. Moreover,
since the contragredient representation on W ∗ is defined by letting γr act through (γ∗

r )
−1,

it follows that each non-zero (k̄[X ]/k̄[X ](X − αj)
µi,j )∗ corresponds to an indecomposable

Jordan block of the contragredient action of γr on W ∗ ⊗k k̄ with the eigenvalue α−1

j .
Thus m is also the maximum of the geometric multiplicities of all eigenvalues of γr in its
contragredient action on W ∗ ⊗k k̄. Thus (c) is equivalent to m 6 n.
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The above three characterizations of m already prove the equivalences (a)⇔(b)⇔(c).
Applying the equivalence (a)⇔(b) to W ∗ in place of W also shows (c)⇔(d). This finishes
the proof of Lemma 10. �

Lemma 11 The conditions in Lemma 10 are also equivalent to:

(e) There exists an injective homomorphism of Fq[Γr]-modules W →֒ kr.

Proof. The condition (d) of Lemma 10 is equivalent to saying that there exists a sur-
jective homomorphism of Fq[Γr]-modules Fq[Γr]

n ։ W ∗. Since Lemmas 8 and 9 provide
isomorphisms of Fq[Γr]-modules

k∗

r
∼= (Fq[Γr]

n)∗ ∼= (Fq[Γr]
∗)n ∼= Fq[Γr]

n,

this amounts to giving a surjective homomorphism of Fq[Γr]-modules k∗

r ։ W ∗. By duality
any such homomorphism corresponds to an injective homomorphism of Fq[Γr]-modules
W →֒ kr, and vice versa. Thus (d) is equivalent to (e), as desired. �

To prove Theorem 5 we will apply the above results in the special case that r is the
order of the finite group GLd(Fq). With this choice we have:

Lemma 12 Any σn
q -invariant Fq-subspace U ⊂ k̄ of dimension d is contained in kr.

Proof. By Lagrange the r-th power of any element of GLd(Fq) is the identity matrix.
Thus the power σnr

q acts trivially on U . But by Galois theory the field of fixed points of
σnr
q on k̄ is just kr; hence we have U ⊂ kr, as desired. �

As a final ingredient, the following lemma concerns the passage back from Vf to f :

Lemma 13 For every finite dimensional σn
q -invariant Fq-subspace U ⊂ k̄ there exists a

separable q-linear polynomial f over k with Vf = U .

Proof. Since U is a finite set, we can form the polynomial f(X) :=
∏

u∈U(X−u) ∈ k̄[X ],
which by construction is separable with set of zeros U . Moreover, as U is invariant under σn

q ,
so is f ; hence f already lies in k[X ]. That f is q-linear follows from its explicit description
in terms of the Moore determinant from [2, Statement III] or [1, Lemma 1.3.6]. �

Proof of Theorem 5. Consider any matrix ϕ ∈ GLd(Fq). Then by the choice of r and
Lagrange’s theorem the r-th power ϕr is the identity matrix. ThusW := F

d
q carries a unique

representation of the cyclic group Γr such that γr acts as ϕ. The equivalence (a)⇔(b) in
Theorem 5 thus follows from the equivalence (a)⇔(b) in Lemma 10. By Lemma 11 these
conditions are also equivalent to the existence of an injective homomorphism of Fq[Γr]-
modules W →֒ kr. Giving such a homomorphism amounts to giving a γr-invariant Fq-
subspace U ⊂ kr and an isomorphism of Fq-vector spaces i : W

∼

→ U satisfying i◦γr = γr◦i.
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By the definition of the actions of γr the last relation is equivalent to i ◦ ϕ = σn
q ◦ i. By

Lemma 12 such data is therefore the same as giving a σn
q -invariant Fq-subspace U ⊂ k̄ and

an isomorphism of Fq-vector spaces i : W
∼

→ U satisfying i ◦ ϕ = σn
q ◦ i.

As explained above, the set of zeros Vf of any separable q-linear polynomial f over k
is a finite dimensional σn

q -invariant Fq-subspace of k̄. Lemma 13 asserts that, conversely,
every finite dimensional σn

q -invariant Fq-subspace of k̄ arises in this way. Giving the above
data is therefore equivalent to giving a separable q-linear polynomial f over k and an
isomorphism of Fq-vector spaces i : W

∼

→ Vf satisfying i ◦ ϕ = σn
q ◦ i. But the existence of

such an isomorphism i means that dimFq
Vf = d and that ϕ represents the conjugacy class

of Frobenius associated to f , in other words, that ϕf is conjugate to ϕ. Thus altogether
we find that the conditions (a) and (b) of Theorem 5 are also equivalent to condition (c),
and we are done. �
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