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Abstract

Let K be a finitely generated field of transcendence degree 1 over a finite

field. Let M be a t-motive over K of characteristic p0, which is semisimple

up to isogeny. The isogeny conjecture for M says that there are only finitely

many isomorphism classes of t-motives M
′ over K, for which there exists a

separable isogeny M
′ → M of degree not divisible by p0. For the t-motive

associated to a Drinfeld module this was proved by Taguchi. In this article

we prove it for the t-motive associated to any direct sum of Drinfeld modules

of characteristic p0 6= 0.

1 Introduction

Let K be a finitely generated field of transcendence degree 1 over a finite field.
The isogeny conjecture for t-motives is the following statement, formulated more
generally for A-motives (compare Section 4).

Conjecture 1.1 (Isogeny conjecture) For any A-motive M over K of charac-

teristic p0, which is semisimple up to isogeny, there are only finitely many isomor-

phism classes of A-motives M ′ over K, for which there exists a separable isogeny

M ′ →M of degree not divisible by p0.

For the A-motive associated to a Drinfeld module this was proved by Taguchi.
In this article we prove the following generalization in special characteristic.

Theorem 1.2 Conjecture 1.1 is true for any A-motive over K which is a direct

sum of A-motives associated to Drinfeld A-modules of characteristic p0 6= 0.

The proof is based on the following results for Drinfeld modules φ over K. First,
Taguchi has proved the isogeny conjecture for φ and the semisimplicity and the Tate
conjecture for the Galois representation on the rational Tate module Vp(φ) for all
p 6= p0 (the latter was also proved by Tamagawa). Second, in an earlier paper [14] we
have shown that the image of the group ring Ap[Gal(Ksep/K)] in its action on Tp(φ)
is maximal for almost all p, provided that p0 6= 0 (cf. Theorem 2.8). In the case
EndK(φ) = A this means essentially that the residual representation modulo p is
absolutely irreducible for almost all p. As a third ingredient we show (Theorem 3.1)
that the p-adic Tate modules of non-isogenous Drinfeld modules over K have no
isomorphic non-trivial finite Ap[GK ]-subquotients for almost all p.

These results are translated to the corresponding A-motives. From then on, the
proof follows Faltings’s method [6] for abelian varieties over number fields, which
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is based on a classification of isogenies by Galois invariant sublattices of the Tate
modules.

The assumption p0 6= 0 is imposed by the fact that the result of [14] was proved
only under this restriction. An analogous result in the case p0 = 0, which we believe
to be true, would imply Theorem 1.2 in general, because all other ingredients and
arguments are valid without restriction on the characteristic.

By contrast, a proof of the isogeny conjecture for general A-motives will require
a different approach. Our proof for the direct sum of A-motives corresponding to
Drinfeld modules relies on the isogeny conjecture for the direct summands as an
essential ingredient. Furthermore, it relies on special results [11], [12], [13], [14] for
the Galois representations associated to Drinfeld modules, which cannot be obtained
for A-motives with the same methods.

The material in this article and in [14] was part of the doctoral thesis of the
second author [24].

2 Drinfeld modules and Galois representations

Throughout this article we use the following notation.
Let p be a prime number and q a power of p. Let C and X be two smooth,

irreducible, projective curves over the finite field Fq with q elements. By F and K
we denote the respective function fields. We fix a closed point∞ on C and let A be
the ring of functions in F which are regular outside∞. We also fix a homomorphism
ι : A→ K and let p0 denote its kernel.

Let K{τ} be the twisted (noncommutative) polynomial ring in one variable,
which satisfies the relation τx = xqτ for all x ∈ K. Identifying τ with the endomor-
phism x 7→ xq, the ring K{τ} is isomorphic to the ring of Fq-linear endomorphisms
of the additive group scheme Ga,K . Let φ : A → K{τ}, a 7→ φa be a Drinfeld
A-module of rank r over K. We assume that its constant coefficient is given by ι;
then p0 is called the characteristic of φ. For the general theory of Drinfeld modules
see Drinfeld [5] or Deligne-Husemöller [4].

The following theorem is due to Taguchi and appeared in [16] Theorem 0.2 for
the case of special characteristic and in [20] for the case of generic characteristic. By
the anti-equivalence 4.10 below it is equivalent to Conjecture 1.1 for the A-motive
associated to φ:

Theorem 2.1 (Isogeny conjecture for Drinfeld modules) There are only fi-

nitely many isomorphism classes of Drinfeld A-modules φ′ over K, for which there

exists a separable isogeny φ→ φ′ over K of degree not divisible by p0.

The isogeny conjecture is intimately related to Galois representations. Let K
be an algebraic closure of K and Ksep the separable closure of K in K. By GK :=
Gal(Ksep/K) we denote the absolute Galois group of K. For all nonzero ideals a

in A, we let
φ[a] :=

{
x ∈ K

∣∣ ∀a ∈ a : φa(x) = 0
}

denote the module of a-torsion of φ. If p0 - a, its points are defined over Ksep and
form a free A/a-module of rank r. For any prime p of A, we let Ap ⊂ Fp denote the
completions of A ⊂ F at p. For p 6= p0 the p-adic Tate module Tp(φ) := lim

←−
φ[pn]

of φ is a free Ap-module of rank r, and the rational p-adic Tate module Vp(φ) :=
Tp(φ)⊗Ap

Fp is an Fp-vector space of dimension r.
On all these modules there is a natural Galois action. In particular, for all p 6= p0

we have a continuous representation

ρp : GK −→ AutAp

(
Tp(φ)

)
∼= GLr(Ap).
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They form a compatible system of Galois representations in the following sense; see
Goss [7] 4.12.12 (2). Let U be an open dense subscheme of X over which φ has good
reduction.

Proposition 2.2 For all closed points x ∈ U , and all primes p 6= p0 of A not

below x, the representation ρp is unramified at x, and the characteristic polynomial

of ρp(Frobx) has coefficients in A and is independent of p.

Now we turn to representation theoretic properties. The following result can be
deduced from Theorem 2.1, as Taguchi does it in special characteristic in [16] The-
orem 0.1, but in generic characteristic he proved it before that in [17] Theorem 0.1:

Theorem 2.3 (Semisimplicity) For all primes p 6= p0 of A, the Fp[GK ]-module

Vp(φ) is semisimple.

Next a homomorphism φ→ ψ of Drinfeld A-modules over K is an element of

HomK(φ, ψ) :=
{
u ∈ K{τ}

∣∣ ∀a ∈ A : ψa ◦ u = u ◦ φa
}
.

By construction every such homomorphism inducesGK-equivariant homomorphisms
φ[a]→ ψ[a], Tp(φ)→ Tp(ψ), and Vp(φ)→ Vp(ψ). The following theorem was proved
independently by Taguchi [18] and Tamagawa [21]; compare Remark 4.12 below.

Theorem 2.4 (Tate conjecture for homomorphisms) For all primes p 6= p0

of A, the natural homomorphism

HomK(φ, ψ)⊗A Ap −→ HomAp[GK ]

(
Tp(φ), Tp(ψ)

)

is an isomorphism.

In particular, for ψ := φ the Galois representation commutes with the natural
action of the endomorphism ring E := EndK(φ), and Theorem 2.4 becomes:

Theorem 2.5 (Tate conjecture for endomorphisms) For all primes p 6= p0

of A, the natural algebra homomorphism

Ep := E ⊗A Ap −→ EndAp[GK ]

(
Tp(φ)

)

is an isomorphism.

Moreover, in [14] Proposition 2.5 we deduced the following result from Taguchi’s
Theorem 2.1:

Theorem 2.6 For almost all primes p of A, every Ap[GK ]-submodule of Tp(φ) has

the form α(Tp(φ)) for some α ∈ Ep.

For yet finer information we decompose everything under Ep, as in [14] §4.1.
Let Z denote the center of E. Then E is an order in a finite dimensional central
division algebra over the quotient field of Z. Write c := [Z/A] and e2 = [E/Z].
Then the rank of φ is r = cde for an integer d > 0. Let ZP denote the completion
of Z at a prime P. Standard properties of division algebras over global fields imply
that for almost all primes p of A, we have

Zp := Z ⊗A Ap =
⊕

P|p

ZP

and
Ep
∼= Mate×e(Zp) =

⊕

P|p

Mate×e(ZP).
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For such P|p let Ep act on Z⊕eP in the obvious way through its direct summand

Mate×e(ZP). Then WP := HomEp
(Z⊕eP , Tp(φ)) is a free ZP-module of rank d.

For all p as above the above decomposition and the well-known structure theory of
modules over matrix rings yield a natural decomposition

(2.7) Tp(φ) ∼=
⊕

P|p

WP ⊗ZP
Z⊕eP .

Letting GK act trivially on Z⊕eP , by functoriality we obtain a natural continuous
ZP-linear representation of GK on WP. By construction the above isomorphism is
Ep[GK ]-equivariant. Let Bp denote the image of the natural homomorphism

Ap[GK ] −→ EndAp

(
Tp(φ)

)
.

By Theorem 2.5, its commutant is Ep for all p 6= p0. In [14] Theorem B we proved:

Theorem 2.8 Assume that p0 6= 0. Then for almost all primes p of A the rings Ep

and Bp are commutants of each other in EndAp

(
Tp(φ)

)
. More precisely, for almost

all p we have Ep
∼= Mate×e(Zp) and Bp

∼= Matd×d(Zp).

As explained in [14], Theorem 2.8 is expected to hold in the case p0 = 0 as well.

3 Comparison of two Drinfeld modules

In this section we compare the Galois representations for any two Drinfeld A-
modules φ1, φ2 over K of characteristic p0. There are two possible cases.

Suppose first that there exists an isogeny φ1 → φ2. Then for all p 6= p0 the
isogeny induces an Ap[GK ]-equivariant injection Tp(φ1) ↪→ Tp(φ2). In particular,

it induces an isomorphism of the rational Galois representations Vp(φ1)
∼
→ Vp(φ2).

Moreover, any simple finite Ap[GK ]-subquotient of Tp(φ1) is isomorphic to a sub-
quotient of Tp(φ2). Since there also exists an isogeny in the other direction φ2 → φ1,
the same holds vice versa.

The aim of this section is to prove that the opposite happens when φ1 and φ2

are non-isogenous. Then the Tate conjecture, Theorem 2.4, implies that

HomAp[GK ]

(
Tp(φ1), Tp(φ2)

)
= 0

for all p 6= p0. In view of the semisimplicity from Theorem 2.3, this implies that
Vp(φ1) and Vp(φ2) possess no isomorphic non-trivial Fp[GK ]-subquotients. By con-
trast, isomorphic simple finite Ap[GK ]-subquotients cannot be ruled out completely,
because GK acts on them through finite quotients, and so accidental isomorphisms
between them can exist without any special meaning. But we prove that this hap-
pens at most finitely often:

Theorem 3.1 If φ1 and φ2 are non-isogenous, the set of primes p of A for which

Tp(φ1) and Tp(φ2) have isomorphic non-trivial finite Ap[GK ]-subquotients is finite.

The rest of this section is devoted to proving Theorem 3.1. Let us first sketch the
argument in the case EndK(φ1) = EndK(φ2) = A. Theorem 2.6 implies that in this
case φ1[p] and φ2[p] are irreducible finite Ap[GK ]-modules for almost all p. Assume
that they are isomorphic for infinitely many p. Then for these p, the characteristic
polynomials on Tp(φ1) and Tp(φ2) of every sufficiently good Frobenius element
Frobx ∈ GK are congruent to each other modulo p. As the representations form a
compatible system by Proposition 2.2, it follows that the characteristic polynomials
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are in fact equal. We apply this knowledge to Vp(φ1) and Vp(φ2) for any fixed
p 6= p0. Since the Frobenius elements are dense in GK , we deduce that these two
Fp[GK ]-modules have the same character. As they are also absolutely irreducible
by Theorems 2.3 and 2.5, they are therefore isomorphic. Finally, by Theorem 2.4
this implies that φ1 and φ2 are isogenous, as desired.

In the general case we first establish the necessary machinery for each of the
Drinfeld modules φi separately. Set Ei := EndK(φi), let Zi be its center, and write
e2i = [Ei/Zi]. Let ψi denote the tautological extension of φ to a Drinfeld Zi-module.
Then for almost all primes p of A, the decomposition (2.7) yields an isomorphism

(3.2) Tp(φi) =
⊕

Pi|p

TPi
(ψi) ∼=

⊕

Pi|p

(WPi
)⊕ei ,

where Pi|p runs through primes of Zi. By Proposition 2.2 the representation of
GK on TPi

(ψi) is unramified at all closed points x ∈ U not above Pi, and the
characteristic polynomial

fi,x(t) := detZi,Pi

(
t · Id− Frobx

∣∣TPi
(ψi)

)

has coefficients in Zi and is independent of Pi. The corresponding characteristic
polynomial over Ap is

(3.3) detAp

(
t · Id− Frobx

∣∣TPi
(ψi)

)
= NmZi,Pi

/Ap

(
fi,x(t)

)
.

This uses the norm for the local extension Zi,Pi
/Ap, but the fact that fi,x has

coefficients in the global ring Zi can be exploited as follows.

Fix a finite normal field extension F̃ of F into which Zi can be embedded, and
let Ã be the normalization of A in F̃ . For any primes Pi of Zi and p̃ of Ã above
the same prime p of A, we observe that

Σi,Pi,p̃ :=
{
σ ∈ HomA(Zi, Ã)

∣∣ Pi = σ−1(p̃)
}

∼= HomAp
(Zi,Pi

, Ãp̃).

Let mi denote the inseparability degree of Zi over A. This is also the inseparability
degree of Zi,Pi

over Ap. Thus the local norm can be calculated within Ãp̃ as

(3.4) NmZi,Pi
/Ap

(
fi,x(t)

)
=

∏

σ∈Σi,Pi,p̃

σ(fi,x(t))
mi .

Note that the right hand side has coefficients in Ã and depends only on i, x, and
the subset Σi,Pi,p̃ ⊂ HomA(Zi, Ã).

On the other hand let kp denote the residue field at p, and consider the quotient
WPi

:= WPi
/PiWPi

. For almost all Pi|p the ramification degree is mi; hence
the kp[GK ]-module WPi

/pWPi
is a successive extension of mi copies of WPi

. By
combining the results obtained so far we can therefore deduce that

detkp

(
t · Id− Frobx

∣∣WPi

)miei
= detkp

(
t · Id− Frobx

∣∣WPi
/pWPi

)ei

(3.2)
= detkp

(
t · Id− Frobx

∣∣TPi
(ψi)/pTPi

(ψi)
)

= detAp

(
t · Id− Frobx

∣∣TPi
(ψi)

)
mod p(3.5)

(3.3)
= NmZi,Pi

/Ap

(
fi,x(t)

)
mod p

(3.4)
=

∏

σ∈Σi,Pi,p̃

σ(fi,x(t))
mi mod p̃.
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Note also that for almost all Pi|p, Theorem 2.6 and the decomposition (3.2) together
imply that WPi

is an irreducible kp[GK ]-module and that every irreducible Ap[GK ]-
subquotient of Tp(φi) is isomorphic to some WPi

.

Proof of Theorem 3.1. We assume that Tp(φ1) and Tp(φ2) possess isomorphic
non-trivial finite Ap[GK ]-subquotients for infinitely many p. We must then show
that φ1 and φ2 are isogenous.

For the infinitely many p, there must exist primes Pi|p of Zi such that WP1

∼=
WP2

as kp[GK ]-modules. Thus the characteristic polynomials on these representa-
tions must coincide. In view of the calculation (3.5) this implies that for all x ∈ U
not above P1 or P2, and for any choice of p̃, we have

(3.6)
∏

σ∈Σ1,P1 ,p̃

σ(f1,x(t))
m1m2e2 ≡

∏

σ∈Σ2,P2 ,p̃

σ(f2,x(t))
m2m1e1 mod p̃.

By assumption this happens for infinitely many quadruples (p,P1,P2, p̃). Since
there are only finitely many possibilities for the subsets Σi,Pi,p̃ ⊂ HomA(Zi, Ã), it
must happen infinitely often with Σi,Pi,p̃ equal to some fixed Σi. For every x ∈ U ,

the congruence (3.6) then concerns the same elements of Ãmodulo infinitely many p̃;
hence it is an equality

∏

σ∈Σ1

σ(f1,x(t))
m1m2e2 =

∏

σ∈Σ2

σ(f2,x(t))
m2m1e1 .

To translate this equality back to the Tate modules, we can fix any quadruple
(p,P1,P2, p̃) as above with Σi,Pi,p̃ = Σi. Then for every x ∈ U not above P1 or P2,
the equations (3.3) and (3.4) imply that

detAp

(
t · Id− Frobx

∣∣TP1
(ψ1)

)m2e2
= detAp

(
t · Id− Frobx

∣∣TP2
(ψ2)

)m1e1
.

In other words, we have

detFp

(
t · Id− Frobx

∣∣VP1
(ψ1)

⊕m2e2
)

= detFp

(
t · Id− Frobx

∣∣VP2
(ψ2)

⊕m1e1
)
.

Since the Frobenius elements are dense in GK , it follows that the characteristic
polynomials over Fp of any element of GK on VP1

(ψ1)
⊕m2e2 and on VP2

(ψ2)
⊕m1e1

coincide. As these Fp[GK ]-modules are semisimple, by Proposition 3.8 below this
implies that they are actually isomorphic.

Finally, by the decomposition (3.2) this shows that HomFp[GK ]

(
Vp(φ1), Vp(φ2)

)

is non-zero. By Theorem 2.4 this implies that φ1 and φ2 are isogenous, as desired.
This finishes the proof of Theorem 3.1. q.e.d.

For lack of a suitable reference we include proofs of the following facts:

Proposition 3.7 Two finite dimensional representations of a group G over a field

L have the same Jordan-Hölder factors with the same multiplicities if and only if

they do so over an algebraic closure of L.

Proof. By induction on the dimension it suffices to prove that two finite dimensional
representations V and V ′ over L possess a common Jordan-Hölder factor if and only
if they do so over L̄. So assume that V ⊗L L̄ and V ′⊗L L̄ possess a common Jordan-
Hölder factor Ū . After replacing V and V ′ by suitable irreducible subquotients, we
may assume that both representations are irreducible. We must then prove that
they are isomorphic.

Let E denote the center of EndL[G](V ) and F the maximal subfield of E that is
separable over L. Then F ⊗L L̄ is a direct sum of copies of L̄, indexed by

Σ := HomL(F, L̄) ∼= HomL(E, L̄),
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and this implies that

V ⊗
L
L̄ ∼= V ⊗

E

(
E⊗

L
L̄

)
∼=

⊕

σ∈Σ

V ⊗
E

(
E⊗
F,σ
L̄

)
.

Since E is totally inseparable over F , each summand here is successive extension of
copies of the semisimple representation V ⊗E,σ L̄. Thus every Jordan-Hölder factor
occurs both as a subrepresentation and as a quotient, and so Ū occurs both as a
subrepresentation and as a quotient of V ⊗L L̄.

The same argument applies to V ′ in place of V . Therefore there exist equivariant
L̄-linear homomorphisms V ⊗L L̄ � Ū ↪→ V ′ ⊗L L̄. This shows that the space

HomL̄[G]

(
V ⊗

L
L̄, V ′⊗

L
L̄

)
∼= HomL[G](V, V

′)⊗
L
L̄

is non-zero, and so there exists a non-zero equivariant homomorphism V → V ′.
Since V and V ′ are both irreducible, this homomorphism must be an isomorphism.
Thus V and V ′ are isomorphic, as desired. q.e.d.

Proposition 3.8 Let V be a finite dimensional representation of a group G over a

field L. Then the Jordan-Hölder factors of V and their multiplicities are determined

uniquely by the associated characteristic polynomials, i.e., by the map

G −→ L[t], g 7→ detL(t · Id− g |V ).

Proof. By Proposition 3.7 we may extend scalars to an algebraic closure of L;
hence we may assume that L is algebraically closed. We may also replace V by its
semisimplification. Let V ′ be another semisimple finite dimensional representation
over L with the same characteristic polynomials as V . Then both dimV and dimV ′

are equal to the degree of these characteristic polynomials and thus equal to each
other. We may assume that this common dimension is positive, since otherwise the
assertion is obvious.

Suppose first that V and V ′ possess a common irreducible component U . Writing
V ∼= U ⊕W and V ′ ∼= U ⊕W ′, the multiplicativity of characteristic polynomials
implies that W and W ′ again have the same characteristic polynomials of G. Thus
in this case the desired assertion follows by induction on dimV .

Assume now that V and V ′ have no irreducible components in common. Choose
representatives Ui for the isomorphism classes of irreducible components of V ⊕V ′.
Let A ⊂ EndL(V ⊕ V ′) denote the image of the group ring L[G]. Since V ⊕ V ′

is semisimple and L is algebraically closed, this is the direct sum of the matrix
rings EndL(Ui). Furthermore, the assumption implies that A = B⊕B′ for subrings
B ⊂ EndL(V ) and B′ ⊂ EndL(V ′). As the trace is one of the coefficients of the
characteristic polynomial, we have trL(g |V ) = trL(g |V ′) for all g ∈ G. Since the
trace of a matrix is a linear map, this implies that trL(a |V ) = trL(a |V ′) for all
a ∈ A. For any b ∈ B we may apply this to the element a = (b, 0) ∈ A, deducing
that trL(b |V ) = trL(0 |V ′) = 0. If mi denotes the multiplicity of Ui in V , we find
in particular that mi · trL(c) = 0 for any c ∈ EndL(Ui). But since the trace map
EndL(Ui)→ L is surjective, this means that mi · 1 = 0 in L. In other words mi is
a multiple of the characteristic p of L.

As V is non-zero by assumption, some mi is positive, and so p must be positive.
The above result thus shows that V ∼= W⊕p for another representation W . The
same result holds for V ′ in place of V ; hence V ′ ∼= W ′⊕p for a representation W ′.
The multiplicativity of characteristic polynomials then implies thatW andW ′ again
have the same characteristic polynomials of G. Thus the desired assertion follows
by induction on dimV . q.e.d.
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4 A-Motives

We give a brief introduction to the notions and the basic algebraic theory of A-
motives. For a more comprehensive exposition we refer to Anderson’s original arti-
cle [1] and to Goss’s textbook [7]. There only the case A = Fq[t] is considered under
the name of t-motives. However, the generalization to arbitraryA is straightforward
and will allow extension of coefficients, just as for Drinfeld modules.

We keep the notations of Section 2. As a preparation we recall a consequence
of Lang’s theorem for GLn over finite fields (Lang [10] Corollary to Theorem 1).

Let Vec′τK denote the category of finite dimensional K-vector spaces together
with an additive endomorphism τ : V → V satisfying τ(xv) = xqτ(v) for all x ∈ K
and v ∈ V , such thatKτ(V ) = V . For any such V we abbreviate V sep := V ⊗KK

sep

and denote again by τ its additive endomorphism τ(v ⊗ x) := τ(v) ⊗ xq. For any
module with an action of τ we denote by ( )τ the submodule of τ -invariants.

On the other hand, let Rep
Fq
GK denote the category of finite dimensional con-

tinuous representations of GK over Fq. For any such representation H we let GK
act on H ⊗Fq

Ksep by σ(h⊗ x) := σ(h) ⊗ σ(x). For every representation of GK we
denote by ( )GK the subgroup of GK-invariants.

Proposition 4.1 The maps V 7→ T (V ) := (V sep)τ and H 7→ D(H) := (H ⊗Fq

Ksep)GK define mutually quasi-inverse equivalences of categories between Vec′τK
and Rep

Fq
GK .

Proof. By SGA7 [8] exp.XXII §1 the natural map v ⊗ x 7→ vx induces an isomor-
phism

T (V )⊗Fq
Ksep = (V sep)τ ⊗Fq

Ksep −→ V sep.

Taking GK-invariants we deduce an isomorphism D(T (V ))→ (V sep)GK ∼= V , which
is τ -equivariant by construction. Conversely by Galois descent the map h⊗x⊗y 7→
h⊗ xy yields an isomorphism

D(H)⊗K Ksep = (H ⊗Fq
Ksep)GK ⊗K Ksep −→ H ⊗Fq

Ksep.

Taking τ -invariants we obtain an isomorphism T (D(H)) → (H ⊗Fq
Ksep)τ ∼= H ,

which is GK-equivariant by construction. Clearly everything is functorial in V
and H . q.e.d.

In the following we abbreviate AK = A⊗Fq
K and let I denote the kernel of the

homomorphism AK → K, a⊗ x 7→ ι(a)x.

Definition 4.2 (A-motives) An A-motive M over K of characteristic p0 is an

AK-module together with an additive endomorphism τ : M →M satisfying

τ((a⊗ x)m) = (a⊗ xq)τ(m)

for all a ∈ A, x ∈ K and m ∈M , such that

(1) M is finitely generated and projective over AK ,

(2) M is finitely generated over K{τ}, and

(3) the AK -module M/AKτ(M) is annihilated by a power of I.

The rank of M is the rank of M as an AK-module. A homomorphism of A-motives
is a homomorphism of AK -modules that commutes with τ .

By Anderson [1] Proposition 1.8.3 we have:
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Proposition-Definition 4.3 (Torsion and Tate modules) Let M be an A-motive

over K of rank r and characteristic p0.

(1) For any ideal a ⊂ A not divisible by p0, the quotient M/aM is an object in

Vec′τK and

M [a] := T (M/aM)

is a free module of rank r over A/a, called the module of a-torsion of M .

(2) For any prime p 6= p0 of A, the p-adic Tate module and the rational p-adic
Tate module of M are

Tp(M) := lim
←−
i

M [pi] and Vp(M) := Tp(M)⊗Ap
Fp.

The former is a free module of rank r over Ap, and the latter is a vector space

of dimension r over Fp.

By construction, we have continuous actions of the absolute Galois group GK
on M [a], on Tp(M) and on Vp(M). Moreover, the definition is functorial in M ,
i.e., every homomorphism η : N →M of A-motives over K induces GK-equivariant
homomorphisms N [a] → M [a] and Tp(η) : Tp(N) → Tp(M). The following impor-
tant theorem is the analog of Faltings’s famous result and is independently due to
Taguchi [18], [19] and Tamagawa [21], [22], [23].

Theorem 4.4 (Tate conjecture for A-motives) For any A-motives N and M
over K of characteristic p0 and all primes p 6= p0 of A, the natural map

HomK(N,M)⊗A Ap −→ HomAp[GK ]

(
Tp(N), Tp(M)

)

is an isomorphism.

Definition 4.5 (Isogenies) A homomorphism of A-motives η is called an isogeny
if ker η = 0 and coker η has finite dimension over K. An isogeny η is called sepa-
rable if AKτ(coker η) = coker η.

Consider a separable isogeny η : N → M . Then coker η is an object of Vec′τK;
hence by Proposition 4.1 it corresponds to the finite Fq[GK ]-module T (coker η). By
functoriality this is also an A-module and is therefore isomorphic to

⊕r
i=1A/ai for

suitable r ≥ 0 and ideals ai ⊂ A.

Definition 4.6 (Degree) The degree of a separable isogeny η is the ideal deg η :=∏r
i=1 ai ⊂ A, where r and the ai are as above.

In the following, by a sublattice of an Ap-module or an Fp-vector space we mean
a finitely generated Ap-submodule of maximal rank.

Proposition 4.7 (Isogenies and lattices) Let η : N →M be a separable isogeny

of A-motives over K of characteristic p0. Then im(Tp(η)) ⊂ Tp(M) is a GK-

invariant sublattice for all primes p 6= p0 of A, with equality for all p - deg η.

Proof. Since deg η annihilates T (coker η), Proposition 4.1 implies that it also
annihilates coker η. Thus for any non-zero element a ∈ deg η we have aM ⊂ η(N) ⊂
M , and so there exists an isogeny η̂ : M → N such that η ◦ η̂ = a · Id. This implies
that the image of Tp(η) : Tp(N)→ Tp(M) contains a·Tp(M). In particular im(Tp(η))
is a sublattice of Tp(M) for all p, and is equal to Tp(M) for all p - a. Since for any
p - deg η we can choose a ∈ (deg η)r p, we have equality for all p - deg η, as desired.

q.e.d.

In the following proposition we call two isogenies η : N → M and η′ : N ′ → M
isomorphic if there exists an isomorphism θ : N ′ → N such that η ◦ θ = η′. This is
equivalent to saying that the submodules η(N) and η′(N ′) of M coincide.
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Proposition 4.8 (Classification of isogenies) For any A-motive M over K of

characteristic p0, the map η 7→
(
im(Tp(η))

)
p 6=p0

induces a bijection






isomorphism classes of

separable isogenies η :
N →M with p0 - deg η




 −→






collections of GK-invariant

sublattices Λp ⊂ Tp(M)
for all p 6= p0 such that Λp

= Tp(M) for almost all p






Proof. Clearly isomorphic isogenies yield the same lattices; hence the map is well-
defined. To construct an inverse let (Λp)p 6=p0

be a collection of sublattices as in the
proposition. Let p 6= p0 be a prime with Λp 6= Tp(M). Then Λp contains pmTp(M)
for some m > 0, and so we have a natural surjection

M [pm] ∼= Tp(M)/pmTp(M) � Tp(M)/Λp.

By applying the functor D from Proposition 4.1 we obtain surjections

M � M/pmM ∼= D
(
M [pm]

)
� D

(
Tp(M)/Λp

)
.

Let M ′ denote the kernel of the composite map. Then M ′ is an A-submotive of
M such that the inclusion map M ′ ↪→ M is a separable isogeny of p-power degree
with Tp(M

′) = Λp. We apply this construction recursively for every prime p 6= p0

at which Λp 6= Tp(M) and obtain an A-submotive N ′ such that the inclusion map
N ′ ↪→M is a separable isogeny with Tp(N

′) = Λp for all p 6= p0.
Thus to any collection (Λp)p 6=p0

we have associated an isogeny which gives back
the lattices Λp. It remains to show that for any separable isogeny η : N → M
of degree not divisible by p0, the above construction applied to the lattices Λp :=
im(Tp(η)) yields an isogeny isomorphic to η. For any p 6= p0 with Λp 6= Tp(M)
let M ′ ⊂ M be as above. Then the construction together with the equivalence
of categories 4.1 implies that η factors through a separable isogeny N → M ′ of
degree prime to p. After repeating this with all p| deg η we obtain a factorization
N → N ′ ↪→ M of η, where N ′ is as above and N → N ′ is a separable isogeny of
degree 1. This is the desired isomorphism. q.e.d.

Proposition 4.9 (Isomorphism classes in an isogeny class) Let M be an A-

motive over K of characteristic p0. Set E := EndK(M) and E(p0) := E ⊗A A(p0),

where A(p0) ⊂ F denotes the localization of A at p0. Then the multiplicative group

E∗(p0)
acts naturally on the set of all sublattices of Vp(M), and there exists a natural

bijection






isomorphism classes of

A-motives N over K such that

there exists a separable isogeny

η : N →M with p0 - deg η





−→

E∗(p0)

∖




collections of GK-invariant

sublattices Λp ⊂ Vp(M)
for all p 6= p0 such that Λp

= Tp(M) for almost all p





.

Proof. The map is defined by choosing some η and setting Λp := im(Tp(η)). To
show that it is well-defined consider any two separable isogenies η, η′ : N → M of
degree not divisible by p0. Take any element a ∈ (deg η) r p0 and let η̂ : M → N
be such that η ◦ η̂ = a · Id, as in the proof of Proposition 4.7. Then the equality
η ◦ η̂ ◦ η = a · η = η ◦ (a · Id) implies that η̂ ◦ η = a · Id on N . Similarly, we can find
an element a′ ∈ (deg η′) r p0 and an isogeny η̂′ : M → N such that η′ ◦ η̂′ = a′ · Id
and η̂′ ◦ η′ = a′ · Id. The calculation

(η′ ◦ η̂) ◦ η = η′ ◦ (η̂ ◦ η) = η′ ◦ (a · Id) = (a · Id) ◦ η′

then implies that

Tp(η
′ ◦ η̂)

(
im(Tp(η))

)
= Tp(a · Id)

(
im(Tp(η

′))
)
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for all p 6= p0. By construction a · Id, a′ · Id ∈ E become invertible in E(p0), and so
the calculation

(η ◦ η̂′) ◦ (η′ ◦ η̂) = η ◦ (a′ · Id) ◦ η̂ = (a′ · Id) ◦ (η ◦ η̂) = (a′ · Id) ◦ (a · Id)

implies that η′ ◦ η̂ becomes invertible in E(p0), too. Thus the two collections of
lattices are equivalent by the element a−1(η′ ◦ η̂) ∈ E∗(p0); hence the map is well-
defined.

To show that it is injective consider two separable isogenies η : N → M and
η′ : N ′ → M of degree not divisible by p0, such that the associated collections of
lattices are equivalent under E∗(p0)

. Then there exist a, a′ ∈ Ar p0 such that

im(Tp(a · η)) = Tp(a · Id)
(
im(Tp(η))

)
= Tp(a

′ · Id)
(
im(Tp(η

′))
)

= im(Tp(a
′ · η′))

for all p 6= p0. Since a ·η and a′ ·η′ are again separable of degree not divisible by p0,
Proposition 4.8 implies that N and N ′ are isomorphic, as desired.

To show that the map is surjective let (Λp)p 6=p0
be a collection of sublattices as

in the proposition. Then there are at most finitely many p 6= p0 with Λp 6⊂ Tp(M).
Choose any element a ∈ Ar p0 such that aΛp ⊂ Tp(M) for these p. Then we have
aΛp ⊂ Tp(M) for all p 6= p0, with equality for almost all p. Thus Proposition 4.8
yields an A-motive mapping to the collection of lattices (aΛp)p 6=p0

. By construction
this collection is equivalent to the collection (Λp)p 6=p0

, and the surjectivity follows.
q.e.d.

Finally we explain the relation with Drinfeld modules. For every Drinfeld A-
module φ over K we set Mφ := K{τ} with the action of a⊗x ∈ AK by (a⊗x)m =
xmφa and of τ by left multiplication. One easily shows that this defines an A-
motive and that the construction is functorial in φ. More precisely, we have (cf.
Anderson [1] Theorem 1):

Proposition 4.10 This construction defines a fully faithful contravariant functor

from the category of Drinfeld A-modules over K of characteristic p0 to the category

of A-motives over K characteristic p0. Its essential image consists of all A-motives

which are free of rank one over K{τ}.

The contravariance of this functor is also reflected in a duality between the
torsion modules of φ and of Mφ (cf. Anderson [1] Proposition 1.8.3). Let ΩA
denote the module of Kähler differentials of A.

Proposition 4.11 Let φ be a Drinfeld A-module over K of characteristic p0.

(1) For all ideals a in A not divisible by p0, there is a natural GK-equivariant

isomorphism

Mφ[a] ∼= HomA

(
φ[a], a−1ΩA/ΩA

)
.

(2) For all primes p 6= p0, there is a natural GK-equivariant isomorphism

Tp(Mφ) ∼= HomAp

(
Tp(φ),ΩA ⊗A Ap

)
.

Remark 4.12 For any two Drinfeld A-modules φ and ψ over K the above corre-
spondences yield a commutative diagram

HomK(φ, ψ)⊗A Ap
//

o 4.10

HomAp[GK ]

(
Tp(φ), Tp(ψ)

)

o 4.11(2)

HomK(Mψ,Mφ)⊗A Ap
// HomAp[GK ]

(
Tp(Mψ), Tp(Mφ)

)
.

Thus Theorem 2.4 becomes a special case of Theorem 4.4.
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5 Proof of the main theorem

Throughout this section, we fix an A-motive M over K which is the direct sum
of A-motives associated to Drinfeld A-modules of special characteristic p0. The
proof of Theorem 1.2 follows the argument of Deligne [3] Corollaire 2.8 for abelian
varieties over number fields. An important step is the classification of isogenies by
lattices from Propositions 4.8 and 4.9. Thus in this section we first study the Galois
invariant sublattices of Vp(M) for any fixed p 6= p0. We prove that the action of(
EndK(M)⊗AFp

)
∗ on the set of these sublattices is transitive for almost all p 6= p0

and ‘almost transitive’ for all p 6= p0. Working adèlically, the desired finiteness is
then reduced to the finiteness of the class number.

First we group the direct summands of M by their isogeny classes. Thus we
write

M =

n⊕

i=1

Mi and Mi =

ki⊕

j=1

Mφi,j

with Drinfeld A-modules φi,j such that φi,j and φi
′,j′ are isogenous over K if and

only if i = i′. Then the endomorphism ring of M decomposes accordingly as

E := EndK(M) =

n⊕

i=1

EndK(Mi).

In particular,

E ⊗A F ∼=

n⊕

i=1

Matki×ki

(
EndK(φi,1)op ⊗A F

)

is a finite dimensional semisimple F -algebra.
Next for every prime p 6= p0, Proposition 4.11 (2) yields a natural isomorphism

(5.1) Tp(M) =

n⊕

i=1

ki⊕

j=1

Tp(Mφi,j ) ∼=

n⊕

i=1

ki⊕

j=1

HomAp

(
Tp(φ

i,j),ΩA ⊗A Ap

)
.

Since ΩA is locally free of rank 1 over A, the representation theoretic properties of
Tp(M) can therefore be read off from those of Tp(φ

i,j). In particular, the results of
Sections 2 and 3 apply.

5.1 Galois invariant sublattices

In this subsection we investigate the GK-invariant sublattices of Vp(M) for p 6= p0.
For this we first analyze the image of the group ring Ap[GK ] in

EndE⊗AFp

(
Vp(M)

)
.

Proposition 5.2 For all p 6= p0, the ring EndE⊗AFp

(
Vp(M)

)
is a semisimple Fp-

algebra, and the image of Ap[GK ] is an Ap-order in it.

Proof. By Theorem 2.3 and the decomposition (5.1) the Fp[GK ]-module

Vp(M) =

n⊕

i=1

ki⊕

j=1

Vp

(
Mφi,j

)

is semisimple. Thus the image of Fp[GK ] in EndFp

(
Vp(M)

)
is a semisimple subal-

gebra, and by Jacobson’s density theorem it is equal to its bicommutant. But by
the Tate conjecture, Theorem 4.4, its commutant is E ⊗A Fp. Thus the image of
Fp[GK ] is the commutant of E⊗AFp, i.e., equal to EndE⊗AFp

(
Vp(M)

)
. From these

facts both assertions follow. q.e.d.
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Proposition 5.3 For all p 6= p0, the number of orbits of (E ⊗A Fp)
∗ in the set of

GK-invariant sublattices of Vp(M) is finite.

Proof. By the Jordan-Zassenhaus theorem (Reiner [15] Theorem 26.4) Proposition
5.2 implies that there are only finitely many isomorphism classes of GK-invariant
sublattices of Vp(M). Every isomorphism between two GK-invariant sublattices of
Vp(M) extends to a GK-equivariant automorphism of Vp(M). By Theorem 4.4 these
automorphisms are precisely the elements of (E ⊗A Fp)

∗. q.e.d.

Next we exploit Theorems 2.8 and 3.1.

Proposition 5.4 There exists a finite set S0 of primes of A, containing p0, such

that for all p outside S0, the image of the group ring Ap[GK ] in EndE⊗AFp

(
Vp(M)

)

is a finite direct sum of matrix rings over complete discrete valuations rings. In

particular, this image is a maximal order in EndE⊗AFp

(
Vp(M)

)
.

Proof. For any i = 1, . . . , n and all p 6= p0 let Bi,p denote the image of Ap[GK ]
in EndAp

(
Tp(Mi)

)
. Since the direct summands Tp(Mφi,j ) of Tp(Mi) become iso-

morphic over Fp, this is isomorphic to the image of Ap[GK ] in EndAp

(
Tp(Mφi,1)

)
.

By Proposition 4.11 (2) it is therefore anti-isomorphic to the image of Ap[GK ] in
EndAp

(
Tp(φ

i,1)
)
. Thus Theorem 2.8 implies that for almost all p we have

Bi,p ∼= Matdi×di
(Zi ⊗A Ap),

where Zi denotes the center of the endomorphism ring of φi,1 and di is some positive
integer. Moreover, Zi is integrally closed above almost all primes p, and at all these
primes Zi ⊗A Ap is a finite direct sum of complete discrete valuations rings.

Let Bp denote the image of Ap[GK ] in EndAp

(
Tp(M)

)
. Then the projection

maps induce an embedding

Bp ↪→

n⊕

i=1

Bi,p ⊂

n⊕

i=1

EndAp

(
Tp(Mi)

)
.

We will show that the inclusion on the left hand side is an equality for almost all p.
To this end we look at these rings as left modules over Ap[GK ]. Let ri denote
the rank of the A-motive Mi. Then there is a (non-canonical) isomorphism of left
Ap[GK ]-modules

Ni,p := EndAp

(
Tp(Mi)

)
∼= Tp(Mi)

⊕ri ∼=

ki⊕

j=1

Tp(Mφi,j )⊕ri

4.11
∼=

ki⊕

j=1

HomAp

(
Tp(φ

i,j),ΩA ⊗A Ap

)⊕ri
.

For any fixed i 6= i′, Theorem 3.1 implies that for almost all p, the modules Ni,p and
Ni′,p do not possess an isomorphic non-trivial finite Ap[GK ]-subquotient. Since there
are only finitely many i and i′, we deduce that for almost all p, no two direct sum-
mands of

⊕n
i=1Ni,p possess an isomorphic non-trivial finite Ap[GK ]-subquotient.

Thus for these p, every Ap[GK ]-submodule of
⊕n

i=1Ni,p decomposes according to i.
In particular Bp decomposes, and since Bi,p is its image in Ni,p, the inclusion
Bp ↪→

⊕n
i=1Bi,p must be an equality.

Since Bi,p is a finite direct sum of matrix rings over complete discrete valuations
rings for almost all p, the same now follows for Bp, as desired. q.e.d.

Proposition 5.5 Let S0 be as in Proposition 5.4. Then for all primes p 6∈ S0, the

action of (E ⊗A Fp)∗ on the set of GK-invariant sublattices of Vp(M) is transitive.
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Proof. Since the image of Ap[GK ] is a maximal order in EndE⊗AFp

(
Vp(M)

)
by

Proposition 5.4, it follows from Reiner [15] Theorem 18.10 that any twoGK-invariant
sublattices of Vp(M) are isomorphic Ap[GK ]-modules. As in the proof of Proposition
5.3 this implies that they are equivalent under (E ⊗A Fp)∗, as desired. q.e.d.

5.2 Adèlization

Set S := {∞, p0} and let

ÂS :=
∏

p 6∈S

Ap

denote the profinite completion of A away from S. Let

ASF := ÂS ⊗A F ∼=
∏∐

p 6∈S

Fp

denote the ring of partial adèles of F away from S. Let A(p0) be the localization of
A at p0.

Proposition 5.6 For any open subgroup K ⊂
(
E ⊗ ASF

)∗
, the number of double

cosets (
E ⊗A A(p0)

)∗ ∖ (
E ⊗A ASF

)∗ /
K

is finite.

Proof. Since K is open, it contains a subgroup of finite index of the open compact
subgroup (E ⊗A Â

S)∗. It therefore suffices to prove the proposition in the case

K = (E ⊗A Â
S)∗.

We can then translate the assertion into one about lattices, as follows. For every
e ∈

(
E ⊗A ASF

)∗
we define

Λe :=
(
E ⊗A A(p0)

)
∩ e

(
E ⊗A Â

S
)
.

This is a right E-submodule of E⊗AA(p0). Since e and e−1 have only finitely many
poles, there exists an element a ∈ Ar p0 such that

a
(
E ⊗A Â

S
)
⊂ e

(
E ⊗A Â

S
)
⊂ a−1

(
E ⊗A Â

S
)
.

It follows that
aE = Λa ⊂ Λe ⊂ Λa−1 = a−1E;

hence Λe is a finitely generated submodule satisfying

(5.7) Λe ⊗A A(p0) = E ⊗A A(p0).

Moreover, approximation at the divisors of a shows that

(5.8) Λe ⊗A Â
S = e

(
E ⊗A Â

S
)
.

We claim that two such lattices Λe and Λe′ are isomorphic as right E-modules if
and only if e and e′ lie in the same double coset. The ‘if’ part follows directly from
the transformation rule Λεek = εΛe for all ε ∈

(
E ⊗A A(p0)

)∗
and k ∈

(
E ⊗A Â

S
)∗

.
For the ‘only if’ part note that any isomorphism Λe → Λe′ is induced by left
multiplication with an element ε ∈ E ⊗A F . The equation (5.7) for e and e′ then
implies that ε ∈ (E ⊗A A(p0))

∗. Moreover, the equation (5.8) for e and e′ implies

that εe
(
E ⊗A Â

S
)

= e′
(
E ⊗A Â

S
)
. Thus εek = e′ for some k ∈

(
E ⊗A Â

S
)∗

, and
so the the double cosets of e and e′ coincide, proving the claim.
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Finally, since E is an A-order in the semisimple F -algebra E ⊗A F , by the
Jordan-Zassenhaus theorem (Reiner [15] Theorem 26.4) there are only finitely many
isomorphism classes of finitely generated E-modules of any given rank. By the claim
the proposition follows. q.e.d.

Proof of Theorem 1.2. By Proposition 4.9 the theorem is equivalent to saying that
the set of equivalence classes under (E ⊗A A(p0))

∗ of collections of GK-invariant
sublattices Λp ⊂ Vp(M) for all p 6= p0, such that Λp = Tp(M) for almost all p, is
finite. The group (E ⊗ ASF )∗ acts on the set of all such collections (Λp)p 6∈S , and
Propositions 5.3 and 5.5 together imply that the number of orbits under this action
is finite. Fix one of these orbits and let K ⊂ (E ⊗ ASF )∗ be the stabilizer of an
element. Then the set of isomorphism classes of A-motives corresponding to this
orbit can be identified with the double quotient

(
E ⊗A A(p0)

)∗ ∖ (
E ⊗A ASF

)∗ /
K .

Since K is an open compact subgroup of
(
E ⊗ ASF

)∗
, this double quotient is finite

by Proposition 5.6, finishing the proof. q.e.d.

Remark. Instead of the Jordan-Zassenhaus theorem in the form of Proposition 5.6
one can use the general theory of reductive algebraic groups over global fields. By
Behr [2] Satz 7 the class number of a connected reductive algebraic group over
a global field is finite, and we know that (E ⊗A F )∗ is reductive over the center
of E ⊗A F . Thanks to the reduction theory developed in Harder [9], the extra
conditions (V) in Behr’s paper are obsolete.
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ings], Séminaire Bourbaki, 36e année, 1983/84, no. 616, Astérisque 121–122
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vent. math. 73 (1983), 349–366.

[7] D. Goss, Basic structures of function field arithmetic, Springer-Verlag, 1996.

[8] A. Grothendieck, et al., Groupes de Monodromie en Géométrie Algébrique,
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