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1. Motivation: The Mumford-Tate conjecture.

Alexandre Grothendieck’s concept of motives was intended as a formal framework
combining the many different aspects of algebraic varieties in a single theory. Thus to
an algebraic variety X over a number field K C C are associated, among others, the
rational mixed Hodge structure H := H"(X(C),Q) and the f-adic cohomology group
H"(Xg,Q) 2 H ®g Q as a a continuous Galois representation. Let G, C Aut(H) be
the Hodge group associated to this mixed Hodge structure, and T'; C Aut(H)(Qy) the
image of Gal(K /K). The Mumford-Tate conjecture asserts that I'; is commensurable to
Goo(Zy), that is, their intersection is open in each of these two groups. The importance and
the beauty of this statement lies in the fact that it relates two groups which are constructed
in completely different ways and thus reflect very different properties of X, i.e. analytic
resp. arithmetic ones.

While there has been some progress on this conjecture when X is an abelian variety,
the general case remains completely open. In the analogous case of motives over function
fields, however, it is now possible to prove such a conjecture in reasonable generality. The
aim of this talk is to explain the necessary theory of Hodge structures and Hodge groups
associated to motives over function fields.

My motivation to deal with the function field case is twofold. On the one hand I
believe that definitions, theorems, and methods of proof in this area are interesting in
themselves and often quite beautiful. On the other hand I hope that the study of function
field analogues can provide us eventually with new ideas that re-fertilize the arithmetic
over number fields.

2. Drinfeld modules.

In the following we fix a finite field F, with ¢ elements, and set A := FF,[t]. This ring
will play the role that Z plays in the number field case. Instead of Q we work with the
rational function field F' := F,(¢), and the completion R is replaced by F, = F (t71)).
In all this theory, these rings may be replaced by finite extensions. As an analogue of C
we take the completion of the algebraic closure of F,(6#71)), denoted C,. Here 6 is a new
variable which in this section will be identified with ¢, but not afterwards. The field C,
is the basis for non-archimedean analysis in equal characteristic. Note that it has infinite
degree over F.



Now consider an A-lattice A C C,; of rank r» > 1, that is, a discrete A-submodule
which is isomorphic to A”. Let us fix such an isomorphism. One can form the quotient
“Cq/A” in the following sense. One defines formally

proves that this converges to an [F,-linear power series, i.e., one of the form
en(X) =X+ e1 X+ e X7 +e3XT +...,
shows that it converges on all of C, and, finally, that the following sequence is exact:
eA

0 —A—C, —C, —0.

Multiplication by ¢ then induces a commutative diagram

0 A C, —2~C, 0
0 A C, 2~ C, 0

and one proves that ® is a polynomial
B(X)=0X+D, X7 +...+ 0. X7

with @, # 0. In this way the quotient “C,/A” has been endowed with an algebraic
structure over C,. This object makes up an algebraic Drinfeld module of rank r.

Let us now assume that this Drinfeld module is defined over a finitely generated
subfield F, (0) C K C C,, that is, that all coefficients ®;, € K. For any prime polynomial
o(t) € A und any n > 0 we then have

Kern(p(®)" : K — K) = Kern(p(®)" : C;, — C,) 2 o "A/A 2 (A/p™A)" .

Here K denotes the algebraic closure of K in Cq, and the Galois action corresponds to a
homomorphism

Gal(K/K) — GL.(A/p"A).

In the limit these homomorphisms fit together to a homomorphism
Gal(K/K) — GL.(A,)

and we are interested in its image I'y,.



We know a priori that all endomorphisms of ® are defined over a finite extension of K
and therefore commute with an open subgroup of I',. Viewing these endomorphisms as
subring of the matrix ring

Endz(®) =2 {z € G, | A C A} — Endg(A) 2 M.« (4),
we can look at their centralizer

G := Centqr, , (Endg(¢))

In the generic case Endg(¢) = A we have, of course, Go, = GL, p; in general G, is a
form of GL,. for 7'|r.

Satz: ', and G (Ay) are commensurable. (see [6])

This result is a precise analogue of the usual Mumford-Tate conjecture, with one
important difference: Here the group G, is defined only ad hoc and does not result from
a general theory of Hodge structures. I will now show how to fill this gap.

One central requirement for such a theory is the invariance under tensor products.
More precisely: Hodge structures should possess tensor products, and the desired functor
associating Hodge structures to (certain) motives should be compatible with tensor prod-
ucts. Tensor products of Drinfeld modules are special cases of Anderson’s uniformizable
t-motives, so it would be best to have a theory applicable to all of these.

3. Anderson’s t-motives.

Anderson made the fundamental and rather subtle observation that the two distinct
roles of the variable ¢, once in the ring of coefficients A = IF, [t], once as element of the base
field C,, ought to be separated. We have already replaced ¢ by 6 in its second meaning.
Now take d > 1 and let t € Myx4(C,) be a quadratic matrix whose only eigenvalue is 6,
i.e. with

(1) t—-60)"=0 for all n > 0.

Then we obtain a natural action of A on the vector space (Cfll, and we consider an A-lattice
AC (Cg, discrete and free of finite type over A. In general we cannot write down a series
ea as in the preceding section; instead we postulate its existence. For any vector X € Cf;
let “X denote taking the ¢'" power in each coefficient. We suppose given a power series

e(X)=X+er "Xte-"X+...

and a polynomial
P(X)=Py - X+0-°X+...+40,-7 X



with e;, ®; € M4xa(C,) such that we have a commutative diagram with exact rows

0 A Cd —=>Cd 0
it "
0 A Cd —=>Cd 0.

Essentially this makes up a uniformizable t-motive in the sense of Anderson [1]. (Here I
neglect a certain technical assumption. Strictly speaking, the object thus constructed is
called a uniformizable t-module, and the term ¢-motive is reserved for a certain equivalent
dual description.) For instance, every Drinfeld module corresponds to a uniformizable
t-motive.

Now we reencode the information in the lattice A C Cg in a way that is suited for
tensor products. Condition (1) implies a natural map on the right hand side in the sequence

0—>q—>A®ACq[[t—0]]—>(C;l—>O.

By Anderson this map is surjective. Thus the main information is contained in the kernel g,
which by construction is a C, [[t — ]]-lattice, i.e., a finitely generated C, [t — #]-submodule
containing a basis of the vector space A @4 Cy((t — 0)).

The second ingredient of the desired Hodge structures is the weight filtration. There
is no particular technical difficulty involved in working with mixed objects instead of pure
ones. Besides, one reason for this greater generality is the fact that pure ¢-motives may
degenerate into mixed t-motives. If m,n are positive integers, the t-motive is called pure

of weight y = —"* if and only if after suitable reparametrization we can write

O"(X)=...+®p,n-7 X

with det(®,, ,,) # 0. For example a Drinfeld module of rank 7 is pure of weight —2. (My
convention differs from Anderson’s by a minus sign.) An arbitrary ¢-motive is called mixed
if and only if it possesses an increasing weight filtration W,, indexed by rational numbers,
such that each graded piece of weight p is a pure t-motive of weight p. If the ¢-motive is
mixed and uniformizable, then each pure constituent is uniformizable, hence the lattice A

inherits the weight filtration, again denoted by W,.

Now we have collected all the necessary ingredients for the desired Hodge structures.
In order to have an F-linear theory we put H := A ® 4 F, then the uniformizable ¢-motive
up to isogeny determines the data H = (H, W,, q). The tensor product of two such triples
H, = (H;, W,,q;) is defined as (H, W,,q) with H := H; @ Ho, the weight filtration

Wu(Hy @p Hy) = Y W, Hi@p Wy, Ha |
H1tpe=p

and ¢ := q1 ®c, [¢—6] 2. This definition is compatible with the tensor product of ¢-motives
as defined by Anderson.



4. Mixed F,(t)-Hodge structures.

Observe that the inclusion A = F[t] — C,[[t — 6] extends naturally to an inclusion
F C Foo — Cy[t —0].

Definition: A mized F-pre-Hodge structure H = (H,W,,q) consists of a finite di-
mensional F-vector space H, an increasing filtration by F-subspaces W, H, indexed by

p € Q and called weight filtration, and a C,[[t — 0]-lattice ¢ C H @p Cy(t — 6)).

Homomorphisms of such objects are homomorphisms of the underlying F-vector spaces
that are compatible with the filtrations and lattices. This category is F'-linear but not
abelian, so we want to restrict attention to a suitable subcategory. Note also that when
H comes from a uniformizable ¢-motive, we have not yet used the discreteness of A.
This property is related to the following numerical condition. For every F -subspace
H!, C Ho := H ®p Fi consider the lattices q' := q N (H, @, Ci((t —0))) and
p' = H. ®p_ C,it — 6], and put

/ !/

deg, (H.,) := dimc, (p’?W q’> — dimg, (p'i q/) .

This number measures the size of q’. On the other hand set

degy (HL,) := Z p-dimp_ Gr)l (HL,) .
rneQ

Definition: A mized F-pre-Hodge structure H = (H, W, q) is called a mized F-Hodge
structure if and only if for every H._  we have

deg,(H') < degy (H') ,

with equality whenever H' = W,H for some p € Q. The full subcategory of all mized
F-Hodge structures is denoted Hugpe.,.

A closer look at the pure case shows that this condition is rather similar to the usual
semistability condition of vector bundles.

Satz: %;égF 15 a neutral tannakian category over F'.

The proof is modeled on similar statements for vector bundles or filtered modules. The
hardest part is to show that the semistability condition is invariant under tensor product.
The term “neutral” refers to the tautological fiber functor H — H. We also have:

Satz: The above construction defines a tensor functor from the category of uniformiz-
able mized t-motives over C, up to isogeny to the category %éﬂF This functor is exact,
F-linear, fully faithful, and its essential image is closed under taking subquotients.

The last two statements amount to an analogue of the Hodge conjecture.



5. The Hodge group.

For any object H of e, let (H)) denote the smallest abelian full subcategory of

- that contains H and is closed under tensor product, dualization, and subquotients.
By general tannakian theory there is a well-defined algebraic subgroup Gy C Autp(H)
such that ({H)) is equivalent to the category of finite dimensional representations of Gg
over F'. This group is called the Hodge group of H. In the case of a Drinfeld module our
original expectations are confirmed:

Satz: If H is associated to the Drinfeld module of Section 2, we have Gy = G .
More generally, suppose that the coefficients of the t-motive ® in Section 3 are con-

tained in a finitely generated extension K C C, of F'. As in Section 2 we obtain a Galois
representation

Gal(K/K) —» T, C Auta, (A ®4 A,) = GL,(4,) .

Satz: 'y, is commensurable to a Zariski dense subgroup of Goo(Ay).

This is proved by combining the above analogue of the Hodge conjecture with a
theorem of A. Tamagawa amounting to a strong form of the Tate conjecture for ¢-motives.
I also expect to determine I', up to commensurability, but the precise statement will be
somewhat technical.
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