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Abstract

We prove the isogeny conjecture for A-motives over finitely generated fields K of

transcendence degree 6 1. This conjecture says that for any semisimple A-motive

M over K, there exist only finitely many isomorphism classes of A-motives M
′ over

K for which there exists a separable isogeny M
′ → M . The result is in precise

analogy to known results for abelian varieties and for Drinfeld modules and will have

strong consequences for the p-adic and adelic Galois representations associated to M .

The method makes essential use of the Harder-Narasimhan filtration for locally free

coherent sheaves on an algebraic curve.
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1 Introduction

The aim of this article is to prove the following result, called the isogeny conjecture for
A-motives (in the case of transcendence degree 6 1):

Theorem 1.1 Let K be a field which is finitely generated of transcendence degree 6 1 over
a finite field Fq. Let M be a semisimple A-motive over K. Then there exist only finitely
many isomorphism classes of A-motives M ′ over K for which there exists a separable
isogeny M ′ →M .

For the meaning of A and the other concepts involved see below. Caution: The direction
of the isogeny M ′ →M must not be reversed: see Counterexample 1.6 below.

The concept of A-motives were invented by Anderson [1] in the case A = Fq[t] and under
the name of t-motives. They can be viewed as analogues of abelian varieties or more general
Grothendieck motives, with the essential difference that both the field of definition and
the ring of coefficients of an A-motive have positive characteristic. Many related concepts,
theorems, and conjectures for abelian varieties possess natural analogues for A-motives,
and vice versa. The isogeny conjecture is an analogue of a result for abelian varieties
proved by Faltings [3] resp. Zarhin [25].

A special class of A-motives arises from Drinfeld modules. The isogeny conjecture for these
translates directly into the isogeny conjecture for Drinfeld modules, which was proved by
Taguchi in [17], [21]. The isogeny conjecture for direct sums thereof was proved by the
present author with Traulsen in [12], resp. with Rütsche in [13].

As in the case of abelian varieties, the isogeny conjecture can be used to deduce the
Tate conjecture for endomorphisms and the semisimplicity conjecture, proved previously
by Taguchi [17], [18], [19], [20], Tamagawa [22], [23], [24], resp. Stalder [16]. The isogeny
conjecture also has consequences for the p-adic and adelic Galois representations associated
to A-motives beyond the results in [4], [8], [9], [10], [11], [12], [13], [14]. We plan to
discuss these, and possibly the generalization to finitely generated fields K of arbitrary
transcendence degree, in a later article.

In the rest of the introduction we define the concepts involved in the isogeny conjecture,
explain why the assumptions in the conjecture are necessary, and describe the strategy of
proof. For more of the theory of A-motives see Anderson [1], Goss [5].

Let Fq be a finite field with q elements. Throughout the article, tensor products of rings and
modules and fiber products of schemes over Fq are taken over Fq except where indicated
otherwise. Let C be an irreducible smooth projective curve over Fq. Fix a closed point
∞ ∈ C and set C◦ := Cr{∞}. Let A := Γ(C◦,OC◦) denote the ring of regular functions
on C◦. Consider a field K together with a ring homomorphism γ : A → K. Then
p0 := ker(γ) is either zero or a maximal ideal of A; we allow both possibilities.

Let σ denote the Frobenius endomorphism s 7→ sq of K. As σ is the identity on Fq, it
induces an endomorphism id⊗σ of the ring A⊗K := A⊗Fq

K. For any A⊗K-moduleM , an
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id⊗σ-linear map τ : M →M is an additive map which satisfies τ((a⊗u)·m) = (a⊗uq)·τ(m)
for all (a, u,m) ∈ A×K×M . Setting (id⊗σ)∗M := M ⊗K,σ K, giving an id⊗σ-linear map
τ : M → M is equivalent to giving an A⊗K-linear map τ lin : (id⊗σ)∗M → M , called the
linearization of τ . Note that τ lin is injective if and only if its cokernel is A⊗K-torsion.

Definition 1.2 An A-motive of characteristic γ over K is a finitely generated projective
A⊗K-module M together with an id⊗σ-linear map τ : M →M , such that a⊗1−1⊗γ(a)
is nilpotent on coker(τ lin) for every a ∈ A.

Definition 1.3 Let M and N be A-motives of characteristic γ over K. An A⊗K-linear
map f : M → N that commutes with τ is called a homomorphism. An injective homo-
morphism whose cokernel is A ⊗ K-torsion is called an isogeny. If an isogeny M → N
exists, then M and N are called isogenous. An isogeny f is called separable if τ lin induces
an isomorphism (id×σ)∗ coker(f)→ coker(f).

Basic facts on isogenies (not used in this paper) include the following: Any composite of
isogenies is an isogeny. Any element a ∈ Ar{0} defines an isogeny aM : M →M , m 7→ am.
A homomorphism f : M → N is an isogeny if and only if there exists a homomorphism
g : N → M such that gf = aM , or equivalently fg = aN , for some a ∈ A r {0}. In
particular g is then an isogeny, and being isogenous is an equivalence relation.

If p0 = 0, every isogeny is separable. In general a composite of isogenies is separable if
and only if its constituents are separable. If p0 6= 0 and M 6= 0, the isogeny aM : M →M
is separable if and only a ∈ A r p0. If p0 6= 0 and f : M → N is a separable isogeny, it
may or may not be possible to choose the ‘dual’ isogeny g : N → M above separable as
well. Thus in general the existence of a separable isogeny M → N is not an equivalence
relation.

Definition 1.4 An A-motive M over K is called simple up to isogeny, or just simple,
if it is non-zero and every non-zero injective homomorphism of A-motives N →֒ M is
an isogeny. An A-motive is called semisimple up to isogeny, or just semisimple, if it is
isogenous to a direct sum of simple A-motives.

Now we discuss the different assumptions in Theorem 1.1.

The assumption that K is finitely generated appears for the same reason as in the Tate
conjecture for endomorphisms. Indeed—as for abelian varieties—the isogeny conjecture
for M over K implies the Tate conjecture for M over K, i.e., the isomorphy

(1.5) EndK(M)⊗A Ap

∼
−→ EndAp[Gal(Ksep/K)]

(
Tp(M)

)
,

where Tp(M) is the p-adic Tate module of M for any prime p 6= p0 of A. This statement
gives a lower bound on the image of Galois in terms of EndK(M). Since this endomorph-
ism ring can be small, even when K = Ksep, the isomorphy cannot hold without strong
restrictions on K.
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Next, the assumption that the isogeny M ′ → M be separable is vacuous if p0 = 0. But
in the case p0 6= 0 it is really necessary, as the following example shows. The example
also shows that Theorem 1.1 becomes false if instead of a separable isogeny M ′ → M one
requires a separable isogeny M →M ′.

Counterexample 1.6 Take A := Fq[t] and K := Fq(x) with γ : A → K,
∑

αit
i 7→ α0.

Then p0 = (t) 6= 0. We first do the construction with Drinfeld modules, where everything
is dual, and then translate it into A-motives. For any n > 0 consider the Drinfeld A-
module ϕn : A→ K[τ ] sending t to xqnτ + τ 2, which is of rank 2 and characteristic γ. The
calculations

τ · (xqnτ + τ 2) = (xqn+1

τ + τ 2) · τ,

(xqn + τ) · (xqn+1

τ + τ 2) = (xqnτ + τ 2) · (xqn + τ)

show that we have an inseparable isogeny τ : ϕn → ϕn+1 and a separable isogeny xqn + τ :
ϕn+1 → ϕn. Taking composites we find an inseparable isogeny ϕ0 → ϕn and a separable
isogeny ϕn → ϕ0. Moreover, we claim that all ϕn are pairwise non-isomorphic. Indeed, an
isomorphism ϕn → ϕn′ is an element u ∈ K× with

uxqnτ + uτ 2 = u · (xqnτ + τ 2)
!
= (xqn

′

τ + τ 2) · u = xqn
′

uqτ + uq2τ 2.

This means that uq−1 = xqn−qn
′

and uq2−1 = 1. Since x is transcendental over Fq, these
equations cannot be simultaneously fulfilled unless n = n′, proving the claim.

Finally, by Anderson [1] there is a fully faithful contravariant functor ϕ 7→ Mϕ from the
category of Drinfeld A-modules over K to the category of A-motives over K. Moreover
Mϕ is always simple. Thus M := Mϕ0

is a simple A-motive over K, for which there exist
infinitely many pairwise non-isomorphic A-motives Mϕn

over K with inseparable isogenies
Mϕn

→M and separable isogenies M → Mϕn
.

Counterexample 1.7 The statement in Theorem 1.1 also becomes false when M is not
semisimple. Suppose for instance that we have a short exact sequence of A-motives 0 →
M ′ →M → M ′′ → 0 where M ′ and M ′′ are simple, but M not semisimple. Fix a maximal
ideal p 6= p0 of A, and for every integer n > 0 consider the A-submotive Mn := M ′ + pnM
⊂ M . Then the inclusion Mn →֒ M is a separable isogeny, because so is the composite
isogeny an : M → anM ⊂Mn ⊂M for any a ∈ prp0. We claim that no infinite set of Mn

can be pairwise isomorphic. Therefore the Mn form infinitely many isomorphism classes.

Proof. For any n consider the short exact sequence

0 −→M ′ −→Mn −→ p
nM ′′ −→ 0.

Taken modulo pn the construction provides a splitting

0 // M ′/pnM ′ // Mn/p
nMn

// pnM ′′/p2nM ′′ // 0.

pnM/pnMn

∪
∼=

55jjjjjjjjj
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It follows that the short exact sequence of Tate modules

(Sn) 0 −→ Tp(M
′) −→ Tp(Mn) −→ Tp(p

nM ′′) −→ 0

possesses a Gal(Ksep/K)-equivariant splitting modulo pn.

Suppose now that some Mn is isomorphic to infinitely many other Mni
. Then any iso-

morphism f : Mn
∼
→Mni

must map M ′ ⊂Mn to itself, because otherwise it would induce
an isogeny (id, f |M ′) : M ′ ⊕M ′ →֒ Mni

→֒ M and show that M is semisimple, contrary
to the assumption. In the resulting commutative diagram

0 // M ′ //

��

Mn
//

f ∼=
��

pnM ′′ //

��

0

0 // M ′ // Mni
// pniM ′′ // 0,

the right hand vertical map is surjective, hence an isomorphism, and therefore all vertical
maps are isomorphisms. Thus it induces an isomorphism between the exact sequences
(Sn) and (Sni

), and so the splitting of (Sni
) modulo pni yields a Gal(Ksep/K)-equivariant

splitting of (Sn) modulo pni. This being the case for infinitely many ni, a compactness
argument shows that such a splitting exists already for the sequence (Sn) itself. In other
words, there exists a Gal(Ksep/K)-equivariant Ap-linear map Tp(Mn) → Tp(M

′) whose
restriction to Tp(M

′) is the identity. By the Tate conjecture for homomorphisms ([19], [20],
[22], [23], [24]) this map can be expressed as an Ap-linear combination of homomorphisms
of A-motives Mn → M ′. Then for at least one of these homomorphisms the restriction to
M ′ is non-zero. If N denotes its kernel, we obtain isogenies M ′ ⊕ N → Mn → M , again
contradicting the assumption that M is not semisimple. q.e.d.

Now we will sketch the proof of Theorem 1.1, while disregarding several technical difficulties
that are addressed in the body of this article. Abbreviate CK := C× SpecK and C◦

K :=
C◦× SpecK = Spec(A⊗K), where the fiber product is taken over SpecFq. Every finitely
generated projective A ⊗ K-module M is the group of global sections of a locally free
coherent sheaf on C◦

K . Let G be the dual sheaf thereof. Then giving an A ⊗ K-linear
map τ lin : (id⊗σ)∗M → M is equivalent to giving a homomorphism of coherent sheaves
κ : G → (id×σ)∗G. Moreover M is an A-motive of characteristic γ if and only if κ is an
isomorphism outside the closed point θ ∈ C◦

K corresponding to γ (see Proposition 8.3).
We call the pair (G, κ) a κ-sheaf of characteristic θ on C◦

K . In a natural way, isogenies of
A-motives M ′ →֒M correspond to inclusions of κ-sheaves of equal rank G →֒ G ′.

In order to use finiteness results in algebraic geometry, we must compactify the situation.
To this end we extend G to a locally free coherent sheaf G on CK . Set∞K :=∞×SpecK.
Then κ extends to a homomorphism κ : G → (id×σ)∗G(d∞K) for some integer d. We call
the pair (G, κ) a κ-sheaf of pole order 6 d on CK .

This extension plays a role similar to that of a polarization of an abelian variety. In fact,
following Faltings’s proof for abelian varieties we should define a height for A-motives,
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prove that this height remains bounded under separable isogenies, and prove that for any r
and h there are only finitely many isomorphism classes of A-motives over K of rank r and
height 6 h. But the definition of a height requires the extra structure of a polarization,
which is somehow related to the infinite prime. This makes it natural to look for some data
at∞ as an analogue of a polarization. Of course, the analogy is not complete, because our
data has nothing to do with a symplectic pairing.

From a different point of view, only the extension to ∞ allows us to define numerical
invariants of G. A natural analogue of the degree of a polarization consists of the pole
order d together with the slopes in the Harder-Narasimhan filtration of G. Bounding these
invariants should be necessary and sufficient for our objects to be parametrized by a moduli
stack of finite type. Once these algebro-geometric numerical invariants are bounded, the
remaining arithmetic problem can be interpreted as bounding the number of K-rational
points of height 6 h on this moduli stack. Our method is guided by these principles,
although we do not formally speak of moduli stacks or heights.

A crucial result in our case is that any κ-sheaf that is isogenous to a given semisimple
κ-sheaf G possesses an extension whose numerical invariants are bounded only in terms
of G. This is proved in Proposition 8.21 by the following argument. Set r := rank(G) and
fix an extension G of G of pole order 6 d. Then for any inclusion of κ-sheaves of equal rank
G →֒ G ′, there exists an extension G ′ of G ′ that coincides with G at∞, and which therefore
also is of pole order 6 d. If G is simple, in a sense analogous to 1.4, so is G ′, and in this
case we prove that the slopes in the Harder-Narasimhan filtration of G ′ lie in an interval of
length < rdℓC, where ℓC denotes the degree of ∞ over Fq. Then a suitable twist G ′(n∞K)
is another extension of G ′ of pole order 6 d, all of whose slopes lie in a fixed bounded
interval. If G is only semisimple, i.e., isogenous to a direct sum of simple κ-sheaves, we
extend this argument by allowing different twists of G ′ in the directions corresponding to
different simple summands of G. The semisimplicity assumption allows us to construct
independent twists in all directions, and this freedom suffices to obtain the same bound
on the slopes. This is the only place in the argument where the semisimplicity assumption
comes in.

The result just sketched already implies Theorem 1.1 when K is finite, even for all isogenies
instead of just separable ones: see Theorem 8.23. Indeed, when K is finite it is standard
knowledge that there are only finitely many isomorphism classes of locally free coherent
sheaves G ′ on CK of given rank and slopes. For any such G ′, the associated homomorphism
κ lies in the group Hom

(
G ′, (id×σ)∗G ′(d∞K)

)
, which is a finite dimensional vector space

over K. Thus there are at most finitely many possibilities for κ. Forgetting the extension
to ∞ it follows that there are only finitely many possibilities for the isomorphism class of
the κ-sheaf G ′ and hence for the A-motive M ′, as desired.

Assume now that K has transcendence degree 1 over Fq. Let X be the irreducible smooth
projective curve over Fq with function field K. Over its generic point ηX we do essentially
the same as above. Next we define a κ-sheaf of pole order 6 d on the surface C×X
as a locally free sheaf F on C×X together with an injective homomorphism κ : F →֒
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(id×σ)∗F(d, 0), where (d, 0) indicates a twist of d∞ in the direction of C and no twist in
the direction of X . We show that every κ-sheaf of pole order 6 d on C×ηX possesses a
unique minimal extension to C×X that is contained in all other extensions. This minimal
extension is an analogue of the Néron model of an abelian variety. It can be viewed as
containing information on good reduction and degeneration and thus on the height of the
original κ-sheaf over K.

We regard this height as being encoded in the slopes of the Harder-Narasimhan filtration
of F along the fibers c×X for all points c ∈ C. We show that these slopes remain bounded
under separable isogenies. This is the only place where the separability assumption comes
in.

It remains to prove that there are at most finitely many isomorphism classes of κ-sheaves
F of rank r and pole order 6 d on C×X that satisfy the indicated bounds along C×ηX
and c×X for all c ∈ C. This is done in Section 7. Actually, the result depends on a further
minimality condition 7.1 (f) which requires some additional effort to achieve.

The method involves the sheaves Gn := pr1∗(F(0, n)) on C for suitable twists (0, n) in
the direction of X . The bounds along c×X for all c ∈ C imply that the homomorphism
pr∗1 Gn → F(0, n) obtained by adjunction is surjective whenever n is greater than some
explicit bound. The rank of Gn can also be determined explicitly. In Section 5 we show
that for the desired finiteness it suffices to bound the slopes in the Harder-Narasimhan
filtration of Gn from above and below.

The main problem here is to control the gaps between successive slopes of Gn. For this fix
a suitable n and let µ be the largest of the slopes of Gn with the property that Gn has no
slope in the interval [µ− dℓC , µ) for some explicit constant dℓC . Then all slopes of Gn are
6 µ + rank(Gn) · dℓC , and a priori we have no control over the smaller slopes. But let Gµn
be the corresponding step in the Harder-Narasimhan filtration of Gn. Using the relation
between the Harder-Narasimhan filtration and the homomorphism κ : F → (id×σ)∗F(d, 0)
we show in Lemma 7.18 that the image of the homomorphism pr∗1 G

µ
n → F(0, n) obtained

by adjunction coincides generically with a κ-invariant subsheaf of F .

Suppose for the moment that F is simple, i.e., that any non-zero κ-invariant subsheaf has
equal rank. Then the κ-invariant subsheaf obtained is equal to F , and so the homomorph-
ism pr∗1 G

µ
n → F(0, n) is generically surjective. Ideally, we would like to deduce from this

that Gn has in fact no slopes < µ, but we are unable to do so. Instead, using standard
methods for coherent sheaves, in Lemma 7.22 we prove that all slopes of Gn′ are > µ
whenever n′ is greater than some explicit bound in terms of n.

This leaves us with the new problem of bounding the slopes of Gn′ from above. Here the
homomorphism κ : F → (id×σ)∗F(d, 0) comes to our aid, because it induces homomorph-
isms between the sheaves Gn′′ for different indices n′′. More precisely, it induces injective
homomorphisms Gqn′′ →֒ Gn′′+a(d∞K)

⊕N for all n′′, where a and N are fixed: see Lemma
7.12. Suppose for ease of presentation that X = P1, in which case we can take a = 0.
Then by iteration the slopes of Gqjn are bounded above in terms of the slopes of Gn up
to adding a linear multiple of j: see Lemma 7.24. It then becomes crucial that qjn grows
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exponentially with j, while the bound itself grows only linearly with j. This seems to be
a manifestation of the strong contracting properties of Frobenius. Combining these argu-
ments we can find a sequence of explicit numbers n′ > n such that all slopes of Gn′ lie in
the interval [µ, µ+some explicit constant].

From this we can also deduce upper and lower bounds for µ. Indeed, for any two numbers
n′′ > n′ with the above property, the difference deg(Gn′′)− deg(Gn′) is on the one hand a
certain multiple of (n′′ − n′)µ plus a bounded number. On the other hand the Riemann-
Roch formula expresses deg(Gn′′) and deg(Gn′) as χ(C×X,F) plus something linear in n′′,
resp. n′, where the coefficients depend only on the given numerical invariants of F : see
Proposition 5.3 (i). The unknown value χ(C×X,F) vanishes in the difference, and solving
the resulting equation for µ yields the desired upper and lower bounds.

As explained above, these bounds for the sheaf Gn′ in place of Gn imply the desired finiteness
for F , which finishes the proof if F is simple. In the general case we need to carry out the
above arguments for different values of µ and obtain upper and lower bounds for slopes
related to a filtration of F by κ-invariant subsheaves; for details see Section 7.

One further point which calls for an explanation is the passage from the A-motive M to
its dual. Its immediate effect is that the associated sheaf on C×X has a homomorphism
κ : F →֒ (id×σ)∗F instead of the other way around. During the development of the proof
we have found this more convenient in some ways, although not in others; it can possibly
be avoided. We have not determined whether there is a relation with the dualization in [2].

Finally, we review the content of the individual sections. Section 1 is the present introduc-
tion. The next three sections collect known preparatory information on different topics:
Section 2 on locally free coherent sheaves on regular schemes of dimension 6 2, Section 3
on the Harder-Narasimhan filtration for locally free coherent sheaves on a smooth projec-
tive curve, and Section 4 on Frobenius. In Section 5 we use standard methods to prove a
finiteness result for locally free coherent sheaves F on a product of two curves C×X under
suitable assumptions on the Harder-Narasimhan slopes of F and of Gn := pr1∗(F(0, n)).

In Section 6 we explain the basic notion of κ-sheaves over different base schemes. The
remaining three sections contain the hard work. In Section 7 we use the finiteness result
from Section 5 to derive the much more subtle finiteness result for κ-sheaves on C×X . In
some sense it is analogous to the Shafarevich conjecture for abelian varieties, proved by
Faltings [3], which asserts that there are only finitely many isomorphism classes of abelian
varieties of fixed dimension over a global field K which possess a polarization of a given
degree and good reduction outside a given finite set of places of K. Section 8 deals with the
relation between A-motives and κ-sheaves over a field from different angles and discusses
various technical constructions. It also proves Theorem 1.1 in the case that K is finite.
The final Section 9 combines everything over C×X and proves Theorem 1.1 in the case of
transcendence degree 1.

The author wishes to thank Nicolas Stalder for his many valuable comments on earlier
versions of the article, and the referees for their very careful reading and thoughtful com-
ments.
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2 Locally free sheaves

In this section we recall some basic properties of locally free sheaves. First note that any
torsion free coherent sheaf on a regular noetherian scheme of dimension 1 is locally free.
In dimension 2 we have:

Proposition 2.1 Let Z be a regular noetherian scheme of equidimension 2 and j : U →֒ Z
an open embedding with finite complement. Then:

(a) For any locally free coherent sheaf F on Z, the adjunction homomorphism F → j∗j
∗F

is an isomorphism.

(b) For any locally free coherent sheaf G on U , the direct image j∗G is a locally free
coherent sheaf on Z.

Proof. The assertion being local on Z, we may assume that Z = SpecR for a regular
noetherian local ring R of Krull dimension 2 and that U is the complement of the closed
point. Fix local parameters u and v which generate the maximal ideal of R and consider the
closed embedding i : Y = SpecR/(u) →֒ Z. The proof of Langton [7, §3 Prop. 6], adapted
almost verbatim to the present situation, implies (a) and shows that in (b), the sheaf j∗G
is coherent and its pullback i∗j∗G is torsion free. But since Y is regular of dimension 1, it
follows that i∗j∗G is locally free. Its rank is then the rank of G, and so by the Nakayama
lemma the stalk of j∗G at the closed point has the same number of generators as the stalk
at the generic point of Z. Thus j∗G is locally free, as desired. q.e.d.

Proposition 2.2 Let Z be a regular noetherian scheme of equidimension 2. Then for
any homomorphism f : G → F of locally free coherent sheaves on Z and any locally free
coherent subsheaf F ′ ⊂ F , the sheaf f−1(F ′) is locally free.

Proof. As f−1(F ′) is a torsion free coherent sheaf on a regular noetherian scheme, it is
locally free at all points of codimension 1. Thus the set of points U ⊂ Z where f−1(F ′) is
locally free is open and its complement has codimension 2. Consider the commutative dia-
gram obtained by combining the definition of f−1(F ′) with the adjunction homomorphism
id→ j∗j

∗ for the open embedding j : U →֒ Z:

G
RRRRRRRRR

RRRRRRRRR
// F

I
I

I
I

I

I
I

I
I

I

j∗j
∗G // j∗j

∗F

f−1(F ′)
?�

OO

� u

((QQQQQ

// F ′

G
G

G
G

G

G
G

G
G

G

?�

OO

j∗j
∗f−1(F ′)

?�

OO

// j∗j
∗F ′
?�

OO

Here the three indicated oblique equalities result from Proposition 2.1 (a). The definition
of f−1(F ′) thus implies that the fourth oblique arrow f−1(F ′) →֒ j∗j

∗f−1(F ′) is also an
equality. Since the latter is locally free by Proposition 2.1 (b), we are done. q.e.d.
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Proposition 2.3 Let Z be a regular noetherian scheme of equidimension 2 and j : U →֒ Z
an open dense embedding. Let z1, . . . , zn be the generic points of Z r U of codimension 1
in Z, and abbreviate Zi := SpecOZ,zi.

(a) For any locally free coherent sheaves FU on U and Fi on Zi for all i, which coincide
at all generic points of Z, there exists a unique locally free coherent sheaf F on Z
whose restrictions to U and Zi are FU and Fi, respectively.

(b) For any locally free coherent sheaves F ′ and F on Z and any homomorphisms fU :
F ′|U → F|U and fi : F

′|Zi → F|Zi for all i, which agree at all generic points of Z,
there exists a unique homomorphism f : F ′ → F extending fU and all fi.

Proof. By induction on n it suffices to prove this in the case n = 1.

For (a) choose any extension of F1 to a locally free coherent sheaf F̃1 on some irreducible

open neighborhood U1 ⊂ Z of Z1. Then F̃1 coincides with FU outside some proper closed
subset T ⊂ U1 ∩ U . For dimension reasons z1 is not contained in the closure T of T in Z.
Thus after replacing U1 by U1 r T , the sheaves F̃1 and FU coincide on U1 ∩ U and are
therefore the restrictions of a locally free coherent sheaf on U1 ∪U . But this sheaf extends
to a locally free coherent sheaf on Z by Proposition 2.1 (b), proving the existence part
of (a). The uniqueness part of (a) follows from (b) applied to the identity maps fU and f1
for two extensions.

In (b) the homomorphism f1 extends to a homomorphism f̃1 : F ′|U1 → F|U1 for some
irreducible open neighborhood U1 ⊂ Z of Z1. Since F ′, F are locally free and fU , f̃1
coincide at the generic point of the integral scheme U1∩U , the restrictions of fU , f̃1 to U1∩U
must coincide. They therefore induce a homomorphism F ′|U1∩U → F|U1∩U . Proposition
2.1 (a) implies that this homomorphism extends to a homomorphism f : F ′ → F , proving
the existence part of (b). The uniqueness of f follows from the fact that Z is regular and
F ′, F are locally free. q.e.d.

Now let C and X be irreducible smooth curves over a field k with generic points ηC and ηX .
Consider the natural inclusions

ηC×ηX
� � //

� _

��

C×ηX� _

��
ηC×X

� � // C×X ,

where all fiber products are taken over Spec k. Here ηC×ηX is simultaneously a subscheme
of the curve C×ηX over ηX and a subscheme of the curve ηC×X over ηC . Viewed as a
subscheme of the surface C×X , it consists of the generic points of C×X and the generic
points of all irreducible curves in C×X which map surjectively to both C and X .

Proposition 2.4 (a) For any locally free coherent sheaves G on C×ηX and H on ηC×X
which coincide over ηC×ηX , there exists a unique locally free coherent sheaf F on
C×X extending both G and H.
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(b) For any locally free coherent sheaves F ′ and F on C×X and any homomorphisms
g : F ′|C×ηX → F|C×ηX and h : F ′| ηC×X → F| ηC×X which agree over ηC×ηX ,
there exists a unique homomorphism f : F ′ → F extending g and h.

Proof. In (a) choose any locally free coherent sheaf F1 on an open dense subscheme
U ⊂ C×X which coincides with G on U ∩ (C×ηX). Then the restrictions of F1 and H to
U ∩ (ηC×X) coincide outside a nowhere dense closed subset T ⊂ ηC×X . After replacing U
by U r T we may thus assume that F1 and H coincide over U ∩ (ηC×X). Since the points
of codimension 1 in C×X are precisely the points of codimension 1 in C×ηX and in ηC×X ,
Proposition 2.3 (a) yields a locally free coherent sheaf F on C×X which simultaneously
extends G and H. Any other locally free extension with this property coincides with F
on an open dense subscheme U ⊂ C×X . Since it also coincides with it at all points of
codimension 1, it coincides everywhere by the uniqueness in Proposition 2.3 (a). This
proves (a).

For (b) note that g extends to some open neighborhood U ⊂ C×X of C×ηX . Since
C×X is regular and F ′ and F are locally free, this extension must coincide with h over
U ∩ (ηC×X). Thus by Proposition 2.3 (b) it extends to a homomorphism f : F ′ → F .
Again by regularity, this extension is unique. q.e.d.

3 Harder-Narasimhan filtration

In this section we recall some basic facts concerning the Harder-Narasimhan filtration of
a locally free coherent sheaf on a curve. For a reference see [6], [15]. We generalize the
formulas slightly to curves that are not necessarily geometrically irreducible, and normalize
degrees and slopes in a way that behaves well under base change.

Let C be an irreducible smooth projective curve of genus g over a field k. We do not
assume that C is geometrically irreducible; thus its field of constants may be an arbitrary
finite separable extension k′ of k, say of degree e. Consider a locally free coherent sheaf G
on C, and set hi(C,G) := dimk H

i(C,G) for i = 0, 1. By the Riemann-Roch theorem we
have

(3.1) χ(C,G) := h0(C,G)− h1(C,G) = deg(G) + (1− g) · e · rank(G)

for an integer deg(G) called the degree of G (over k). If G is non-zero, the rational number

(3.2) µ(G) :=
deg(G)

e · rank(G)

is called the weight of G. A non-zero G is called semistable if µ(G ′) 6 µ(G) for all non-
zero coherent subsheaves G ′ ⊂ G. The Harder-Narasimhan filtration of G is a decreasing
filtration by coherent subsheaves Gµ indexed by rational numbers µ, which is separated,
exhaustive, and left continuous, such that Gµ/

⋃
µ′>µ G

µ′

is locally free and semistable of
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weight µ whenever this subquotient is non-zero. Such a filtration always exists and is
unique. The numbers µ whose associated subquotient is non-zero are called the slopes
of G, with multiplicities e · rank(Gµ/

⋃
µ′>µ G

µ′

). If G is non-zero, we denote its smallest

slope by µmin(G) and its largest slope by µmax(G). If G = 0 we set µmin(G) := ∞ and
µmax(G) := −∞. Basic properties are:

deg(G) is the sum of all slopes of G counted with multiplicities.(3.3)

e · rank(G) · µmin(G) 6 deg(G) 6 e · rank(G) · µmax(G).(3.4)

µmin(G) > deg(G)− (e · rank(G)− 1) · µmax(G).(3.5)

µmax(G) 6 deg(G)− (e · rank(G)− 1) · µmin(G).(3.6)

The slopes of G⊕N are the slopes of G.(3.7)

The slopes of the dual sheaf G∨ are minus the slopes of G.(3.8)

If µmax(G) < 0, then H0(C,G) = 0.(3.9)

If G is generated by global sections, then µmin(G) > 0.(3.10)

If µmin(G) > 2g − 2, then H1(C,G) = 0.(3.11)

If µmin(G) > 2g − 1, then G is generated by global sections.(3.12)

Also, for any homomorphism of non-zero locally free coherent sheaves f : F → G we have:

f(Fµ) ⊂ Gµ for every µ ∈ Q.(3.13)

µmin(F) 6 µmax(G) if f is non-zero.(3.14)

µmax(F) 6 µmax(G) if f is injective.(3.15)

µmin(F) 6 µmin(G) if f has torsion cokernel.(3.16)

deg(F) 6 deg(G) if f is injective with torsion cokernel.(3.17)

Furthermore, for any short exact sequence 0→ G ′ → G → G ′′ → 0 of locally free coherent
sheaves we have:

µmin(G) > min{µmin(G ′), µmin(G ′′)}.(3.18)

µmax(G) 6 max{µmax(G ′), µmax(G ′′)}.(3.19)

Next let L be an ample invertible sheaf of weight ℓ := µ(L) on C. For any coherent sheaf
G on C and any integer n we define G(n) := G ⊗ L⊗n. Then:

The slopes of G(n) are the slopes of G plus nℓ.(3.20)

deg(G(n)) = deg(G) + nℓe · rank(G).(3.21)

12



Now consider an arbitrary field extension k →֒ L and let CL denote the curve over L
obtained from C by base change. Then CL is a finite disjoint union of at most e irreducible
smooth projective curves CL,i over L. For any locally free coherent sheaf GL on CL all the
above concepts and properties apply to GL|CL,i for every i. Thus the direct sum of the
Harder-Narasimhan filtrations for these constituents yields a Harder-Narasimhan filtration
of GL. The slopes of GL are those of all constituents combined, each counted with the sum
of the respective multiplicities. Furthermore µmin(GL) and µmax(GL) are defined exactly
as before, and one sets deg(GL) :=

∑
i deg(GL|CL,i). Then all the above properties hold

verbatim over CL, except that in the formulas involving rank(GL) one must assume that
GL has constant rank.

Finally, we revert to a locally free coherent sheaf G on C and consider its pullback π∗G via
the morphism π : CL → C. This is a locally free coherent sheaf of constant rank on CL,
whose rank, degree, and weight all coincide with those of G.

The Harder-Narasimhan filtration of π∗G is the pullback of the Harder-Narasim-
han filtration of G. In particular the degree and all slopes and multiplicities of π∗G
are equal to those of G.

(3.22)

For the existence and uniqueness of the Harder-Narasimhan filtration see [15, 1ère Partie,
I, Th. 4], where the assumption that k be algebraically closed is irrelevant. Assertions
(3.3)–(3.8) and (3.17)–(3.21) are straightforward consequences of the definition. Assertion
(3.13) follows from [15, ibid., Prop. 6]); this in turn implies (3.14) and (3.15), and by duality
the latter yields (3.16). The special case F = OC of (3.14) and (3.16) shows (3.9) and
(3.10); for (3.11) and (3.12) see [15, ibid., Lemma 20]). Finally (3.22) follows from [15,
3ème Partie, III, Prop. 17].

4 Frobenius

From now on we let Fq be a finite field with q elements. Let X be an irreducible smooth
projective curve of genus g over Fq. Let σ : X → X denote its Frobenius endomorphism
over SpecFq which is the identity on the underlying topological space and the map s 7→ sq

on the structure sheaf. For any field extension Fq →֒ L we let σ again denote the endo-
morphism of XL over L deduced from σ : X → X by base change. Let L be an ample
invertible sheaf of weight ℓ on X . For any coherent sheaf F on XL we let F(n) denote the
tensor product of F with the pullback of L⊗n.

Proposition 4.1 For any coherent sheaf F on XL we have:

(a) deg(σ∗F) = q · deg(F).

(b) σ∗(F(n)) ∼= (σ∗F)(qn) for any integer n.
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Proof. Assertion (a) follows from the fact that σ : XL → XL is finite of constant degree q.
Assertion (b) reduces to the isomorphy σ∗L ∼= L⊗q on X . But this follows from the fact
that the cocycles defining both sides of the equation are obtained from the cocycle defining
L by applying the same map s 7→ sq. q.e.d.

Proposition 4.2 There exists a0 such that for all a > a0 there exists N > 0 and an
injective homomorphism σ∗OX →֒ OX(a)

⊕N whose image is locally a direct summand.

Proof. By dualizing the assertion is equivalent to the existence of a locally split surjection
OX(−a)

⊕N ։ (σ∗OX)
∨. Since the sheaf (σ∗OX)

∨ is locally free, any surjection is already
locally split. But whenever

µmin
(
(σ∗OX)

∨(a)
) (3.20)

= µmin
(
(σ∗OX)

∨
)
+ aℓ > 2g − 1,

(3.12) asserts that (σ∗OX)
∨(a) is generated by global sections; hence there exists the desired

surjection. Thus the proposition holds with a0 :=
(
2g − µmin((σ∗OX)

∨)
)
/ℓ. q.e.d.

5 Finiteness for locally free coherent sheaves

As a warm-up, we recall the proof of a well-known finiteness result over a curve, which is
implicit in both [6] and [15]. Let C, g, e, L, and ℓ be as in Section 3, with k = Fq.

Theorem 5.1 Fix constants r > 0, d, and µ. Then up to isomorphism, there exist at
most finitely many locally free coherent sheaves F on C with the following properties:

(a) F has constant rank r.

(b) deg(F) = d.

(c) µmin(F) > µ.

Proof. Fix any integer m > (2g− 1−µ)/ℓ. Then for any F with the given properties we
have

µmin(F(m))
(3.20)
= µmin(F) +mℓ

(c)
> µ+mℓ > 2g − 1.

By (3.11) and (3.12) this implies that H1(F(m)) = 0 and that F(m) is generated by global
sections. Also, we calculate

N := h0(F(m)) = χ(F(m))
(3.1)
= deg(F(m)) + (1− g) · e · rank(F(m))

(3.21)
= deg(F) + (mℓ+ 1− g) · e · rank(F)

(a), (b)
= d+ (mℓ + 1− g) · e · r,
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which is independent of F . Together we find that there exists a surjection O⊕N
C ։ F(m).

Let F ′ denote its kernel. Then F ′ is locally free of rank r′ := N − r. Next,

d′ := deg(F ′) = − deg(F(m))
(3.21)
= − deg(F)−mℓe · rank(F) = −d−mℓer

is also independent of F . Furthermore, by (3.15) we have µmax(F ′) 6 µmax(O⊕N
C ) = 0

and hence, by (3.5), µmin(F ′) > deg(F ′) = d′ =: µ′. Thus F ′ satisfies the same kind of
conditions as F with (r′, d′, µ′) in place of (r, d, µ). In particular, for any integer m′ >
(2g− 1−µ′)/ℓ there exists a surjection O⊕N ′

C ։ F ′(m′) with N ′ := d′+(m′ℓ+1− g) · e · r.
Combining this with the earlier surjection and twisting back we obtain an exact sequence

O⊕N ′

C (−m−m′)
h
−→ O⊕N

C (−m) −→ F −→ 0.

Here the numbers m, N , m′, N ′ depend only on the invariants fixed in Theorem 5.1, but
not otherwise on F . As the homomorphism h lies in the finite dimensional Fq-vector space

Hom
(
O⊕N ′

C (−m−m′),O⊕N
C (−m)

)
,

there are only finitely many possibilities for it, and hence for the isomorphism class of F ,
as desired. q.e.d.

From now on and throughout the rest of this article we consider two irreducible smooth
projective curves C and X over Fq. We let ηC denote the generic point of C and ηX the
generic point of X . All fiber products are taken over SpecFq.

For any locally free coherent sheaf F on C×X and any point c ∈ C we let Fc denote
the pullback of F to the fiber c×X . Likewise, for any point x ∈ X we let Fx denote
the pullback of F to the fiber C×x. In both situations we will apply the conventions of
Section 3. Note that by flatness the number deg(Fc) is independent of c ∈ C, and the
number deg(Fx) is independent of x ∈ X .

Fix ample invertible sheaves LC on C and LX on X . For any coherent sheaf F on C×X
and any two integers m and n we set

(5.2) F(m,n) := F ⊗ pr∗1 L
⊗m
C ⊗ pr∗2 L

⊗n
X

Let gC denote the genus and eC the degree over Fq of the constant field of C, and ℓC the
weight µ(LC). Let gX , eX , and ℓX denote the corresponding invariants for the curve X .

Proposition 5.3 Let F be a locally free coherent sheaf on C×X. Assume that:

(a) F has constant rank r.

(b) deg(Fc) = dX for all c ∈ C.

(c) µmin(Fc) > µX for all c ∈ C.
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(d) deg(FηX ) = dC.

Then for any integer n > (2gX − 1− µX)/ℓX we have:

(e) Gn := pr1∗(F(0, n)) is a locally free coherent sheaf on C.

(f) R1 pr1∗(F(0, n)) = 0.

(g) The adjunction homomorphism pr∗1 Gn → F(0, n) is surjective.

(h) rank(Gn) = dX + (nℓX + 1− gX)eXr.

(i) deg(Gn) = χ(C×X,F)− (1− gC)eC
(
dX + (1− gX)eXr

)
+ nℓXeXdC.

Proof. As a torsion free coherent sheaf on a smooth curve, Gn is locally free, proving (e).
The assumption on n implies that

µmin(Fc(n))
(3.20)
= µmin(Fc) + nℓX

(c)

> µX + nℓX > 2gX − 1

for any point c ∈ C. By (3.11) and (3.12) this implies that H1(Fc(n)) = 0 and that Fc(n)
is generated by global sections. Using base change the first of these facts implies (f). This
in turn implies that base change also holds in degree 0; in other words, that the natural
map Gn⊗k(c)→ H0(Fc(n)) is an isomorphism. That Fc(n) is generated by global sections
then implies that pr∗1 Gn → F(0, n) is surjective in all fibers over C, and hence everywhere,
proving (g). Also we find that

rank(Gn) = h0(Fc(n)) = χ(Fc(n))
(3.1)
= deg(Fc(n)) + (1− gX) · eX · rank(Fc(n))

(3.21)
= deg(Fc) + (nℓX + 1− gX) · eX · rank(Fc)

= dX + (nℓX + 1− gX)eXr,

proving (h). To show (i) we calculate χ(C×X,F(0, n)) in two ways. First observe that

χ(C×X,F(0, n)) = χ(X,R pr2∗(F(0, n)) = χ(H0(n))− χ(H1(n)),

where Hi := Ri pr2∗(F) is a coherent sheaf on X . Let Hi
tor denote its torsion subsheaf, so

that Hi/Hi
tor is locally free. Then

χ(Hi(n)) = χ((Hi/Hi
tor)(n)) + χ(Hi

tor(n))
(3.1)
= deg((Hi/Hi

tor)(n)) + (some value independent of n)
(3.21)
= nℓXeX · rank(H

i/Hi
tor) + (some value independent of n).
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Furthermore, by base change we have

rank(H0/H0
tor)− rank(H1/H1

tor) = dim
(
H0 ⊗ k(ηX))− dim(H1 ⊗ k(ηX)

)

= h0(C×ηX ,FηX )− h1(C×ηX ,FηX )

= χ(C×ηX ,FηX )
(3.1)
= deg(FηX ) + (1− gC) · eC · rank(FηX )

= dC + (1− gC)eCr.

Putting the last three calculations together we deduce that

χ(C×X,F(0, n)) = nℓXeX
(
dC + (1− gC)eCr

)
+ (some value independent of n).

The case n = 0 shows that the unknown value in parentheses is χ(C×X,F). On the other
hand we have

χ(C×X,F(0, n))
(f)
= χ(C, pr1∗ F(0, n)) = χ(C,Gn)

(3.1)
= deg(Gn) + (1− gC) · eC · rank(Gn)
(h)
= deg(Gn) + (1− gC) · eC ·

(
dX + (nℓX + 1− gX)eXr

)

= deg(Gn) + (1− gC)eC
(
dX + (1− gX)eXr

)
+ (1− gC)eCr · nℓXeX .

Comparing these formulas yields

deg(Gn) = χ(C×X,F)− (1− gC)eC
(
dX + (1− gX)eXr

)
+ nℓXeXdC,

proving (i). q.e.d.

Theorem 5.4 Fix constants r > 0, dX , µX , dC, d, µ, and n > (2gX − 1− µX)/ℓX . Then
up to isomorphism, there exist at most finitely many locally free coherent sheaves F on
C×X with the following properties, where Gn := pr1∗(F(0, n)):

(a) F has constant rank r.

(b) deg(Fc) = dX for all c ∈ C.

(c) µmin(Fc) > µX for all c ∈ C.

(d) deg(FηX ) = dC.

(e) deg(Gn) = d.

(f) µmin(Gn) > µ.
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Proof. Note that Proposition 5.3 applies in this case. In particular 5.3 (g) implies that
Gn is non-zero. Fix any integer m > (2gC − 1− µ)/ℓC . Then for any F we have

µmin(Gn(m))
(3.20)
= µmin(Gn) +mℓC

(f)

> µ+mℓC > 2gC − 1.

By (3.11) and (3.12) this implies that H1(Gn(m)) = 0 and that Gn(m) is generated by
global sections. Also, we find that

N := h0(Gn(m)) = χ(Gn(m))
(3.1)
= deg(Gn(m)) + (1− gC) · eC · rank(Gn(m))

(3.21)
= deg(Gn) + (mℓC + 1− gC) · eC · rank(Gn)

5.3 (h)
= d+ (mℓC + 1− gC) · eC ·

(
dX + (nℓX + 1− gX)eXr

)

depends only on the given invariants. That Gn(m) is generated by global sections means
that there exists a surjection O⊕N

C ։ Gn(m). Combined with 5.3 (g) this yields a surjection
O⊕N

C×X ։ F(m,n). Let F ′ denote its kernel, so that we have a short exact sequence

(5.5) 0 −→ F ′ −→ O⊕N
C×X −→ F(m,n) −→ 0.

We want to repeat the above arguments with F ′ in place of F . For this we set

r′ := N − r,

d′X := −dX − nℓXeXr,

d′C := −dC −mℓCeCr,

choose an integer n′ > (2gX − 1− d′X)/ℓX , and abbreviate

d′ := −d + n′ℓXeXd
′

C +mℓCeCd
′

X −mℓCeC(1− gX)eXr.

Lemma 5.6 With G ′n′ := pr1∗(F
′(0, n′)) we have:

(a) F ′ is locally free of constant rank r′.

(b) deg(F ′

c) = d′X for all c ∈ C.

(c) µmin(F ′

c) > d′X for all c ∈ C.

(d) deg(F ′

ηX
) = d′C.

(e) deg(G ′n′) = d′.

(f) µmin(G ′n′) > d′.
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Proof. Note that F(m,n) is locally free of constant rank r. Thus the sequence (5.5)
locally splits, which implies (a). Next the short exact sequence

0→ F ′

c → O
⊕N
c×X → Fc(n)→ 0

and the resulting calculation

deg(F ′

c) = − deg(Fc(n))
(3.21)
= − deg(Fc)− nℓXeX · rank(Fc) = −dX − nℓXeXr = d′X

imply (b). The exact sequence together with (3.15) also implies that µmax(F ′

c) 6 µmax(O⊕N
c×X)

= 0. Together with (b) and (3.5) this implies (c). Assertion (d) is proved in precisely the
same way as (b).

The assertions (a) through (d) which have already been proved show that Proposition 5.3
may be applied to F ′ and n′. In particular G ′n′ is a locally free coherent sheaf on C. Also
R1 pr1∗(F

′(0, n′)) = 0; hence after twisting the sequence (5.5) by (0, n′) and applying pr1∗
we obtain a short exact sequence

0 // pr1∗(F
′(0, n′)) // pr1∗(O

⊕N
C×X(0, n

′)) // pr1∗(F(m,n+ n′)) // 0

0 // G ′n′
// O⊕N

C ⊗H0(X,OX(n
′))

≀

// Gn+n′(m)

≀

// 0.

From this we deduce that

deg(G ′n′) = − deg(Gn+n′(m))
(3.21)
= − deg(Gn+n′)−mℓCeC · rank(Gn+n′)
5.3
= − deg(Gn)− n′ℓXeXdC −mℓCeC

(
dX + ((n+ n′)ℓX + 1− gX)eXr

)

= −d + n′ℓXeXd
′

C +mℓCeCd
′

X −mℓCeC(1− gX)eXr

= d′,

proving (e). Finally, the exact sequence together with (3.15) also implies that µmax(G ′n′) 6
µmax(O⊕N

C ) = 0. Together with (e) and (3.5) this implies (f). q.e.d.

Lemma 5.6 shows that F ′ satisfies the same assumptions as F , only with other constants.
The same arguments as in the first part of the proof thus imply that for any fixed integer
m′ > (2gC − 1− d′)/ℓC and

N ′ := d′ + (m′ℓC + 1− gC) · eC ·
(
d′X + (n′ℓX + 1− gX)eXr

′
)

there exists a surjection O⊕N ′

C×X ։ F ′(m′, n′). Combining this with the short exact sequence
(5.5) and twisting back we obtain an exact sequence

O⊕N ′

C×X(−m−m′,−n− n′)
h
−→ O⊕N

C×X(−m,−n) −→ F −→ 0.
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Here the numbers m, n, N , m′, n′, N ′ depend only on the invariants fixed in Theorem
5.4, but not otherwise on F . Moreover, the homomorphism h lies in the finite dimensional
Fq-vector space

Hom
(
O⊕N ′

C×X(−m−m′,−n− n′),O⊕N
C×X(−m,−n)

)
.

Thus there are only finitely many possibilities for it, and hence only finitely many possi-
bilities for the isomorphism class of F , as desired. q.e.d.

6 κ-Sheaves

As we shall consider κ-sheaves over various base schemes, we introduce the concept in a
suitable generality. Let Y and X be quasicompact schemes over Fq. Let σ be the Frobenius
endomorphism of X over Fq as in Section 4, which induces an endomorphism id×σ of the
fiber product Y×X over Fq. Let LY be an ample invertible sheaf on Y . For any coherent
sheaf F on Y×X and any integer d we abbreviate F(d, 0) := F ⊗ pr∗1 L

⊗d
Y .

Definition 6.1 (a) A κ-sheaf of pole order 6 d on Y×X is a locally free coherent sheaf
F on Y×X together with an injective homomorphism κ : F →֒ (id×σ)∗F(d, 0). A
κ-sheaf of pole order 6 0 is called simply a κ-sheaf on Y×X.

(b) A coherent subsheaf F ′ of F is called κ-invariant if κ induces a homomorphism
F ′ →֒ (id×σ)∗F ′(d, 0) in a commutative diagram

F � � // (id×σ)∗F(d, 0)

F ′ � � //
?�

OO

(id×σ)∗F ′(d, 0).
?�

OO

A locally free κ-invariant coherent subsheaf is called a κ-subsheaf.

(c) A homomorphism of κ-sheaves of pole order 6 d is a homomorphism f of the under-
lying coherent sheaves satisfying κ ◦ f = ((id×σ)∗f) ◦ κ.

Lemma 6.2 If Y and X are irreducible and localizations of schemes of finite type over Fq,
then any κ-sheaf of some pole order on Y×X has constant rank.

Proof. Since κ is injective, the local rank of F at any generic point of Y×X is less than
or equal to the local rank of (id×σ)∗F(d, 0) at the same generic point. But the latter is the
local rank of F at the image of the generic point under id×σ. Since under the assumptions
on Y and X the finitely many generic points of Y×X are permuted transitively by id×σ,
it follows that this rank is constant. q.e.d.
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We will apply the above concepts in the following situations. The scheme X will be either
the spectrum of a field or an irreducible smooth projective curve over Fq. The scheme
Y will be either an irreducible smooth projective curve C over Fq, or the open curve
C◦ := C r {∞} for some closed point ∞ ∈ C, or the generic point ηC of C.

In the case Y = C the notion is not very interesting unless LY is ample, because only then
there are enough homomorphisms κ : F →֒ (id×σ)∗F(d, 0) for d ≫ 0. In Section 7 we
allow LY = LC to be any ample invertible sheaf on C; in Sections 8 and 9 we specialize
it to LC = OC(∞). In the cases Y = C◦ and Y = ηC we only consider κ-sheaves without
poles.

Some of our work will consist of comparing κ-sheaves on the base schemes

ηC×X
� � // C◦×X � � // C×X .

The pullback under each inclusion maps κ-sheaves to κ-sheaves. An inclusion of κ-sheaves
on C◦×X becomes an isomorphism on ηC×X if and only if it is an isomorphism outside
D × X for some divisor D ⊂ C. Thus we can view κ-sheaves on ηC×X as κ-sheaves on
C◦×X up to isogeny. At the end of Section 8 we deal with the problem of extending
κ-sheaves on C◦×X to C×X .

When X is an irreducible smooth curve with generic point ηX , we can consider κ-sheaves
on each of the base schemes in the commutative diagram

(6.3)

ηC×ηX
� � //

� _

��

C◦×ηX� _

��

� � // C×ηX� _

��
ηC×X

� � // C◦×X � � // C×X .

We can then also study restriction and extension in the direction of X . This is done in
Section 9.

7 Finiteness for κ-sheaves

We keep the notations of Section 5, with Fq, C, LC, X , LX and consequently gC , ℓC , eC
and gX , ℓX , eX all fixed. The aim of this section is to prove the following theorem.

Theorem 7.1 Fix any constants d, r, dX , µX , dC, and µC. Then up to isomorphism,
there exist at most finitely many κ-sheaves F of pole order 6 d on C×X with the following
properties:

(a) F has constant rank r.

(b) deg(Fc) = dX for all c ∈ C.

(c) µmin(Fc) > µX for all c ∈ C.
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(d) deg(FηX ) = dC.

(e) µmax(FηX ) 6 µC.

(f) Every κ-invariant coherent subsheaf of F of rank r coincides with F along ηC×X.

Throughout this section we consider a κ-sheaf F satisfying the above properties. Note that
the conditions (a)–(d) here are the same as in Theorem 5.4, while (e) and (f) are different.
To reduce Theorem 7.1 to Theorem 5.4 we will show that the remaining numerical invariants
in 5.4 (e) and (f) are bounded by constants independent of F , or more precisely: depending
only on q, gC , ℓC , eC , gX , ℓX , eX , d, r, dX , µX , dC , and µC .

We begin with some preparatory results before embarking on the real work in (7.7). First,
by the following lemma we may—and do—assume that µX 6 0 and µC 6 0:

Lemma 7.2 Theorem 7.1 in the case µX 6 0 and µC 6 0 implies Theorem 7.1 in general.

Proof. We may decrease µX , because that can only increase the range of possibilities
for F . On the other hand, for any κ-sheaf F and any integer m we obtain a κ-sheaf F(m, 0)
with µmax(F(m, 0)ηX ) = µmax(FηX ) + mℓC by (3.20) and deg(F(m, 0)ηX ) = deg(FηX ) +
mℓCeCr by (3.21), while all other numerical invariants in Theorem 7.1 are the same. This
process is reversible, so it allows us to replace µC by µC + mℓC . For suitable m ≪ 0 we
can thus achieve µC 6 0. q.e.d.

Lemma 7.3 Consider a point c ∈ C and a locally free coherent sheaf H on c×X together
with an injective homomorphism κ : H →֒ (id×σ)∗H. Then

(a) H is locally free of constant rank.

(b) µmin(H) > 0.

(c) deg(H) > 0.

Proof. (a) is a special case of Lemma 6.2. For (b) suppose that µ := µmin(H) < ∞,
so that H 6= 0. Then H possesses a non-zero semistable quotient H of weight µ. Since
κ : H → (id×σ)∗H is injective by assumption, from (a) we deduce that its cokernel is
torsion. We can therefore calculate

µ = µmin(H)
(3.16)

6 µmin((id×σ)∗H)
(3.16)

6 µmin((id×σ)∗H)
(3.4)

6 deg((id×σ)∗H)/e · rank((id×σ)∗H)
4.1(a)
= q · deg(H)/e · rank(H)

(3.2)
= q · µmin(H) = qµ.
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This implies that µ > 0, proving (b). Finally, (c) is a direct consequence of (b) and (3.3).
q.e.d.

Note that part (b) of Lemma 7.3 for H = Fc subsumes condition 7.1 (c) whenever κ is an
isomorphism at c × ηX . But at the remaining finitely many points c ∈ C the condition
7.1 (c) is still necessary. In actual fact we will need Lemma 7.3 for κ-invariant subsheaves
of F , as in the next lemma:

Lemma 7.4 For any κ-invariant locally free coherent subsheaf F ′ ⊂ F we have:

(a) F ′

ηC
is locally free of constant rank 6 r.

(b) 0 6 deg(F ′

ηC
) 6 dX .

Proof. Applying Lemma 7.3 with c = ηC proves (a) and the first inequality in (b). For
the second inequality recall from (3.3) that deg(F ′

ηC
) is the sum of all slopes of F ′

ηC
counted

with multiplicities. Let r′ := rank(F ′

ηC
) denote the total number of these slopes; then by

(3.13) for the inclusion F ′

ηC
→֒ FηC their sum is less than or equal to the sum of the r′

largest slopes of FηC . As the remaining slopes of FηC are > 0 by 7.3 (b), applying (3.3)
again we find that deg(F ′

ηC
) 6 deg(FηC ) = dX , proving (b). q.e.d.

The next two lemmas describe two kinds of saturations of subsheaves of F . Consider the
iterates of κ, which are injective homomorphisms

κm : F −֒→ (id×σm)∗F(md, 0).

Lemma 7.5 For any κ-invariant coherent subsheaf F ′ ⊂ F there exists a unique largest
κ-invariant coherent subsheaf F̃ ′ ⊂ F which is sent into (id×σm)∗F ′(md, 0) by some iter-

ate κm. Moreover, if F ′ is locally free, then so is F̃ ′, and it has the same rank as F ′.

Proof. Since F ′ is κ-invariant, we have an increasing sequence of coherent subsheaves

F ′ ⊂ κ−1((id×σ)∗F ′(d, 0)) ⊂ . . . ⊂ (κm)−1((id×σm)∗F ′(md, 0)) ⊂ . . . . . . ⊂ F .

As C×X is noetherian and F is coherent, this sequence becomes stationary. Let F̃ ′

be its union. Clearly it is the unique largest coherent subsheaf of F which is sent into
(id×σm)∗F ′(md, 0) by some iterate κm. By construction it is κ-invariant. This proves the
first assertion of the lemma.

If F ′ is locally free, Proposition 2.2 implies that all members of the above sequence are
locally free. Since κ is an isomorphism at all generic points of C×X , they all have the
same rank as F ′. Both assertions follow for F̃ ′, as desired. q.e.d.

Lemma 7.6 For any coherent subsheaf F ′ ⊂ F there exists a unique largest coherent sheaf
F ′ ⊂ F ′+ ⊂ F which coincides with F ′ along ηC×X. Moreover F ′+ is locally free.
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Proof. The set of subsheaves which coincide with F ′ along ηC×X contains F ′ and is
therefore non-empty. Let F ′+ be their sum. Since C×X is noetherian and F is coherent,
this is already the sum of finitely many thereof; hence it is again coherent and coincides
with F ′ along ηC×X . Clearly it is the unique largest coherent subsheaf with this property.

Let U ⊂ C×X be the set of points where F ′+ is locally free. Then U is open and its
complement has codimension > 2. Thus if j denotes the open embedding U →֒ C×X ,
Proposition 2.1 (b) shows that j∗j

∗F ′+ is locally free, and Proposition 2.1 (a) shows that
j∗j

∗F ′+ →֒ j∗j
∗F = F . By the maximality of F ′+ we therefore deduce that F ′+ = j∗j

∗F ′+;
hence it is locally free, as desired. q.e.d.

Now we begin with the detailed analysis of F . We associate to F certain other sheaves
and subsheaves, as follows. For any integer n we set

(7.7) Gn := pr1∗(F(0, n)).

This is a torsion free coherent, and hence locally free, sheaf on C. Let Gµn denote the
subsheaf associated to µ ∈ Q in the Harder-Narasimhan filtration of Gn. We consider the
inclusion Gµn →֒ Gn = pr1∗(F(0, n)) and take its adjoint homomorphism pr∗1 G

µ
n → F(0, n).

We twist it back by (0,−n), take the image sheaf, and apply the saturation procedure from
Lemma 7.6 to make the resulting subsheaf

(7.8) Fµ
n := im

(
(pr∗1 G

µ
n)(0,−n)→ F

)+
⊂ F

locally free. The defining property in Lemma 7.6 implies that pr∗1 G
µ
n(0,−n) → F factors

through a homomorphism pr∗1 G
µ
n(0,−n) → F

µ
n which is surjective over ηC×X . Twisting

again by (0, n) and using the adjunction between pr∗1 and pr1∗ yields inclusions

(7.9) Gµn ⊂ pr1∗(F
µ
n (0, n)) ⊂ Gn.

The sheaves Fµ
n and their behavior under κ will enable us to study the slopes of Gn and

in particular to compare them for different n. First observe that for any µ′ > µ we have
Gµ

′

n ⊂ G
µ
n and hence Fµ′

n ⊂ F
µ
n .

Lemma 7.10 For all n we have µmax(Gn) 6 µC 6 0.

Proof. Suppose that µ := µmax(Gn) > −∞, so that Gn 6= 0. Then Gn possesses a non-zero
semistable coherent subsheaf G ′ of weight µ. Since G ′ →֒ Gn = pr1∗(F(0, n)) is a non-zero
homomorphism, so is its adjoint pr∗1 G

′ → F(0, n). Here source and target are locally free
sheaves on C×X , hence the induced homomorphism (pr∗1 G

′) |C×ηX → FηX is also non-
zero. But (3.22) shows that (pr∗1 G

′) |C×ηX is semistable of weight µ. Thus (3.14) and 7.1
(e) imply that µ 6 µmax(FηX ) 6 µC . Finally, we have µC 6 0 by the reduction in Lemma
7.2. q.e.d.
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Lemma 7.11 For any integers n and n′ > (eXr+1)n+(dX +2gX−2)/ℓX and any µ ∈ Q

we have
pr1∗(F

µ
n (0, n

′)) ⊂ Gµn′ .

Proof. Let v : pr∗1 G
µ
n −→ Fµ

n (0, n) be the homomorphism that is adjoint to the inclusion
(7.9). By the construction of Fµ

n its restriction to ηC×X is surjective. Thus it gives rise
to a short exact sequence

0 −→ H −→ Gµn,ηC ⊗OηC×X
v
−→ Fµ

n,ηC
(n) −→ 0

for some torsion free coherent, and hence locally free, sheaf H on ηC×X . After twisting
by n′ − n and taking cohomology over ηC×X we obtain a long exact sequence

. . . −→ H0
(
Gµn,ηC ⊗OηC×X(n

′−n)
)
−→ H0(Fµ

n,ηC
(n′)) −→ H1(H(n′−n)) −→ . . . .

We claim that H1(H(n′ − n)) = 0 under the given condition on n′. To see this note first
that (3.15) and (3.7) imply that µmax(H) 6 µmax(OηC×X) = 0. By (3.5) this in turn yields
µmin(H) > deg(H). Using the fact that deg(OηC×X) = 0, we deduce that

µmin(H(n′ − n))
(3.20)
= µmin(H) + (n′ − n)ℓX

> deg(H) + (n′ − n)ℓX

= − deg(Fµ
n,ηC

(n)) + (n′ − n)ℓX
(3.21)
= − deg(Fµ

n,ηC
)− nℓXeX · rank(F

µ
n,ηC

) + (n′ − n)ℓX
7.4 (b)

> −dX − nℓXeXr + (n′ − n)ℓX .

The bound on n′ is equivalent to this last value being > 2gX − 2. Thus by (3.11) it
guarantees that H1(H(n′ − n)) = 0, as claimed.

The claim implies that the homomorphism

Gµn ⊗Fq
H0(X,OX(n

′−n)) ∼= pr1∗
(
(pr∗1 G

µ
n)(0, n

′−n)
)
−→ pr1∗(F

µ
n (0, n

′))

induced by v is surjective at the generic point of C. By (3.16) and (3.7) this implies that

µ 6 µmin(Gµn) 6 µmin
(
pr1∗(F

µ
n (0, n

′))
)
.

But by (3.13) this implies that pr1∗(F
µ
n (0, n

′)) lies in the filtration step Gµn′ of Gn′, as
desired. q.e.d.

Next we fix an integer a0 as in Proposition 4.2.

Lemma 7.12 For all n and all a > a0 the homomorphism κ induces a homomorphism

κ : Fµ
qn −֒→ (id×σ)∗Fµ−dℓC

n+a (d, 0).
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Proof. Let u : σ∗OX →֒ OX(a)
⊕N be the locally split monomorphism from Proposition

4.2. Then there is a unique homomorphism Gqn −→ Gn+a(d)
⊕N making the right hand side

of the following diagram commute:

(7.13)

Gµqn
� � //

��

Gqn
(7.7)

��

pr1∗(F(0, qn)) pr1∗(id×σ)∗
[
F(0, qn)

]
� _

pr1∗(id×σ)∗(κ)

��

pr1∗(id×σ)∗(id×σ)
∗
[
F(d, n)

]

≀

pr1∗
[
F(d, n)⊗ pr∗2 σ∗OX

]
� _

pr1∗(id⊗ pr∗2 u)

��

pr1∗
[
F(d, n)⊗ pr∗2OX(a)

⊕N
]

≀

Gµ−dℓC
n+a (d)⊕N � � // Gn+a(d)

⊕N (7.7)
pr1∗

[
F(d, n+ a)⊕N

]
.

By (3.13) and (3.20) there is a unique homomorphism Gµqn →֒
(
Gn+a(d)

⊕N
)µ

= Gµ−dℓC
n+a (d)⊕N

making the left hand side commute. Applying adjunction between pr∗1 and pr1∗ to the outer
edge of the preceding diagram yields the outer edge of the following diagram:

(7.14)

pr∗1 G
µ
qn

��

//

**T
T

T
T

T
T

T
T

T
(id×σ)∗

[
F(0, qn)

]
� _

(id×σ)∗(κ)

��

(id×σ)∗(id×σ)
∗
[
Fµ−dℓC

n+a (d, n)
]

� � //

≀

(id×σ)∗(id×σ)
∗
[
F(d, n)

]

≀

Fµ−dℓC
n+a (d, n)⊗ pr∗2 σ∗OX

� � //
� _

id⊗pr∗2 u
��

F(d, n)⊗ pr∗2 σ∗OX� _

id⊗pr∗2 u

��
Fµ−dℓC

n+a (d, n)⊗ pr∗2OX(a)
⊕N � � //

≀

F(d, n)⊗ pr∗2OX(a)
⊕N

≀

pr∗1
[
Gµ−dℓC
n+a (d)⊕N

]
//

22Fµ−dℓC
n+a (d, n+ a)⊕N � � // F(d, n+ a)⊕N .

Here the factorization in the bottom row is the twist by (d, n+ a) of the factorization

(pr∗1 G
µ−dℓC
n+a )(0,−n− a) // Fµ−dℓC

n+a
� � // F

obtained from the definition of Fµ−dℓC
n+a . The right half of (7.14) is by construction commu-

tative. It is even cartesian, because the tensor product of any inclusion of coherent sheaves
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with the locally split monomorphism of locally free coherent sheaves pr∗2 u : pr∗2 σ∗OX →֒
pr∗2OX(a)

⊕N yields a cartesian square. Thus there exists a unique dashed arrow making
the whole diagram (7.14) commute. Applying adjunction between (id×σ)∗ and (id×σ)∗ to
its two upper rows yields the commutative diagram

(7.15)

(id×σ)∗ pr∗1 G
µ
qn

))TTTTTTTTTTTTTT

pr∗1 G
µ
qn

��

// F(0, qn)
� _

κ

��

(id×σ)∗
[
Fµ−dℓC

n+a (d, n)
]

� � // (id×σ)∗
[
F(d, n)

]
.

Twisting back by (0,−qn) this in turn yields the outer edge of the commutative diagram

(7.16)

(pr∗1 G
µ
qn)(0,−qn)

��

// **Fµ
qn

� � //
iI

vvn n
n

n
n

n
n

F� _

κ

��

(id×σ)∗
[
Fµ−dℓC

n+a (d, 0)
]

� � // (id×σ)∗
[
F(d, 0)

]
.

By the definition (7.8) of Fµ
qn the top left horizontal arrow (pr∗1 G

µ
qn)(0,−qn) −→ F

µ
qn is

surjective on ηC×X . Thus the composite homomorphism

(7.17)

Fµ
qn

� � // F� _

κ

��

(id×σ)∗
[
F/Fµ−dℓC

n+a ](d, 0)

≀

(id×σ)∗
[
F(d, 0)

]
// // (id×σ)∗

[
F(d, 0)

]
/(id×σ)∗

[
Fµ−dℓC

n+a (d, 0)
]

is zero on ηC×X , and so its image is OC-torsion. But Lemma 7.6 and the construction
(7.8) imply that F/Fµ−dℓC

n+a is OC-torsion free, and so the target of (7.17) is OC-torsion
free. Thus the composite homomorphism (7.17) is zero everywhere. This means that there
exists a unique dashed arrow making the diagram (7.16) commute, as desired. q.e.d.

Lemma 7.18 For any integer n > a0/(q − 1) and any µ ∈ Q such that Gqn has no slopes
in the interval [µ− dℓC , µ), the subsheaf Fµ

qn ⊂ F is κ-invariant.

Proof. The assumption means that Gµ−dℓC
qn = Gµqn, which implies that Fµ−dℓC

qn = Fµ
qn.

Thus applying Lemma 7.12 with a = (q−1)n > a0 shows that κ induces a homomorphism

Fµ
qn −֒→ (id×σ)∗Fµ−dℓC

qn (d, 0) = (id×σ)∗Fµ
qn(d, 0),

as desired. q.e.d.

Now we fix an integer

(7.19) n0 > max
{ a0
q − 1

,
2gX − 1− µX

qℓX

}
,
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independent of F . Then Proposition 5.3 holds for all integers n > qn0. In particular it
implies that R := rank(Gqn0

) is independent of F . We let µ1 > . . . > µs be those among
the slopes µ of Gqn0

for which Gqn0
has no slopes in the interval [µ−dℓC , µ). Then evidently

µs = µmin(Gqn0
). Setting µ0 :=∞ and G∞qn0

:= 0, we are thus interested in the steps

0 = Gµ0

qn0
⊂ Gµ1

qn0
⊂ . . . ⊂ Gµs

qn0
= Gqn0

of the Harder-Narasimhan filtration of G. For any 1 6 i 6 s we abbreviate

(7.20) F (i) := Fµi
qn0

,

which is locally free by the construction (7.8) and κ-invariant by Lemma 7.18. We also set
µ0 :=∞ and F (0) := F∞

qn0
:= 0. We thus have a sequence of κ-subsheaves

0 = F (0) ⊂ F (1) ⊂ . . . ⊂ F (s) = F .

By construction the first inclusion is proper, but any or all of the others may conceivably
be inclusions of equal rank or even equalities.

Lemma 7.21 For any 1 6 i 6 s we have Fµi+RdℓC
qn0

⊂ F (i−1).

Proof. By construction the slopes of Gµi
qn0

/G
µi−1
qn0 have successive differences 6 dℓC, and

the smallest slope is µi. Since the rank of this sheaf is 6 rank(Gqn0
) = R, it follows that its

largest slope is < µi +RdℓC . But this means that Gµi+RdℓC
qn0

⊂ G
µi−1
qn0 , which in turn implies

that Fµi+RdℓC
qn0

⊂ F
µi−1
qn0 = F (i−1), as desired. q.e.d.

Also, Lemma 7.11 immediately implies:

Lemma 7.22 For any n′ > (eXr+1)qn0 + (dX +2gX − 2)/ℓX and any 1 6 i 6 s we have

pr1∗
(
F (i)(0, n′)

)
⊂ Gµi

n′ .

Next we define a sequence of integers nj beginning with n0 by recursively solving nj +a0 =
qnj−1 for all j > 1. Then for all j > 0 we have

(7.23) nj = qj ·
(
n0 −

a0
q − 1

)
+

a0
q − 1

.

Since n0 −
a0
q−1

> 0 by (7.19), this tends to ∞ for j →∞. Let F̃ (i−1) be the saturation of

F (i−1) constructed in Lemma 7.5.

Lemma 7.24 For every j > 0 and every 1 6 i 6 s we have

Gµi+(R+j)dℓC
qnj

⊂ pr1∗
(
F̃ (i−1)(0, qnj)

)
.
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Proof. Lemma 7.12 and the recursive definition of nj show that κ induces homomorphisms

Fµ
qnj
−֒→ (id×σ)∗Fµ−dℓC

qnj−1
(d, 0)

for all j and µ. By iteration we deduce that κj induces a homomorphism

Fµi+(R+j)dℓC
qnj

−֒→ (id×σj)∗Fµi+RdℓC
qn0

(jd, 0).

By Lemma 7.21 the target is contained in (id×σj)∗F (i−1)(jd, 0). Thus by Lemma 7.5 it

follows that F
µi+(R+j)dℓC
qnj ⊂ F̃ (i−1). This in turn implies that

Gµi+(R+j)dℓC
qnj

(7.9)
⊂ pr1∗

(
Fµi+(R+j)dℓC

qnj
(0, qnj)

)
⊂ pr1∗

(
F̃ (i−1)(0, qnj)

)
,

as desired. q.e.d.

We will use Lemmas 7.22 and 7.24 to estimate deg(Gn′) from below and deg(Gqnj
) from

above. For this recall from Lemmas 7.4 (a) and 7.5 that F (i) and F̃ (i) are locally free of
constant and equal rank. Abbreviate

ri := rank(F (i)) = rank
(
F̃ (i)

)
,

di := deg(F (i)
ηC
),

d̃i := deg
(
F̃ (i)

ηC

)
,

and note that Lemma 7.4 (b) implies that

0 6 di 6 d̃i 6 dX .(7.25)

Let s′ be the smallest integer 6 s such that rs′ = r. Then for every s′ 6 i 6 s we have
F (i) | ηC×X = F | ηC×X by assumption 7.1 (f). Combined with the fact that F (i) = F (i)+

and Lemma 7.6 this implies that F (i) = F and hence

F (i) = F̃ (i) = F for all s′ 6 i 6 s, and(7.26)

ri = ri−1 = r and di = di−1 = d̃i = d̃i−1 = dX for all s′ < i 6 s.(7.27)

Lemma 7.28 For all n′ > qn0 and all 0 6 i 6 s we have:

(a) Di(n
′) := rank

(
pr1∗

(
F (i)(0, n′)

))
= di + (n′ℓX+1−gX)eXri.

(b) D̃i(n
′) := rank

(
pr1∗

(
F̃ (i)(0, n′)

))
= d̃i + (n′ℓX+1−gX)eXri.

Proof. Observe that

µmin(F (i)
ηC
(n′))

(3.20)
= µmin(F (i)

ηC
) + n′ℓX

7.3 (b)

> 0 + n′ℓX > qn0ℓX
(7.19)
> 2gX − 1− µX

7.2
> 2gX − 2.
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By (3.11) this implies that h1(ηC×X,F
(i)
ηC (n

′)) = 0. With Riemann-Roch we deduce that

rank
(
pr1∗

(
F (i)(0, n′)

))
= h0(ηC×X,F (i)

ηC
(n′))

(3.1)
= deg(F (i)

ηC
(n′)) + (1− gX) · eX · rank(F

(i)
ηC
(n′))

(3.21)
= di + (n′ℓX + 1− gX) · eX · ri.

This proves (a), and in the same way one proves (b). q.e.d.

Lemma 7.29 For all n′ as in Lemma 7.22 and all j > 0 we have:

(a) deg(Gn′) >
∑s

i=1

(
Di(n

′)−Di−1(n
′)
)
· eC · µi.

(b) deg(Gqnj
) 6

∑s
i=1

(
D̃i(qnj)− D̃i−1(qnj)

)
· eC ·

(
µi + (R+j)dℓC

)
.

Proof. Recall from Section 3 that the multiplicity of each slope in the total degree is eC
times the rank of the associated subquotient of the Harder-Narasimhan filtration.

Lemma 7.22 implies that rank(Gµi

n′ ) > Di(n
′) for every 1 6 i 6 s. Thus the Di(n

′) · eC
largest slopes of Gn′—counted with multiplicities—are > µi. At the same time Di−1(n

′) ·eC
of these are already > µi−1. Thus by bounding (Di(n

′)−Di−1(n
′)) · eC slopes from below

by µi for all 1 6 i 6 s and summing up over all i we obtain (a).

Similarly, Lemma 7.24 implies that rank(G
µi+(R+j)dℓC
qnj ) 6 D̃i−1(qnj) for every 1 6 i 6

s. Thus the (rank(Gqnj
) − D̃i−1(qnj)) · eC smallest slopes of Gqnj

with multiplicities are

< µi + (R+j)dℓC . At the same time (rank(Gqnj
) − D̃i(qnj)) · eC of these are already

< µi+1 + (R+j)dℓC. Thus by bounding (D̃i(qnj) − D̃i−1(qnj)) · eC slopes from below by
µi + (R+j)dℓC for all 1 6 i 6 s and summing up over all i we obtain (b). q.e.d.

Lemma 7.30 For all n′ as in Lemma 7.22 and all j > 0 we have:

(qnj−n
′) · ℓXeXdC 6

(
dX + (qnjℓX+1−gX)eXr

)
· eC(R+j)dℓC

+
(
(qnj−n

′)ℓXeX(rs′−rs′−1)−RdX
)
· eC · µs′

+ (qnj−n
′) ·

∑s′−1
i=1 ℓXeX(ri−ri−1) · eC · µi.
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Proof. We calculate

(qnj−n
′) · ℓXeXdC

5.3 (i)
= deg(Gqnj

)− deg(Gn′)

7.29

6

s∑

i=1

(
D̃i(qnj)− D̃i−1(qnj)

)
· eC(R+j)dℓC

+

s∑

i=1

(
D̃i(qnj)− D̃i−1(qnj)−Di(n

′) +Di−1(n
′)
)
· eC · µi

7.28
=

(
D̃s(qnj)− D̃0(qnj)

)
· eC(R+j)dℓC

+

s∑

i=1

(
d̃i−di−d̃i−1+di−1

)
· eC · µi.

+

s∑

i=1

(qnj−n
′)ℓXeX(ri−ri−1) · eC · µi.

We look at the three terms on the right hand side in turn. Since F (0) = 0 and F (s) = F ,
the first term is equal to

rank(Gqnj
) · eC(R+j)dℓC

5.3 (h)
= (dX + (qnjℓX+1−gX)eXr) · eC(R+j)dℓC .

For the second term note that µi 6 0 by Lemma 7.10. Also observe that the summands for
s′ < i 6 s vanish by (7.27). Thus using (7.25) and the fact that s′ 6 s 6 rank(Gqn0

) = R
we find that the second term is

6

s′∑

i=1

dX · eC · |µi| 6 s′dXeC · |µs′| 6 −RdXeC · µs′.

In the third term again the summands for s′ < i 6 s vanish by (7.27). Thus by combining
the summand for i = s′ with the second term the lemma follows. q.e.d.

Lemma 7.31 The slope µs′ is bounded below by a constant µ that is independent of F .

Proof. Fix any integer n′ as in Lemma 7.22. Thereafter, fix any j > 0 such that

(qnj−n
′)ℓXeX(rs′−rs′−1)−RdX > 0,

which is possible by (7.23) and because ℓXeX(rs′−rs′−1) > 0 by the choice of s′. Then in
particular qnj−n

′ > 0; hence so is the coefficient of each µi in the last line of Lemma 7.30.
Since µi 6 0 by Lemma 7.10, the inequality in Lemma 7.30 remains true after removing
that line. Solving for µs′ then yields a lower bound which is independent of F , as desired.

q.e.d.

Lemma 7.32 There exist constants n′ > (2gX−1−µX)/ℓX and d1, d2, µ, all independent
of F , such that d1 6 deg(Gn′) 6 d2 and µmin(Gn′) > µ.
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Proof. Take any µ as in Lemma 7.31 and any n′ as in Lemma 7.22, independent of F .
Since F (s′) = F by (7.26), Lemma 7.22 implies that Gn′ ⊂ G

µs′

n′ and hence µmin(Gn′) > µs′

> µ. On the other hand we have µmax(Gn′) 6 µC by Lemma 7.10. Thus with (3.4) we
deduce that

d1 := eC · rank(Gn′) · µ 6 eC · rank(Gn′) · µmin(Gn′)

6 deg(Gn′)

6 eC · rank(Gn′) · µmax(Gn′) 6 eC · rank(Gn′) · µC =: d2.

Here rank(Gn′) and hence d1 and d2 are independent of F by Proposition 5.3 (h). q.e.d.

Proof of Theorem 7.1. Combining Lemma 7.32 with Theorem 5.4 for every integer
d1 6 d 6 d2 shows that there exist at most finitely many possibilities for the isomorphism
class of the coherent sheaf underlying F . For any fixed F , the homomorphism κ lies in the
group Hom(F , (id×σ)∗F(d, 0)), which is a finite dimensional vector space over Fq. Thus
there are at most finitely many possibilities for κ, which finishes the proof of Theorem
7.1. q.e.d.

8 A-motives and κ-sheaves over a field

Let C be an irreducible smooth projective curve over Fq. Fix a closed point∞ ∈ C and set
C◦ := Cr{∞}. Let K be a field together with a ring homomorphism γ : A→ K. We are
interested in the curve C◦

K := C◦× SpecK over K, where the fiber product is taken over
SpecFq. Let θ denote the closed point of C◦

K corresponding to γ. Definition 6.1 introduces
the notion of κ-sheaves on C◦

K .

Definition 8.1 A κ-sheaf G on C◦

K is called of characteristic θ if κ : G →֒ (id×σ)∗G is an
isomorphism outside θ.

Let A := Γ(C◦,OC◦) denote the ring of regular functions on C◦. For any κ-sheaf G on C◦

K ,
the global sections of the dual sheaf G∨ form a finitely generated projective A⊗K-module
M := Γ(C◦

K ,G
∨), and κ corresponds to an injective A⊗K-linear map τ lin : (id⊗σ)∗M →֒

M . Moreover, κ is an isomorphism outside θ if and only if coker(τ lin) is annihilated by a
power of a⊗1−1⊗γ(a) for all a ∈ A. Thus any κ-sheaf of characteristic θ on CK yields an
A-motive of characteristic γ over K by Definition 1.2. Clearly this process can be reversed
and yields:

Proposition 8.2 The above construction induces an anti-equivalence of categories between
the category of κ-sheaves (resp. those of characteristic θ) on C◦

K and the category of A-
motives (resp. those of characteristic γ) over K.
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Throughout the following we call an injective homomorphism of κ-sheaves G →֒ G ′ an
inclusion and denote its cokernel by G ′/G. Two inclusions i1 : G →֒ G1 and i2 : G →֒ G2 for
which there exists an isomorphism f : G1 → G2 such that i2 = f ◦ i1 are called isomorphic.
An inclusion which is an isomorphism everywhere is sometimes—by abuse of notation—
called an equality. We will now study inclusions of κ-sheaves of equal rank from different
angles.

Proposition 8.3 Fix an A-motive M of characteristic γ over K and its associated κ-sheaf
G of characteristic θ on C◦

K. Then there is a natural bijection between isomorphism classes
of

(a) isogenies M ′ →֒ M of A-motives of characteristic γ over K, and

(b) inclusions G →֒ G ′ of κ-sheaves of equal rank and characteristic θ on C◦

K.

The isogeny M ′ →֒ M is separable if and only if the homomorphism G ′/G → (id×σ)∗(G ′/G)
induced by κ is an isomorphism. Moreover, the isomorphism class of M ′ (without the
isogeny) is determined uniquely by the isomorphism class of G ′.

Proof. Consider a homomorphism of A-motives f : M ′ → M corresponding to a homo-
morphism of κ-sheaves ϕ : G → G ′. Then f is an isogeny if and only if it becomes an
isomorphism over Quot(A⊗K), if and only if ϕ is generically an isomorphism, if and only
if ϕ is injective and rank(G) = rank(G ′). The desired bijection is thus a consequence of
Proposition 8.2.

It remains to determine when f is separable. By definition it is so if and only if τ lin

induces an isomorphism (id×σ)∗ coker(f) → coker(f). By usual diagram arguments one
checks that this is equivalent to the exactness of the sequence

0 −→ (id⊗σ)∗M
′

„

τ lin
−f

«

−−−−−→M ′ ⊕ (id⊗σ)∗M
f+τ lin
−−−−−→ M −→ 0.

Dualizing, this is equivalent to the exactness of the sequence

0←− (id×σ)∗G ′ κ−ϕ←−−−− G ′ ⊕ (id×σ)∗G
(ϕκ )←−−−− G ←− 0,

which in turn is equivalent to the isomorphy of coker(ϕ)→ (id×σ)∗ coker(ϕ), as desired.
q.e.d.

Next we look more closely at the points where an inclusion of κ-sheaves of equal rank is not
an equality. Here we drop the assumption on the characteristic. To any coherent torsion
sheaf T on C◦

K we associate the effective divisor

(8.4) Div(T ) :=
∑

P∈C◦

K

length(TP ) · P.
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Clearly it is additive in short exact sequences. For any κ-sheaf G on C◦

K we abbreviate

(8.5) Char(G) := Div
(
coker(κ|G)

)
.

By definition G is of characteristic θ if and only if Char(G) is a multiple of θ. Thus Char(G)
can be viewed as a generalized characteristic of G.

Lemma 8.6 For any inclusion G →֒ G ′ of κ-sheaves of equal rank on C◦

K we have

Char(G) + (id×σ)∗Div(G ′/G) = Char(G ′) + Div(G ′/G).

Moreover, if K̄ is an algebraic closure of K, there exist integers n, i1, . . . , in > 0, closed
points P1, . . . , Pn ∈ CK̄, and an effective divisor D = (id×σ)∗D on CK̄ such that

Char(G)K̄ =
∑n

ν=1 Pν ,

Char(G ′)K̄ =
∑n

ν=1(id×σ
iν )∗Pν ,

Div(G ′/G)K̄ =
∑n

ν=1

∑iν−1
i=0 (id×σi)∗Pν + D.

Proof. The snake lemma yields a commutative diagram with exact rows and columns

0

��
0

��

0

��

T ′

��
0 // G //

��

(id×σ)∗G //

��

coker(κ|G) //

��

0

0 // G ′ //

��

(id×σ)∗G ′ //

��

coker(κ|G ′) //

��

0

0 // T ′ // G ′/G //

��

(id×σ)∗(G ′/G) //

��

T //

��

0

0 0 0

whose last row and last column consist of coherent torsion sheaves. Thus the additivity of
Div( ) implies that

Char(G ′)− Char(G) = Div(T ′)− Div(T )

= Div(G/G ′)− Div
(
(id×σ)∗(G/G ′)

)
(8.7)

= Div(G/G ′)− (id×σ)∗Div(G/G ′),
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proving the first assertion. We prove the second assertion more generally for any effective
divisors E, E ′, F on CK̄ satisfying

(8.8) E + (id×σ)∗F = E ′ + F.

First, let D be the largest id×σ-invariant effective divisor 6 F . After replacing F by F−D
we may assume that F does not contain a full id×σ-orbit of points of CK̄ . Next suppose
that E is non-zero and take any point P1 occurring in E. Then (8.8) implies that P1 occurs
in E ′ + F . Thus if P1 does not appear in E ′, it appears in F and so (id×σ)∗P1 appears in
E ′ + F by (8.8). We repeat this procedure with (id×σ)∗P1 and (id×σ2)∗P1 and so on in
place of P1, as long as this point does not appear in E ′. Since F does not contain a full
id×σ-orbit, the procedure must stop for some integer i1 > 0 such that (id×σi1)∗P1 occurs
in E ′ and (id×σi)∗P1 occurs in F but not in E ′ for any 0 6 i < i1. We can then replace
E and E ′ and F , respectively, by E −P1 and E ′ − (id×σi1)∗P1 and F −

∑i1−1
i=0 (id×σi)∗P1,

preserving condition (8.8). By induction this reduces us to the case that E = 0. Then
(8.8) implies that deg(E ′) = deg(E) = 0 and hence E ′ = 0, too. Now (id×σ)∗F = F , and
we are done. q.e.d.

Lemma 8.9 Any effective divisor D on C◦

K satisfying D = (id×σ)∗D is the pullback of
an effective divisor on C◦.

Proof. Let I ⊂ A⊗K denote the ideal of D and set I0 := {a ∈ A | a⊗ 1 ∈ I}. We must
show that I = I0 ⊗K. For this let J denote the image of I in the factor ring (A/I0)⊗K.
If J is non-zero, among all non-zero elements u =

∑r
i=1 bi ⊗ xi ∈ J , choose one for which

r is minimal. Then r > 1 and the bi, respectively the xi, are linearly independent over Fq.
The assumption implies that

r∑

i=2

bi ⊗ (xq
i − xix

q−1
1 ) = (id⊗ σ)(u)− u · xq−1

1 ∈ J ;

hence by minimality this element must be zero. As the bi are linearly independent, we
deduce that xq

i − xix
q−1
1 = 0. Since x1 and xi are linearly independent over Fq, this yields

a contradiction. This proves that J = 0, and so I = I0 ⊗K, as desired. q.e.d.

As before we let ηC denote the generic point of C. We abbreviate ηC,K := ηC × SpecK,
which consists of all points of C◦

K that lie over ηC instead of a closed point of C◦. If K
is algebraic over Fq, these are only the generic points of C◦

K . Otherwise it also contains
infinitely many closed points of C◦

K .

Proposition 8.10 Any inclusion of κ-sheaves of equal rank and characteristic θ on C◦

K is
an equality over ηC,K.

Proof. If both G →֒ G ′ in Lemma 8.6 have characteristic θ, we must have Pν = θ and
Char(G) = Char(G ′) = nθ, and so Div(G ′/G) is id×σ-invariant by (8.7). By Lemma 8.9
Div(G ′/G) is therefore the pullback of a divisor on C; hence it has empty intersection with
ηC,K , as desired. q.e.d.
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Proposition 8.11 For any κ-sheaf G on C◦

K, there exists up to isomorphism at most one
inclusion G →֒ G ′ of κ-sheaves of equal rank which is an equality outside ηC,K, such that
G ′ is of characteristic θ.

Proof. For any two such inclusions G1, G2 we can form their sum within G ⊗Quot(OC◦

K
).

Then G →֒ G1 + G2 is another inclusion of κ-sheaves of equal rank which is an equality
outside ηC,K . Moreover, since κ is surjective outside θ for both G1 and G2, the same holds
for G1+G2; hence this sum is again of characteristic θ. Now G1 →֒ G1+G2 is an inclusion of
κ-sheaves of equal rank and characteristic θ; hence by Proposition 8.10 it is an equality over
ηC,K . Since it is also an equality outside ηC,K , it is an equality everywhere. By symmetry
we deduce that G1 = G1 + G2 = G2, as desired. q.e.d.

Definition 8.12 A κ-sheaf G on C◦

K is called generically minimal if every κ-subsheaf of
equal rank coincides with G along ηC,K.

If K is algebraic over Fq, then ηC,K contains only the generic points of CK , and in this case
every κ-sheaf is generically minimal. So the following is relevant only if K has transcen-
dence degree > 1. Also, we have:

Proposition 8.13 If θ lies over a closed point of C, then every κ-sheaf of characteristic θ
on C◦

K is generically minimal.

Proof. Let G ⊂ G ′ be an inclusion of κ-sheaves of equal rank where G ′ has characteristic θ.
Then by assumption Char(G ′) has empty intersection with ηC,K ; hence by Lemma 8.6 the
same follows for Char(G), and so (id×σ)∗Div(G ′/G) and Div(G ′/G) coincide over ηC,K .
Using Lemma 8.9 we deduce that Div(G ′/G) has empty intersection with ηC,K . But this
means that the inclusion G ⊂ G ′ is an equality over ηC,K , as desired. q.e.d.

For the next assertion note that the morphism σ×id : CK → CK is bijective on points.

Lemma 8.14 Assume that K is finitely generated of transcendence degree > 1 over Fq.
Then for any closed point P ∈ ηC,K, the degree over K of the field of definition of
(σi×id)−1P goes to ∞ for i→∞.

Proof. Let K ′ denote the field of definition of P , and F the function field of C. Then K ′

is a finite extension of K that contains F . For any integer i > 0 the field of definition of
(σi×id)−1P can be identified with the subfield F p−i

K ′ of an algebraic closure of K ′. As K ′

is finitely generated over Fq and F contains a transcendent element, the degree of F p−i

K ′

over K goes to ∞, as desired. q.e.d.

Proposition 8.15 If K is finitely generated over Fq, any κ-sheaf G on C◦

K possesses a
unique generically minimal κ-subsheaf Ggmin that coincides with G outside ηC,K. If moreover
G has characteristic θ, then it is determined up to unique isomorphism by Ggmin.
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Proof. We first consider an arbitrary κ-subsheaf of equal rank G ′ ⊂ G. Take any point
P ′ ∈ Char(G ′). Then Lemma 8.6 with the roles of G and G ′ interchanged shows that
P := (id×σi)−1(P ′) ∈ Char(G) for some i > 0. We can rewrite this equality in the form
(σi×id)−1(P ) = (σi×σi)−1(P ′) = P ′, because the absolute Frobenius σi×σi is the identity
on points. Note that there are only finitely many possibilities for the point P ∈ Char(G).
Note also that the degree over K of the field of definition of P ′ is 6 degK(Char(G

′)), which
is equal to degK(Char(G)) by Lemma 8.6. Thus if P ′ and hence P lie in ηC,K—which can
happen only if K is not algebraic over Fq—Lemma 8.14 implies that i 6 i0 for a constant
i0 that depends only on Char(G). Using Lemma 8.6 again, we deduce that

Char(G ′) + Div(G/G ′) 6

i0∑

i=0

(id×σi)∗Char(G) +D′

for some divisor D′ with D′ ∩ ηC,K = 0. In particular the degree of Div(G/G ′) ∩ ηC,K is
bounded by a constant depending only on Char(G).

Thus among all κ-subsheaves of equal rank there exists one for which this degree is maximal.
Any such κ-subsheaf is generically minimal. After enlarging it again outside ηC,K where
necessary we obtain the desired Ggmin.

For the uniqueness suppose that G ′ and G ′′ are two generically minimal κ-subsheaves of
G that coincide with G outside ηC,K . Then G ′ ∩ G ′′ is another κ-subsheaf with the same
properties. By the generic minimality of G ′ and G ′′ the inclusions G ′ ⊂ G ′ ∩ G ′′ ⊃ G ′′ are
equalities over ηC,K , and by construction they are also equalities outside ηC,K ; hence they
are equalities everywhere, as desired.

The last statement is a direct consequence of Proposition 8.11. q.e.d.

Proposition 8.16 Assume that K is finitely generated over Fq. Then any inclusion G →֒
G ′ of κ-sheaves of equal rank on C◦

K induces a cartesian diagram

G � � // G ′

Ggmin
� � //

?�

OO

G ′gmin.
?�

OO

If moreover G and G ′ have characteristic θ, the diagram is also cocartesian, and then the
induced κ-equivariant homomorphism G ′gmin/Ggmin → G

′/G is an isomorphism.

Proof. The defining properties of G ′gmin from Proposition 8.15 imply that the κ-subsheaf
G ∩ G ′gmin is generically minimal and coincides with G outside ηC,K ; hence it is equal to
Ggmin, proving the first assertion. Since the vertical inclusions are equalities outside ηC,K ,
the diagram is automatically cocartesian there. On the other hand the generic minimality
of G ′gmin implies that the inclusion Ggmin →֒ G

′

gmin is an equality over ηC,K . If G and G ′ have
characteristic θ, the inclusion G →֒ G ′ is also an equality over ηC,K by Proposition 8.10.
Thus in that case, the diagram is cocartesian over ηC,K as well, and hence everywhere. The
last statement follows from the fact that the diagram is cartesian and cocartesian. q.e.d.
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Definition 8.17 A κ-sheaf G on C◦

K is called simple if it is non-zero and every non-zero
κ-subsheaf has equal rank with G. A κ-sheaf is called semisimple if it possesses a κ-subsheaf
of equal rank that is a direct sum of simple κ-sheaves.

One easily shows that both properties are invariant under inclusions of κ-sheaves of equal
rank.

Proposition 8.18 An A-motive is simple, resp. semisimple, if and only if its associated
κ-sheaf is simple, resp. semisimple.

Proof. Let G be the κ-sheaf associated to an A-motive M . Assume first that G is simple.
By the anti-equivalence from Proposition 8.2, any non-zero injective homomorphism of A-
motives M ′ →֒M corresponds to a non-zero homomorphism of κ-sheaves G → G ′ which is
generically surjective. The kernel of the latter is a κ-subsheaf of G which is not generically
equal to G. By assumption it is therefore zero; hence G → G ′ is injective and thus generically
an isomorphism. It follows that the inclusion M ′ →֒M has torsion cokernel and is therefore
an isogeny. Thus M is simple, as desired.

Conversely assume that M is simple and consider a non-zero κ-subsheaf G ′ ⊂ G. Let M
be of characteristic γ, so that G is of characteristic θ. As no such assumption is given
for G ′, we consider the largest coherent subsheaf G+ ⊂ G containing G ′ whose quotient by
G ′ is torsion. By construction it is generically equal to G ′, and the quotient G ′′ := G/G+

is a torsion free coherent, hence locally free, sheaf on C◦

K with an induced homomorphism
κ : G ′′ → (id×σ)∗G ′′. The cokernel coker(κ|G ′′) is a quotient of coker(κ|G) and therefore
supported at θ; hence G ′′ is a κ-sheaf of characteristic θ. Let M ′′ be the corresponding A-
motive of characteristic γ over K. Then the surjection G ։ G ′′ corresponds to an injective
homomorphism of A-motives M ′′ →֒ M . But since G ′ and hence G+ is non-zero, the rank
of G ′′ and M ′′ is strictly smaller than that of G and M , so that M ′′ →֒ M is not an isogeny.
By assumption we therefore have M ′′ = 0 and hence G+ = G. Thus G ′ is generically equal
to G, proving that G is simple.

This proves the equivalence for the property ‘simple’. The equivalence for the property
‘semisimple’ follows in the same fashion. q.e.d.

In the remainder of this section we discuss how to extend a κ-sheaf on C◦

K to CK :=
C× SpecK and how to modify such an extension. To construct an extension at all we must
allow poles at∞K :=∞× SpecK, i.e., use κ-sheaves of some pole order with LC = OC(∞).
By Definition 6.1 a κ-sheaf of pole order 6 d on CK is a locally free coherent sheaf G on
CK together with an injective homomorphism κ : G →֒ (id×σ)∗G(d∞K). Clearly any such
G restricts to a κ-sheaf on C◦

K .

Conversely, for any κ-sheaf G on C◦

K one can choose any locally free coherent sheaf G on CK

extending G. Then for every sufficiently large integer d the homomorphism κ on G extends
to a homomorphism κ : G →֒ (id×σ)∗G(d∞K), turning G into a κ-sheaf of pole order 6 d
on C×ηX . The data in such an extension plays a role similar to that of a polarization of
an abelian variety.
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We call G simple, resp. semisimple, if and only if its restriction to C◦

K has that property.
Recall that µmin(G) and µmax(G) denote the smallest resp. largest slopes in the Harder-
Narasimhan filtration of G. Let ℓC denote the degree over Fq of the closed point ∞ ∈ C,
so that O(d∞K) has slope dℓC .

Proposition 8.19 For any simple κ-sheaf G of rank r and of pole order 6 d on CK, the
difference of any two successive slopes in the Harder-Narasimhan filtration of G is 6 dℓC.
Consequently

µmin(G) > µmax(G)− (r − 1)dℓC.

Proof. For any rational number µ let Gµ denote the subsheaf of slopes > µ in the Harder-
Narasimhan filtration of G. Then (id×σ)∗Gµ−dℓC (d∞K) is the subsheaf of slopes > µ in the
Harder-Narasimhan filtration of (id×σ)∗G(d∞K) by (3.20). Thus the functoriality (3.13)
of the Harder-Narasimhan filtration implies that κ induces a homomorphism

Gµ →֒ (id×σ)∗Gµ−dℓC (d∞K).

Suppose now that µ is a slope of G such that G has no slopes in the interval [µ − dℓC , µ).
Then Gµ is equal to Gµ−dℓC and hence a non-zero κ-subsheaf of G. As G is simple, it is
therefore generically equal to G. As a step in the Harder-Narasimhan filtration it is also
saturated; hence it is equal to G; and so µ is the smallest slope of G. This proves the first
assertion. The second assertion follows directly from the first and the fact that the number
of distinct slopes is 6 r. q.e.d.

Construction 8.20 For 1 6 i 6 s let Gi be a simple κ-sheaf of pole order 6 d on CK . Let
Gi denote its restriction to C◦

K and let
⊕s

i=1 Gi →֒ G be an inclusion of κ-sheaves of equal
rank on C◦

K . Thus G is semisimple. For any tuple of integers n = (n1, . . . , ns) we let G(n)
denote the locally free coherent sheaf on CK which coincides with G over C◦

K and with⊕s
i=1 Gi(ni∞K) along ∞K . Since twisting by (ni∞K) and pullback by id×σ commute,

each Gi(ni∞K) and hence G(n) is again a κ-sheaf of pole order 6 d on CK .

Proposition 8.21 In Construction 8.20 one can choose the tuple n such that

µmax
(
G(n)

)
6 0 and µmin

(
G(n)

)
> −rdℓC ,

where r denotes the rank of G.

Proof. We use an auxiliary filtration. For every 0 6 j 6 s define G(n)6j as the largest
coherent subsheaf of G(n) containing

⊕j
i=1 Gi(ni∞K) whose quotient by

⊕j
i=1 Gi(ni∞K)

is torsion. This defines an increasing filtration by κ-subsheaves of pole order 6 d satisfying
G(n)60 = 0 and G(n)6s = G(n). For every 1 6 j 6 s the subquotient

G(n)[j] := G(n)6j/G(n)6j−1
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is torsion free and hence again a κ-sheaf of pole order 6 d on CK . Moreover, the construc-
tion yields a natural inclusion Gj(nj∞K) →֒ G(n)[j], which is an equality along ∞K . In
particular it is generically an equality; hence G(n)[j] is again simple.

Abbreviate G [j] := G((0, . . . , 0))[j]. By what we have just seen we have a natural inclusion
Gj →֒ G[j] which is an equality along ∞K . Thus for arbitrary n we have inclusions

G(n)[j] ←֓ Gj(nj∞K) →֒ G[j](nj∞K)

that are equalities along ∞K . But the sheaves G(n)[j] and G [j](nj∞K) coincide already
over C◦

K , because the twist is irrelevant there. Together we obtain a natural isomorphism

G(n)[j] ∼= G[j](nj∞K).

This isomorphism together with (3.20) implies that

µmax
(
G(n)[j]

)
= µmax

(
G[j](nj∞K)

)
= µmax

(
G[j]

)
+ njℓC .

Thus we can choose n such that for every j we have

−ℓC 6 µmax
(
G(n)[j]

)
6 0.

As G(n)[j] is a simple κ-sheaf of pole order 6 d and of rank 6 r, Proposition 8.19 implies
that

µmin
(
G(n)[j]

)
> −ℓC − (r − 1)dℓC > −rdℓC .

Finally, since G(n) is a successive extension of all G(n)[j], the same inequalities follow for
the slopes of G(n) using induction and the formulas (3.18) and (3.19). q.e.d.

Remark 8.22 From the point of view that an extension of a κ-sheaf from C◦

K to CK

constitutes an analogue of a polarization of an abelian variety, the above facts can be
interpreted as follows. First, every κ-sheaf on C◦

K possesses a ‘polarization’ of pole order
6 d for some integer d > 0. Second, Construction 8.20 is based on the fact that the property
of having a ‘polarization’ of pole order 6 d is invariant under isogenies. Next, a second
invariant of a ‘polarization’ besides the pole order is given by the slopes in the Harder-
Narasimhan filtration of G. Proposition 8.19 states that these lie in an interval of bounded
length if G is simple. Based on this, Proposition 8.21 shows that for semisimple κ-sheaves,
the property of possessing a ‘polarization’ of pole order 6 d and slopes in a certain bounded
range is also invariant under isogenies. The appearance of a semisimplicity assumption is
not so strange, considering that abelian varieties are semisimple, but semiabelian varieties,
which do not possess a polarization in the same sense as abelian varieties do, are in general
not semisimple.

We now use some of the above facts to prove the isogeny conjecture over finite fields. Note
that this result concerns all isogenies, not only separable ones.
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Theorem 8.23 Let M be a semisimple A-motive over a finite field K. Then there exist
only finitely many isomorphism classes of A-motives M ′ over K which are isogenous to M .
In particular Theorem 1.1 is true when K is finite.

Proof. Let G be the κ-sheaf on C◦

K associated to M . By Proposition 8.3 it suffices to show
that there are only finitely many isomorphism classes of κ-sheaves G ′ on C◦

K possessing an
inclusion of equal rank G →֒ G ′.

Proposition 8.18 asserts that G is again semisimple. Thus we can choose finitely many
simple κ-sheaves Gi on C◦

K and an inclusion of equal rank
⊕s

i=1 Gi →֒ G. We can also
choose extensions Gi of Gi to κ-sheaves of some pole order 6 d on CK . Here d depends on
the Gi but will remain fixed. Let r denote the rank of G.

For any inclusion of equal rank G →֒ G ′, we apply Construction 8.20 to the composite
inclusion

⊕s
i=1 Gi →֒ G

′, yielding extensions G ′(n) of G ′ to κ-sheaves of pole order 6 d
on CK . Proposition 8.21 shows that n can be chosen such that

µmax
(
G ′(n)

)
6 0 and µmin

(
G ′(n)

)
> −rdℓC .

The irreducible components of CK are irreducible smooth projective curves over K. Since
G ′(n) has all slopes in a bounded range, the same holds for its degree on every irreducible
component of CK ; hence there are only finitely many possibilities for this degree. As K is
finite, applying Theorem 5.1 over every irreducible component shows that there are only
finitely many possibilities for the isomorphism class of the coherent sheaf G ′(n). Moreover
the associated κ lies in the group Hom

(
G ′(n), (id×σ)∗G ′(n)(d∞K)

)
, which is a finite dimen-

sional vector space over K. As K is finite, there are at most finitely many possibilities for
it. Forgetting the extension to CK it follows that there are only finitely many possibilities
for the isomorphism class of the κ-sheaf G ′, as desired. q.e.d.

9 Finiteness for A-motives

In this section we prove Theorem 1.1 in the case that K has transcendence degree 1 over Fq.
We keep the notations of the preceding sections. In particular, we let X be the irreducible
smooth projective curve over Fq with function field K and generic point ηX = SpecK, and
let ηC denote the generic point of C. We are interested in the relations between κ-sheaves
on each of the base schemes in the diagram (6.3). In Section 8 we have dealt with the
problem of extending κ-sheaves from C◦×ηX to C×ηX . Here we study extensions in the
direction of X .

Proposition 9.1 (a) Any κ-sheaf G on ηC×ηX possesses a unique extension to ηC×X
that is contained in every other extension, called the minimal extension Gmin of G.

(b) The minimal extension is functorial in G. In particular, for any finite collection of
κ-sheaves Gi on ηC×ηX we have (

⊕
i Gi)min =

⊕
i Gi,min.
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Proof. (Compare the maximal extension in Gardeyn [4, Prop. 2.13]) Let j denote the
embedding ηC×ηX →֒ ηC×X . Since any torsion free coherent sheaf on ηC×X is locally free,
the extensions of G to ηC×X can be identified with the κ-invariant coherent subsheaves
of j∗G.

For (a) we first prove that some extension exists. For this choose any coherent subsheaf
F ⊂ j∗G with j∗F = G. Then the homomorphism κ on G induces a homomorphism
F →֒ ((id×σ)∗F)(D) for some effective divisor D ⊂ ηC×X that is disjoint from ηC×ηX .
The last property means that D ⊂ ηC×E for some effective divisor E ⊂ X . Thus after
enlarging D we may assume that D = ηC×E. Then (id×σ)∗D = qD, and since q > 2, we
deduce that κ induces a homomorphism

F(D) −֒→ ((id×σ)∗F)(2D) ⊂ ((id×σ)∗F)(qD) = (id×σ)∗(F(D)).

Therefore F(D) is a κ-sheaf on ηC×X extending G.

Next, Lemma 7.3 (c) asserts that deg(F) > 0 for every κ-sheaf F on ηC×X . As the degree
is always an integer, it follows that among all extensions of G to ηC×X , there exists an
extension F0 for which deg(F0) is minimal. Then for every extension F , the intersection
F ∩F0 is an extension that satisfies deg(F ∩F0) 6 deg(F0). The minimality then implies
that deg(F ∩ F0) = deg(F0). Being an inclusion of locally free sheaves of equal rank and
degree on a projective curve, the inclusion F ∩F0 ⊂ F0 is therefore an equality, and hence
F0 ⊂ F . Evidently, an extension contained in every other extension is unique, proving (a).

For (b) let ϕ : G → G ′ be any homomorphism of κ-sheaves on ηC×ηX . Then the pullback
of G ′min ⊂ j∗G

′ under j∗ϕ : j∗G → j∗G
′ is another extension of G. By the minimality of Gmin

that extension contains Gmin; hence ϕ(Gmin) ⊂ G
′

min, proving the desired functoriality. The
functoriality in turn implies the compatibility with direct sums. q.e.d.

Proposition 9.2 (a) Any κ-sheaf G on C◦×ηX possesses a unique extension to a κ-
sheaf on C◦×X that is contained in every other extension, called the minimal exten-
sion Gmin of G. Its restriction to ηC×X is the minimal extension of the restriction
G| ηC×ηX from Proposition 9.1.

(b) The minimal extension is functorial in G. In particular, for any finite collection of
κ-sheaves Gi on C◦×ηX we have (

⊕
i Gi)min =

⊕
i Gi,min.

The analogous assertions hold for κ-sheaves of pole order 6 d on C×ηX and C×X.

Proof. The argument is the same in both cases. For ease of notation we consider the case
of C◦×ηX . Let G be a κ-sheaf on C◦×ηX . Let H denote the minimal extension of G|ηC×ηX
from Proposition 9.1. Then by Proposition 2.4 (a) there exists a unique locally free coherent
sheaf F on C◦×X that extends both G and H. Since the homomorphisms κ for G and
H coincide over ηC×ηX , by Proposition 2.4 (b) they extend to a unique homomorphism
F → (id×σ)∗F , turning F into a κ-sheaf on C◦×X . For any other κ-sheaf F ′ on C◦×X
that extends G, the minimality of H implies that H ⊂ F ′|ηC×X . Thus the functoriality

42



in Proposition 2.4 (b) implies that F ⊂ F ′. This shows that F possesses the minimality
property in (a), and with this property it is evidently unique. The last assertion in (a)
follows from the construction. The functoriality of the minimal extension in (a) follows in
the same way from that in Propositions 9.1 and Proposition 2.4 (b) q.e.d.

Lemma 9.3 For any inclusion G →֒ G ′ of κ-sheaves of equal rank on C◦×ηX , where G
′

is generically minimal, the induced inclusion Gmin →֒ G
′

min is an equality outside D×X for
some divisor D ⊂ C◦.

Proof. Since G ′ is generically minimal, the inclusion G →֒ G ′ is an equality over
ηC×ηX . By constructibility the induced inclusion Gmin →֒ G

′

min is then an equality outside
(D×X) ∪ (C◦×E) for some divisors D ⊂ C◦ and E ⊂ X . Let F ′′ denote the kernel of
the homomorphism G ′min ։ (G ′min/Gmin)|(C

◦×E). By construction its restriction to C◦×ηX
is G ′; hence it underlies another κ-sheaf on C◦×X extending G ′. By the minimality of G ′min

it must therefore coincide with G ′min. Thus the inclusion Gmin →֒ G
′

min is in fact an equality
outside D×X , as desired. q.e.d.

Now we prepare the setup for the proof of Theorem 1.1. Fix anA-motiveM of characteristic
γ over K and let G be the associated κ-sheaf of characteristic θ on C◦×ηX . Let Ggmin ⊂ G
be the generically minimal κ-subsheaf defined by Proposition 8.15, and let F := (Ggmin)min

be its minimal extension to C◦×X defined by Proposition 9.2. By combining earlier results
we obtain:

Proposition 9.4 In the above situation, any separable isogeny M ′ →֒ M of A-motives of
characteristic γ over K induces an inclusion of κ-sheaves F →֒ F ′ on C◦×X which

(a) is an equality outside D×X for some divisor D ⊂ C◦, such that

(b) the homomorphism F ′/F → (id×σ)∗(F ′/F) induced by κ is an isomorphism over
C◦×ηX .

Moreover, the isomorphism class of M ′ (without the isogeny) is determined uniquely by the
isomorphism class of F ′.

Proof. Combining Propositions 8.3 and 8.16, every separable isogeny M ′ →֒ M of A-
motives of characteristic γ over K gives rise to an inclusion Ggmin →֒ G

′

gmin of κ-sheaves
on C◦×ηX that is an equality over ηC×ηX , such that the homomorphism G ′gmin/Ggmin →
(id×σ)∗(G ′gmin/Ggmin) induced by κ is an isomorphism. Moreover, the isomorphism class
of M ′ (without the isogeny) is determined uniquely by the isomorphism class of G ′gmin by
Proposition 8.15. By Proposition 9.2 the inclusion Ggmin →֒ G

′

gmin extends to an inclusion
of minimal extensions F →֒ F ′ on C◦×X . Then (a) follows from Lemma 9.3. Finally, the
property of G ′gmin/Ggmin stated above is equivalent to (b). q.e.d.
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Lemma 9.5 For any inclusion F →֒ F ′ as in Proposition 9.4 and any point c ∈ C◦ we
have

µmin(F ′

c) > min{µmin(Fc), 0}.

Proof. Recall that ( )c denotes the pullback of a coherent sheaf to the fiber c×X . As
this defines a right exact functor, we have an exact sequence Fc → F

′

c → (F ′/F)c → 0.
Let H′′ denote the quotient of (F ′/F)c by its torsion subsheaf, and define H′ by the short
exact sequence 0 → H′ → F ′

c → H
′′ → 0. Then the homomorphism Fc → F

′

c induces a
homomorphism Fc →H

′ with torsion cokernel.

The condition 9.4 (b) implies that the homomorphism (F ′/F)c → (id×σ)∗(F ′/F)c induced
by κ is an isomorphism at c×ηX . By the definition of H′′, the same follows for the induced
homomorphism H′′ → (id×σ)∗H′′. Since H′′ is locally free, this last homomorphism is
therefore injective, and so Lemma 7.3 (b) implies that µmin(H′′) > 0. Therefore

µmin(F ′

c)
(3.18)

> min
{
µmin(H′), µmin(H′′)

} (3.16)

> min
{
µmin(Fc), 0

}
,

as desired. q.e.d.

Now we assume thatM is semisimple. Then G and hence Ggmin is semisimple by Proposition
8.18. We choose simple κ-sheaves Gi on C◦×ηX and an inclusion of equal rank

(9.6)
⊕s

i=1 Gi →֒ Ggmin.

Let Fi := Gi,min denote the minimal extension of Gi to C◦×X defined by Proposition 9.2
(a). Then Proposition 9.2 (b) yields an inclusion of equal rank

(9.7)
⊕s

i=1Fi →֒ F .

By the generic minimality of Ggmin, Lemma 9.3 implies that (9.7) is an equality outside
E×X for some divisor E ⊂ C◦. We also choose extensions Gi of Gi to κ-sheaves of some
pole order 6 d on C×ηX . Here d depends on the Gi but will remain fixed. We let F i

denote their minimal extensions to C×X from Proposition 9.2, which also extend the Fi.
We can then repeat Construction 8.20 over C×X . Recall that (n, 0) denotes the twist by
pr∗1 L

⊗n
C = pr∗1OC(n∞).

Construction 9.8 Consider any inclusion of κ-sheaves F →֒ F ′ as in Proposition 9.4.
Then the composite inclusion

⊕s
i=1Fi →֒ F

′ is an equality outside (D ∪ E)×X . Thus for
any tuple of integers n = (n1, . . . , ns) we can define a locally free coherent sheaf F ′(n) on
C×X which coincides with F ′ over C◦×X and with

⊕s
i=1F i(ni, 0) along ∞×X . Since

twisting by (ni, 0) and pullback by id×σ commute, each F i(ni, 0) and hence F ′(n) is again
a κ-sheaf of pole order 6 d on C×X .

Lemma 9.9 There exist constants r, dX , µX , µC and a finite set DC such that for any
inclusion of κ-sheaves F →֒ F ′ as in Proposition 9.4, there exists a tuple n such that
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(a) F ′(n) has constant rank r.

(b) deg
(
F ′(n)c

)
= dX for all c ∈ C.

(c) µmin
(
F ′(n)c

)
> µX for all c ∈ C.

(d) deg
(
F ′(n)ηX

)
∈ DC.

(e) µmax
(
F ′(n)ηX

)
6 µC.

(f) Every κ-invariant coherent subsheaf of F ′(n) of rank r coincides with F ′(n) along
ηC×X.

Proof. Condition (a) holds trivially with r := rank(F). Condition (b) holds for c = ηC
with dX := deg(FηC), because F

′(n) coincides with F over ηC×X . By flatness (b) then
follows for all c ∈ C.

For (c) note that for almost all points c ∈ C◦ the homomorphism Fc → (id×σ)∗Fc induced
by κ is an isomorphism at c×ηX . It is then injective, and so Lemma 7.3 (b) implies that
µmin(Fc) > 0. The minimum of 0 and the finitely many remaining values yields a constant
µX 6 0 such that µmin(Fc) > µX for all c ∈ C◦. By Lemma 9.5 the same inequality then
follows for µmin

(
F ′(n)c

)
. On the other hand, Construction 9.8 implies that

F ′(n)∞ =
s⊕

i=1

F i(ni, 0)∞ =
s⊕

i=1

F i,∞ ⊗ pr∗1OC(ni∞)∞ ∼=

s⊕

i=1

F i,∞,

where the last isomorphism is induced by any local generator of OC(ni∞) at∞. Therefore
µmin

(
F ′(n)∞

)
is independent of F ′. Thus after decreasing µX , if necessary, condition (c)

holds for all c ∈ C.

The next two conditions (d) and (e) concern the restriction of F ′(n) to the generic fiber
C×ηX . This restriction is precisely the extension G(n) defined in Construction 8.20. Thus
by Proposition 8.21 one can choose the tuple n such that

µmax
(
F ′(n)ηX

)
6 0 and µmin

(
F ′(n)ηX

)
> −rdℓC .

Then (3.4) and (a) imply that

−eCr
2dℓC 6 deg

(
F ′(n)ηX

)
6 0.

Thus condition (d) holds with the finite set DC := Z ∩ [−eCr
2dℓC , 0], and condition (e)

holds with µC := 0.

For the last condition (f) consider any κ-invariant coherent subsheaf F ′′ ⊂ F ′(n) of rank r.
Taking its restriction to C◦×X and then the pullback under the inclusion F →֒ F ′ yields
a κ-invariant subsheaf of equal rank F ′′′ of F . Since F|C◦×ηX = Ggmin is generically
minimal, we find that F ′′′| ηC×ηX = F| ηC×ηX . But the construction of F and the last
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sentence in Proposition 9.2 (a) show that F| ηC×X is the minimal extension of F| ηC×ηX .
It follows that F ′′′| ηC×X = F| ηC×X . Condition 9.4 (a) implies that the latter is equal
to F ′(n)| ηC×X . Thus F ′′′ and hence F ′′ coincides with F ′(n) along ηC×X , proving (f).

q.e.d.

Proposition 9.10 Theorem 1.1 is true when K has transcendence degree 1 over Fq.

Proof. For any semisimple A-motive M over K, the above constructions associate to any
separable isogeny M ′ →֒ M a κ-sheaf F ′(n) of pole order 6 d on C×X , which determines
the isomorphism class of M ′ and satisfies the conditions in Lemma 9.9. Here d and the
constants and the finite set DC in Lemma 9.9 are independent of the isogeny. For each
value dC ∈ DC , Theorem 7.1 asserts that there are only finitely many possibilities for
the isomorphism class of F ′(n). Thus there are only finitely many possibilities for the
isomorphism class of M ′, as desired. q.e.d.
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