Hodge Structures over Function Fields
by
Richard Pink

Fakultat fiir Mathematik und Informatik
Universitat Mannheim
e-mail: pink@math.uni-mannheim.de

September 17, 1997

Abstract

We develop a general theory of mixed Hodge structures over local
or global function fields which in many ways resembles the formalism of
classical Hodge structures. Our objects consist of a finite dimensional
vector space together with a weight filtration, but instead of a Hodge
filtration we require finer information. In order to obtain a reasonable
category we impose a semistability condition in the spirit of invariant
theory and prove that the resulting category is tannakian. This allows us
to define and analyze Hodge groups and determine them in some cases.

The analogies with classical mixed Hodge structures range from the
role of semistability to the fact that both objects arise from the analytic
behavior of motives. The precise relation of our objects with the analytic
uniformization of Anderson’s t-motives will be the subject of a separate
paper. For Hodge structures arising from Drinfeld modules we can com-
bine the present results with a previous one on Galois representations,
obtaining a precise analogue of the Mumford-Tate conjecture.
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0 Introduction

Among the many interesting invariants of an algebraic variety in characteristic
zero is the rational mixed Hodge structure on its singular cohomology. More
precisely, one must embed the ground field into the field of complex numbers;
the Hodge structure then depends only on the resulting complex analytic space.
In other words, the Hodge structure reflects certain aspects of the analytic
behavior of the algebraic variety over the complex numbers. There are several
interesting relations, proved or unproved, between the Hodge structure and
other invariants and properties of the algebraic variety, such as comparison
isomorphisms, the Hodge conjecture, the Mumford-Tate conjecture, etc. This
interplay between analytic, algebraic, and arithmetic phenomena was one of the
origins of Grothendieck’s concept of motives.

Since Drinfeld [6] and Anderson [1] one disposes of a theory of motives
over function fields in positive characteristic, which in many ways resembles
the formalism in characteristic zero. It encompasses among others a theory of
analytic uniformization, but so far it had not been clarified which analogues of
Hodge structures might arise in this way. The aim of this article is to develop
a comprehensive theory of what I call Hodge structures over function fields
which is intended to fill this gap. We shall concentrate on the purely abstract
properties of these objects; their relation with analytic uniformization will be
the subject of a separate paper [26]. An overview of the main results was given
in [25].



Origins: In order to motivate the basic definitions we shall nevertheless
examine roughly how these objects arise. Let K be a global function field in one
variable over a finite field IF, with g elements, and let K denote the completion
of K at a fixed place co. Choosing a local parameter, we may identify K with
the field of Laurent series in one variable k(2)), where k is a finite extension
of Fy. Let A C K be the ring of functions which are regular outside oo, and
note that this is a discrete subring of K. The standard example is 4 = F,[t] and
K =TF,(t ). In the following any finitely generated discrete A-submodule of
a topological K-vector space will be called an A-lattice.

Now let C, denote the completion of the algebraic closure of K. This field
is the basis for non-archimedean analysis in equal characteristic. It has infinite
degree over K, so it contains A-lattices A of arbitrarily large rank r. Following
Drinfeld [6] §3 one may formally algebraize the quotient C, /A, obtaining what is
today called a Drinfeld module of rank r over C,. To understand the functorial
properties of this description it is best to look at the more general case of
Anderson’s t-motives.

Anderson made the fundamental and rather subtle observation that the two
distinct roles of the elements of A, on one side as elements of the coefficient
ring A, on the other as elements of the base field C,;, ought to be separated.
So let us change notation and suppose that C, is any fixed algebraically closed
complete normed field given together with a continuous field homomorphism
L K o C,. Abbreviating ¢ := 1(2), it is easy to see that ¢ lifts to a unique
homomorphism K — C,[z — ¢]] which maps z to itself (cf. Proposition 3.1).
Choose a quadratic matrix Z of arbitrary size d x d with coefficients in C,,
whose only eigenvalue is (, i.e. with

(0.1) (Z-0"=0 for all n > 0.

Then we can define an action of K on the vector space (Cg by letting the residue
field £ act by scalars and z act through Z. Consider an A-lattice A C (Cg of
arbitrary rank with respect to this twisted action. In the case d > 1 there is no
direct way to algebraize the quotient (Cg /A; instead we simply assume that A
comes from a uniformizable t-motive over C, in the sense of Anderson.

One vital feature of t-motives is that one can form tensor products and
describe the effect on the associated lattices. To explain this effect note that by
Condition 0.1 there is a natural map on the right hand side of the sequence

0—q—A®4Celz— (] — Cl —0.

This map is surjective (see [1]), so the main information lies in the kernel g.
By construction this is a C,[[z — (]J-lattice in A ® 4 C,(z — (), that is, a finitely
generated C,[[z — (]]-submodule containing a basis. Anderson proved that the
tensor product of any two uniformizable ¢-motives is again uniformizable and
that the associated lattices A and q are obtained by tensoring the original ones
over A, respectively over C,[[z — (].

Another aspect of t-motives is that they may be pure of some weight p € Q.
The tensor product of two pure motives of weights u1, pe is pure of weight
1 + p2. By analogy with the characteristic zero case we generalize this a little



and consider mized motives, i.e. t-motives with an increasing weight filtration,
indexed by rational numbers, such that each graded piece of weight u is a pure
t-motive of weight p. If the t-motive is mixed and uniformizable, the lattice A
inherits a weight filtration, denoted W'.

To summarize, any uniformizable mixed ¢-motive determines a triple (A, W,
q), whose formation is functorial and compatible with tensor product. It turns
out that this data contains enough information to serve as an analogue of classi-
cal Hodge structures. In the following we prefer a K-linear theory, so we replace
A by the vector space H := A ® 4 K, which depends only on the t-motive up to
isogeny.

Main concepts: The fundamental definition reads:

Definition 0.2 (compare Definition 9.1) A mixed K-oco-pre-Hodge struc-
ture is a triple H = (H, W, qu) where

(a) H is a finite dimensional K -vector space,

(b) W = (W,H),cq s an increasing filtration by K-subspaces of H, called
the weight filtration, and

(c) qm is a Cyllz — (]|-lattice in H @ x Cy(2 — ().

Homomorphisms of such objects are homomorphisms of the underlying K-
vector spaces that are compatible with the rest of the data. The resulting
category is K-linear but not abelian; this forces us to restrict attention to a
suitable subcategory. Recall that, when H comes from a uniformizable mixed
t-motive, we have not yet used the fact that A C (Cd is dlscrete It is easy to
see that this discreteness is equivalent to the condltlon (H @k K)Nqu = {0}.
Speaking heuristically we can say that the lattice q H should be sufficiently far
away from any non-zero K- subspace of H:= Hog K. We shall strengthen this
condition as follows.

For every K-subspace H' C H consider the Cq[l= — ¢Jattices

pr = H @gCllz—(],
au N (' ® Co(2 - Q) ,

qa
and define (compare 4.1):
; . qra . Pa
deg, (H') :=d — ) =d — ).
e (H) = dime, (m;n n cu;n> e (pﬁ' n q;;n>
This number measures the size of qz/. On the other hand set

deg" E Z,u dlmKGr ( .
neEQ

Definition 0.3 (compare Definitions 4.5 and 9.2) A mized K -oc-pre-Hodge
structure H is called locally semistable if and only if for every K-subspace
H' C H we have

deg,(H') < deg" (H'),



with equality whenever H = I/V,LI;T for some p € Q. A locally semistable mized
K -oco-pre-Hodge structure is called o mixed K-oco-Hodge structure.

Note that in the pure case this condition is rather similar to the usual
semistability condition for vector bundles. The category of all mixed K-oo-
Hodge structures is denoted “#Zek 0. The first main result of this paper is:

Theorem 0.4 (compare 9.3) The category Fisper oo together with the for-
getful functor H — H is a neutral tannakian category over K.

In [26] we shall prove that the above construction yields a fully faithful tensor
functor from the category of uniformizable mixed t-motives up to isogeny over
C, to the category “Hajer,oo. This will amount to an analogue of the Hodge
conjecture.

Hodge groups: The assertion of Theorem 0.4 matches a well-known re-
sult for classical mixed Hodge structures and allows us to define Hodge groups.
For any object H of Haperc oo let (H) denote the strictly full tannakian sub-
category of Aatek oo which is generated by H. Let wy denote the forgetful
functor {(H) — 7z which to any object associates its underlying K-vector
space. The Hodge group of H is then defined by general tannakian theory as
Gy = Awt®(wg). It can be interpreted as an algebraic subgroup of the general
linear group Autg (H).

Various properties of H correspond to properties of G, and a part of this
paper is devoted to studying this interrelation from different angles. This ma-
terial is developed with an eye towards the problem of determining Hodge
groups explicitly. For instance, for every object H in a certain subcategory
oyl C HotjeK 0 We prove that Gy gee» is generated by certain one-
parameter subgroups characterized by Hodge numbers, called Hodge cochar-
acters (see Definition 9.7 and Theorem 9.11). Among other things we show
that %éaﬁ&%‘io is a strictly full tannakian subcategory and contains all those
objects whose Hodge group is reductive (Proposition 9.8 and Theorem 9.10).

Hodge structures of Drinfeld module type: As an application we
determine the Hodge group for the following kind of objects:

Definition 0.5 (compare Definition 10.1) A mized K-oo-Hodge structure
H is called of Drinfeld module type if and only if it is pure and has qg C py
of C,-codimension 1.

In fact, all objects that arise from the analytic uniformization of Drinfeld
modules are of this type. Suppose now that H has rank r, and choose a basis
of H. The following result solves a problem raised in [23] Guess 0.5.

Theorem 0.6 (compare Theorem 10.3) The Hodge group of an object H of
Drinfeld module type of rank r is

Gﬂ = CentGLr’K (End(ﬂ)) -



The full thrust of this statement is produced only in combination with a
previous result on Galois representations. Suppose that H comes from a Drinfeld
module ¢ over a subfield F' C C, which is finitely generated over F,, and let
F5°P denote the separable closure of F' in C,. Let K denote the completion
of K at an arbitrary place A # oc. Then the Galois action on the A-adic Tate
module of ¢ corresponds to a continuous representation

px : Gal(F®P/F) — GL,.(K)) .

Let us suppose for simplicity that all endomorphisms of ¢ are defined over F
we then have a canonical isomorphism Endr () ® 4 K = End(H).

Theorem 0.7 (Pink [23] Thm. 0.2) Under the above assumptions the image
of px is an open subgroup of Centgy,, (k,)(Endr(p)).

Combining Theorems 0.6 and 0.7 we obtain a precise analogue of the Mum-
ford-Tate conjecture for abelian varieties:

Corollary 0.8 Under the above assumptions the image of py is an open
compact subgroup of Gu(Ky).

The beauty of such a statement lies in the fact that it relates two groups
which are constructed in completely different ways and thus reflect very different
properties of the underlying motive, in this case arithmetic and analytic ones.
The author expects that a generalization to arbitrary uniformizable mixed ¢-
motives will be possible.

Outline: Now we briefly discuss the contents of the individual sections.
The material is developed independently of any ¢-motives, which will not even
be mentioned again outside this introduction.

In Section 1 we review a number of general constructions with filtered vector
spaces which are rather elementary, except the concept of Kempf filtration which
we quote without proof.

Section 2 discusses Hodge structures in characteristic zero. It is not needed
in the rest of the article and was included mainly for motivation. We show that
the usual characterization of rational mixed Hodge structures can be rephrased
elegantly in terms of a semistability condition. Thus the concepts of rational
mixed Hodge structures, of filtered modules according to Fontaine, and of our
Hodge structures over function fields share the same basic formalism. Given the
fact that each of these concepts arises from some variant of Hodge or de Rham
theory, this is perhaps not so surprising, but it would be nice to have a deeper
explanation for this phenomenon.

The remainder of the article deals with (pre-)Hodge structures over local
and global function fields. We essentially keep the notations of the introduc-
tion, except that we abbreviate C, by C. The concept of mixed K -pre-Hodge
structure is obtained from Definition 0.2 by simply starting with a K-vector
space instead of one over K. The reason for studying these objects first is that
most notions, especially that of semistability, occur already at the local level.



Section 3 gives the basic definition and elementary properties of mixed K-
pre-Hodge structures. Section 4 discusses semistability and mixed K—Hodge
structures, which are defined as in 0.3. Using standard arguments we show that
the category Fagei of mixed K-Hodge structures is abelian. The main point
in proving the local analogue of Theorem 0.4 (see Corollary 5.7) is to show that
semistability is invariant under tensor product. This is done in Section 5. The
proof is modeled on similar statements for vector bundles or filtered modules.
An indispensable preliminary step for this as well as for later arguments is the
Frobenius functoriality, i.e. the statement that semistability is invariant under
Frobenius pullback (Proposition 5.5).

The next two sections are devoted to the Hodge group. Section 6 contains
an assortment of general properties, including a discussion of polygons. The
numerical invariants of the weight filtration are encoded in the weight polygon,
which gives rise to certain one-parameter subgroups of the Hodge group, called
weight (quasi-)cocharacters (see Proposition 6.5). We also have a Hodge poly-
gon, which is determined by the elementary divisors relating the lattices pz and
qi (cf. Definition 0.3 above). But in general this polygon is not additive in
short exact sequences, so the information carried by it cannot be interpreted
directly in terms of a cocharacter.

Section 7 deals with this problem by describing the largest strictly full tan-
nakian subcategory Az s C Hapei; on which the Hodge polygon is additive.
We characterize its objects precisely (Theorem 7.8) and show among others that
every object with reductive Hodge group is in it (Proposition 7.3). On this sub-
category we can then define Hodge cocharacters whose numerics are based on
Hodge polygons, just as for the weight cocharacter, and prove that the Hodge
group is generated by all conjugates of Hodge cocharacters (Theorem 7.11).

Let us mention on the side that the problem is related to the following
phenomenon. The lattice qz determines a Hodge filtration of He (see Defini-
tion 3.5), in happy analogy with classical Hodge structures. But qz contains
strictly more information. In fact, in positive characteristic it is not even pos-
sible to build a reasonable theory based on weight and Hodge filtrations alone
(see Example 5.16).

Section 8 treats questions of describing the totality of mixed K -Hodge struc-
tures of a given type. It presents a few qualitative results on period spaces,
extensions, obstructions, and infinitesimal deformations.

With Section 9 we return to the global case, reviewing the main concepts
and results of the earlier sections in that setting. Everything follows either by
direct application of the respective local result or by the analogous arguments.

Finally, in Section 10 we work out the Hodge group for all Hodge structures
of Drinfeld module type, proving Theorem 0.6.

Possible generalization: A natural topic which is not covered in this
article is that of functoriality with respect to arbitrary finite extensions of lo-
cal or global function fields. The reason is that the behavior of the place co
under finite extensions would require a generalization of the concept of Hodge
structures right from the start. Instead of one completion K of K , and one



embedding K < C, one would have to consider an arbitrary finite number of
them and accordingly finitely many lattices qm, et cetera. Although this would
lead to little more than notational complications and might be useful for some
purpose, we have avoided it in the interest of clarity.

1 Filtered vector spaces

We recall a number of general concepts related to filtrations and fix some nota-
tions. We also quote some results from Totaro [28] on filtrations and subspaces
of tensor products, which will be used in Section 5.

Filtrations: Consider a finite dimensional vector space V over a field K.
A decreasing (Q-)filtration of V is a collection of subspaces F' = (F'*V);cq such
that F'V C FIV whenever ¢ > j. Any such filtration determines a Q-graded
vector space

GrpV = PGV = PFV/U;s; FIV)
i€Q i€Q
whose total dimension satisfies

dimK (GI‘F‘/) S dim}( V.

We shall always require that this inequality is an equality. This means several
things: First, the filtration is separated, that is F;V = 0 for all ¢ > 0. Second,
the filtration is exhaustive, that is F;V =V for all i« < 0. There is also a semi-
continuity condition at each 7 € Q and a continuity condition on R \ QQ, which
the reader is invited to write out for himself. If GriV = 0 for all i ¢ Z, the whole
information is contained in (F*V);cz. Thus our discussion includes Z-filtrations
as a special case. The filtration is called trivial if and only if Gr%V = V.

Similarly, an increasing filtration of V is a collection of subspaces F' =
(F;V)ieq such that F;V C F;V whenever ¢ < j. As before, the dimension of its
associated graded vector space

GV = PGV = PEV/U;, FV)
ieQ ieQ
is assumed to be equal to that of V. Throughout we shall use upper indices for
decreasing filtrations and lower indices for increasing ones. Every assertion for
one type of filtrations has an analogue for the other; mostly we state just one
of them.

Induced filtrations: Consider a decreasing filtration I’ of V and a sub-
space V' C V. The induced filtration of V' is defined by F*V' := V' N FV.
Dually, the induced filtration of the factor space V" := V/V' is defined by
Fiv" .= (V' + FiV)/V'. Combining the two constructions yields a natural
filtration of any subquotient of V. Actually, there are two ways to achieve this:
Given subspaces Vo C V; C V one may first restrict the filtration to V; and then
project it to V1 /Va, or one may first project F' to V/V3 and then restrict it to the



subspace V; /V2. Happily, the result is independent of the order of operations:
Vo + (Vi N FY) Vi m Vo + F'V

V W Va

The induced filtration will be denoted F|(V1/V2), or just F' if confusion is un-
likely. It is important to keep in mind that it may depend on the precise sub-
spaces Vo C Vi. Namely, if V C V{ C V are other subspaces with V] C V4 and
Vy C Vi, such that the map V{/Vy — V1 /V5 is an isomorphism, the induced
filtrations of these subquotients do not necessarily correspond.

Let W be another finite dimensional K -vector space with a decreasing fil-
tration F. The induced filtration on the tensor product is defined by

Fi(VegW):= Y FV ek FFW.
j+k=i

This definition ensures

Grp(V ek W)= P GriV ok Grhw.
J+k=i
For higher tensor products one uses iteration. For symmetric (resp. alternating)
powers the induced filtration is obtained via the canonical surjection V®" —s
Sym" V (resp. V®" —» A"V). Furthermore:

F'Homg (V,W) := {¢ € Homg (V,W) | Vj: o(F/V)C F*VW} .
In particular, for the dual space we have

FVYi={weVY | Vj<i:wlF7/V=0}.

Homomorphisms: A K-linear homomorphism ¢ : V — W is compatible
with two given filtrations F if and only if o(F*V) C FiW for every i. The ho-
momorphism is called strictly compatible with the filtrations, or strict for short,
if and only if o(F*V) = (V)N F*W for every i. The filtered finite dimensional
K-vector spaces together with all compatible morphisms form a K-linear cat-
egory. It is important to note that this category is not abelian: Although any
morphism possesses a kernel and a cokernel, the morphism coim(y) — im(p)
is an isomorphism if and only if ¢ is strict. This causes a number of difficul-
ties. Even with strict morphisms one must be careful: a composite of strict
morphisms need not be strict. When a more complicated category involving
filtered objects turns out to be abelian, the crucial point is often to prove that
all morphisms are strict.

Numerical invariants:  The indexing of a filtration can be interpreted
as endowing each non-trivial filtration step with a certain weight. By summing
up with the appropriate multiplicities we obtain the (total) degree of V' with
respect to I

(1.1) degp V := Zz -dimg GriV .
i€Q



When V # 0, we can also take its average:

degF 1%
1.2 /= .
( ) ! dimg V

Interchanging upper and lower indices gives the corresponding definitions for
increasing filtrations.

Proposition 1.3 Consider an isomorphism ¢ : V. — W that is com-
patible with given filtrations on V. and W, both denoted F'. Then we have
degr (V) < degp (W) if the filtrations are decreasing, and deg” (V) > deg? (W)
if they are increasing. In either case we have equality if and only if ¢ is strict.

This as well as the following properties vis-a-vis induced filtrations are easy
to verify and left to the reader.

Proposition 1.4 (a) degp V =degp(A™V) if r =dimg V.
(b) degpV =degp V' +degp V" if V! CV and V" :=V/V'.
(c) pr(Vrk W) = urV + urW provided V., W # 0.
(d) prpHomg (V,W) = ppW — pupV provided V., W # 0.
(e) degp VV = —degp V.
Comparison of two filtrations:  Suppose now that V' is endowed with

two arbitrary decreasing filtrations F' and ®. The following elementary and
well-known fact is very useful:

Lemma 1.5 (Bruhat) There ezists a basis of V' such that each filtration step
of F' or ® is generated by a subset of this basis.

Definition 1.6 We say that F' and ® are comparable if and only if for
every i and j we have F'V C &V or &V C FiV.

Linear combinations: Scaling with a rational factor m > 0 yields a new
filtration m® by the formula (m®)?V := ®/™V . Clearly it satisfies deg,,4 (V) =
m - degg (V). There is also a sum:

Proposition 1.7 There exists a unique decreasing filtration F+® of V' such
that for all i € Q

(F+®)'V=> FVnetv= (| FIV+eV.
k=i k=i
Furthermore we have degp 4 (V) = degp(V') + degg (V).
Proof. Clearly the assertion is invariant under direct sums of bi-filtered

vector spaces. Thus by Lemma, 1.5 we are reduced to the one-dimensional case,
where the assertion is seen by inspection. q.e.d.

The point of these constructions is the following fact.

10



Proposition 1.8 The filtrations ® and F' + m® are comparable if m > 0.

Proof. Choose N > 0 such that F¥V =0 and F~NV =V, and take € > 0
such that for every i at least two of @€V C ®'V C &€V are equal. Assume
that m > g If &'V = &<V one easily shows that &'V = (F + m®)™V.
Otherwise one deduces &'V = &'~V = (F 4+ m®)™(~9V. Since F + m® is a
filtration, this implies the desired assertion. q.e.d.

Two filtrations and a subspace: Suppose now that in addition to F'
and ® we are given a subspace V' C V. Then ® induces a filtration ®|V' of V",
whose associated g;aded pieces GréV’ = Grélv, V' are cagonically isomorphic
to subspaces of GriV. Thus F induces a filtration of GriV’ in two different
ways, depending on whether one induces first to V' or to GréV. In general the
resulting filtrations are different. However:

Proposition 1.9 If F' and ® are comparable, the filtrations (F|IV)|(GrL V")
and (F|GriV)|(Grk V') coincide, and we have

degp(V') = Zdeg(FlGrgV)(GréV’) )
jeQ
Proof. By definition the it" step of the filtration (F|V’)|(Gr’ V") is
(V' AFVN®TV) + (V' N &'V
Vinei'v ’

where j' > j is sufficiently close. The corresponding step of (F|Gr% V)|(Grl V")
is

(1.10)

(V'N®IV)+ &'V _(FIVN®IV)+ &'V

'V 'V
Now by assumption one of the subspaces FiV and 'V is contained in the
other. If FiV C &'V, both filtration steps are zero. If 'V C FiV, then 1.11
is equal to

(1.11)

(V' NFVN®IV)+ &'V _V'INFV Neiv
iV T VINeIV
which is equal to 1.10, as desired. This proves the first assertion. The second
assertion follows from the first and the general formula

degpy (V') = Z deg(FW,)KGr;V,)(GréV’)
jeQ

which is a consequence of Proposition 1.4 (b). q.e.d.

Combining Propositions 1.8 and 1.9 we obtain:

Proposition 1.12 For every m > 0 we have

degF+m<I> (‘/l) = Z deg(F_an)) |Gr;V (GrfI, ‘/l) .
j€Q

11



Kempf filtration: Now consider two finite dimensional K-vector spaces
Vi, Va. By a filtration of (V1,V2) we shall mean a pair of decreasing filtrations
of V1 and V3, both denoted by the same symbol, say F'. The induced filtration
of V1 ®k V> and of any subspace is then again denoted by F'.

Definition 1.13 A non-zero subspace V' C Vi ®k Vs is called GL(V}) x
GL(1%)-semistable if and only if for every filtration F' of (V1,V2) we have pur (V')
< pur(Vi @k Va).

To study a non-semistable subspace one looks for a filtration which maxi-

mizes the defect in this inequality. First one defines a kind of scalar product on
the set of all filtrations.

Definition 1.14 For any two filtrations F, F' of (V1,Vs) we let

2
(F, Py :=3 3 )" - j' - dimg (G (Grd (7))
=1 jEQj'€Q

and

|F| = /(F,F) = (Z Zj2 'dimK(Gri?(‘/;)))l/Q '

i=1 j€eQ

Clearly the “norm” |F| is positive unless F' is trivial on both V; and V5.
Lemma 1.5 implies that the pairing (F, F') is symmetric.

Proposition 1.15 (Totaro [28] Prop. 1) Consider a non-zero subspace V' C
Vi @k Vo which is not GL(V1) x GL(Vs)-semistable. Then the function
pr(V') — pr (Vi ®k V2)
|F|
on the set of all non-trivial filtrations of (V1,V2) attains its mazimum. The

mazimizing filtration ® is called the Kempf filtration associated to V'. It is
unique up to scaling and satisfies pe (V;) = 0.

F—

Proposition 1.16 (Totaro [28] Prop. 2) Let V' and ® be as in 1.15. Then
for every filtration F of (V1,Vs) we have

e (V") — pe (Vi @k V32)
||

(a) pr(V') — pr(Vi @K Vo) < (®,F), and

(b) (®,F) = Z /R (1r (V) — pr(V;)) dim(®V;)de .

Universal Kempf filtration: For any field extension L/K and any K-
vector space V' we abbreviate Vi, := V ® g L. A filtration of V evidently induces
one of V,, which will be denoted by the same symbol. All the above construc-
tions are compatible with base extension; in particular the numerical invariants
are preserved. But neither the property of GL(V1) x GL(13)-semistability nor
the Kempf filtration are invariant under base extension, because there exist
more filtrations over L than over K. We stabilize these concepts as follows.

12



Definition 1.17 A non-zero subspace V' C Vi ®k Vs is called universally
GL(V1) x GL(V3)-semistable if and only if V]| C Vi,L ®r Va1 is GL(V1,1) %
GL(V3,1,)-semistable for every extension L/K.

Consider a non-zero subspace V' C Vi ®k Vo which is not universally
GL(V1) x GL(V3)-semistable.

Definition 1.18 A filtration of (V1,V4) is called universal Kempf filtration
associated to V' if and only if for every extension L/K the induced filtration of
(Vi,1,Va,1) is a Kempf filtration associated to V] .

Proposition 1.19 When K is perfect, there exists a universal Kempf fil-
tration associated to V.

Proof. TFirst note that the set of all filtrations of (V4,V5) is a countable
union of GL(V4) x GL(V3)-orbits and thus has a natural algebraic structure
over K, which is locally of finite type. The invariants |F| and pr(Vi @k V2)
are locally constant, and ur(V"') is upper semicontinuous in F' for the Zariski
topology. Thus the expression which is maximized in Proposition 1.15 is also
upper semicontinuous in F'.

Now let K denote an algebraic closure of K and & a Kempf filtration as-
sociated to Vi. By the preceding remarks & achieves the maximum among
all non-trivial filtrations defined over all extension fields of K. By assumption
K /K is Galois, and the unicity of the Kempf filtration implies that & is invari-
ant under Gal(K/K). Thus ® descends to K, where it is the desired universal
Kempf filtration. q.e.d.

For general K Proposition 1.19 still implies that a universal Kempf filtration
exists over a finite purely inseparable extension of K. For a case where it is not
defined over K see Example 5.16 below.

2 Hodge structures in characteristic zero

In this section we briefly discuss two kinds of mathematical objects which involve
finite dimensional vector spaces with filtration data. They both arise from some
variant of Hodge or de Rham theory, but we concentrate purely on their formal
similarities. QOur aim is to elucidate how the notion of semistability, which
originates in geometric invariant theory, gives rise to an abelian and tannakian
category. A similar formalism will occur in the rest of this article, but the
material of the present section will not be needed itself and was included mainly
for motivation. First we shall look at the concept of rational mixed Hodge
structures from a slightly different angle. The second topic concerns the filtered
modules according to Fontaine.

Rational mixed Hodge structures: = We begin by recalling the standard
definition (cf. Deligne [3] Déf. 2.3.1).

Definition 2.1 A rational mixed Hodge structure is a triple (H, W, F') where
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(a) H is a finite dimensional Q-vector space,

(b) W = (WypH)nez is an increasing filtration by Q-subspaces of H, called the
weight filtration, and

(¢) F = (FPHc)pez is a decreasing filtration by C-subspaces of He, called the
Hodge filtration,

such that the following condition is satisfied:

Condition 2.2 For each n € Z there is a decomposition of C-vector spaces
Gr)He= @ H"*
p+a=n
such that

(a) the filtration induced by F' is given for all p € 7 by
FP(GI",VLVHC) — @ P ’

p'+q'=n
p'>p

(b) HPa = H®P for all p,q € 7.

Local semistability: Let (H,W, F') be as in Definition 2.1 but not nec-
essarily satisfying Condition 2.2. We shall show that this condition is equivalent
to the following following local semistability condition over R. It is related to
the concept of semistability of a pair of filtrations (cf. Faltings [7].)

Condition 2.3 For every R-subspace Hy, C Hr we have
1
degp(Hg) < 5 - deg" (Hg),
with equality whenever Hyp = W, Hg for some n € 7.

Here the factor % is related to the fact that the algebraic closure of R has
degree 2 over R. By renormalizing the weight filtration using half-integers this
factor could be removed.

Proposition 2.4 Conditions 2.2 and 2.8 are equivalent.

Proof. We first prove the implication 2.2=2.3. Assume the former and
consider a subspace Hj C Hg, say of dimension r. It is well-known and easy to
check that A™H with its induced filtrations again satisfies Condition 2.2. On the
other hand by Proposition 1.4 (a) the inequality in Condition 2.3 is equivalent
to the corresponding inequality for the subspace A" Hj, C A" Hg. Moreover, for
any n € Z we clearly have A" (W,, Hg) = W,, A" Hg for some m € Z. Thus after
replacing everything by its »*P alternating power we are reduced to the case
r=1.

In this case put n := deg" (HL) and p := degp(HL). Then Grl) HL is a
one-dimensional subspace of Gr!Y H¢ which satisfies
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Gr) Hi C FP(Gr) He)= P HY.

p'+q'=n
p'>p

As the subspace on the left hand side is defined over R, we deduce

0 # GrZVH(f: C Fp(GrZVHC)ﬂFP(TZVHC) = @ gre

»'+q'=n
p'.a'>p

Thus we must have H? ¢ # 0 for some pair of integers p', ¢’ > p with p' +¢' =
n. This implies n > 2p and hence the desired inequality in Condition 2.3.
Now suppose Hf, = W, Hr. Since this has dimension 1, Condition 2.2 leaves
only the possibility GrWHC HP? with n = 2p. This proves the equality in
Condition 2.3, as desired.

To show the converse we now assume Condition 2.3. Applying it to all sub-
spaces W,,_1 Hp C H}, C W,, Hg and using the additivity of Proposition 1.4 (b)
we easily deduce that Condition 2.3 also holds for Gr)Y H with its induced fil-
trations. As Condition 2.2 depends only on these graded pieces, we may restrict
ourselves to the case H = Gr!” H. Using the Bruhat lemma 1.5 we choose a
basis {h1,...,ha} of Hc such that each F? Hc and each F'7Hg is generated by a
subset. Put p; := max{p € Z | h; € FPH¢} and ¢; := max{q € Z | h; € F4H¢}.
Then Condition 2.2 is a direct consequence of the following lemma.

Lemma 2.5 For every i we have p; + q; = n.

Proof. First we prove p; +¢; < n. For this observe that the subspace of H¢
generated by h; and its complex conjugate h; descends to a subspace Hg C Hg.
If h; and h; are linearly dependent, we have dimg(Hp) = 1 and therefore

23 1 W
pi = q = degp(He) < §-deg (Hg) =

whence p;+¢; < n, as desired. If h; and h; are linearly independent, we similarly
deduce

2.3

pi+¢ = degp(HL) < - -deg” (Hp) = n,

N | =

as desired. For the reverse inequality note that
d

sz = degF(HC) - degF HC Zqz:

i=1
where F' denotes the complex conjugate filtration. Together with Condition 2.3
this implies

d
S pitai-n) = degp(He)+ degp(He) -
i=1
= 2-degp(He) —deg" H
A

Since all summands on the left hand side are < 0, they must be zero, as desired.
This proves Lemma 2.5 and thus finishes the proof of Proposition 2.4. q.e.d.
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The category of rational mixed Hodge structures: A morphism
H, — H, of rational mixed Hodge structures is a Q-linear map which is com-
patible with both filtrations. The fact that the Hodge and weight filtrations
are sufficiently opposite implies the following crucial result (see Deligne [3]
Th. 2.3.5).

Proposition 2.6 Every morphism of rational mized Hodge structures is
strictly compatible with the Hodge and weight filtrations. The category of ra-
tional mized Hodge structures is abelian.

The Hodge and weight filtrations of a tensor product or Hom of two rational
mixed Hodge structures are defined as in Section 1. It is easy to see that
Condition 2.2 is invariant under these operations. It is much harder to prove
this invariance directly in terms of Condition 2.3! In any case, we deduce:

Proposition 2.7 The category of rational mized Hodge structures together
with the forgetful functor into the category of Q-vector spaces is a neutral tan-
nakian category.

This result enables one to express information on a Hodge structure in terms
of the algebraic group associated to it by tannakian theory, and vice versa.

Filtered modules and semistability: Consider a rational prime p and
a finite extension K of (p, which for simplicity we assume unramified. The
Frobenius substitution of K over @, is denoted 0. We are interested in the
following objects (cf. Fontaine [8] 1.2, [9] 1.1).

Definition 2.8 A filtered module over K is a triple (M, p, Fil) where
(a) M is a finite dimensional K -vector space,

(b) ¢ : M — M is a o-linear automorphism, i.e. an automorphism of
additive groups satisfying p(xm) = o(z)p(m) for all z € K and m € M,
called Frobenius, and

(¢) Fil = (Fil' M);cz is a decreasing filtration by K -subspaces of M, called the
Hodge filtration.

A morphism of filtered modules is a K-linear map which is compatible with
the Hodge filtration and commutes with Frobenius. The category of filtered
modules is Qp-linear, has an obvious tensor product and inner Hom, but it is
not abelian unless the objects are suitably rigidified. The naturally occurring
condition has two quite different formulations. Historically that of semistability
type came first.

Let m := [K/Qp], then ¢™ is a K-linear automorphism of M. Let ord,
be the normalized valuation on Q, with ord,(p) = 1. There is a unique ¢™-
invariant Q-grading M = P, M; of K-vector spaces such that all eigenvalues
of ¢™ on M; have normalized valuation mi. We set

deg,, (M) := Zi dimg M; .
i€Q
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Definition 2.9 (Fontaine [8] 4.1) A filtered module M over K is called
weakly admissible if and only if for every filtered submodule M' C M we have

degpy (M') < deg,(M") ,
with equality whenever M' = M.
For the second formulation let Og denote the ring of integers in K. By

a lattice in M we mean a finitely generated Og-submodule that generates M
over K.

Definition 2.10 (/9] 1.1, [20] 8.1) A lattice A C M 1is called strongly di-
visible if and only if

o(Xp - (ANFIM)) = A

i€z
The following equivalence is highly non-trivial:

Proposition 2.11 (Laffaille [20] Th. 3.2) The following two assertions are
equivalent:

(a) M possesses a strongly divisible lattice.
(b) M is weakly admissible.
Both formulations are equally suited to show:

Proposition 2.12 (Fontaine [8] Prop. 4.2.1) Every morphism of weakly
admissible filtered modules over K is strictly compatible with the Hodge filtration.
The category of weakly admissible filtered modules over K is abelian.

In terms of strongly divisible lattices it is now easy to prove that weak
admissibility is invariant under tensor product, and hence:

Proposition 2.13 (Laffaille [20] §4) The category of weakly admissible fil-
tered modules over K is tannakian.

One can also prove this directly in terms of Definition 2.9, as done by Falt-
ings [7] resp. Totaro [28]. These proofs are based on invariant theoretic methods.

3 Pre-Hodge structures over local function fields

Now we introduce an analogue of Hodge structures over a non-archimedean
local field of equal characteristic. Such an object consists of a finite dimensional
vector space together with a weight filtration, but instead of merely a Hodge
filtration we require finer information.

Notations:  We fix a perfect field k of arbitrary characteristic includ-
ing, possibly, characteristic zero and consider the field of Laurent series in one
variable K := k(z). We also fix a non-discrete algebraically closed complete
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normed field over k such that the elements of £* have norm 1. For lack of a bet-
ter notation, and because it plays a role analogous to that of the field of complex
numbers, we shall denote this field by C. (The symbol R will continue to denote
the field of real numbers.) Fix an element ¢ € C satisfying 0 < ||¢]| < 1. The
evaluation at ¢ defines a continuous homomorphism of k-fields ¢ : K < C. The
image of ¢ is, of course, just the field of Laurent series k(()), and the completion
of its algebraic closure is the main example for C that we have in mind. But
in order to better separate the roles played by z and { we have preferred to
characterize C abstractly. Note the following elementary fact.

Proposition 3.1 There is a natural injective algebra homomorphism K<
Cllz — (]| which maps z to itself and on k coincides with 1.

Proof. For every Laurent series ), arz* € K we calculate formally

Zi(ak) 2= Zi(ak) (z—C+QF
k k
Doilar) -y (5 - (2= -1

k £>0
= D (=0 ilar)- () - ¢F .
£>0 k

The term i(ag) - (’;) has norm < 1, so the inner sum in the last line converges
in C for every £ € Z. This defines the desired map, which one easily shows to
be an algebra homomorphism. q.e.d.

We identify K with its image in C[[z — ¢]. Clearly the composite homomor-
phism K — C[z — (] —» C coincides with s.

The basic definition: By a lattice in a finite dimensional C(z — ¢))-
vector space we mean a finitely generated C[[z — (]-submodule containing a
C((z — ¢)-basis. For any finite dimensional K-vector space I the embedding 3.1
provides us with a canonical lattice pg := H ®@x C[[z — ¢]).

Definition 3.2 A mixed R’—pre—Hodge structure is a triple H = (fI, W, az)
where

(a) H is a finite dimensional K -vector space,

(b)) W = (I/VHfI)MEQ is an increasing filtration by K -subspaces of H, called
the weight filtration, and

(c) qg is a lattice in H @ C((z — ¢).

Definition 3.3 A mized K -pre- -Hodge structure H is called pure of weight
u € Q if and only if GrWH H.

These objects come with a Hodge filtration. Abbreviate
(3.4) He:=pa/(z— Qpa = H 0k, C.
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Definition 3.5 For any mized K—pre—Hodge structure H and any i € 7 let
FiHc denote the image of pg N (z — {)iqg in He. This defines a decreasing
filtration F' of Hc, called the Hodge filtration.

As in the case of classical mixed Hodge structures the weight and Hodge
filtrations go in opposite directions. It is also instructive to view H as a filtered
vector bundle on the diagram of schemes

SpecC(z — ¢) <> SpecCllz — (]

A 2
Spec K

without the dotted arrow. Since by Proposition 3.1 the dotted arrow exists and
makes the diagram commutative, the diagram without it behaves like a non-
separated scheme. Although one could develop the theory from this point of
view without any significant problems, we have here preferred the more down-
to-earth approach.

The category of mixed K-pre-Hodge structures:

Definition 3.7 (a) A morphism ¢ : H, - Hg of mized K -pre- Hodge
structures is a homomorphism of the underlying K -vector spaces Hy — H»
which is compatible with the weight filtrations and maps qg, into qf,.

(b) A morphism ¢ : H, —» H» of mized K—pre—Hodge structures is called
strict if and only if it is strictly compatible with the weight filtrations and
satisfies

e(arr,) = i, N (9(H1) % C(2 — Q) -

Clearly any morphism is also compatible with the Hodge filtrations (cf. Def-
inition 3.5). One should be aware, however, that a strict morphism in the above
sense is not necessarily strictly compatible with the Hodge filtrations (compare
Example 6.14 below). The category of mixed K -pre-Hodge structures with all
morphisms (not necessarily strict) is K -linear, but for the same reasons as in
Section 1 it is not abelian. Also, a composite of strict morphisms need not be
strict.

By a subobject we mean a morphism H' - H whose underlying homomor-
phism of K-vector spaces is the inclusion of a subspace H' < H. The subobJect
is called strict if and only if the morphism H' — H is strict. For any H we
can endow any subspace H' C H with a unique structure of strict subobject
H'. Dually, the factor space H" := H / H' carries a unique mixed K -pre-Hodge
structure such that the map H — H" extends to a strict morphism H — H".
This H" is called a strict factor object of H, also denoted H/H'. The sequence
0->H - H—>H /E " — 0 and any sequence isomorphic to it is called strict
ezact. Combining these constructions we obtain a natural mixed K -pre-Hodge
structure on any subquotient H 1/ H 5 of H. As in the case of filtrations this
induced structure does not depend on the order of operations; however, it does
depend on the subspaces HyCc H,C H.
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Applying these construction to any (say decreasing) filtration @ of H we
obtain canonical strict subobjects ®¢H and subquotients Grq,H The analogous
notations are used for increasing filtrations. Of particular interest are W, ﬂ and
Gr)V H.

The tensor product H Hi ® H Ho of two mixed K- pre-Hodge structures is the
tensor product of the underlying K-vector spaces together with the induced
weight filtration and the latticAe 47, ®cfz—¢] 9f,- All other standard tensor
constructions extend to mixed K-pre-Hodge structures in the obvious way. Thus
the lattice for the symmetric power Sym” H (resp. alternating power ATH H)
is just the symmetric (resp. alternating) power of qg taken over Cflz —(].
Similarly the object Hom(H 1, H H>) has underlying vector space Hom K(H 1, H 2)
and lattice Homep, _¢j(44,, 94,)- In particular, the dual object HY has lattice
qiv = Homgp,_¢] (leh (C[I,i: —(J)). One easily checks that the Hodge filtration
of a tensor product Hq ® Hs coincides with the tensor product of filtrations as
defined in Section 1. Similarly, the Hodge filtration commutes with Hom, Sym,
and A, but not with subquotients (cf Section 7). Finally, let 1; denote the
object with underlying vector space K lattice g = P& K and which is pure of
weight 0. There is an obvious functorial isomorphism H @ 1; = H, therefore
14 is called the unit object.

4 Semistability and Hodge structures

To rigidify our objects we shall now impose a semistability condition in the
spirit of invariant theory. We first discuss the necessary numerical invariants.

Numerical invariants: The rank of a mixed K-pre-Hodge structure H
is simply rank( A) = dim (H). Recall that the weight filtration determines a
total degree deg" (), as well as an average weight W (H) provided that H # 0
(cf. 1.1-1.2). Note that p" (H) = p if H is pure of weight g. Similarly the
Hodge filtration determines invariants which can be expressed directly in terms
of the lattice:

(4.1)  deg,(H) = dimC(WL) - dimc<p7ﬁA) = degp(H¢),

ANqa PENdi
and, if H # 0:

2 degq(ﬁ) s
(42) pq(H) == m = pr(Hc) .

The functorial behavior of these invariants is as in Proposition 1.4.

Semistability: We begin with the following observation.

Proposition 4.3 Consider a morphism of mized k—pre—Hodge structures
Q : H, — H, whose underlying homomorphism of vector spaces is an iso-
morphism. Then we have deg" (H,) > deg" (H) and degq(ﬁl) < degq(ﬁg).
Moreover @ is an isomorphism if and only if both these inequalities are equalities.

Proof. One easily shows that the isomorphy of lattices qg, —= qg, is
equivalent to the isomorphy between Hodge filtrations. Thus all the assertions
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depend only on the filtrations and thus follow directly from Proposition 1.3.
q.e.d.

Proposition 4.4 The following conditions on a mized H—pre—Hodge struc-
ture H are equivalent:

(a) For every subobject H' of H we have deg, (H") < deg™ (H'), with equality
whenever H' = W, H for some p € Q.

a') For every strict subobject H o H we have deg H' < deg H’ , with
q
equality whenever H =W H for some p € Q.

(b) For every factor object H" ofH we have degq(H”) > deg™W (H"), with
equality whenever H" = H/W H for some p € Q.

(b') For every strict factor object H" ofH we have deg, (H") > deg" (H"),
with equality whenever H" = H/W H for some p € Q

Proof. The direction (a)=-(a') is obvious. For its converse consider an
arbitrary subobject E " of E and let E * be the strict subobject of E with
the same underlying vector space as H'. Then the inclusion morphism fac-
tors as H' — H* — H. Using Proposition 4.3 and condition (a') we deduce
degq(ﬁ') < deg, (H+) < deg" (H+) < deg" (H'), as desired. The equivalence
(b)<(b") is proved in the same way. The equivalence (a')<(b’) follows from
the additivity of both deg, and deg" in strict exact sequences. q.e.d.

Definition 4.5 4 mized K -pre-Hodge structure is called semistable if and
only if it satisfies the equivalent conditions in Proposition 4.4. A semistable
mized K -pre-Hodge structure is called a mixed H—Hodge structure. Likewise
a semistable pure H—pre—Hodge structure of weight u is called a pure H—Hodge
structure of weight u.

First properties: The dual formulations in Proposition 4.4 are very
useful. For instance, using the fact that all degrees change their sign under
dualization we obtain at once:

Proposition 4.6 A mized H—pre—Hodge structure H is semistable if and
only if its dual HV is semistable.

Next consider any morphism of mixed K -pre-Hodge structures ¢ : H, — H,.
Let H I C Hy and H 5 C H5 denote the strict subobjects whose underlying
vector spaces are the kernel, respectively the image, of the underlying homo-
morphism of vector spaces. Put E’l’ = El/ﬂ’l and H’Q’ = Eg/ﬁ'z Clearly
bis | and bis 45 are a kernel, respectively a cokernel, of ¢ in the category of mixed
K -pre-Hodge structures. The following fact is crucial:

Proposition 4.7 Assume that both El and Eg are semistable. Then

(a) H,, HY, H),, and HY are semistable.
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(b) The natural morphism H' —— H} is an isomorphism.
(¢) @ is strict in the sense of Definition 3.7 (b).

Proof. By construction ¢ factors through a morphism ) : bis V= bit 5 which
is an isomorphism on the underlying vector spaces. Thus we have a commutative

diagram

0 H H, H 0
(4.8) lv lw

0 E'g' Ez EIQ 0

whose rows are strict exact. We deduce
0 4.3 ) 4.4 (a) Wt 4.3 W 4.4 (b) -
degq (Hy) < degq (Hy) < deg” (H;) < deg” (Hj) < degq (Hy) -

Thus these inequalities are equalities, hence Proposition 4.3 shows that i is an
isomorphism. This means that ¢ is strict and hence proves (b) and (¢). To
show (a) we first look at H! and H) and use the formulation 4.4 (a). The
necessary inequality for any subobject follows directly from the corresponding
characterization of the semistability of E 1 and Eg. It remains to prove the
equality for a filtration step W,. By (c¢) we know already that ¢ is strictly
compatible with the weight filtrations. In particular the natural homomorphism
W’MPAI Y- W’MPAI % is an isomorphism, so we have a diagram just like 4.8:

0——> W, Hi —>W,H, —> W,H{ —>0

L

0<— WuHY <— W, Hy <— W, Hy) <—0

From Condition 4.4 (a) it is clear that VVNE 1 and W’HE o are semistable, so
we may apply the above arguments to Diagram 4.9. It follows that the verti-
cal arrow on the right hand side is an isomorphism and that deg, (VVHE 5) =
degW(W’HﬂA 1). This already proves the semistability of H}. Next we deduce
the equality degq(I/VuE D= degW(W’uE {) from the corresponding equality for
W, H; and the fact that both degrees are additive in the strict exact sequence
0— T/V,LH = W’ME 1= W"HE % — 0. This proves the semistability of Jil h.
Finally, for a 5 one may repeat the same arguments using factor objects and
the formulation 4.4 (b). q.e.d.

Semistability and extensions: Let us fix a strict exact sequence of
mixed K-pre-Hodge structures

(4.10) 0-H - H—-H'—0.

If H and one of H', H" are semistable, Proposition 4.7 (a) implies that all three
are semistable. What can we deduce when H' and H" are semistable?

Proposition 4.11 Assume

(a) H' and H" are semistable, and

22



(b) for all p € Q we have VVME CH orH' C VVuﬂ.
Then ﬂ 1s semistable.

Proof. Consider any subobject H, of H. Let H' c H D H; be the vector
spaces underlying the objects H' C H D Hy, and let H} be the strict subobject
of Hy with underlying vector space Hq N H'. Then we have a strict exact
sequence of subobjects of those in 4.10:

0—H, 5 Hy - H' 0.
Using the additivity of degrees in strict exact sequences and the semistability
assumption for H' and H" in the form of 4.4 (a) we calculate
degq(ﬁl) = degq (Ell) + degq (Elll)
deg" (1) + deg™ ()
degW(El) .

AN

This is the inequality needed in 4.4 (a) for H. Tt remains to show that this
is an equality whenever H, = VVME L If VV,‘E C H' this equality follows from
the semistability of H'. If H' C W",LE the construction implies (WYNE)/ o' =
WME " hence

degq(Wuﬁ) = degq(ﬁ') + degq(Wuﬁ”)
= deg" (') + deg" (W, H")
= degW(Mqu)
using the semistability of H”, as desired. q.e.d.

Corollary 4.12 In the strict exact sequence 4.10 assume that H is pure of
some weight. If two of H', H, H" are semistable, then so is the third.

Next we can show that semistability depends only on the pure constituents,
in the following sense:

Proposition 4.13 The following assertions for a mized K—pre—Hodge struc-
ture H are equivalent.

(a) H is semistable.

(b) WME is semistable for every p € Q.
(c) ﬂ/ﬂfuﬂ is semistable for every p € Q.
(d) GrZVE is semistable for every pu € Q.

Proof. The equivalence (a)<(b), respectively (a)<(c), follows at once from
the formulation in Proposition 4.4 (a), resp. (b). The equivalence (b)<(d)
follows by induction from Propositions 4.7 (a) and 4.11, applied to the exact
sequence

0—>Wuzﬁ—>WuE—>GrE’E—>O
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for all sufficiently near p' < p. q-e.d.

For split extensions we have:

Proposition 4.14 Two given mized I%'—pre—Hodge structures El, H, are
semistable if and only if their direct sum Hq, & Ho is semistable.

Proof. Since (}r}f’ commutes with @, Proposition 4.13 reduces the pr9blem
to the case that H;, and H» are pure of the same weight. When the H; are
semistable, the semistability of Hy @ H, then follows by applying Corollary 4.12
to the obvious strict exact sequence

0 Hy s Hi®Hy,— Hy 0.

Conversely, if H, @ H, is pure and semistable, the inequality in 4.4 (a) follows
at once for any subobject of either H;, since that is also a subobject of H; & Ho.
The remaining equalities follow from the additivity of degrees. q.e.d.

The category of mixed K-Hodge structures: Let Hectpeiy denote the
category of mixed K-Hodge structures with all morphisms of Definition 3.7 (a).
Propositions 4.7 and 4.14 imply:

Theorem 4.15 The category %244( is abelian.

) A non-zero object of “#zef has many subobjects in the category of mixed
K-pre-Hodge structures, but only few of them are again in “Zugeg. In fact,
any subobjegt in Azageie must be stric‘E, hence it is determined uniquely by the
underlying K-subspace, but not every K-subspace is possible. As the underlying
vector spaces have finite dimension, this shows in particular that every object
of Hzgei has finite length. Proposition 4.13 has the following consequences.

Corollary 4.16 Any simple object of Hutpeg is pure of some weight.

Corollary 4.17 For every p € Q we have an ezact functor

Grl : Hatpeic — Htpeiw, Hws GrlV I

5 Semistability and tensor product

For the category of mixed K-Hodge structures to be tannakian we must prove
that semistability is invariant under tensor product. This is done in the present
section. The problem can be approached in several different ways. Our ar-
gument is a modification of Totaro’s proof for filtered modules [28], which in
turn is based on ideas of Kempf and Ramanan-Ramanathan [27]. This proof
relies on explicit calculations of degrees of various filtrations and is therefore
rather elementary. Our only additional ingredient is the passage from lattices
to Hodge filtrations and back, inserted at strategically chosen places. For an
explanation of Totaro’s method and further comments see [28]. We have quoted
the necessary results in Section 1. We also need the following preparations.
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Frobenius functoriality: Consider a positive integer ¢ which is a power
of char(K). There is no need to exclude the case ¢ = 1, which works in any
characteristic. On any commutative K-algebra we have a Frobenius endomor-
phism Frob, : z — z7, and we are interested in its effect on mixed pre-Hodge
structures.

Definition 5.1 (Frobenius pullback) For any mized K -pre-Hodge structure
H = (H,W,qf) we define Frob, H := (H', W', qf), where

(a) o.=H ® K ,Frob, K,
(b) VV;I—AI' = I/Vu/qu ® K Frob, K for every u € Q, and
(¢) ai = qi Ocfz—¢],Frob, Cllz — (]-

Definition 5.2 (Frobenius pushforward) For any mized K -pre-Hodge struc-
ture H = (H,W,qg) we define Frob, .H := (H',W',qg), where

(a) H' := H on which K acts through Frob,,
(b) W"l"ﬁ' = W'uqlff for every p € Q, and
(c) a =dir-
Using the canonical isomorphism
Frob, ®id : C[[z — (] @& Frob, K —= Clz — (]

one easily finds that the triples Frobf;ﬁ and Frobq,*ﬂ are again mixed K -pre-
Hodge structures. Moreover, both prescriptions extend to functors of mixed
K -pre-Hodge structures in the obvious way, and Frob; is left adjoint to Frobg ..
Furthermore, we have:

Proposition 5.3 (a) Frobq,*FrobZE =~ [1%,
(b) FrobZFrobq,*E is a successive extension of q copies of H.

Proof. The isomorphism in (a) is induced by any basis of K over K7 :=
Frob, (K). In (b) the vector space underlying Frob; Frob, . H is
Hog K2 Hog (K ok K) 2 0 og K[t]/(1) .
The adjunction morphism Frob;Frobq,*E —» H and multiplication by powers
of ¢ yield the desired description. q.e.d.
The behavior of the numerical invariants is read off easily from the defini-

tions:

Proposition 5.4 For any mized K—pre—Hodge structure H we have
(a) (i) rank(Frob;ﬂ) = rank(H),
(1) deg;W(Frob;‘E) =q-deg" (H),
(iii) deg, (Frob? 1) = q - deg, (),
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(b) (i) rank(F‘rowa) =q- rank(ﬁ),
(i) deg" (Frob,.H) = deg" (H),
(#41) degq(Frobq,*E) = degq(ﬂ).

Now we can prove:

Proposition 5.5 For any mized K—pre—Hodge structure H the following as-
sertions are equivalent:

(a) H is semistable.
(b) Frobf;ﬁ is semistable.
(¢) Frob, .H is semistable.

Proof. Suppose first that Frobj H is semistable. Any subobject H, C Hde-
termines a subobject Frob; H, C Frob H, and the (in-)equalities characterizing
the semistability of H follow at once from Proposition 5.4 and the correspond-
ing (in-)equalities for Frobqﬂ . Thus H is semistable, proving the implication
(b)=>(a). In the same way one proves the direction (c)=(a).

For the reverse directions note first that with Proposition 4.13 the problem
reduces to the pure case. So assume that H is semistable and pure. Then by
Corollary 4.12 and Proposition 5.3 both Frob, .Frobj H and Frob qFrobg, H are
semistable. Applying the former directions to Froby H resp. Frobq LH in place
of H, we deduce that these ob jects are semistable, as desired. q.e.d.

The main result:

Theorem 5.6 The tensor product of any two semistable mized K -pre-Hodge
structures is semistable.

This is the remaining ingredient for the following result. Let 7z denote the
tensor category of finite dimensional K-vector spaces, and consider the forgetful
functor

Corollary 5.7 The category of mized K -Hodge structures Hasef; together
with the fiber functor w is a neutral tannakian category.

Proof. By Theorem 4.15 “Fasef; is an K-linear abelian category, and by
Theorem 5.6 it is invariant under tensor product. By Proposition 4.6 it is
also invariant under dualization, and hence under inner Hom. Furthermore it
possesses a unit object 1 ;. Therefore gk is a rigid tensor category. Clearly
w is a fiber functor. q.e.d.

Proof of Theorem 5.6: This will take the rest of the section. Consider
arbitrary mixed K -pre-Hodge structures E 1 and E 2. Recall that any decreasing
filirations @ of the underlying vector spaces H; determine filtrations by strict
subobjects @fﬁ i, as well as strict subquotients Gréﬁ ;- The same holds for the
associated total filtration of H 1 QK o 2, again denoted ®.
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Proposition 5.8 There is a natural isomorphism

Grg(H, @ Hy) = () (GrgHi) ® (GrgHo).
1+L0o=1L

Proof. On the underlying K-vector spaces the isomorphism is standard.
More generally, note that a canonical isomorphism of this form exists for all
objects in an additive tensor category which are filtered by direct summands.
Applied to the underlying vector spaces together with their weight filtrations,
the Bruhat lemma 1.5 shows that ® induces filtrations by direct summands.
Thus the above isomorphism is compatible with the weight filtrations. For the
lattices ¢ we have a similar decomposition, which by canonicity coincides with
that coming from the underlying K-vector spaces after tensoring with C((z — ().
This means that we have an isomorphism of mixed K -pre-Hodge structures, as
desired. q.e.d.

The analogue of Proposition 5.8 holds for increasing filtrations. Applying it

to the weight filtrations we can reduce ourselves to the pure case:

Lemma 5.9 If Theorem 5.6 holds whenever Hy and Hs are pure, then it
holds in general.

Proof. Combine Propositions 4.13, 4.14, and 5.8. q.e.d.

For the rest of the proof we may assume that E 1 and E 5 are semistable
and pure, say of weights u; resp. ps. Then H := H, ® H, is pure of weight
i = p1 + po. To prove its semistability we shall use the formulation in 4.4 (a).
Let us fix any subobject H' of H. We assume H' # 0 since otherwise the desired
assertion is obvious. Note that the semistability of the E ; implies

pq(H) = pq(H1) + pg(Hs) = p" (H1) + 1" (Hs) =+ pa = o
so that u" (H') = p = pq(H). Thus we must prove
(5.10) Nq(ﬁl) < Nq(E) .

Lemma 5.11 The inequality 5.10 holds when H' is universally GL(H;) x
GL(H)-semistable.

Proof. For clarity let F' denote the Hodge filtration of H¢ determined by H
and F' the Hodge filtration of H¢. determined by H', according to Definition 3.5.
The functoriality of the Hodge filtration means that

F'Hi c H.NF'He
for all ¢. Since ﬁo’c is GL(H, ¢) x GL(H+ ¢)-semistable by assumption, we deduce
a(H') = e (FT2) < () < g (FLc) = prg (1) .
This is the desired inequality 5.10. q.e.d.

For the rest of the proof we assume that H’ is not universally GL(H;) x
GL(H)-semistable.
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Lemma 5.12 It suffices to prove the inequality 5.10 whenever H' possesses
a universal Kempf filtration over K.

Proof. By Proposition 1.19 there exists a universal Kempf filtration over a
finite purely inseparable extension of I%, say of degree ¢. Since Kisa complete
local field with perfect residue field, this extension must be generated by a q
root of z. It follows that the universal Kempf filtration exists for Frob g
(Frob, H)® (Frob, H,). By Proposition 5.5 we may replace all our obJects
by their pullbacks under Frob,. Afterwards H possesses a universal Kempf
filtration over K. q.e.d.

By Lemma 5.12 we may now assume that ® is a universal Kempf filtration
associated to H'. For any j € Q let F;) resp. F' denote the Hodge filtrations
of Grl, He resp. Grl, H.. determined by the K- pre Hodge structures GrZI)H and
GrfI,H !. Next we fix a filtration F' of Hc whose induced filtration of Grl [
is equal to F{;. (Caution: In general the restriction of F{;) to Grq,H t does
not coincide with F; (’ T Slmllarly, for F' we cannot necessarlly take the Hodge
filtration associated to the K-pre-Hodge structure H. ) We calculate

degy(H') = ) deg,(Gry L)
Jj€Q
= Y degpy (GrIIL)
JEQ
< Z degFm (Grg He)
Jj€Q
= Zdegﬁ'|Grfbﬁ:(Gr‘ZI’H{C)
JjeQ
— 3 L Jory . J !
= Z(deg(F+mq>)|Gr;H@(Gr¢Hc) deg(m¢)|Gr;H@(Grd> tc))
Jj€Q )
= degpy e (H) — degue(He) -
Here the first equality follows from the additivity of deg, in strict exact se-
quences. The second line is equation 4.1, and the third follows from the func-
toriality of the Hodge filtration. The fourth and fifth hold by construction, and
the last one follows from Proposition 1.12, where m must be sufficiently large.
Dividing everything by rank(H') we deduce

(5.13) Nq(H) < NF+m<I>(HC) Mmé(ﬁl) -

Next let us abbreviate
pa(H') — po (H)
|®[?
By cs)nstructioP this numAber is positive. Moreover, by Proposition 1.15 we have
o (H) = pa(H1) + pe(Ho) = 0, and therefore

(5.14) i (') = m - pg(H') = m - - 9] .

C =
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On the other hand we have
pe(H) = pp(fc)

(515) = /1‘15‘+m<1> (]A{C) — Uma (ﬁC)
= /‘Lﬁ‘+m¢ (ﬁc) -

Combining 5.13, 5.14, and 5.15 we deduce

) = o) < (Bpgma(FTE) = ppme () —m - |0

1.16 (a) .
c (P, F+m®) —m-c-|®|?

2
e+ [ (0@ i) — (1)) (@ .1
=1

I
o

I
o

3 [ @ 1) = ) i@ )

By the semistability of H; the integrand is everywhere < 0. The desired in-
equality 5.10 follows. This finishes the proof of Theorem 5.6. q.e.d.

Aliter: Using the interpretation of mixed K -pre-Hodge structures as fil-
tered vector bundles on the diagram 3.6 one can prove Theorem 5.6 also along
the more algebro-geometric lines of Ramanan-Ramanathan [27]. In the pure
case our concept of semistability coincides with the usual semistability of vector
bundles. Thus the proof of [27] Thms. 3.18 and 3.23 translates into our setting
with no difficulty. The main difference to the case of vector bundles on a pro-
jective curve is the fact that in our case the notion of semistability is always
invariant under Frobenius pullback.

Example 5.16 We close this section with an example where the universal
Kempf filtration exists only over an inseparable extension. For simplicity assume
char(K) = 2. Put H := K?, make it pure of weight 1, and let

in = <<(1)) (\}Z) (== O_1>cnz—cn '

The Hodge filtration comes out to be

0 ifi>1,
Fif¢ = (A(}C))(C ifi=1,
Hc if 4 < 0.

The semistability condition follows easily from the fact that the middle step is
not defined over +(K); so this defines a simple pure K-Hodge structure H of
weight % Tts endomorphism ring

s =((3 4)- (¢ 1))

is an inseparable quadratic extension of K, which is the cause of problems. Let
us identify the tensor square H @ H with the space of 2 x 2-matrices over K
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so that

Qiren = <<(1) 8), <(1) \éz)-(z—()l,
(Ve o) =0 (U 0) =070y

TIts Hodge filtration can be written as
0 ifi > 2,

- <<1 \/Z>>K ifi =2,
F{(H ® H)c = <<£ 83’ <(1) (1)) <(1] 2>>K if i =1,

(H® H)c ifi <0.

Now consider the subspace

(001 1 0Y,. Ao A
H—((l 0), (0 Z))](CH@}(H.

As the reader may verify for herself, this subspace is GL(H) x GL(H )-semistable
in the sense of Definition 1.13. On the other hand, the Hodge filtration makes
this subspace non-semistable over C, since pp|f., (Hy) = 3 s greater than
ur((H ®k H)c) = 1. The universal Kempf filtration exists over K (1/z), where
it is given by

0 ifi > 1,

Ol i K(Vz) = (A(\}g))fi(ﬁ) if1>4> -1,

H®i K(Vz) ifi<-1.
Note that this example also shows that in positive characteristic it is not possible
to build a reasonable theory on the basis of Hodge filtrations instead of lattices.
Namely, while H together with its Hodge filtration would constitute a semistable
pure object in a suitable abelian category, its tensor square would not, because
the subspace H' would violate the semistability condition.

6 Hodge groups: general properties

For any mixed K-Hodge structure H let (H) denote the strictly full tannakian
subcategory of Fagei which is generated by H, i.e. the smallest abelian full
subcategory containing H which is invariant by taking subquotients, tensor
product, and duals. Let wg : (H) — 7k denote the restriction to (H) of the

forgetful functor w.

Definition 6.1 The group Gz = Aut®(wy) is called the Hodge group
of H.

The Hodge group may be viewed as an algebraic subgroup scheme of the gen-
eral linear group Autg (fI ). By the fundamental theorem on neutral tannakian
categories (Deligne-Milne [4] Th. 2.11, or Deligne [5] Th.1.12) the category ()
is tensor equivalent to the category “%sg 5 of finite dimensional representations
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of Gg over K. Thus certain properties of mixed K -Hodge structures corre-
spond to properties of their associated Hodge groups. Some of these relations
are discussed in the present section and the next. The theory is developed with
an eye towards the problem of determining Hodge groups explicitly.

Basic properties:  The first result concerns the abstract form of G'g:
Proposition 6.2 The Hodge group G is connected and reduced.

Proof. It suffices to prove that any finite factor group scheme G of G g is
trivial. Consider a faithful representation of G; and let H, beits corresponding
object of (H). Then we have G, = Gy and (H,)) = Figpc, . As Gy is a finite
group scheme, there exists an object Ho € (H;) such that any object of (1)
is a quotient of HP™ for some n (see [4] Prop. 2.20). Choose integers e > e_
such that

(z=Q)pa, Cai, C (2= pa, -

Then for every r > 0 we have

(2= QO P, C gy, C (2= QP
which is possible only if qg, = pg,. I?y a similar argument, or using the
semistability condition, we deduce that H; is pure of weight 0. It follows that
H; is a direct sum of copies of the unit object 1%, and hence G1 = Gg, =1,
as desired. q.e.d.

Functorial description of the lattice: The main data determining an
object H is its lattice qz. It can be described in terms of the Hodge group, as
follows:

Proposition 6.3 Consider any object H of Hetpeic and let p denote the
representation of G g on the underlying vector space H.

(a) There exists an element v € Gu(C((z — C)) such that qig = p(v)pa-

(b) Consider any ~ as in (a) and any object Hy of (HY). Let p; denote the
associated representation of Gg on the underlying vector space Hi. Then
we have a5, = p1(V)pa, -

Proof. First we use general tannakian theory. Consider the fiber functor
from (H) to the category of finitely generated free C[[z — (J-modules which
is given by H qfr,. By the fundamental theorem on tannakian categories
(Deligne [5] Th.1.12) it becomes isomorphic to wg over some faithfully flat ex-
tension of C[[z — (]]. Clearly such an isomorphism exists already over C[[z — (],
i.e., we have a functorial isomorphism

v: pa, = Hi i Cllz — ¢] == qa,

for all H; in (), which commutes with tensor product. Recall that we already
have a tautological isomorphism of this form over C((z — (). Thus we may
interpret v as an element of Aut®(wg ®% C((z — () = Ga(C(z —¢)).- By
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construction this element enjoys property (b). This proves (a), but we still have
to show that (b) holds for every other element « as in (a).

So fix v as in (a) and consider the collection of all H; which have the
desired property. One easily finds that it is invariant under taking subquotients,
direct sums, tensor product, and dualization, since all these constructions are
equivariant under G'g. The collection also contains bii by assumption, and hence
all objects of (HY, as desired. q.e.d.

A~

Frobenius pullback: As earlier let ¢ > 1 be a power of char(K). From
Definition 5.1 and Proposition 5.5 it is clear that Frobj defines a tensor functor
from Hoajef; to itself.

Proposition 6.4 For any object H of Hecpeic the Hodge group Grrobz it 18
canonically isomorphic to Frob,G g := G X k prob, K -

Proof. For any tannakian category Z over a field F' and any finite extension
E/F there is a tannakian category 7 ®p E, as follows (compare Deligne [5] §5).
An object of Z ®F E consists of an object X of Z and a homomorphism of
F-algebras E — End%; (X). Morphisms in this category are morphisms in 2~
which commute with the additional E-action. There is an obvious E-linear
tensor product in 7 ®p E which makes this a tannakian category over E.
Furthermore, any fiber functor w : 2 — 7 induces a fiber functor wg : 2 Q@
E — 7..p. Putting G := Aut®(w) this construction yields an isomorphism

Cop E= %% Or E = ZGxvE -

Thus we obtain a canonical isomorphism Aut®(wg) = G xr E.

Let us apply these general remarks to the category 7 := (H) and the
embedding of fields Frob, : K < K. The functor Frob:;|((ﬁ ) factors through
obvious tensor functors

(H) — (H) ©k prob, K — (FrobyH) .

Tt suffices to prove that the second functor is an equivalence of categories. From
the definition of Frob; it is clear that the functor is fully faithful and that its
image is invariant under taking subquotients. Since the image contains the ten-
sor generator FrobZ H, the functor is essentially surjective, hence an equivalence
of categories, as desired. q.e.d.

Cocharacters and Z-gradings: Consider an algebraic group G over
a field F. A cocharacter of G is a homomorphism of algebraic groups A :
Gm,r = G, where Gy, r denotes the multiplicative group over F. For any
cocharacter A and any algebraic representation V' of G we have a natural Z-
grading V' = @, Vi, where V; denotes the weight space of weight i under A,
that is, the subspace on which A(x) acts by multiplication with 2? for every
T € F*.

If A is fixed, this grading is functorial in V' and compatible with tensor
products and duals. Conversely, suppose that for each V' we are given a Z-
grading of V' which is functorial in V' and compatible with tensor products
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and duals. Then this data can be interpreted as a F-linear tensor functor
Tigpg — DG, »y S0 it comes from a unique cocharacter of G (compare [4]
Example 2.30). In other words, the cocharacter and the associated grading
determine each other.

Quasi-cocharacters and Q-gradings: The following terminology ex-
tends this to arbitrary rational weights. For every integer n > 0 consider the
group Gy, := G, and for any n|n' consider the homomorphism G — Gy,
z +— 2™ /™. This defines an inverse system of linear algebraic groups, whose limit
Gm,r = lim Gy, is the affine group scheme Spec F[X"|;eg]- A homomorphism
of algebraic groups A : Gy, r — G is called a quasi-cocharacter of G. Pulling
back by the natural map Gm r — Gp, r, any cocharacter can be viewed as a
quasi-cocharacter. Conversely, any quasi-cocharacter factors through some G,
so it can be viewed as an n'" root of a usual cocharacter.

Most properties of cocharacters extend naturally to quasi-cocharacters. For
instance, the above correspondence between cocharacters and compatible sys-
tems of Z-gradings extends in a natural way to a correspondence between quasi-
cocharacters and compatible systems of Q-gradings. Namely, if some positive
power A™ of a quasi-cocharacter A is a usual cocharacter, the weight space of
weight 7 € Q for ) is just the weight space of weight ni for A™.

Weight (quasi-)cocharacter: Consider a mixed K-Hodge structure H
which is isomorphic to the direct sum of its pure constituents Gt H. Then
this isomorphism is canonical, that is, the weight filtration of the underlying
vector space H is split by a canonical Q-grading. The same properties hold for
any object of (H), and the resulting gradings are functorial and compatible
with tensor products and duals. Therefore the grading of H corresponds to a
unique quasi-cocharacter of the Hodge group wy : Gm, &k — Gg. We shall call
it the weight quasi-cocharacter of G, or weight cocharacter for short. Clearly
its image is contained in the center of Gg.

Now let H be an arbitrary object of g . Then the image of G in its
representation on Gr" H is just the Hodge group Gg,w g Let Up denote the
kernel of the epimorphism G —» Gg,w g. Clearly this is a unipotent group.

Proposition 6.5 (a) The weight quasi-cocharacter of Gg,w g lifts to a
quasi-cocharacter wg : G, k — G, called weight (quasi-)cocharacter
of Gg.

(b) This lift is unique up to conjugation by Ué(k)

(¢) The weight cocharacter acts by non-positive weights on the Lie algebra
LieGg. Its weights on LieUy and Lie Gg,w g are negative, resp. zero.

Proof. Assertion (c) is clear by construction, once the other statements have
been proved. For these choose n > 1 such that wng i is an honest cocharacter
Gm,k — Gg,w - Define an algebraic group P by pullback so that we have a
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commutative diagram with exact rows

1 Uﬁ GH GGFWE—>1
| e b
1 U P Gm, i 1

The problem then amounts to the existence and uniqueness up to conjugation
of a Levi decomposition of P over K. Since P is solvable, these properties are
guaranteed by Borel [2] Thm. 18.2 (i) and Thm. 19.2, respectively. q.e.d.

Polygons: In the following by a polygon we shall mean the graph in R? of
a piecewise linear convex function [0,n] — R for some integer n which starts
at (0,0). All slopes of this function are assumed to be rational numbers, and
the length of the subinterval on which the function has a given slope i € Q is
assumed to be an integer, called the multiplicity of i. The convexity means
that the slopes are arranged in ascending order. The starting point (0,0), the
endpoint, and any point where the slope changes is called a break point of the
polygon.

To any finite dimensional Q-graded vector space V over a field F' is associated
the unique polygon for which the multiplicity of each slope ¢ € Q is equal to
dimp (V). Given a linear algebraic group G and a quasi-cocharacter Gm, F— G,
we have a whole collection of polygons associated to the induced gradings on
every finite dimensional representation of G. Note that these polygons do not
change under semisimplification; one could say: they are additive in short exact
sequences. This fact is a fundamental restriction on the possible collections of
polygons which come from a cocharacter of G.

Given two polygons P and @ of the same length n, we say that P lies above
Q@ if and only if P is on or above ) at every point of the interval of definition
[0,n]. We say that P lies strictly above @ if and only if in addition they meet
at most at the starting point and the endpoint.

Weight polygon: For any mixed K—pre—Hodge structure H, not nec-
essarily semistable, the polygon determined by the weight filtration is called
the weight polygon of H. It has the following basic property, which is a direct
consequence of the definition of strictness:

Proposition 6.6 For any strict exact sequence of mized K—pre—Hodge struc-
tures 0 - H' — H — H" — 0 the weight polygons of H and H' & H" coincide.

When H is semistable, any choice of weight cocharacter wg determines a
splitting of the weight filtration, and its associated polygon is equal to the
weight polygon of H. Thus for objects of e the additivity assertion 6.6
also reflects the existence of the weight cocharacter. We shall next look at the
state of affairs for the Hodge filtration.

Hodge polygon: The polygon determined by the Hodge filtration of He
is called the Hodge polygon of H. Its slopes can be viewed equivalently as the
elementary divisors relating the lattices pg and qgz. The equivalent conditions
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for semistability from Proposition 4.4 can be rephrased once more in terms of
polygons (compare Fontaine [8] Prop. 4.3.3):

Proposition 6.7 A mized k—pre—Hodge structure H is semistable if and
only if

(¢) For every subobject H' C H the weight polygon is above the Hodge polygon,
and the endpoints coincide whenever H' = W, H for some p € Q.

Proof. 'The part of (c) relating to the endpoints is just the condition (a)
of Proposition 4.4. Thus it remains to prove the first part of (c) under the
assumption that the assertion for the endpoints is true for all subobjects H, C
H. Assume that (c) fails, and let s > 0 be the smallest integer where the Hodge
polygon of H'is strictly above its weight polygon. If y is the last slope of its
weight polygon to the left of the point s, the last slope of its Hodge polygon
must be greater than p. Suppose that the slope p of the weight polygon extends
until the point r > s but not further. Then the Hodge polygon is strictly above
the weight polygon at the point r. Now r is just the rank of E'l = W"HE', whose
weight polygon is an initial segment of the weight polygon of H'. The smallest
Hodge slopes of H | are > the smallest Hodge slopes of bl , so the Hodge polygon
of H ! is above the corresponding initial segment of the Hodge polygon of H'.
It follows that the Hodge polygon of H | is strictly above its weight polygon at
their endpoint 7. This contradicts assertion 4.4 (a), as desired. q.e.d.

By construction the slopes of the Hodge polygon are integers. This implies:

Proposition 6.8 Ifﬂ is semistable, all break points of its weight polygon
have integral coordinates.

Proof. Any initial segment of the weight polygon of H which ends in a break
point is the weight polygon of some W, H. By Proposition 6.7 this break point
is the endpoint of some Hodge polygon and therefore has integral coordinates.

q.e.d.

Next consider again the strict exact sequence 4.10.

Proposition 6.9 The Hodge polygon of H' & H" lies above that of H and
has the same end-point.

Proof. 'This assertion is similar to that of Katz [19] Lemma 1.2.3. To prove
it consider a point (r,e) on the Hodge polygon of H with r € Z. Then e is the
smallest slope of the Hodge polygon of ATH. By the definition of the Hodge
filtration this implies

(6.10) (2= Q)7 parir C darir -
Observe that this property is inherited by any strict subquotient of AH. Now
the given exact sequence induces a canonical filtration of A" H, whose associated
graded object is isomorphic to

@ AT'EI ® Ar”ElI o AT(EI ®El!) )

ri4r!=r
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(Compare Proposition 5.8 and its proof.) It follows that the analogue of For-
mula 6.10 holds for A7(H' ® H") in place of A"H. In other words the smallest
slope of the Hodge polygon of the former is > e, hence the Hodge polygon of
H' ® H" lies on or above the point (r,e), as desired. q.e.d.

Proposition 6.11 The following statements are equivalent:
(a) The Hodge polygons of H and H' ® H" coincide.
(b) The injection fAI(’C < Hc is strictly compatible with the Hodge filtrations.
(c) The surjection He —» H ¢ is strictly compatible with the Hodge filtrations.
(d) For every i € Z the following sequence is eract:

0— FiHp — Fillc —» FPHE = 0.
(e) For every i € Z the following sequence is exact:
0 — Gri. /Y — Gri.H¢e — Gri HY: - 0.
Proof. First we show the equivalence (b)<(c). To clarify notations let us

distinguish the Hodge filtrations of H¢, H Cs H Cas F, F', F" respectively. The
functoriality of the Hodge filtration implies

(6.12) degp (H{) < degpr (He) ,

with equality if and only if F' = F|I§Té:, i.e. if the embedding Iﬂ: — Hc is
strictly compatible with the Hodge filtrations. The analogous remark applies to
the inequality

(6.13) deg o (A1) > degpfn (HE) -
Now the calculation
degp(Hy) + degpn (1) = degy(IT') + degy(11")
= degy(H)
degp(Hc)

= degpmgj(ﬁ('c) + degpay (7
shows that 6.12 is an equality if and only if 6.13 is one. This implies the desired
equivalence (b)<(c).
Next, (d) is equivalent to the conjunction of (b) and (c). The equivalence
(d)<(e) follows by induction on 4 using the 3 x 3-lemma. The direction (e)=(a)
is obvious, so to finish the proof it suffices to show the implication (a)=(d). For
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this we consider the following commutative diagram:

0 0 0

0 —=parN(z—¢)' g —>pan(z—¢) "tag —> parN(z—¢)* gy —>0

(2—¢) (z=0) (z=¢)

0 —>ppn(z2—C) qy ———> pan(z—C)'ag ——> panN(z—C)fqan ——>0

0————> F'HL FiHe FiHY 0

0 0 0

Its columns are exact by construction, and we shall use downward induction on
1 to show that its rows are exact. For 7 > 0 the middle row is equal to

0= (z=Q%an = (z—Q'ag = (2= O'agr =0,

which is exact by strictness. So for the induction step we may assume that
the middle row is exact. In the bottom row we always have FiHL C F'Hc.
On the other hand, the exactness of the middle row implies the surjectivity
of the map FiHc — FiH ¢. Furthermore, the assumption (a) implies that
dim(FifH¢) = dim(FiHL) + dim(F*H[). Thus the bottom row is exact. Now
the 3 x 3-lemma implies the exactness of the top row, thus finishing the proof.

q.e.d.

Non-exactness of the Hodge filtration:  Both F? and Gr% define
additive functors #gei — Zwc. But they are not exact. As the following
example shows, such non-exactness occurs when the extension is in some sense
too non-trivial on the lattices q . By restricting the permitted extensions one
can expect to obtain an exact functor on a suitable subcategory. In the next
section we show that there is a unique largest strictly full tannakian subcate-
gory B of Hatpeiz on which all functors F? and Grf are exact. On this
subcategory we then have a theory of cocharacters whose numerics are based
on Hodge polygons, just as for the weight cocharacter.

Example 6.14 Put H := K2, make it pure of weight 0, and let

)

This defines a pure K -pre-Hodge structure H of weight 0. Clearly the strict
1
0

object 1z, and so is the factor object H/H'. Thus using Corollary 4.12 we
deduce that H is semistable. Assume e > 0, then the Hodge filtration comes

subobject H' with underlying vector space ((,))& is isomorphic to the unit
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out to be

o 0 ifi >e,
F'He = He ife>i> —e,
H([; if—eZi.

Since the Hodge filtration for H'is trivial, it follows that the embedding H c =
Hc is not strictly compatible with the Hodge filtrations. The equivalent condi-
tion of Proposition 6.11 fail here, hence the functors F* and Gr} are not exact.
Note that the Hodge group of this H is non-trivial unipotent.

7 Hodge groups and Hodge cocharacters

Throughout this section we work inside the tannakian category %’%@K, i.e. any
object H is assumed semistable. Its semisimplification will be denoted H*S.

Definition 7.1 (a) H is called Hodge additive if and only if its Hodge
polygon coincides with that of H.

(b) H is called strongly Hodge additive if and only if every object H, of ((E))
is Hodge additive.

Clearly H is strongly Hodge additive if and only if the equivalent conditions
in Proposition 6.11 are satisfied for any short exact sequence in {H). Our first
aim is to characterize this property in a simpler way.

Proposition 7.2 H is strongly Hodge additive if and only zfﬁ is Hodge
additive and H*S strongly Hodge additive.

Proof. The “only if” part follows at once from the inclusion (H*) c (H).
For the “if” part note that any object of (H) is a subquotient of an object of

the form
T

Hmn) = @E@mi ® (EV)@mi ]
i=1
It suffices to show that H(mn) ig Hodge additive, since this property is clearly
inherited by subquotients. Now the Hodge polygon of any tensor product H ®
H, depends only on the Hodge polygons of the factors; more precisely: its slopes
are all sums of a slope of one polygon with a slope of the other, taken with the
appropriate multiplicities. Thus if H is Hodge additive, the Hodge polygon of
Hmn) does not change when His replaced by s, If, moreover, % is strongly
Hodge additive, it follows that H(mn) g Hodge additive, as desired. q.e.d.

Next recall that a linear algebraic group over an algebraically closed field is
called reductive if and only if its unipotent radical is trivial. For example, any
algebraic group possessing a faithful semisimple representation is reductive. A
linear algebraic group G over an arbitrary field F' is reductive if and only if Gz
is reductive.

Proposition 7.3 If Gg is reductive, then H s strongly Hodge additive.
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Proof. Using the formulation 6.11 (b) we must prove that for any pair of
objects Hy C H;y in (H) the injection Ho ¢ < H, ¢ is strictly compatible with
the Hodge filtrations. One easily checks that this is equivalent to the strictness
of ATﬁQ,C — A”f[l,c, where r := rank(ﬁg). Since the Hodge filtration com-
mutes with A", we may replace the objects H, c H, by A"H, C A"H,. Thus
without loss of generality we may assume rank(,) = 1. Next the desired as-

sertion is invariant under tensormg with obJects of rank 1. Thus after tensoring
with H Yy we may assume Hy =1 1;. Now H, corresponds to a representation
of the reductive group G g and H> to a line of G fr-invariants. Thus by geomet-
ric reductivity (see Mumford-Fogarty [22] Appendix 1) there exists an integer
m > 1 so that Sym™ 15 C Sym™ H, is a direct factor. It follows that the asso-
ciated embedding Sym™ C < Sym™ H 1, is strictly compatible with the Hodge
filtrations. Therefore the original embedding C — H 1,c is strictly compatible
with the Hodge filtrations, as desired. q.e.d.

Corollary 7.4 Assume that char(K) = 0. Then the properties “Hodge ad-
ditive” and “strongly Hodge additive” are equivalent.

Proof. Since bt corresponds to a faithful semisimple representation of
G = in characteristic zero, this group is reductive. By Proposition 7.3 (or just
linear reductivity) Hss is always strongly Hodge additive. The desired equiva-
lence now follows from Proposition 7.2. q.e.d.

Arbitrary characteristic: = In positive characteristic we cannot argue
directly like this, because the Hodge group of a semisimple object is not nec-
essarily reductive. We shall reduce ourselves to a reductive Hodge group via
Frobenius pullback.

Proposition 7.5 Let ¢ > 1 be a power of char(K). Then H is strongly
Hodge additive if and only if Frob:;ﬂ is strongly Hodge additive.

Proof. Consider the map
Frob*ﬁ:f[@;gpmb K—Sym’H, h®z— z-h?.

From Definition 5.1 one easily checks that it defines an embedding Frob H
Sym? H. It follows that {Froby H )) (HY, which implies the “only if” part For
the “if” part suppose that Frob His strongly Hodge additive and consider any
object H; of (HY. Then Frob® H1 is an object of (Frob; HY and hence Hodge
additive. Definition 5.1 1rnp11es that the Hodge polygon of Frob} H, is obtained
from the corresponding Hodge polygon of o, by scaling in the vertlcal direction
by the factor q. In particular, these Hodge polygons determine each other. Since
Frob;, (E ) is a partial semisimplification of Frob;E 1 and the latter is Hodge
additive, their Hodge polygons coincide. It follows that the Hodge polygons of
Eis and El coincide, as desired. q.e.d.

Next note the following lemma:
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Lemma 7.6 Let ¢ > 1 be any power of char(K) and H arbitrary. Then the
following assertions are equivalent:

(a) The Hodge polygons of Frob;Frobq’*E and H®? coincide.
(b) All slopes of the Hodge polygon ofﬂ are multiples of q.

Proof. In the preceding proof we have seen that all slopes of the Hodge
polygon of FrobZFrobq,*E are multiples of g. By Proposition 5.3 (b) this implies
the direction (a)=-(b). For the converse note that by the elementary divisor
theorem there exists a C[z — (]-basis (h;)1<i<r of pfr such that qg is generated
by the elements (z — )¢ - h;. Here the e; are the slopes of the Hodge polygon
of H , S0 we assume that they are multiples of q. Now Definitions 5.1 and 5.2
show that the lattices associated to FrobZFrobq,*E are obtained from those of E
by applying () ®cj(z—¢)e] Cllz — (]|, where the new C[[z — (]J-module structure
comes from the second factor. Since ¢ divides e;, the calculation

(e-oclz=a)  ©  Cl-d=Cl:=d_ © (E=0%Cl-)

Cll(z—¢)
shows that each slope e; for H yields ¢ coples of slope e; for F‘rob Frob,, LH.

Thus the Hodge polygons of Frob, Frob,, LH and H®9 coincide, as des1red
q.e.d.

As an example let us consider the special object H from 5.16. Tt is isomorphic
to Frobg,*ﬂ’, where H' is of rank 1, pure of weight 1, and has qz := (z— ()" -
pa. Its single Hodge slope is 1, so Frob;E is not Hodge additive by Lemma 7.6.
In particular we see that the property “Hodge additive” is not invariant under
Frobenius pullback.

Let us now have a closer look at an arbitrary simple object H,. Its endo-
morphism ring End(H,) is a division algebra of finite dimension over K. Such
an algebra is called separable over K if and only if its center is a separable ex-
tension of K. The property “semisimple and separable K -algebra” is invariant
under base extension to any overfield of K.

Let 7 denote the center of End(I—AI 1) and let ¢; be the degree of the purely
inseparable part of the extension C} /K Ident1fy1ng K with a subextension
of C; via the Frobenius map Frob,,, we can write H H; = Frob,,, *H 1 for some
simple object ﬂ ! whose endomorphism ring is automatically separable over K.

Definition 7.7 Let H 1, q1, and bii | be as above. We call H, quasi-separable
if and only if all slopes of the Hodge polygon of H are multiples of q; .

Theorem 7.8 The following assertions are equivalent:
(a) H is strongly Hodge additive.
(b) Frob;‘E is Hodge additive for every q > 1 that is a power of char(I%').

(c) His Hodge additive and every simple subfactor is quasi-separable.
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Proof. First we prove the equivalence (b)<(c). Since the semisimplifica-
tions of Frob; H and Frob? (f[ 55) coincide, this reduces at once to the case that
H is simple. erte H= H H; with ¢ and H! as in 7.7. The implication (b)=>(c)
then follows at once from Lemma 7.6, apphed to H : H ' and q := ¢q;. Con-
versely, if (c) holds, then Frob H H; is Hodge additive and a successive extension
of copies of H'. Since End(ﬁ ') is separable over K, the Hodge group of H
is reductive, so Proposition 7.3 implies that I | is strongly Hodge additive. It
follows that Frob* Hy is strongly Hodge additive. Now Proposition7.5 implies
that Frobj Hy is strongly Hodge additive for every q, whence (b).

The 1mphcat10n (a)=(b) is part of Proposition 7.5. Conversely assume (b)
and let ¢ be a sufficiently large power of char(K), so that the endomorphism
ring of every s1mple subfactor of Frob; H is separable over K. Then the Hodge
group of (Frob; H H)% is reductive, so thls object is strongly Hodge additive by
Proposition 7.3. Since Frob His Hodge additive by assumption, Proposition 7.2
implies that Frob His strongly Hodge additive. Using Proposition 7.5 this
shows that H is strongly Hodge additive, as desired. q.e.d.

The tannakian category: Now we can prove:

Theorem 7.9 The strongly Hodge additive objects form a strictly full tan-
nakian subcategory of Hzjef;, that is, it is abelian and invariant under subquo-
tients, tensor product, and dual. This category is denoted /&(é&?{ja

Proof. The definition of “strongly Hodge additive” implies that the subcat-
egory Aot f%?a is invariant under subquotients, tensor powers, and dual. Theo-
rem 7.8 1mphes that it is also abelian; in part1cular for any H Hq, H Hy in ok /&%a

we have H; @ Ho in %/%}ga. Since H; ® Ho is a subquotient of (ﬂl @E2)®2,
it is again in /zé/ Sha. Thus /zég///%}(la is invariant under tensor product, and
everything is proved. q.e.d.

sha

Hodge cocharacters: Now consider an object H of Ft oyt Proposi-
tion 6.11 implies that we have a faithful exact tensor functor Grp from (H)
to the category of Z-graded vector spaces over C. Let G% denote the automor-
phism group of the underlying fiber functor (H) — Zc. By general tannakian
theory (see Deligne-Milne [4] Th. 3.2) the group G% is in a canonical way an
inner form of Gg ¢ :=Gg xk,C. AsCis algebraically closed, this amounts to
an isomorphism GFI;, = G g,¢ which is canonical up to conjugation

The grading means that Gry is actually a tensor functor (HY) — W
S0 it corresponds to a unique cocharacter of GFI;,. Via the above isomorphism
it corresponds to a unique conjugacy class of cocharacters of G a,c- As a whole
this conjugacy class is defined over the separable closure of L(K ) in C. Thus if
KseP denotes any abstractly given separable closure of K , we obtain a unique
Gﬁ(ksep) x Gal(K*°P / K)-conjugacy class of cocharacters of GH Fser-

Definition 7.10 Any cocharacter in this GE(KSEP) x Gal(K®¢P / K)-conju-
gacy class s called a Hodge cocharacter of G .
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The Hodge cocharacters yield numerical restrictions on the Hodge group, in
view of the following result:

Theorem 7.11 For any object H Hin /@4 sha the group G i1, keev is generated
by the images of all GH(KSGP) X Gal(Ksep/K) conjugates of Hodge cocharacters.

Proof. 'The subgroup of Gj k--» which is generated by these images is
normal and defined over K. Consider a finite dimensional representation of
G i whose kernel is precisely this subgroup, and let H, be its corresponding
object of {(H). Then all Hodge cocharacters of G @ are trivial, and we must
prove G g, = 1. Now the Hodge filtration associated to H, is trivial, hence we
have qg, = pa,. Since this property is inherited by any subobject of H,, the
semistability implies that H,y is pure of weight 0. Thus H, is a direct sum of
copies of 1, and hence G, = 1, as desired. q.e.d.

Possibilities for the Hodge group: A direct consequence of Theo-
rem 7.11 is the following negative result:

Corollary 7.12 The Hodge group of any object H in //%?a does not
possess a non-trivial unipotent factor group.

On the positive side, we can now show that there are no restrictions on the
semisimple part of a Hodge group. In particular, any root system can occur:

Proposition 7.13 For any connected semisimple group G over K there ez-
ists an object H of j’/&?{‘a with Gg = G.

Proof. Fix a conjugacy class C' of regular cocharacters of G. It is an alge-
braic variety of dimension d := dim(G) — rank(G). Recall that since C contains
the completion of an algebraic closure of +(K f ), it has infinite transcendence de-
gree over ((K). Thus we may find a point A € C(C[[z — (J]]) whose coordinates
are maximally transcendent over K , i.e. such that for every n > 1 the coordi-
nates of A mod (z — )" € C(C[z — ¢]/(z — ¢)") generate an extension of K of
transcendence degree nd.

For every finite dimensional representation H of G define the weight filtration
W to be pure of weight 0, let q7 := Az — () - p#, and consider the triple
H = (ﬁ ,W,q#). This defines a functor from “%sq to the category of pure
K-pre-Hodge structures of weight 0. By construction it commutes with tensor
products. The main point is the following lemma.

Lemma 7.14 Let H' C H be a strict subobject satisfying deg, (H’) > 0.
Then this inequality is an equality, and H' comes from a G-invariant subspace
of H.

Proof. Recall that degq(H') deg, (ATH’) where 7 := rank(H). Thus
for both assertions we may replace H CcH by ATH' C A"H, after which we
may assume 7 = 1. In this case the assumption deg, (H ") > 0 is equivalent
to H' C qi- Now the construction of qg implies that Hn qf coincides with
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the space of G-invariants in H. Thus H' comes from a copy of the trivial one-
dimensional representation inside H. In particular it is isomorphic to 1, and
hence deg,(H') = 0, as desired. q-e.d.

Since G is semisimple, the construction implies degq(ﬂ ) = 0 for every rep-
resentation H. Together with the first part of Lemma 7.14 this implies the
semistability of H. Thus we have obtained a tensor functor Gigpg —> Hodpekc,
which is clearly faithful. By the second part of Lemma 7.14 its essential image is
invariant under taking subquotients, and looking at graphs of homomorphisms
shows that the functor is fully faithful. If H comes from a faithful representa-
tion of G, it follows that we have an equivalence of categories Z%sg —— ((AE ).
This implies Gg = G, as desired. Finally, Proposition 7.3 shows that H is

sha

automatically in 520, q.e.d.

8 Parametrization and extensions

In this section we make some qualitative remarks on parameter spaces of mixed
K-Hodge structures, on extensions, and on infinitesimal deformations.

Period spaces: In order to classify all possible mixed K -Hodge structures
up to isomorphism it is practical to first fix all discrete numerical invariants
and then try to endow the set of isomorphy classes with a suitable analytic
structure. So let us fix a finite dimensional K-vector space H together with a
weight filtration W. This pair is determined up to isomorphism by the rank
and the weight polygon. The only remaining numerical invariant is the Hodge
polygon, i.e. the collection of elementary divisors relating the lattices pg and
q7- Fixing these, we have:

Proposition 8.1 The set of lattices qfy C H @i C((z — ) with the given
elementary divisors is in natural one-to-one correspondence with the C-valued
points of some irreducible smooth quasi-projective algebraic variety X over K.

Proof. Choose a basis hq,...,h, of o , and let qo be the lattice generated
by the elements (z — ()% -h; for 1 < ¢ < r, where e; are the slopes of the Hodge
polygon. By the elementary divisor theorem any other lattice with the given in-
variants is conjugate to qo under GL, (C[[z — (]]). Thus the set of all such lattices
can be identified with the factor space GL,(C[lz — (]]) / Stabar, cz—c]) (do0)- If
all |e;| < e, the stabilizer contains all invertible matrices which are congruent to
the identity modulo (z—({)?¢. Therefore the set can also be viewed as a homoge-
neous space over GL,.(C[z —¢]/(z —¢)?¢). Now this group can be identified with
the group of C-valued points of a connected algebraic group over K, defined as
the Weil restriction R(k[.—¢)/(z—¢)2¢) /KgLr- The stabilizer of qqg corresponds
to an algebraic subgroup defined over K, so the factor space can be endowed
with a natural structure of irreducible smooth algebraic variety X over K. Fi-
nally note that (2 — {)°pg C qi C (2 — () °pg, and giving qz is equivalent
to giving the subspace qg/(z — Q)®piyr C (2 — ()~ pgir/(z — {)¢pgr. This defines
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an embedding of X into some Grassmannian, hence X is quasi-projective, as
desired. q.e.d.

The lattice qg determines the Hodge filtration, which itself is parametrized
by a certain Grassmannian variety. Thus X is fibered over a Grassmannian,
and the points in a fiber correspond to some kind of infinitesimal deformations
of the associated filtration. In other words X is a kind of jet bundle over a
Grassmannian.

Next, the period space X5 is the set of lattices qg for which H= (ﬁ W, az)
is semistable. It may, of course, happen that the period space is empty because
the numerical invariants are wrong.

Proposition 8.2 X% is open in X (C), and dense if non-empty.

Proof. To obtain X from X(C) we must, for every subspace H' C H,
remove all those lattices qg which are in some sense too near to H'. Note that
" corresponds to a K-valued point on a projective algebraic variety Y over K ,
namely a finite union of Grassmannians. By semicontinuity the condition to
remove (H',qg) is Zariski closed, so the set of offending pairs is Z := Z(C) N
()(I%' ) x X(C)), where Z is a certain closed subvariety of ¥ x X. Now the
properness of Y implies that pry(Z) C X(C) is closed in the analytic topology,
hence the complement X'*® is open.

To prove the density note first that we may replace X by any Zariski open
dense subvariety and shrink X®* and Z accordingly, since by openness the non-
emptyness is preserved. After shrinking X we may assume that the morphism
Z — X is flat. This family of subvarieties of Y then corresponds to a morphism
from X to the Hilbert scheme of Y. Let T be the Zariski closure of the image
of X. After shrinking X further we may assume that X — T is smooth and
its image lies in the smooth part of T. Then the map X(C) — T(C) looks
locally like a coordinate projection C®¢ — C%¢ with d > e > 0. All points to
be removed lie in the inverse image of W (K), i.e. of K®¢. Since K is nowhere
dense in C, the desired assertion follows unless e = 0. In that case the map
X — T is constant, hence Z is a product ¥; x X, and X® = . q-e.d.

A similar argument shows:

Proposition 8.3 The subset X5 C X5 parametrizing all simple semistable
objects is open and dense.

For example, an object of Drinfeld module type of rank 7 (cf. Section 10) is
determined by the subspace FORT, c C o ¢ of codimension 1. Thus in this case we
have X 2 P%7", and X% = X% C P"~!(C) is the complement of all K -rational
hyperplanes.

Extensions: As the second topic of this section we classify the possible
extensions in #4eg and compare them with those in 458, Tn either case

they will be parametrized by a vector space over C, whose dimension is typically
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infinite in the former case, but always finite in the second case. We are interested
in short exact sequences

(8.4) 0— H — H-— Hy —0

in Aotyer;, where H, and H are fixed. If some weight of H, is strictly smaller
than some weight of H1, the weight filtration of H determines a partial splitting.
Thus we restrict our discussion to the following basic case:

Assumption 8.5 FEvery weight of o, is greater than or equal to every
weight of H1.

Let ET}R(E 5, Hy) denote the set of all extensions 8.4 in 7 ek together
with a splitting for the underlying K-vector spaces, up to isomorphy. We have

already seen such an extension in Example 6.14.

Proposition 8.6 There is a canonical isomorphism
o, ®k C(= - C)))

qa,

E\XJt(E27E1) = Homc[[27<]1 (qﬁga

Note that this has infinite dimension over C unless both E 1 and E 5 are
Z€ro.

Proof. Identify the underlying K-vector space H with H; @ H, via the
given splitting. Then Assumption 8.5 implies that the weight filtration of H is
determined uniquely by the rest of the data. Next by 8.5 and Proposition 4.11
any strict exact sequence 8.4 of mixed K -pre Hodge structures is automatically
semistable, i.e. His in Hetpeic. Thus giving the extension 8.4 is equivalent to

giving the extension of lattices
0 —— H1®xC(2—() —— HRgC(2—() —— H2®@rC(2—() ——0

(U] U] @]

0 am, an - an, 0

Here the curved arrow in the upper row indicates the given splitting. Since
the lower row consists of free C[[z — (J]-modules, it possesses its own splitting,
indicated by the dotted curved arrow. This splitting differs from that in the
upper row by a homomorphism qg, — Hi i C(z — (). Since the lower
splitting is unique up to a homomorphism qg, — q#,, and qg, is a free
C[lz — ¢]-module, giving the lattice qgz is equivalent to giving the induced ho-
momorphism qg, — (Iffl ®r C(z =) /an,- q.e.d.

Let E}&ha(EQ,Hl) C E;E?Z(Eg,ﬁl) denote the subset of all extensions for
which the Hodge polygons of H and H; & H, coincide. Here the superscript
stands for “Hodge additive”. If E 1 and E 5 are in /%&%a, it follows from
Proposition 7.2 that H lies in %/a%@i?a if and only if it corresponds to an element
of Extha (E Q,E 1)- For the following description of this Ext group note that both

Homgy, ¢ (qu, qgl) and Homgy, ¢ (ng , pgl) can be viewed as lattices in the
C((z — ¢)-vector space Homg (Hs, Hy) ® i C(z — ¢))-
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Proposition 8.7 There is a canonical isomorphism

Homc[[zfg]] (pﬁg »Pay )
Homey. ¢y (pa, pi, ) N Homey. ¢y (a4, 94, )

]:j;(:ﬁha(ﬁza El) =

Note that this Ext group has finite dimension over C. One easily finds that
it is zero if and only if H, and H, are direct sums of copies of the same object of
rank 1. In all other cases we deduce that there exist non-trivial Hodge additive
extensions.

Proof. For any extension 8.4 there is an integer e > 0 such that (2—({)¢pg C
q7- Thus we may consider the following commutative diagram with exact rows
and columns:

(88) 0 qa, 97 > i, 0
qﬁl qg -l qI:I2 0
0> G0%a,  ~ GO%a = =0O%m,
0 0 0

The elementary divisors of the torsion C[[z — (]-modules in the bottom row are
of the form e + i where i runs through the slopes of the corresponding Hodge
polygons. Thus the desired Hodge additivity is equivalent to the splitting of the
bottom row. Any splitting of the bottom row can be lifted to a splitting of the
middle row, so it gives rise to compatible splittings of all rows, as indicated in
Diagram 8.8 by dotted arrows. Looking at the upper row and comparing this
splitting with the given one as in the proof of Proposition 8.6, we see that the
extension of lattices is given by an element of Homey,_¢j(p#,, P, ). Again the
non-uniqueness amounts to an element of Homgcp,_¢] (q 54 gl), yielding the
desired parametrization. q.e.d.

Obstructions: Using the above explicit descriptions one can easily show
that the extension problems in both Fgeg and FagSE* are unobstructed.
The proof is left to the reader:

Proposition 8.9 Consider objects H; in Hoctpee for 1 < i < 3 such that
for all weights p; of H; we have p1 < po < us. Consider extensions
0— Hy — Hyy — Hy — 0,
0— Hy — Hog — Hs — 0
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in Hotyeic. Then there exists an object Hisz in Hocpeic fiting into a commu-
tative diagram with exact columns and rows

0 0
0 H, His H, 0
|
0 H, His Hos 0
Hy ——— M
0 0

If moreover Hm has the same Hodge polygon as E1 @ E2, and Egg the same
as Ho & Hs, then Hq23 can be chosen to have the same Hodge polygon as Hi &
Hs ® Hs.

Infinitesimal deformations: Finally, the first order infinitesimal defor-
mations of a pure object H are parametrized by the group E/)\)&(ﬁ , H ). The
subgroup ET)&ha(E , bii ) corresponds to infinitesimal deformations with constant
Hodge polygon. This is the tangent space of the period space X% described
above. Note that the unobstructedness result of Proposition 8.9 corresponds to
assertion that the parameter space is smooth.

9 Hodge structures over global function fields

Let K be a global function field in one variable over a perfect field F, and let K
be the completion of K at a fixed place cc. If k and 2z € K denote, respectively,
the residue field and a local parameter at co, there is an isomorphism K ~
k(z). Thus we may use this field as basis for the concepts and results of the
preceding sections. The aim of this section is to globalize everything by reducing
coefficients from K to K. All the notations and assumptions of Sections 3-8
remain in force.

Pre-Hodge structures:  Recall the inclusions K ¢ K € C[[z — ¢]. The
basic definition reads (compare Definition 3.2):

Definition 9.1 A mixed K-oo-pre-Hodge structure is a triple H = (H, W,
qm) where

(a) H is a finite dimensional K -vector space,

(b) W = (W,H),ecq s an increasing filtration by K-subspaces of H, called
the weight filtration, and

47



(c) qm is a lattice in H @ C((z — ().

Any mixed K-oo-pre-Hodge structure H determines a mixed K -pre-Hodge
structure H = (H @k I%', W oK I%', qmg). Naturally H is called pure of weight u
if and only if Hisso (compare Definition 3.3). A morphism of mixed K-co-pre-
Hodge structures is a homomorphism of the underlying K-vector spaces that is
compatible with the rest of the data (compare Definition 3.7). Strict morphisms,
(strict) subquotients, tensor products, the unit object 1y, inner hom, etc. are
likewise defined as in Section 3.

Hodge structures: We rigidify our global objects by the same local
condition as in 2.3:

Definition 9.2 A mized K-oc-pre- Hodge structure H is called locally semi-
stable if and only if its associated mized K -pre-Hodge structure H is semistable.
A locally semistable mized (or pure) K-oo-pre-Hodge structure is called a mixed
(resp. pure) K-oo-Hodge structure.

From Proposition 4.13 it follows that H is locally semistable if and only if
Grzvﬂ is locally semistable for every u € Q. The category of all mixed K-
oc-Hodge structures is denoted #gek o0 It is equipped with a natural fiber
functor

w: y@&K,OO_)?;;Ky ﬂi—)H,

which obviously commutes with tensor product.
Theorem 9.3 Hek oo and w form a neutral tannakian category over K.

Proof. The fact that ek o is abelian follows from Propositions 4.7
and 4.14, as in the local case. The rest is deduced from Corollary 5.7. q.e.d.

The Hodge group: Let (H) C Aok 00 denote the strictly full tan-
nakian subcategory generated by an object H, and wy : (H) — 7k the
associated fiber functor. The Hodge group of H is defined as Gy := = Aut®(w H)-
This is an algebraic subgroup of the general linear group Autx (H). The obvi-
ous tensor functor (HY) — () shows that the local and global Hodge groups
are related by a canonical embedding Gg — Gu i := Gg Xk K. The global
Hodge group satisfies the analogues of Proposition 6.2 and 6.3:

Proposition 9.4 Gy is connected and reduced.

Proposition 9.5 Consider any object H of Heperc oo and let p denote the
representation of Gg on the underlying vector space H.

(a) There exists an element v € G g (C(z — () such that qg = p(y)pH-

(b) Consider any v as in (a) and any object H1 of (H). Let p1 denote the
associated representation of Gy on the underlying vector space Hy. Then
we have qp, = p1(7)PH, -
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Frobenius functoriality:  The pullback FrobZﬂ and the pushforward
Frobg,.H are constructed as in Definitions 5.1 and 5.2. Both functors preserve
local semistability by Proposition 5.5. By the same arguments as in Proposi-
tion 6.4 we have:

Proposition 9.6 If H is locally semistable, there is a canonical isomor-
phism Grrob: ir = Frob,G g := G XK Frob, K-

Weight (quasi-)cocharacter: It is constructed as in Proposition 6.5.
One obtains a unique Gy (K)-conjugacy class of quasi-cocharacters of Gg,
whose image in the reductive part of Gy is unique and lands in the center.
Various properties of polygons from Section 6 translate directly to the global
case.

Global Hodge additivity: As in the local case the functors F* and Gr%
on the category //Zc/wKoo are not exact. To obtain a satisfactory theory of
Hodge cocharacters we repeat the discussion of Section 7 in the global setting,
but listing only the main points. Let H be an object of 72%44(00

Definition 9.7 (a) H is called (globally) Hodge additive if and only if
its Hodge polygon coincides with that of its semisimplification HSS.

(b) H is called (globally) strongly Hodge additive if and only if every object
H1 of {H)) is Hodge additive.

Clearly H is Hodge additive (resp. strongly Hodge additive) whenever His
Hodge additive (resp. strongly Hodge additive), but not vice versa. The same
proof as in 7.3 shows:

Proposition 9.8 If Gy is reductive, then H is strongly Hodge additive.

More generally, consider a simple object H; and let ¢; be the degree over
K of the purely inseparable part of the center of End(H;). Then we can write
H, = Frob,, .H/ for some simple object H. We say that H; is (globally) quasi-
separable if and only if all slopes of the Hodge polygon of H are multiples of ¢; .
The same arguments as in Section 7 imply:

Theorem 9.9 The following assertions are equivalent:
(a) H is strongly Hodge additive.
(b) Frob, H is Hodge additive for every q > 1 that is a power of char(K).

(¢) H is Hodge additive and every simple subfactor is quasi-separable.

Theorem 9.10 The strongly Hodge additive objects form a strictly full tan-
nakian subcategory ol C Hofer oo
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Hodge cocharacters: Now let K*°P denote a separable closure of K.
For any object H of /z’mﬁ%?i)o the analogue of the construction preceding Defi-
nition 7.10 yields a unique G g (K®°°P) x Gal(K*®°? / K')-conjugacy class of cochar-
acters of Gy g=e». Any such cocharacter is called a Hodge cocharacter of Gpg.
As in 7.11 we obtain:

Theorem 9.11 For any object H of /MﬁgsKhZo the group G g gser is gener-
ated by the images of all G g (K5°P) x Gal(K*°P / K)-conjugates of Hodge cochar-
acters.

The same construction as in Proposition 7.13 yields:

Proposition 9.12 For any connected semisimple group G over K there ex-
ists an object H of Hetper oo with Gy = G.

Parametrization and extensions: Finally, recall that everywhere in
Section 8 we have fixed the underlying K-vector spaces and their weight fil-
trations. If we want to deal with global objects, we just have to specify an
additional K-structure on all of these. Since the constructions concerned only
the lattices q , the results remain literally the same as in the local case.

10 Hodge structures of Drinfeld module type

The aim of this section is to calculate the Hodge group for the following kind of
local or global objects. Consider a K-Hodge structure H of rank r > 1 which
may or may not come from a K-oc-Hodge structure H.

Definition 10.1 H resp. H is called of Drinfeld module type if and only
if it is pure and has qg C pg of C-codimension 1.

The purity and semistability conditions imply that the weight is —%. By the
lattice condition we must have

o 0 ifi>0,
dim(F*H¢) = {r— 1 ifi=0,
r ifi< -1,

and qz is determined completely by the Hodge filtration. Thus all the in-
formation is contained in the subspace FOH¢ C Hc of codimension 1. The
semistability condition amounts to the assertion N FOH¢ = 0. This is equiv-
alent to saying that the composite map ) : H < He —» ﬁC/FOﬁC = Cis
injective. Therefore giving an object of Drinfeld module type H up to isomor-
phism is equivalent to giving the +(K)-subspace ¢»(H) C C of dimension r, up to
scaling by C*. Giving H involves the additional +(K )-structure )(H) on ¢ (H).
Such subspaces arise from the analytic uniformization of Drinfeld modules over
C, depending only on the isogeny class. (See Drinfeld [6] §3 or Goss [15] §4.6.
The Hodge filtration in this case was also constructed by Gekeler [10], [11] in
the framework of a certain kind of de Rham cohomology.)
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Proposition 10.2 Any object H or H of Drinfeld module type is simple
and its endomorphism ring is commutative.

Proof. The proof is the same in both cases, so we stick to H. Any subobject
is again pure of weight —%, and by Proposition 6.8 the endpoint of its weight
polygon has integral coordinates, so its dimension is divisible by r. This proves
that H is simple. From the above reinterpretation of H it is clear that

End(H) = {z€C | z-y(H) Cy(H)}.

This is a subring of C, so it is commutative, as desired. q.e.d.

The Hodge group: Choosing a basis of H we may view End(H) as a
subalgebra of the matrix ring M, ,,.(K); so in particular it is a finite extension
of K. Also, the Hodge group is then an algebraic subgroup G C GL, k. In the
same way we have Gy C GL, k. The following result solves a problem raised
in [23] Guess 0.5.

Theorem 10.3 The Hodge group of an object H of Drinfeld module type of
rank r is

Gg = Centgr, . (End(H)) .
The Hodge group of an object H of Drinfeld module type of rank r is
Gﬂ = CentGLr’K (End(H)) -

The proof of this theorem covers the rest of this section. It is exactly the
same in the local and the global case, so for ease of notation we restrict ourselves
to H. Abbreviate E := End(H) and let d denote its degree over K. Then H is
an E-vector space of dimension s := 7, and the right hand side in Theorem 10.3
is isomorphic to the Weil restriction Gamp := RE/xkGLs,r. We know already
that G g is contained in this ambient group, and it remains to prove equality.

Proof in the separable case: Assume first that E/K is separable.
Then Gamp will be reductive, so we can use the theory of Section 7. Write
Y := Homg (E, K5%P). Then we have a decomposition

(10.4) Hok K = (DHog, K*
gEX

and correspondingly an inclusion

(10.5) Ga s C Gamb X K5 2 ] GL, keer -
oEX
We must prove that this is an equality.

Since H is simple, the representation of Gy on H is irreducible, and its
centralizer is E. It follows that G g k= acts absolutely irreducibly on each
summand in 10.4, hence this group is reductive. Now Proposition 7.3 implies
that H is strongly Hodge additive, so by Theorem 7.11 the group G g keer is
generated by the images of Hodge cocharacters. Fix a Hodge cocharacter A, and
note that its weights are —1 and 0 with respective multiplicities 1 and r — 1.
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The weight —1 must lie in precisely one summand of the decomposition 10.4,
say that associated to g € X. Let us quote the following result:

Proposition 10.6 (Pink [23] Proposition A.8) Consider a field F', and in-
teger n > 1, and a connected linear algebraic subgroup G C GL, r. Assume
that G acts absolutely irreducibly in the tautological representation and that it
possesses a cocharacter over the algebraic closure whose weights are 1 with mul-
tiplicity 1, and 0 with multiplicity n — 1. Then G = GL,, .

Applying this to the summand at oy and the cocharacter A~! we deduce that
the projection from G g g=er to the corresponding factor GL, g=er is surjective.
On the other hand the image of A lands only in this factor, and its GLg geo-
conjugates generate GLg gser. Therefore the conjugates of A generate this factor
GL; k= as a subgroup of Gy g=». Finally, the Galois group Gal(K**P/K)
transitively permutes the factors on the right hand side of 10.5 and stabilizes
G Kkser. Thus G g g=er contains all factors as subgroups, hence we have equality
in 10.5, as desired. q.e.d.

The inseparable case: In general G, possesses a complicated unipo-
tent part, which makes the proof quite elaborate. Let ¢ denote the degree of the
purely inseparable part of E/K. Then we can write H = Frob, ,H' for some
simple object H', which is itself of Drinfeld module type and of rank r' := g.
Its endomorphism ring is E' := E? C E, which is now separable over K. By
Proposition 6.4 we may work with H := Frob} H = Frob;Frob, ,H' in place
of H.

Without loss of generality we may assume that the uniformizer z € K lies
already in K. Abbreviating ¢t := 2 ® 1 — 1 ® z we then have

(10.7) A:=E'®k. K = E'[t]/(t?) .

The ambient group becomes

(10.8) Gamp = FrObZGamb = RA/KGLS,A .
Tts unipotent part is composed of two different kinds of pieces which occur,
respectively, in the left and right hand sides of the short exact sequence

(10.9) 1 ——>Ra/rSLs a Gty —> Roa/kGim,a — 1.

Our first aim is to prove that the image of G in the maximal abelian quo-
tient R 4/k G, a is the whole group. Recall that the Hodge group is defined by
representation theoretic information. Thus in order to prove this equality we
must take suitable representations of R 4/ Gy, 4 and show that the correspond-
ing K-oo-Hodge structures are non-trivial. The tautological representation of
R a/kGm,a on A is not so useful for this purpose, because its extension struc-
ture is too complicated. In some sense we would like to go to the Lie algebra,
thereby linearizing the formulas. The following calculation performs enough of
this for our aims.
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Formal logarithm: The power series
fi=14urt +ust® + ... € Zfur, ua, .. ][t]

has constant term 1, so we can speak of its formal logarithm

(1)1 k
(10.10) logf:zzT-(f—l) € Qua,us,-- ][] -

E>1
Let us write its t-expansion in the form
-1 i—1 .
(10.11) log f =: ZL,% .

i>1
Lemma 10.12 For every i > 1 we have
(a) L; € Zuy,-..,u;], of degree <i.
(b) L; =ut mod (us,...,u;).
(c) Li=(=1)"1-i.u; mod (uy,...,ui_1).

Proof. Everything follows directly from the definition except for the as-

sertion that L; has integral coefficients. To prove this assertion note that a
monomial uf'u¥? ... occurs in the k" term of the series 10.10 if and only if
k =351 kj, and it comes to lie in L; if and only if }°,-, jk; = i. Its coeffi-

cient in L; can be written in terms of a multiple binomal coefficient as

i k
. 2. .
(10.13) k <k1,k2,...)

We shall prove that its order at every prime p is > 0. Note the following facts,
whose easy proof is left to the reader:

Sublemma 10.14 For any integers k > £ > 0 and any prime p we have:
(a) If pt 2, then ordy(k) < ordp((’lf)).
(b) ord,((25)) = ordy((}))-

Now assume first that p { k; for some j. Then the coefficient 10.13 is an
integral multiple of %(kk] ), which is a p-adic integer by Sublemma 10.14 (a).
The general case is proved by induction. It suffices to show that whenever the
term 10.13 is a p-adic integer, then the same is true after all k; are multiplied
by p. Note that in the process 7 and k are also multiplied by p, so the desired
assertion follows by repeated application of Sublemma 10.14 (b). q.e.d.

Next let R be a commutative ring with identity and put A := R[t]/(t"+"),
where n > 0 is fixed. Its group of “l-units”

U::{u=1+u1t+u2t2+...€AX}

can be viewed as a linear algebraic group over R, namely as a subgroup of
the Weil restriction R 4/rGs,a- It is a successive extension of n copies of the
additive group G, R.
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Lemma 10.15 For every 1 < i <n the map
L;: U_)Ga,R, u=1+u1t+th2+...r—)Li(ul,...,ui)

is a homomorphism of algebraic groups.

Proof. This amounts to a formal identity in a polynomial ring, all of whose
coefficients are integers. Thus it suffices to prove it universally over Z, for
which in turn we may work over Q. Here the assertion follows directly from the
functional equation of the logarithm. q.e.d.

Linearization of U/UP: Now we specialize the preceding discussion to
the case that R is a field F', say of characteristic p > 0. Let I be the set of all
integers 1 < 7 < n which are prime to p, and put n’' := card(I). Let U? C U
denote the image of the endomorphism u > uP.

Lemma 10.16 The homomorphism

L': U— Ggirlf"l, u (Li(ula---aui))iel

induces an isomorphism of algebraic groups U/UP —= Gig.
Proof. Clearly we have
n
Up={u=1+2u,-t’€ U | u; = 0 whenever pti } ,
i=1
and the subvariety

n
X = { u=1+2uz~ti€U ‘ ui=0wheneverp|i}

i=1
is a direct complement of U?, although not as a subgroup. By Lemma 10.12 (c)
the resulting morphism A}' =2X — G;’i’,ﬁj = A}' maps each coordinate to a
non-zero multiple plus a polynomial in the earlier coordinates. Thus it defines
an isomorphism of algebraic varieties. On the other hand p annihilates G;’i’}l, SO
our homomorphism factors through U/UP. The desired result follows. q.e.d.

Proofin the case s = 1:  Now we return to the situation of Theorem 10.3,
assuming s = 1. As a preparation we give explicit descriptions of H' and H. Fix
an embedding K®°P < C[[z — (]| and put ¥ := Homg (E', K*°P). Since E'/K is
separable, we obtain a decomposition
(10.17) A=FE ok Clz—¢=Clz-(].

o€es
The vector space underlying H' has dimension 1 over E’, so we may identify it
with E’. Then we have py: = A, and by assumption qg is a A-submodule of
C-codimension 1. Thus we must have qg» = 7 - A with 7 = (7,) € A such that

_Jz—=¢ ifo =0y,
(10.18) To = { 1 otherwise,
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where gy € ¥ is fixed. Next Definitions 5.1 and 5.2 imply
H = TFrobFrob, H'
= (F'@xe K, W ok K, (1 4) 8cg—co Clz — 1) -
where the action of K, resp. C[z — (]], on each tensor product goes into the

second factor. We may write the underlying vector space as A = E'[t]/(t?),
wheret =2®1—1® z as in 10.7. In the same way we obtain an identification

(10.19) A ®cp(z-¢yo Cle — ¢ = A]/ () .
Thus we have pgz = A[t]/(t?), and qz is an ideal in this ring. To write down a

generator note that

Gamb (C(2 = ()

10.8

e

(Ra/kGm,a) (C(z =€)
Gm (A ®K C(2 - ()

= (A[/() ©cr—q C(z = €)™ -
Consider the idempotent e = (e,) € A with

o — 1 if o = oy,
7710 otherwise,

and put v := 7 + et € Gamp (C(z —))-
Lemma 10.20 We have qg = v-pg-

Proof. Tt suffices to prove the equality 7®1 = 1®m+et in the left hand side
of 10.19. For this we use the decomposition 10.17. In the summand associated
to o the equality reads (z — () ® 1 = t + 1 ® (z — (), which follows from the
definition of t. In the other summands both sides are equal to 1 ® 1.  q.e.d.

Now we take a closer look at Gamb. We shall apply the earlier abstract dis-
cussion to the case F' = E' and n = ¢—1. Then we have a unique decomposition
Ra/erGm,a = G g x U, whence

(10.21) Gamb = (REI/KGm’EI) X (REI/KU)

Here the second factor is unipotent and, since E'/K is separable, the first fac-
tor is a torus. Thus any connected algebraic subgroup of Gamp decomposes
accordingly.

Note that the first factor in 10.21 is precisely the image of Gamp in Autx H',
so the corresponding factor of Gg is the Hodge group Gg:. Since H' is of
Drinfeld module type with separable endomorphism ring, we already know that
Gu' = Re/jkGm,rr. Thus to prove that G equals Gamp it suffices to show
that it surjects to the second factor in 10.21. Let p := char(K), and consider
the projection homomorphism

¥ Gamb — (Rp/xU) | (Re jxU)P.

It is enough to prove:

Proposition 10.22 The restriction of ¢ to G s surjective.
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Proof. Taking Weil restrictions Lemma, 10.16 yields an isomorphism
(10.23) V := (R /xU)/ (Rer/xU)P = Ry (UJUP) = Ry e G

If the homomorphism in question is not surjective, its image is contained in
the kernel of some non-zero homomorphism of algebraic groups ¢ : V — Gg k.
Identifying the additive group with the subgroup (j ;) C GLs k, this homo-
morphism defines a representation of V' and hence of the groups Gg C Gamb
on H, := K?. Let H, denote the corresponding K-oo-Hodge structure. If the
image of Gz is contained in the kernel of ¢, we must have H, = 1}‘32, hence
in particular qm, = qm,. Thus to prove the proposition it suffices to show that
this equality is false whenever ¢ # 0.

Lemma 10.24 With v as in Lemma 10.20 we have

)

Proof. More generally, for every representation p; of Gamb on a finite di-
mensional K-vector space H; the lattice of the associated object H; is given by
qu, = p1(77)pH,- This follows as in the proof of Proposition 6.3 (b). q.e.d.

By Lemma 10.24 it is enough to prove that ¢(¥(y)) € C[z — (] whenever
@ # 0. For this we first determine ¢ (v) in

V(C(z=0)) = (Aocg qCz— )" .

Lemma 10.25 We have ¢¥(vy) = (W‘ie)ieI.
Proof. The component of v = w+et in the second factor of 10.21 is 147 Let.
Recall that the identification 10.23 was induced by the homomorphism L' of
Lemma 10.16. Thus we have
v() = L'+ let)
120 (Li(re,0,...,0)
10.12 (b)

iel
(ﬂ'ﬂe)ier . q-e.d.

Next we must describe ¢. Note that V' is isomorphic to a direct sum of copies
of the additive group G, k, and recall that the endomorphism ring of G, k is
generated by K and Frob,. Note also that every K-linear form on (E')®" is

the composite of some E'-linear form and the trace map E' — K. Thus ¢ is
given by

J
z=(z;) = ZZtraceE,/K(w,j -zh)
i€l j>0
with certain coefficients ¢; ; € E'. It follows that

o) = DY tracem k(pij -7 7 e)

i€l §>0

S S (i) (2= Q)

i€l §>0
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Now the key observation is that no exponent —ip’ occurs twice, since p { i.
Choose (i, j) such that ¢; ; # 0 and ip’ is maximal. It follows that

ordsc (p(w(1) = —ip? <0,

as desired. This finishes the proof of Proposition 10.22 and hence of Theo-
rem 10.3 in the case s = 1. q.e.d.

The maximal abelian quotient: = Now we come back to the general
case. From the case s = 1 we can deduce:

Proposition 10.26 The determinant map in the exact sequence 10.9 in-
duces a surjective homomorphism Gg —» Ra/kGm a-

Proof. The proof uses a construction corresponding to the “determinant”
of a Drinfeld module, which turns out to be another Drinfeld module: see
Anderson [1]. Consider the highest exterior power H; := A% H of the vector
space underlying H. Tt carries a natural representation of the ambient group
Gamb and hence corresponds to an object H; of %/M//@KOO One easily finds
that this is again of Drinfeld module type, this time with dimg End(H;) =
rank(H,). Thus Theorem 10.3 is already proved for it. The Frobenius pullback
Hy = FrobZﬂ 1 comes from the representation of Gamp on Aiﬁ =~ A, which is
simply the determinant map in 10.9. Since G g surjects to Gg, = Ra/kGm,a,
we are done. q.e.d.

The adjoint representation: In order to deal with the case s > 1
we study the adjoint representation of Gamp and the K-oo-Hodge structures
deduced from it. For every 0 < i < ¢ abbreviate A; := E'[t]/(t), and note
that we have natural short exact sequences 0 — A4; £ A;,; — A; — 0. Let
H; denote the space of r x r-matrices over A;, and H? C H; the subspace of
matrices of trace zero. Let HP® denote the image of HY in the space of matrices
modulo scalars H;/A;. Note that H)® = H?/A; when p := char(K) divides r,
and H?® = H? otherwise. All these spaces are subquotient representations of
the adjoint representation Lie Gamp = H,, and multiplication with powers of ¢
induces various equivariant maps between them. The most interesting part is
HY°, which is a successive extension of copies of H°. The latter is a non-trivial
irreducible representation (cf. for instance [18]).

All these representations restrict to representations of the Hodge group G g,
so they correspond to K-oo-Hodge structures H; D ﬂ? —» ﬂ?o. We want to
show that these objects do not decompose more than under Gamp. As a first
step consider the projection to the reductive part

Gamb = Ra/kGLsa —» Rp/xGLgp -
Since Theorem 10.3 is already proved for H', this induces an epimorphism
(1027) T GH —» GHI = RE"/KGLs,E’

It follows, for instance, that the object H° is simple. Next we want to determine
the subobjects of H%. As preparation we need:
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Lemma 10.28 For every 1 <i < q the Hodge polygon of HY has slopes +i
with multiplicity s — 1 each, all the remaining slopes being 0.

Proof. We begin with the case i = 1. From the separable case recall that
the Hodge slopes of H' are —1 with multiplicity 1, the remaining slopes being 0,
and that the slope —1 corresponds to a certain embedding oo : E' — K®P,
Since dimg/(H') = s and H; = (H')Y @ H', we deduce that H, has slopes +1
with multiplicity s — 1 each and remaining slopes 0. Now H; is an extension
of HY with one or more copies of the unit object. Thus the desired assertion
follows for H{® provided that H; is Hodge additive. But this follows from
Proposition 9.8, since H; € (H'), whose Hodge group is reductive.

For the general case note that HJ® = Frob;Frob,.H{, and that H? is
obtained by dividing by ', where t = 2® 1 — 1 ® 2z as in 10.7. To determine
the resulting Hodge slopes it suffices to look at what happens to the lattices p
and q . As in the proof of Lemma 7.6 we may choose a C[[z — (]-basis {h,}
of pgoo such that qgoo is generated by the elements (2 — ()* - hy,. Here e,
runs through all Hodge slopes of H{°. Now Definitions 5.1 and 5.2 show that
the effect of Frob,Frob, . on the lattices is () ®cp(—¢)e) Cl[z — ¢]], where the
new C[z — (]-module structure comes from the second factor. The chosen basis
breaks up everything into summands of rank 1. From each summand in pgoo
we obtain a copy of the module

Cllz — ¢l ®cq(z—¢)a1 Clz — ¢l = Cllz — ¢QI[E]/(27) -
For the corresponding summand in qgoo we calculate
-0*®l=(z-¢0el)"=(t+1e(z-0)",
so we obtain the module

(t+ (=)™ - Cllz — JA/ ) -
Calculating modulo ¢! we must determine the elementary divisors relating the
module C[[z — (]|[¢]/(t") with its fractional ideal (¢ + (z — C))e".
It is not difficult to give a general answer, but in our situation only e, = 0
and £1 occur. In the former case we obviously obtain i copies of the slope 0.
In the case e, = 1 we easily find that

(Cll= = <IMEl/)) /(¢ + (= = Q) = Cll= — /(= = ¢)*

as C[[z — ¢]-module, hence we get one copy of the slope i and i — 1 copies of the
slope 0. The dual argument applies to e, = —1, and the lemma follows. q.e.d.

Lemma 10.29 The subobjects t*~7HY C H) for all 0 < j < i are the only
subobjects of HY.

Proof. Consider a counterexample H. C H with i as small as possible.
Then we must have H; NtH, = =7 H for some 0 < j < i. If j > 0, we can
divide everything by this, thereby decreasing i. Thus we must have j = 0, which
means that the composite map H! — H — H is a monomorphism. Since
HY is simple, our counterexample must induce an isomorphism H} —~~ H%
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and hence a decomposition H9® = H% ¢ HI. As the Hodge polygon is additive
in direct sums, this contradicts Lemma 10.28. q.e.d.

End of the proof for s > 1:  We shall show that the Lie algebra of the
derived group G'§* is sufficiently big. Put

L := LieGg C LieGam» = H,,
I’ := LieGY C LieGl, = HY.

amb q

We start from the top:
Lemma 10.30 The composite map L — H, —» H; is surjective.

Proof. The map in question is the derivative of the homomorphism =
of 10.27. To prove the surjectivity of dr we may work over an algebraic closure
K. Since the kernel of 7 is unipotent, its restriction to any maximal torus is a
monomorphism. Varying the torus it follows that the image of dr contains all
semisimple elements of the Lie algebra H;, hence is equal to Hy, as desired.

q.e.d.

Lemma 10.31 The composite map L° — Hg —» HY is surjective.
Proof. The map in question is the derivative of the homomorphism 7° :
G‘}fr — Rp)kSLs g (cf. 10.27). Taking derivatives of the commutator maps
we obtain a commutative diagram

dn®

Lo HY

u l

[dm,dm]

[L, L] [Hy, Hq] -

The bottom map is surjective by Lemma 10.30, and the equality on the right
hand side holds by direct calculation. The desired assertion follows. q.e.d.

Lemma 10.32 The composite map L° — Hgo s surjective.

Proof. The image of L° is a G g-invariant subspace, hence it corresponds
to a subobject of H)". By Lemma 10.31 this subobject maps onto H{°. By
Lemma 10.29 the only such subobject is HO°. q.e.d.

Lemma 10.33 L° = Hg.

Proof. If p {r, this is equivalent to Lemma 10.32. If p|r, the same lemma
still implies that all non-trivial simple constituents of Hg as representation of
G i also occur in L°. Tt follows that for every 0 < i < ¢ the subspace

LONt HY t'HY
- — —
LO A+ £ HO

~ 0
= H;
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surjects onto H{?. Since G acts on HY through the epimorphism 10.27, this
subspace is invariant under Rg:/xGLs gr. It is known that any such subspace
is equal to HY (cf. Hiss [18]). By descending induction on i one can now prove
t'HQ C L°, whence the lemma. q.e.d.

At last, Lemma 10.33 implies that G¥™ C G9¢, is a subgroup of equal
dimension. Since they are connected, we have equality. On the other hand,
Proposition 10.26 says that G g surjects to Gamp/Gd¢" . We deduce that Gz =
Gamb, as desired. This finishes the proof of Theorem 10.3. q.e.d.
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