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Abstract

We show that for any integer n and any field k of characteristic 6= 2 there are
at most finitely many isomorphism classes of quadratic morphisms from P1

k to itself
with a finite postcritical orbit of size n. This fact was known over the complex
numbers but not in positive characteristic. As a consequence we show that every
postcritically finite quadratic morphism over a field of positive characteristic can be
lifted to characteristic zero with the same combinatorial type of postcritical orbit.
The associated profinite geometric monodromy group is therefore the same as in
characteristic zero, where it can be described explicitly by generators as a self-similar
group acting on a regular rooted binary tree.
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0 Introduction

The dynamics of postcritically finite quadratic polynomials and quadratic rational maps on
P1 have been studied from various angles. This author is interested in arithmetic properties
of the associated monodromy representations. In modern arithmetic geometry one tries
to understand a situation in characteristic zero and in positive characteristic on the same
footing and expects that each of them sheds light on the other. The present paper is meant
to be a contribution in this direction.

As a consequence of Thurston rigidity (see Douady-Hubbard [5], Brezin at al. [2]) it
is known that for any integer n there are at most finitely many isomorphism classes of
quadratic rational maps P1

C → P1
C with a postcritical orbit of size n. Our main result

Theorem 3.3 can be phrased as saying that the same is true over any algebraically closed
field k of characteristic 6= 2.

We show this in a purely algebro-geometric fashion, though the proof is surprisingly
complicated. Assume that the finiteness is not true. Then an easy argument involving
moduli spaces shows that there must exist a non-isotrivial family of quadratic morphisms
(we prefer the precise terminology of algebraic geometry over the unspecific word ‘map’)
with postcritical orbits of the same combinatorial type over some smooth curve D over k.
As the moduli space is affine, this family must have bad reduction at some point of a
smooth compactification D̄ of D. In fact we exhibit a point where the reduction has a
certain combinatorial type (see the proof of Lemma 10.1), and by a different argument we
show that such a type is actually impossible, thus arriving at a contradiction.

The combinatorial properties of the reduction are analyzed by means of stable marked
curves. For this observe that the postcritical orbit defines a finite collection of disjoint
sections of P1

D over D, turning P1
D into a smooth marked curve of genus zero over D.

As such, it possesses a unique extension to a stable marked curve with disjoint sections
over D̄. The degenerate fibers are trees of rational curves among which the marked points
are distributed in a certain fashion, whose combinatorics can be described by what may
be called stable marked trees. Although the given quadratic morphism P1

D → P1
D does not

extend to the stable curve, it extends as a correspondence using a certain augmented stable
marked extension, with the help of which we describe the precise combinatorial effect of
the quadratic morphism on the respective marked trees (see Section 8). (There may be a
relation with the mapping trees from Pilgrim [15, §2.1], but we have not made a detailed
comparison.) This description suffices to exclude certain types of bad reduction by purely
combinatorial arguments (see Section 9). At some step we also use the local multiplicity
of a singular point on the total space of the family, which is not only a combinatorial
invariant of the special fiber (see Proposition 6.2 (b) and the proof of Lemma 9.9). All
these arguments make up the bulk of this paper from Section 4 onwards and serve only to
establish Theorem 3.3.

The moduli space that we use is a rigidified version of the moduli space of dynamical
systems of degree 2 from Silverman [16, §4.6]. Using it we construct a moduli space MΓ

of Γ-marked quadratic morphisms for any finite mapping scheme Γ of cardinality > 3.
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The points of MΓ over an algebraically closed field k of characteristic 6= 2 are in bijection
with the isomorphism classes of quadratic morphisms over k whose postcritical orbit is
combinatorially equivalent to Γ. Our finiteness theorem 3.3 then becomes the statement
that all fibers of MΓ over SpecZ[1

2
] are finite.

On the other hand, it is not hard to construct MΓ as the joint zero locus of two
polynomials in a suitable Zariski open subscheme of A2 × SpecZ[1

2
] (see Proposition 3.2).

Using the local flatness criterion from commutative algebra this together with the finiteness
implies thatMΓ is flat over SpecZ[1

2
]. As a consequence, any Γ-marked quadratic morphism

over a field of positive characteristic can be lifted to characteristic zero (see Corollary 3.6).
Finally, consider a quadratic morphism P1

k → P1
k over an algebraically closed field k of

characteristic > 2 with finite postcritical orbit S ⊂ P1
k. The associated monodromy repre-

sentation is a homomorphism from the (geometric) étale fundamental group π1,ét(P
1
k r S)

to the automorphism group of a regular rooted binary tree T (see Section 4). By combining
the liftability with Grothendieck’s theorem on the specialization of the tame fundamental
group we show that the image of this homomorphism is the same as for some quadratic
morphism with a combinatorially equivalent postcritical orbit over C. The latter is simply
the closure in the profinite topology of Aut(T ) of the image of the usual fundamental group
π1(C

◦(C)) and can be described by explicit generators as a self-similar subgroup of Aut(T )
as, say, in Bartholdi-Nekrashevych [1], Dau [3], Grigorchuk et al. [7], Nekrashevych [13,
Ch.5], [14].

There are several interesting open questions that one might pursue next. First, while
almost all combinatorially conceivable finite mapping schemes seem to occur as the postcrit-
ical orbit of some quadratic morphism over C, some of them cannot occur in all character-
istics (see Remarks 2.4 and 3.9). So which mapping schemes occur in which characteristic,
and why?

Second, some Γ-marked quadratic morphisms over a field possess non-trivial infinites-
imal deformations (see Remark 3.8). When precisely does this occur? What are the, say,
combinatorial reasons for it?

Third, we have analyzed the possible combinatorial types of degeneration of Γ-marked
quadratic morphisms only to the extent necessary to prove the finiteness theorem. We
have excluded certain types, while others are possible, as in Remark 3.9 and Example 8.7.
So which kinds of degenerations actually occur?

Fourth, how is the combinatorial type of degeneration over a non-archimedean local
field, as described in the present paper, related to the dynamical properties of the quadratic
morphism in the generic fiber?

Fifth, the above mentioned consequence for the monodromy group concerns the ge-
ometric fundamental group, i.e., the case where the base field k is algebraically closed.
What can be said about the image of the arithmetic fundamental group, i.e., when k is
not algebraically closed? What about the images of Frobenius elements?
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Part I: Moduli of quadratic morphisms

1 Stable quadratic morphisms

Let S be a scheme over SpecZ[1
2
].

Definition 1.1 A quadratic morphism (with marked critical points) over S is a quadruple
(C, f, i1, i2) where

(a) C is a curve over S that is locally for the Zariski topology on S isomorphic to P1×S,

(b) f : C → C is a morphism over S which is fiberwise of degree 2, and

(c) i1, i2 : S → C are sections whose images are precisely the critical points of f , that is,
the points where df = 0.

Remark 1.2 In Milnor [12, §6] this is called a ‘critically marked quadratic rational map’.
In the present paper, all quadratic morphisms are endowed with marked critical points,
but for brevity we will simply speak of quadratic morphisms. We will often speak of a
quadratic morphism f if the other data C, i1, i2 are not used or are understood.

Proposition 1.3 For any quadratic morphism, the sections i1, i2 are fiberwise distinct.

Proof. The morphism possesses exactly two critical points in every geometric fiber. �

For any quadratic morphism over a field K, the sections i1, i2 are reallyK-valued points
of C, and so are their images fn◦ i1, fn◦ i2 under powers of f .

Definition 1.4 For any quadratic morphism f over a field, the set {fn◦ i1, fn◦ i2 | n > 0}
is called the postcritical orbit of f . If this set is finite, then f is called postcritically finite.

Proposition 1.5 For any quadratic morphism (C, f, i1, i2) over a field K the following
are equivalent:

(a) The postcritical orbit has cardinality > 3.

(b) At least one of f ◦ i1, f ◦ i2 is distinct from both i1, i2.

(c) (C, f, i1, i2) is not isomorphic to (P1
K , x 7→ ax±2, 0,∞) for any sign and any a ∈ K×.

Moreover, these conditions imply:

(d) Aut(C, f, i1, i2) = 1.
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Proof. By construction the postcritical orbit is mapped into itself by f . Since i1, i2 are
already two distinct elements by Proposition 1.3, the equivalence (a)⇔(b) follows.

Next suppose that (b) does not hold, i.e., that {f ◦ i1, f ◦ i2} ⊂ {i1, i2}. Since f has
degree 2, the images of the two critical points are distinct; hence actually {f ◦ i1, f ◦ i2} =
{i1, i2}. Identify C with P1

K such that i1 = 0 and i2 = ∞. Then a direct calculation shows
that f must have the form excluded in (c). Conversely, the quadratic morphism excluded
in (c) visibly satisfies {f(0), f(∞)} = {0,∞}. This proves the equivalence (b)⇔(c).

Finally, any automorphism of (C, f, i1, i2) fixes each point in the postcritical orbit. Since
any automorphism of P1

K fixing > 3 points is trivial, we have (a)⇒(d) and are done. �

Definition 1.6 A quadratic morphism over S is called stable, if in every fiber the post-
critical orbit has cardinality > 3.

Proposition 1.7 There is a fine moduli scheme M of stable quadratic morphisms, and it
is smooth of finite type of relative dimension 2 over SpecZ[1

2
].

Proof. First consider a quadratic morphism (C, f, i1, i2) over S for which f ◦ i2 is disjoint
from i1 and i2. Then there is a unique isomorphism C ∼= P1 × S which sends the sections
(i1, i2, f ◦ i2) to (0,∞, 1). After carrying out this identification, the quadratic morphism
has the form f(x) = x2+a

x2+b
for unique a, b ∈ Γ(S,OS). Thus the isomorphism class of

(C, f, i1, i2) is determined by (a, b). Also, for any a, b ∈ Γ(S,OS) the formula x2+a
x2+b

defines
a morphism P1×S → P1×S which is fiberwise of degree 2 if and only if a 6= b everywhere.
Thus (a, b) corresponds to a morphism S → A2 r diag(A1), and conversely, to any such
morphism we can associate the stable quadratic morphism (P1 × S, x 7→ x2+a

x2+b
, 0,∞) with

f(∞) = 1. This shows that the subfunctor of all stable quadratic morphisms satisfying
f ◦ i2 6= i1, i2 possesses a fine moduli scheme M2 isomorphic to (A2rdiag(A1))×SpecZ[1

2
].

Next consider a quadratic morphism (C, f, i1, i2) over S for which f ◦ i1 is disjoint from
i1 and i2. Then we identify C with P1×S by sending the sections (i1, i2, f ◦ i1) to (0,∞, 1).
Afterwards the quadratic morphism has the form f(x) = cx2+1

dx2+1
for unique c, d ∈ Γ(S,OS).

Again we find that (c, d) must represent a morphism S → A2 r diag(A1), and conversely,
that any such morphism determines a stable quadratic morphism (P1×S, x 7→ cx2+1

dx2+1
, 0,∞)

with f(0) = 1. This shows that the subfunctor of all stable quadratic morphisms sat-
isfying f ◦ i1 6= i1, i2 possesses a fine moduli scheme M1 which is also isomorphic to
(A2 r diag(A1))× SpecZ[1

2
].

Now let M21 ⊂ M2 and M12 ⊂ M1 denote the open subschemes where the sections f ◦ i1
and f ◦ i2 of the respective universal family of quadratic morphisms are both disjoint from
i1 and i2. Then M21 and M12 represent the same functor and are therefore canonically
isomorphic. Let M be the scheme over SpecZ[1

2
] obtained by gluing M2 and M1 along this

isomorphism. (An explicit calculation, not necessary for the proof, shows that the gluing
isomorphism is given by

M1

≀‖

� � // M12

≀‖

∼ // M21

≀‖
M2

≀‖

? _oo

A2 r diag(A1) ⊃ G2
m r diag(G1

m)
(c,d)7→(d

2

c3
, d

c2
)
// G2

m r diag(G1
m) ⊂ A2 r diag(A1)
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where for brevity we have dropped the factor SpecZ[1
2
].)

Consider an arbitrary stable quadratic morphism (C, f, i1, i2) over S. For ν ∈ {1, 2} let
Sν be the open subscheme of S where f ◦ iν is disjoint from i1 and i2. Then Proposition
1.5 implies that S = S1∪S2. Moreover, the restriction of the family to Sν is classified by a
morphism Sν → Mν , which induces a morphism from S1∩S2 to M12 ⊂ M1, respectively to
M21 ⊂ M2, and these morphisms are compatible with the given isomorphism M12

∼= M21.
Thus the morphisms Sν → Mν combine to a morphism S → M , and M is a fine moduli
space for the moduli problem at hand.

Finally, the stated properties of M result from the open covering by two copies of
(A2 r diag(A1))× SpecZ[1

2
]. �

2 Mapping schemes

Definition 2.1 A finite mapping scheme is a quadruple (Γ, τ, i1, i2) consisting of a finite
set Γ, a map τ : Γ → Γ and two distinct elements i1, i2 ∈ Γ such that

(a) Γ = {τn(i1), τn(i2) | n > 0}.

(b) For all γ ∈ Γ we have |τ−1(γ)| 6 2.

(c) τ−1(τ(i1)) = {i1} and τ−1(τ(i2)) = {i2}.

This is essentially the special case of degree 2 of the definition in Brezin at al. [2,
Def. 2.3], but it differs from other definitions in the literature. Often we will speak of a
mapping scheme Γ if the other data τ , i1, i2 is understood.

Proposition 2.2 The postcritical orbit of any postcritically quadratic morphism f over
a field, with the map induced by f and the marked points i1 and i2, is a finite mapping
scheme in the sense of Definition 2.1.

Proof. We have i1 6= i2 by Proposition 1.3, and (a) holds by Definition 1.4. Condition
(b) follows from the fact that f has degree 2, and (c) follows from this and the fact that
i1 and i2 are precisely the ramification points of f . �

Classification 2.3 The isomorphism classes of finite mapping schemes fall into different
types according to which of the elements τn(iν) are equal. Note that any relation of the
form τn(iν) = τn

′

(iν′) implies τn+ℓ(iν) = τn
′+ℓ(iν′) for all ℓ > 0, and any relation of the

form τn(iν) = τn+k(iν) implies τn(iν) = τn+ℓk(iν) for all ℓ > 0. A direct case analysis
yields the following possibilities. In each case, the arrows indicate the action of τ .
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(a) All relations result from two relations τm(i1) = τm+k(i1) and τn(i2) = τn+ℓ(i2) with
m,n > 0 and m,n 6= 1 and k, ℓ > 0:

i1 τm(i1) τm+k−1(i1)

• // • // . . . // • // • // . . . // •ee

i2 τn(i2) τn+ℓ−1(i2)

• // • // . . . // • // • // . . . // •ee

(b) All relations result from two relations τm(i1) = τn+ℓ(i2) and τn(i2) = τm+k(i1) with
m,n > 0 and m,n 6= 1 and k, ℓ > 0:

i1 τm(i1) τm+k−1(i1)

• // • // . . . // • // • // . . . // •

vvmmmmmmmmmmmmmmmmm

• // • // . . . // • // • // . . . // •

hhQQQQQQQQQQQQQQQQQ

i2 τn(i2) τn+ℓ−1(i2)

(c) All relations result from two relations τm(i1) = τn(i2) and τm+k(i1) = τm+k+ℓ(i1)
with m,n > 0 and m,n 6= 1 and (m,n) 6= (0, 0) and k, ℓ > 0:

i1

•
))SSSS •

•
((PPPP

τm(i1) τm+k(i1) τm+k+ℓ−1(i1)

• // • // . . . // • // • // . . . // •ee
•

66mmmm
τn(i2)

i2 •
•

66llll

Remark 2.4 By explicit calculation one finds that the case (a) with m = n = 0 and
k = ℓ = 1 does not occur as the postcritical orbit of a quadratic morphism over any field. I
do not know a combinatorial explanation for this fact. By contrast all other finite mapping
schemes that were tested in Dau [3] occur, say over C. Is that true for all other cases as
well?

3 Marked quadratic morphisms

Now we fix a finite mapping scheme (Γ, τ, i1, i2). In order to ensure stability we assume
that |Γ| > 3. (For the remaining cases see Proposition 1.5.)

Definition 3.1 A Γ-marked quadratic morphism over S is a quadratic morphism (C, f, i1, i2)
over S together with a section s(γ) : S → C for every γ ∈ Γ satisfying
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(a) s(i1) = i1 and s(i2) = i2,

(b) f ◦ s(γ) = s(τ(γ)) for any γ ∈ Γ, and

(c) s(γ), s(γ′) are fiberwise distinct for any distinct γ, γ′ ∈ Γ.

These conditions guarantee that the map γ 7→ s(γ) induces an isomorphism from Γ to
the postcritical orbit of f in every fiber and give a scheme theoretic version thereof.

Proposition 3.2 There is a fine moduli scheme MΓ of Γ-marked quadratic morphisms,
which is isomorphic to the joint zero locus of two polynomials in a suitable Zariski open
subscheme of A2 × SpecZ[1

2
].

Proof. Since |Γ| > 3, at least one of τ(i1), τ(i2) must be distinct from both i1, i2. By
symmetry we may assume without loss of generality that τ(i2) 6= i1, i2. Then for any
Γ-marked quadratic morphism f the section f ◦ i2 must be disjoint from i1 and i2. By
the proof of Proposition 1.7, the quadratic morphisms with this property are up to unique
isomorphism precisely the (P1 × S, x 7→ x2+a

x2+b
, 0,∞) for (a, b) ∈ (A2 r diag(A1))(S).

By the classification in 2.3, there are two relations of the form τm(i1) = τm
′

(iν) and
τn(i2) = τn

′

(iν′) which generate all other relations within the mapping scheme Γ. Thus
any Γ-marked quadratic morphism must satisfy the corresponding two relations fm◦ i1 =
fm′ ◦ iν and fn◦ i2 = fn′ ◦ iν′ . Conversely, these two relations guarantee that one can
attach unique sections s(γ) to all γ ∈ Γ which satisfy 3.1 (a) and (b). The condition 3.1
(c) then amounts to finitely many inequalities of the form fni ◦ iµi

6= fmi ◦ iνi in every fiber.
Together this shows that the subscheme of (A2 r diag(A1))× SpecZ[1

2
] defined by the two

closed conditions fm◦ i1 = fm′ ◦ iν and fn◦ i2 = fn′ ◦ iν′ and finitely many open conditions
is a fine moduli scheme of Γ-marked quadratic morphisms.

It remains to see that each of the two closed conditions is represented by a polynomial
equation in (a, b). For this observe that in projective coordinates the morphism f is given
by (x : y) 7→ (x2 + ay2 : x2 + by2), which is well-defined because a 6= b everywhere. Thus
the iterate fn is the well-defined morphism (x : y) 7→ (gn : hn) for certain polynomials gn,
hn ∈ Z[x, y, a, b]. Each closed condition is obtained by substituting (x : y) = (0 : 1) or
(1 : 0) and equating, and therefore means that two well-defined points (g′ : h′) and (g′′ : h′′)
in P1 for certain polynomials g′, h′, g′′, h′′ ∈ Z[a, b] are equal. But this is equivalent to
g′h′′−g′′h′ = 0, which is a polynomial equation in a, b with coefficients in Z, as desired. �

Theorem 3.3 The moduli scheme MΓ is quasi-finite over SpecZ[1
2
], in other words, for

any field k the product MΓ × Spec k is finite over k.

This is the main technical result of this paper. In characteristic zero it is known
as a consequence of Thurston rigidity, which implies that postcritically finite quadratic
morphisms cannot be nontrivially deformed. See Douady-Hubbard [5] and Brezin at al.
[2, Thm. 3.6].

Theorem 3.3 will be proved in Sections 8 through 10. First we deduce some conse-
quences.
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Corollary 3.4 Any Γ-marked quadratic morphism over a field k can be defined over a
subfield which is either finite or a number field.

Proof. Any Γ-marked quadratic morphism over k determines a morphism Spec k → MΓ,
and the residue field at the image point on MΓ is a subfield with the desired property. �

Corollary 3.5 The moduli scheme MΓ is flat over SpecZ[1
2
].

Proof. By Proposition 3.2 and Theorem 3.3 the moduli scheme MΓ is a complete inter-
section of codimension 2 in a regular scheme of finite type. It is therefore Cohen-Macaulay
by Matsumura [11, Thm. 17.3, Thm. 17.4]. Since again by Theorem 3.3 its fibers over
SpecZ[1

2
] are finite, the local flatness criterion [11, Thm. 23.1] implies that MΓ is flat over

SpecZ[1
2
]. �

Corollary 3.6 Any Γ-marked quadratic morphism (C, f, i1, i2, s) over a finite field k of
characteristic p can be lifted to characteristic zero. More specifically, there exist a discrete
valuation ring R which is finitely generated over Z(p), whose residue field k′ is a finite
extension of k and whose quotient field has characteristic zero, and a Γ-marked quadratic
morphism over SpecR, whose closed fiber is isomorphic to (C, f, i1, i2, s)×Spec k Spec k

′.

Proof. Let X denote the normalization of the reduced closed subscheme of MΓ. Then the
morphism X → MΓ is finite and surjective; hence the classifying morphism Spec k → MΓ

lifts to a morphism Spec k′ → X for some finite extension k′ of k. The lift corresponds to
a ring homomorphism R1 → k′ for a suitable open affine chart SpecR1 ⊂ X . This in turn
factors through the localization R2 of R1 at some maximal ideal. By construction R1 is a
normal integral domain, which by Proposition 3.2 and Theorem 3.3 is finitely generated
and flat over Z. Thus R2 is a discrete valuation ring that is finitely generated and flat
over Z(p). Let R be an unramified extension of R2 with residue field k′. Then the desired
assertion follows by pulling back the universal family over MΓ under the commutative
diagram

Spec k′ � � //

��

SpecR

��
Spec k // MΓ. �

Remark 3.7 In general the ring R in Corollary 3.6 may be ramified over Z(p). It therefore
seems impractical to find such a lift by deformation theory. For a concrete example from
Dau [3] let Γ be the mapping scheme

i1 τ2(i2)

•

��

•oo

• // •

OO

i2 τ(i2)
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which is the case 2.3 (b) with (m,n, k, ℓ) = (0, 0, 1, 3). A direct calculation shows that in
this caseMΓ

∼= SpecZ[1
2
, a]/(a2+3a+1) with the universal family (P1×MΓ, x 7→ x2+a

x2 , 0,∞).

Here Z[1
2
, a]/(a2 + 3a + 1) ∼= Z[1

2
, −3+

√
5

2
] = OK [

1
2
] where OK is the ring of integers in the

quadratic number field K := Q(
√
5), which is ramified at the prime p = 5.

Remark 3.8 In the same cases as in Remark 3.7, the fiber MΓ × SpecFp is not reduced.
This means that in positive characteristic Γ-marked quadratic morphisms may possess
non-trivial infinitesimal deformations. This makes it impractical to try to prove Theorem
3.3 by local deformation theory and suggests that the proof requires at least one global
argument.

Remark 3.9 In general the moduli scheme MΓ is not finite over SpecZ[1
2
]. Indeed, if it

were finite over SpecZ[1
2
], then any point on MΓ in characteristic zero would possess a

reduction in any characteristic 6= 2. But there are cases where MΓ possesses a point in
characteristic zero but none in some characteristic p 6= 2. For a concrete example from
Dau [3] let Γ be the mapping scheme

i1 τ(i1)

• // •__

• // • // •


i2 τ(i2) τ2(i2)

which is the case 2.3 (a) with (m,n, k, ℓ) = (0, 2, 2, 1). A direct calculation shows that
in this case MΓ

∼= SpecZ[1
6
] with the universal family (P1 × MΓ, x 7→ x2−4

x2+2
, 0,∞). Here

the prime p = 3 must be excluded in order to have −4 6≡ 2. Thus for this Γ, there exist
Γ-marked quadratic morphisms in every characteristic 6= 2, 3, but none in characteristic 3.

Remark 3.10 In the same cases as in Remark 3.9, and possibly others, a Γ-marked
quadratic morphism over a number field does not reduce to a Γ-marked quadratic mor-
phism in characteristic p. In other words, the quadratic morphism has bad reduction. In
Sections 8 and 9 we analyze such situations systematically over arbitrary discrete valuation
rings. Although some types of bad reduction may occur, we will prove that a certain kind
cannot occur. This will suffice to deduce that any Γ-marked quadratic morphism over a
curve over a field is constant, and thereby prove Theorem 3.3.

4 Monodromy groups

Let (C, f, s) be a Γ-marked quadratic morphism over a connected scheme S. Let C◦ denote
the open subscheme of C obtained by removing the images of the sections s(γ) : S → C
for all γ ∈ Γ. For any integer n > 0 set Cn := C as a scheme over C via the morphism
fn : Cn → C, and let C◦

n ⊂ Cn be the open subscheme defined as the fiber product Cn×CC
◦.
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Then by construction C◦
n → C◦ is a finite étale covering of degree 2n. The morphism f

induces transition morphisms C◦
n → C◦

n−1 for all n > 0 and hence an inverse system

. . . ։ C◦
2 ։ C◦

1 ։ C◦
0 = C◦.

Let c̄0 be any geometric point of C◦. For any n > 0 let Tn denote the set of 2n geometric
points of C◦

n above c̄0. Let T denote the infinite directed graph with set of vertices
∐

n>0 Tn,
where any vertex c̄n ∈ Tn for n > 0 is connected by an edge towards f(c̄n) ∈ Tn−1. By
construction this is a regular rooted binary tree. Since by assumption S is connected, so is
C◦

n for all n, and so the inverse system is determined up to isomorphism by the monodromy
representation of the étale fundamental group on T , that is, by the natural homomorphism

(4.1) π1,ét(C
◦, c̄0) → Aut(T ).

Suppose that c̄0 lies above the geometric point s̄ of S. Then we are interested in the
restriction of the above homomorphism to the relative étale fundamental group

(4.2) ρ : π1,ét(C
◦
s̄ , c̄0) → Aut(T ).

Proposition 4.3 Let c̄ ′
0 be a geometric point of C0 lying above another geometric point s̄′

of S ′. Let T ′ be the regular rooted binary tree constructed with c̄ ′
0 in place of c̄0, and let

ρ′ : π1,ét(C
◦
s̄′, c̄

′
0) → Aut(T ′)

be the associated monodromy representation. Then there is an isomorphism of rooted trees
T ∼= T ′ which induces an isomorphism image(ρ) ∼= image(ρ′).

Proof. The target Aut(T ) and hence the images of ρ and ρ′ are pro-p-groups for p = 2.
Since S is a scheme over SpecZ[1

2
], the assertion is a direct consequence of Grothendieck’s

specialization theorem for the tame fundamental group, see SGA1 [8, Proof of Cor. 2.12].
�

Corollary 4.4 Let Ḡ ⊂ Aut(T ) be the image of the relative monodromy representation
(4.2) for a Γ-marked quadratic morphism over any field. Then up to an isomorphism of
rooted trees Ḡ is equal to the image of the relative monodromy representation for some
Γ-marked quadratic morphism over C.

Proof. Direct consequence of Proposition 4.3 and Corollaries 3.4 and 3.6. �

Finally suppose that s̄ is aC-valued point. Then the étale fundamental group π1,ét(C
◦
s̄ , c̄0)

is naturally isomorphic to the profinite completion of the topological fundamental group
π1(C

◦(C), c̄0). Thus the image of the former is simply the closure in the profinite topology
of Aut(T ) of the image of π1(C

◦(C), c̄0). But the latter image can be described by explicit
generators as a self-similar subgroup of Aut(T ) as, say, in Bartholdi-Nekrashevych [1], Dau
[3], Grigorchuk et al. [7], Nekrashevych [13, Ch.5], [14].
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Part II: Finiteness

The rest of this paper is devoted to proving Theorem 3.3, which I found surprisingly
difficult.

5 Stable marked curves of genus zero

We begin by briefly reviewing the material on stable marked curves that we will need
below; see Deligne-Mumford [4], Knudsen, [10], Gerritzen et al. [6], Keel [9].

Let R be a discrete valuation ring with quotient field K, uniformizer π, and residue
field k = R/Rπ. Let C be a smooth connected curve of genus zero over K. Let I be a
finite set of cardinality > 3, and consider an injective map s : I →֒ C(K), i 7→ s(i). Then
(C, s) is a smooth marked curve of genus zero over K. By the general theory of stable
marked curves it possesses a natural extension to a stable marked curve (X, s) of genus
zero over SpecR, as follows.

First X → SpecR is a projective and flat morphism with generic fiber C. Let Xsm ⊂ X
denote the open locus where the morphism is smooth, and let Xsm

0 ⊂ X0 denote the
corresponding closed fibers. Then the complement X rXsm is a finite subset of X0, and
at each point in it X is étale locally isomorphic to SpecR[x, y]/(xy − πn) over SpecR for
some integer n > 1. Next the markings s(i) ∈ C(K) extend to pairwise disjoint sections
s(i) : SpecR → Xsm and hence induce an injection s0 : I →֒ Xsm

0 (k). Finally, the data
(X, s) is globally stable in the sense that for every irreducible component Y of X0, we have

(5.1)
∣

∣{i ∈ I | s0(i) ∈ Y (k)}
∣

∣+
∣

∣Y rXsm
0

∣

∣ > 3.

The extension (X, s) thus characterized is unique up to unique isomorphism.
The combinatorial structure of the special fiber X0 is described in terms of its dual

tree. This is the finite graph T whose set of vertices V (T ) is in bijection with the set of
irreducible components of X0 and whose set of edges with the set of singular points of X0,
where any singular point corresponds to an edge between the two irreducible components
in which it is contained. In our case the fact that C has genus zero implies that this graph
is actually a tree. In particular, it possesses no multiple edges and no edge connecting a
vertex to itself. Also, every irreducible component of X0 is smooth of genus zero over k.
In addition, the marking s0 : I → Xsm

0 (k) induces a map

(5.2) I → V (T )

sending i to the unique irreducible component Y of X0 with s0(i) ∈ Y (k). We view this
map as a marking on the tree T , and by abuse of notation we denote it again by s. Of
course this map is no longer injective, and the stability condition (5.1) translates into the
following condition for every vertex t ∈ V (T ):

(5.3)
∣

∣s−1(t)
∣

∣ +
∣

∣{edges at t}
∣

∣ > 3.
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Now consider a subset I ′ ⊂ I which is also of cardinality > 3. Then we can apply
everything above with the marking s|I′ in place of s, obtaining another stable marked
curve (X ′, s′) over SpecR. Its relation with (X, s) is described as follows.

First, the identity morphism on C extends to a unique morphism κ : X ։ X ′ satisfying
κ ◦ s|I′ = s′. This morphism contracts the irreducible components of X0 which become
unstable, that is, which violate condition (5.1) when s is replaced by s|I′. After these
unstable irreducible components have been contracted, the number of singular points of the
special fiber may have decreased, and so other irreducible components may have become
unstable as well. After finitely many steps, however, the result is stable and is the X ′

obtained from the marking s|I′.
Next let T ′ be the dual tree of the special fiber X ′

0 of X ′. Mapping each irreducible
component of X ′

0 to its proper transform in X0 defines a natural injection V (T ′) →֒ V (T ).
We identify V (T ′) with its image and call it the set of vertices which survive in T ′. It must
be noted that the resulting diagram

(5.4)

V (T ′) � � // V (T )

I ′
� � //

s′

OO

I

s

OO

does not commute in general. Instead, the map s′ in it is obtained from s by Proposition
5.5 (c) below.

When we say that a vertex t′′ of T lies between two vertices t and t′, we always mean
that t′′ lies on the shortest path from t to t′, including t and t′, and even allowing t′′ = t = t′.
When we say that t′′ lies strictly between t and t′, we require in addition that t′′ 6= t, t′.

Proposition 5.5 (a) A vertex t ∈ V (T ) survives in T ′ if and only if

∣

∣s−1(t) ∩ I ′
∣

∣+

∣

∣

∣

∣

{

S connected component of T r {t}
such that s−1(V (S)) ∩ I ′ 6= ∅

}
∣

∣

∣

∣

> 3.

(b) Two distinct vertices t, t′ ∈ V (T ′) are connected by an edge in T ′ if and only if every
vertex strictly between t and t′ does not survive in T ′.

(c) For any i ∈ I ′ the s′(i) is the unique vertex in V (T ′) whose distance to s(i) in T is
minimal. In particular we have s′(i) = s(i) if s(i) ∈ V (T ′).

Proof. Induction on the cardinality of I r I ′. If I ′ = I, then for any t ∈ V (T ) any
connected component S of T r {t} contains an end vertex of T and hence a marked point.
Thus the condition in (a) is satisfied by the stability of (T, s), while the assertions (b) and
(c) hold trivially in this case.

If I ′ 6= I set I ′′ := I r {i0} for some i0 ∈ I r I ′, let (X ′′, s′′) be the stable marked
curve obtained by stabilizing (X, s|I′′), and let (T ′′, s′′) be the marked dual tree of its
special fiber X ′′

0 . Then by the induction hypothesis the assertions (a) through (c) hold
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for obtaining (T ′, s′) from (T ′′, s′′). If all vertices of T survive in T ′′, the assertions for
obtaining (T ′, s′) from (T, s) follow directly.

Otherwise T ′′ is obtained from T by dropping the vertex t0 := s(i0), and the corre-
sponding irreducible component Y of X0 is contracted to a point. By the stability of X0

this can happen only in one of two cases:
Either t0 is an end vertex, i.e., a leaf, of T and is marked by precisely one other point

i1 ∈ I ′′. Then Y is contracted to a smooth point of X ′′
0 which becomes marked by s′′(i1).

This means that the marking s(i1) of T is moved to the unique neighboring vertex in T .
One easily checks that the assertions (a) through (c) for obtaining (T ′, s′) from (T, s) now
follow directly from those for obtaining (T ′, s′) from (T ′′, s′′).

Or t0 has precisely two neighbors in T and no other marking in I ′′. Then the two
neighboring vertices correspond to the unique two other irreducible components of X0

which meet Y . These are disjoint in X0, but their images in X ′′
0 meet at the point obtained

by contracting Y . Thus as the vertex t0 is dropped in T ′′, the two edges connecting it to
its neighbors in T are replaced by a single edge in T ′′ connecting these neighbors directly.
Again one easily checks that the assertions (a) through (c) for obtaining (T ′, s′) from (T, s)
follow directly from those for obtaining (T ′, s′) from (T ′′, s′′). �

6 Stable marked curves with an automorphism of or-

der two

Keeping the notations of the preceding section, we now assume that the characteristic of
k and hence of K is different from 2. Let σ be an automorphism of order 2 of C over K.
Then σ possesses precisely two fixed points over an algebraic closure of K. We assume
that both of these are marked points, i.e., that they are equal to s(i1) and s(i2) for certain
distinct elements i1, i2 ∈ I. Let σ also denote a permutation of order 2 of I, and assume
that σ◦ s = s◦σ. Then the injectivity and σ-equivariance of s implies that i1, i2 are
precisely the fixed points of σ on I. The uniqueness of the stable extension (X, s) implies
that σ extends to a unique automorphism of order 2 of X over SpecR, which we again
denote by σ. The aim of this section is to describe the action of σ on the closed fiber and
to analyze the quotient X/〈σ〉. This can be done in a relatively explicit way.

Without loss of generality we may assume that C = P1
K with σ(x) = −x and s(i1) = 0

and s(i2) = ∞. Let ∞ > n1 > . . . > nr > −∞ be the possible orders ordπ(s(i)) for all
i ∈ I r {i1, i2}. Since |I| > 3, there is at least one, and so r > 1. Define

Uj :=















SpecR [ x/πn1] if j = 0,

SpecR [ x/πnj+1, πnj/x ] if 0 < j < r,

SpecR [ πnr/x ] if j = r.

For any 1 6 j 6 r we glue Uj−1 and Uj along the common open subscheme

Uj−1 ∩ Uj = SpecR [ (x/πnj)±1],

14



obtaining a projective flat curve Z over SpecR. For all 1 6 j 6 r let Yj denote the closure
in Z of the closed fiber

(Uj−1 ∩ Uj)0 = SpecR [ (x/πnj)±1]/(π) ∼= Gm,k

of Uj−1 ∩ Uj . Then Yj
∼= P1

k, and these are precisely the irreducible components of the
closed fiber Z0 of Z. They are arranged in sequence, each meeting only the previous and
the next one in an ordinary double point. The automorphism σ : x 7→ −x extends to an
automorphism of each Uj , and since σ(x/πnj) = −x/πnj , the automorphism induced on
Yj

∼= P1
k has the form ξ 7→ −ξ. As the residue characteristic is 6= 2, it follows that σ has

exactly two fixed points on each Yj. Varying j, it follows that the fixed points of σ on Z0

are precisely the singular points of Z0 and one additional point on each of Y1 and Yr. The
last two are actually the reductions of the points s(i1) = 0 and s(i2) = ∞, which extend
to sections of U1 and Ur that we again denote by s(i1) and s(i2), respectively.

For any i ∈ Ir{i1, i2}, by construction there is a unique 1 6 j 6 r with ordπ(s(i)) = nj .
Then s(i)/πnj lies in R×; hence the point s(i) ∈ C(K) extends to a section SpecR →
Uj−1 ∩Uj. In the closed fiber this section meets Yj, and since s(i)/πnj mod(π) 6= 0, ∞, the
resulting point of Yj is not fixed by σ. In particular the section lands in the smooth locus
Zsm of Z and is disjoint from the sections s(i1) and s(i2). For simplicity we denote this
section again by s(i). Altogether we have thus extended the given points s(i) ∈ C(K) to
sections s(i) : SpecR → Zsm for all i ∈ I. Since σ◦ s = s◦ σ in the generic fiber, the same
relation holds for the extended sections as well.

The choice of the nj also implies that for every 1 6 j 6 r, there exists i ∈ I r {i1, i2}
with ordπ(s(i)) = nj . The corresponding section s(i) in the special fiber then lands in the
irreducible component Yj. Since the resulting point of Yj is not fixed by σ, its image under
σ is a different marked point in Yj. In Y1, respectively Yr, there is also the third distinct
marked point s(i1), respectively s(i2), and the remaining irreducible components contain
two singular points of Z0. Thus the closed fiber Z0 with the marking s satisfies the stability
condition (5.1).

All this shows that (Z, s) is a stable marked curve of genus zero, except that some (and
possibly very many) sections s(i) and s(i′) for i, i′ ∈ I r {i1, i2} with i′ 6∈ {i, σ(i)} may
meet in the special fiber. Let S be the finite set of points in Zsm

0 where this happens. Then
by the general theory of stable curves, the stable extension (X, s) is obtained from (Z, s)
by blowing up some ideal centered in S while leaving the rest of Z unchanged. The proper
transforms Ỹj of Yj in X are then still arranged in the same way as the Yj. But the sections
s(i) reducing to points in S are moved to new irreducible components in the exceptional
fiber of the blowup. By the uniqueness of X everything is still invariant under the action
of σ. Also, each new irreducible component is disjoint from its σ-conjugate, because its
image in Z0 is a point in S which is not fixed by σ.

The following sketch shows what may typically happen. The irreducible fibers of the
closed fiber are indicated in solid lines, the marked sections in dotted lines:
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• .................σ(i′)

• ....
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.......
.................i′′

• ......
..........

.................σ(i′′)

.................................i2

X

The following proposition summarizes some of the main information gathered so far:

Proposition 6.1 (a) The fixed points of σ in X0 are precisely the reductions of the
sections s(i1) and s(i2) and the double points of X0 which separate them.

(b) Any irreducible component Y of X0 is either equal to σ(Y ) or disjoint from σ(Y ).

(c) An irreducible component Y of X0 is equal to σ(Y ) if and only if it contains a fixed
point of σ. The automorphism induced by σ on it is then non-trivial.

Now consider the quotient X := X/〈σ〉, which exists because X is projective over
SpecR. Let ̟ : X ։ X denote the natural morphism. Set Ī := I/〈σ〉, and for every orbit
ī = {i, σ(i)} ∈ Ī consider the section s̄( ī ) := ̟ ◦ s(i) : SpecR → X.

Proposition 6.2 (a) The pair (X, s̄) is a stable marked curve over SpecR.
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(b) For any double point P of X0 which is fixed by σ and where X is étale locally
isomorphic to SpecR[y, z]/(yz − πn), the quotient X is étale locally isomorphic to
SpecR[u, v]/(uv − π2n) at ̟(P ), for some n > 0.

Proof. Away from the fixed points of σ the morphism ̟ is étale. Thus away from
the images of these fixed points, the quotient X has the same mild singularities as X .
Moreover, the sections s(i) for all i ∈ I r {i1, i2} land in the smooth locus Xsm and are
pairwise disjoint from s(i1) and s(i2) and each other. Thus by Proposition 6.1 (a) they
avoid all fixed points of σ, and so the corresponding sections s̄( ī ) land in the smooth locus
X

sm
and are again disjoint from s̄( ī1 ) and s̄( ī2 ) and each other.

Next, by the above construction X is locally isomorphic to U1 = SpecR [ x/πn1 ] along
the section s(i1), with the action σ(x/πn1) = −x/πn1 . Thus the substitution u = x2/π2n1

shows that X is locally isomorphic to U1 = SpecR[u] along the section s̄( ī1 ), and s̄( ī1 ) is
given by u = 0. Thus s̄( ī1 ) lands in the smooth locus X

sm
. By symmetry the same is true

for the section s̄( ī2 ), which remains disjoint from s̄( ī1 ). Thus all sections s̄( ī ) for ī ∈ Ī
land in X

sm
and are pairwise disjoint.

At the remaining fixed points X is by construction locally isomorphic to

Uj = SpecR [ x/πnj+1 , πnj/x ]

for 0 < j < r. Since σ(x) = −x, it follows that at the image of this fixed point X is locally
isomorphic to

Uj/〈σ〉 = SpecR [ x2/π2nj+1 , π2nj/x2 ].

With the substitutions y = x/πnj+1 and z = πnj/x the first chart is isomorphic to
SpecR [ y, z ]/(yz − πn) where n := nj − nj+1 > 0, and with u = y2 and v = z2 the
second chart becomes isomorphic to SpecR[u, v]/(uv − π2n). Thus X has the required
local form, and we have also proved assertion (b).

It remains to verify the stability condition (5.1) for (X, s̄). By construction the ir-
reducible components of the closed fiber X0 of X are precisely the images ̟(Y ) of the
irreducible components Y of X0.

If Y 6= σ(Y ), then Y is disjoint from σ(Y ) by Proposition 6.1 (b), and so Y maps
isomorphically to its image in X. Moreover, for any section s(i) meeting Y the conjugate
σ(s(i)) meets σ(Y ) and therefore not Y . Thus the number of sections s(i) meeting Y is
equal to the number of sections s̄( ī ) meeting ̟(Y ). This shows that the left hand sides
of (5.1) for Y and ̟(Y ) are equal. The stability at Y thus implies the stability at ̟(Y ).

If Y = σ(Y ), then Y is one of the irreducible components Ỹj. In it, each of the two
fixed points of σ either arises from the section s(i1) or s(i2) or is a singular point of X0.
Thus each of them contributes 1 to the left hand side of (5.1) for (X, s) and hence also for
(X, s̄). By the stability at Yj there must be at least one other contribution for (X, s), that
is, another section s(i) with i ∈ I r {i1, i2} or another irreducible component not among
Y1, . . . , Yr which meets Yj. Taking quotients, this section or irreducible component yields
another section or irreducible component which contributes 1 to the left hand side of (5.1)
for ̟(Y ) in (X, s̄). Again the stability at ̟(Y ) follows.
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Altogether the proposition is thus proved. (Note: The stability of (X, s̄) implies that
|Ī| > 3, so we did not need to prove this separately. It follows, however, at once from the
fact that I contains two fixed points of σ and that |I| > 3.) �

Continuing the analysis, let now T be the dual tree of X0 endowed with the marking
s : I → V (T ), as in Section 5. By functoriality σ induces an automorphism of T , which
we (yet again!) denote by σ, and which satisfies σ2 = id and σ◦ s = s◦ σ. Let t1, . . . , tr
denote the vertices of T which correspond to the irreducible components Ỹ1, . . . , Ỹr of X0.

Proposition 6.3 (a) The fixed points of σ on V (T ) are precisely the vertices t1, . . . , tr.

(b) The vertices t1, . . . , tr are distinct, connected in the given order by a string of edges,
and satisfy s(i1) = t1 and s(i2) = tr.

(c) All other vertices and edges come in pairs of two σ-conjugates.

(d) Let T/〈σ〉 denote the graph whose set of vertices is V (T )/〈σ〉, and where two vertices
{t, σ(t)} and {t′, σ(t′)} are joined by an edge if and only if t is joined by an edge to
t′ or to σ(t′). Then the dual tree of X0 = X0/〈σ〉 is naturally isomorphic to T/〈σ〉.

(e) Any subtree of T which contains t1, . . . , tr and at most one additional edge emanating
from each of these vertices maps isomorphically to its image in T/〈σ〉.

Proof. Assertions (a) through (c) follow from the construction and Proposition 6.1.
Assertion (d) follows from the definition of X0/〈σ〉 and Proposition 6.2. Note that for an
arbitrary finite tree with an automorphism of order 2 the quotient described in (d) is not
necessarily a tree, but in this case that follows from assertions (a) to (c). Finally, assertion
(e) is a direct consequence of (a) and (b). �

The sketch below shows what T and T/〈σ〉 might typically look like:

• t1

•
��
��

•
t2

tr−1

•
//

//

• OOOO •
oooo • OOOO •

oooo
• • • •
•

oooo • •
OOOO

• OOOO •
oooo

•
oooo OOOO

tr• •
• •
•

oooo

��
��

•
//

// OOOO

• •
• •

Dual tree T , where σ is the reflection
at the vertical axis of symmetry

•t̄1

•t̄2 •
//

//

• OOOO •
oooo

• •
•t̄r−1

•
OOOO

•
oooo

• OOOO
t̄r •

•
•

//
// OOOO

•
•

The quotient T/〈σ〉
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7 Setup

Now we return to postcritical orbits. Throughout the rest of this paper we fix a finite
mapping scheme (Γ, τ, i1, i2) with |Γ| > 3. Let

(7.1) Γ+ := τ(Γ) = {τn(i1), τn(i2) | n > 1}
be the associated subset of ‘strictly postcritical’ points.

Lemma 7.2 Then |Γ+| > 3.

Proof. Assume that |Γ+| 6 2. Since Γ = Γ+ ∪ {i1, i2}, we then have |Γ| 6 |Γ+|+ 2 6 4.
Suppose first that |Γ| = |Γ+| + 2. Then i1, i2 6∈ Γ+ while τ(i1), τ(i2) ∈ Γ+, so that

τ(i1), τ(i2) are both distinct from i1, i2. By condition 2.1 (c) we also have τ(i1) 6= τ(i2).
Thus the assumption |Γ+| 6 2 requires that Γ+ = {τ(i1), τ(i2)}. But condition 2.1 (c) also
implies that τ 2(i1) 6= τ(i1), τ(i2). This leaves no room for τ 2(i1) in Γ+, and we have a
contradiction.

Thus we must have |Γ| 6 |Γ+| + 1. With 3 6 |Γ| and |Γ+| 6 2 this leaves only the
case |Γ| = 3 and |Γ+| = 2. After interchanging i1 and i2, if necessary, we may assume that
Γ = {i2} ⊔ Γ+. If τ(i2) = i1, then τ(i1) must be the third element of Γ. Then τ 2(i1) must
be one of i1 = τ(i2) or τ(i1) itself, but both these cases are forbidden by condition 2.1 (c).

Thus τ(i2) is the third element of Γ. Then both τ(i1) and τ 2(i2) must be among i1
and τ(i2). But by condition 2.1 (c) neither of them can be τ(i2); hence we must have
τ(i1) = τ 2(i2) = i1. Since i1 6= τ(i2), this again contradicts condition 2.1 (c), and so the
case |Γ+| 6 2 is impossible. �

Construction 7.3 Let Γ1 denote the set of all γ ∈ Γr {i1, i2} with |τ−1(τ(γ))| = 1. For
all γ ∈ Γ1 we pick distinct new symbols denoted σ(γ) and set

Γ̃ := Γ ⊔ {σ(γ) | γ ∈ Γ1}.
We define a map σ : Γ̃ → Γ̃ by setting











γ 7→ σ(γ) 7→ γ for any γ ∈ Γ1,

γ 7→ γ for any γ ∈ {i1, i2}, and
γ 7→ γ′ for any γ ∈ Γ with τ−1(τ(γ)) = {γ, γ′} and γ 6= γ′.

The conditions in 2.1 imply that the three cases are mutually exclusive and that σ is
everywhere defined. By construction it is an automorphism with σ2 = id and precisely two
fixed points i1 and i2. We also define a map τ̃ : Γ̃ → Γ+ by setting

τ̃(γ) := τ̃(σ(γ)) := τ(γ) for all γ ∈ Γ.

By construction it satisfies τ̃ ◦ σ = τ̃ and has image τ(Γ) = Γ+. For any two distinct γ,
γ′ ∈ Γ we have τ̃(γ) = τ̃ (γ′) if and only if τ(γ) = τ(γ′) if and only if σ(γ) = γ′ by the
third case in the definition of σ. Together this implies that τ̃ induces a bijection

(7.4) Γ̃/〈σ〉 ∼−→ Γ+.

The composite Γ →֒ Γ̃ ։ Γ̃/〈σ〉 ∼→ Γ+ is, of course, just the map τ .
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8 Stable curves associated to quadratic morphisms

Now we fix a discrete valuation ring R with quotient field K and residue field k of charac-
teristic 6= 2. We impose no other restrictions on the characteristics of K and k. We also
fix a Γ-marked quadratic morphism (C, f, i1, i2, s) over K. Without loss of generality we
may assume that C = P1

K and i1 = 0 and i2 = ∞. Then f has the form f(x) = ax2+b
cx2+d

for

some
(

a b

c d

)

∈ PGL2(K) and is a Galois covering of degree 2 with the non-trivial covering
automorphism σ : x 7→ −x. Recall that σ has precisely the two fixed points i1 and i2. We
define a map s̃ : Γ̃ → C(K) by setting

{

s̃(γ) := s(γ) for all γ ∈ Γ,

s̃(σ(γ)) := σ(s(γ)) for all γ ∈ Γ1.

From the construction of Γ̃ and s̃ we readily deduce that s̃ is injective. We also consider
the map s+ := s|Γ+ : Γ+ → C(K). Together the construction implies that the following
diagram commutes:

(8.1)

C(K) C(K)
σ // C(K)

f // C(K)

Γ+ � � //
?�

s+

OO

Γ̃
σ //

?�

s̃

OO

Γ̃
τ̃ // //

?�

s̃

OO

Γ+.
?�

s+

OO

To analyze the possible degeneration of (C, f, i1, i2) over SpecR we view C as a smooth
marked curve of genus zero in two ways, namely once with the marking s+ : Γ+ →֒ C(K),
and once with the marking s̃ : Γ̃ →֒ C(K). Since 3 6 |Γ+| 6 |Γ̃|, they are both stable.

Let (X+, s+) denote the stable marked curve of genus zero over SpecR with disjoint
sections s+(γ) for all γ ∈ Γ+ which extends (C, s+). Let (X̃, s̃) denote the stable marked
curve of genus zero over SpecR with disjoint sections s̃(γ̃) for all γ̃ ∈ Γ̃ which extends
(C, s̃). Since s+ = s̃|Γ+ over K, the identity on C extends to a morphism X̃ ։ X+,
and the pair (X+, s+) can be obtained from (X̃, s̃|Γ+) by contracting suitable irreducible
components of the special fiber, as explained in Section 5. Also, by the uniqueness of
(X̃, s̃), the involution σ of C extends to an automorphism of X̃ which still satisfies σ2 = id
and σ ◦ s̃ = s̃ ◦ σ.

Proposition 8.2 The morphism f extends to a unique morphism f : X̃ → X+ and induces
an isomorphism

X̃/〈σ〉 ∼−→ X+.

Proof. As in Section 6 the quotient X̃/〈σ〉 inherits a marking indexed by Γ̃/〈σ〉 and
becomes a stable marked curve over SpecR by Proposition 6.2 (a). In the generic fiber
of X the involution σ is precisely the non-trivial covering automorphism of f , so that f
induces an isomorphism between the generic fibers of X̃/〈σ〉 and X+. This isomorphism
is compatible with the markings via the isomorphism Γ̃/〈σ〉 ∼→ Γ+ from (7.4). Since the
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stable extension of a marked curve is unique up to unique isomorphism, it follows that the
isomorphism extends to an isomorphism X̃/〈σ〉 ∼→ X+. �

From the commutative diagram (8.1) and Proposition 8.2 we deduce the commutative
diagram

(8.3)

X+(R) X̃(R)oo σ // X̃(R)
f // X+(R)

Γ+ � � //
?�

s+

OO

Γ̃
σ //

?�

s̃

OO

Γ̃
τ̃ // //

?�

s̃

OO

Γ+.
?�

s+

OO

Now we translate this information into combinatorial information on dual trees. Let
T+ and T̃ denote the respective dual trees of the closed fibers of X+ and X̃. As in (5.2)
we obtain natural maps s+ : Γ+ → V (T+) and s̃ : Γ̃ → V (T̃ ). Combining (5.4) with
Propositions 6.3 (d) and 8.2 we obtain a diagram

(8.4)

V (T+) � � //

!!!

V (T̃ )
σ // V (T̃ ) // // V (T̃ )/〈σ〉 ∼ // V (T+)

Γ+ � � //
?�

s+

OO

Γ̃
σ //

?�

s̃

OO

Γ̃ // //
?�

s̃

OO

τ̃

55Γ̃/〈σ〉
?�

OO

∼ // Γ+.
?�

s+

OO

This commutes everywhere except at the leftmost square marked !!!, for which the modified
rule is explained in Proposition 5.5 (c). The ingredients for the next section are the
combinatorics of this diagram and the local description of the quotient from Proposition
6.2 (b).

We will abbreviate the marked vertices of T+ and T̃ as follows:
{

P+
n := s+(τn(i1))

Q+
n := s+(τn(i2))

}

for all n > 1;

{

P̃n := s̃(τn(i1))

Q̃n := s̃(τn(i2))

}

for all n > 0.

Under the inclusion V (T+) →֒ V (T̃ ) on the left half of the diagram (8.4), the vertices P+
n

and Q+
n are constructed from P̃n and Q̃n by the procedure in Proposition 5.5 (c). The map

V (T̃ ) ։ V (T+) on the right half of the diagram (8.4) sends P̃n to P+
n+1 and Q̃n to Q+

n+1.

Also recall from Proposition 6.3 (a) that the fixed points of σ on V (T̃ ) are precisely the
vertices between and including P̃0 = t1 = s̃(i1) and Q̃0 = tr = s̃(i2).

Lemma 8.5 (a) Any vertex strictly between P̃0 and Q̃0 survives in T+.

(b) If P̃0 6= Q̃0, then P̃0 survives in T+ unless one of the following happens in T̃ :

(i) i1 6∈ Γ+, there is only one edge emanating from P̃0, and the only markings at P̃0

are P̃0 = s(i1) = s(γ) = σ(s(γ)) for a unique γ ∈ Γ+ with σ(γ) 6∈ Γ+.
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(ii) i1 6∈ Γ+, there is no other marking at P̃0, and the connected components of
T̃r{P̃0} are precisely that containing Q̃0 and two others of the form S and σ(S),
where σ(S) possesses no markings of the form s(γ) for γ ∈ Γ+.

Proof. Let t be any vertex between or equal to P̃0 and Q̃0. By Proposition 5.5 (a) it
survives in T+ if and only if

(8.6)
∣

∣s̃−1(t) ∩ Γ+
∣

∣ +

∣

∣

∣

∣

{

S connected component of T̃ r {t}
such that s̃−1(V (S)) ∩ Γ+ 6= ∅

}
∣

∣

∣

∣

> 3.

First note that, by the stability of T̃ , the vertex t must either have another marking or
another edge emanating from it, or both. In the second case the connected component of
T̃ r {t} determined by that edge must again contain some mark by stability. Moreover,
the marking at t or in that connected component must correspond to an element of Γ̃ that
is not fixed by σ, and hence have the form s(γ) or σ(s(γ)) for some γ ∈ Γ+. Since t itself
is fixed by σ, we may conjugate the connected component by σ, if necessary, after which
the marking is s(γ) for some γ ∈ Γ+. Then in either case, this marked point contributes 1
to the left hand side of (8.6).

If t lies strictly between P̃0 and Q̃0, we can apply the preceding remarks also to P̃0

and Q̃0 in place of t. It follows that the two connected components of T̃ r {t} containing
P̃0, respectively Q̃0, each contribute 1 to the left hand side of (8.6). Thus the total sum is
> 3, and so t survives in T+, as desired.

Now assume that t = P̃0 6= Q̃0. Then the connected component of T̃ r {t} containing
Q̃0 contributes 1 to the left hand side of (8.6). By the above remarks there must be another
marking at t or another connected component of T̃ r{t} that also contributes 1. Thus the
only way in which t cannot survive is that there is no other contribution. This requires
first of all that the marking P̃0 = s(i1) itself is removed, i.e., that i1 6∈ Γ+. Next it requires
that, if there is another marking at t, then t = s(γ) = σ(s(γ)) for a unique γ ∈ Γ+ with
σ(γ) 6∈ Γ+, and there is no other edge emanating from t. This is the case (i) of the lemma.
Thirdly, if there is no other marking at t, there must be a unique connected component
S of T̃ r {t} which contributes 1 to the left hand side of (8.6). Then T̃ r {t} consists of
the three connected components S and σ(S) and that containing Q̃0, where σ(S) cannot
contain any marking of the form s(γ) for γ ∈ Γ+. This is the case (ii) of the lemma, and
we are done. �

Example 8.7 We continue the example in Remark 3.9 with the mapping scheme Γ

i1 τ(i1)

• // •__

• // • // •


i2 τ(i2) τ2(i2)
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The definitions of Γ+ and Γ̃ imply that in this case

Γ+ = {i1, τ(i1), τ(i2), τ 2(i2)},
Γ̃ = {i1, τ(i1), σ(τ(i1)), i2, τ(i2), τ 2(i2)}.

Consider the quadratic morphism (P1
Q, x 7→ x2−4

x2+2
, 0,∞) over K := Q, which has postcritical

orbit Γ. The induced Γ̃-marking on P1
Q is given by the tables

i s̃(i)
i1 0

τ(i1) −2
σ(τ(i1)) 2

i s̃(i)
i2 ∞

τ(i2) 1
τ 2(i2) −1

Here the images of τ(i1) and τ(i2), respectively of σ(τ(i1)) and τ 2(i2), are congruent
modulo 3, but there are no other congruences. Thus the stable extension X̃ over R := Z(3)

is obtained by blowing up P1 × SpecZ(3) in the two points x = ±1 of the special fiber.

The special fiber of X̃ has three irreducible components, one met by the sections 0 and ∞,
one by the sections −2 and 1, and one by the sections 2 and −1, and the first of these
irreducible components meets each of the other two in an ordinary double point.

The stable extension X+ can be obtained from X̃ by removing the sections s̃(i2) and
s̃(σ(τ(i1))) and contracting unstable irreducible components of the special fiber. Here the
blowup at x = −1 in the special fiber is reversed, while the blowup at x = 1 in the special
fiber remains, because the points τ(i1) and τ(i2) remain in Γ+. The closed fiber of X+

possesses two irreducible components, one met by the sections 0 and −1, the other by the
sections −2 and 1. One easily checks that the same description of the closed fiber of X+

is obtained from the isomorphism X̃/〈σ〉 ∼= X+ of Proposition 8.2.
The associated dual trees with their markings and the maps between them are sketched

below:

•
P+
0 =Q+

2
**•

P̃0=Q̃0

��
��

��
�

88
88

88
8

&&

•
P+
0 =Q+

2

•
P+
1 =Q+

1

))•

--

P̃1=Q̃1

•

00

σ(P̃1)=Q̃2

•
P+
1 =Q+

1

T+ � � // T̃ // // T+

(σ = horizontal reflection)

Question 8.8 As some non-trivial types of degeneration can occur, while in the next
section we will exclude others, it seems interesting to ask which types of degeneration are
actually possible in general.
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9 Excluding certain types of bad reduction

In this section we prove that T̃ does not contain subtrees of certain kinds with certain
marked points. In each case we indicate a subtree graphically by letting a dashed line
denote a connected sequence of distinct edges, possibly empty. Thus vertices connected by
one or more dashed lines may be equal. Sometimes we label a dashed line by the length
of the associated path, i.e., by the number of its edges. Labeling a dashed line by ‘> 0 ’
means that its length is > 0, and in that case vertices separated by it are distinct.

We begin with the following lemma, whose proof is typical for the arguments in this
section.

Lemma 9.1 The tree T̃ does not contain a subtree of the form:

•
�
�
� P̃0 •

�
�
� P̃1

•
>0

�
�
�

>0 ____ • >0 ____ • P̃2

•
�
�
� ____ • Q̃1

• Q̃0

Proof. For any n > 2 let An denote a subtree of T̃ of the form:

(9.2)
•
�
�
� P̃0 •

�
�
� P̃1 •

�
�
� P̃n−1

•
>0

�
�
�

>0 ____ • >0 ____

t

>0 ____ • >0 ____ • P̃n

•
�
�
� ____ • Q̃1

• Q̃0

We must show that T̃ does not contain a subtree of the form A2. Suppose to the contrary
that it does. We will prove by induction that T̃ then contains a subtree of the form An for
every n > 2. But in a subtree of the form An the vertices P̃0, . . . , P̃n are all distinct, which
is impossible for n > |Γ|. Thus we obtain a contradiction, and the lemma follows.

For the induction step assume that T̃ contains a subtree of the form An for some n > 2.
In this subtree, any vertex that is fixed by σ, that is, any vertex equal to P̃0 or Q̃0 or
between them, has at most one neighbor that is not fixed by σ. By Proposition 6.3 (e) this
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implies that the subtree maps isomorphically to its image in T̃ /〈σ〉. In view of the right
half of the diagram (8.4) it follows that T+ contains a subtree of the form:

(9.3)
•
�
�
� P+

1 •
�
�
� P+

2 •
�
�
� P+

n

•
>0

�
�
�

>0 ____ • >0 ____ >0 ____ • >0 ____ •P+
n+1

• Q+
1

On the other hand T+ can be obtained from T̃ by the stabilization procedure described
in Section 5. Conversely this means that T̃ can be obtained from T+ by inserting edges
and thereby moving certain marked points apart or further apart, but never the opposite.
Thus from (9.3) it follows that T̃ contains a subtree of the form:

(9.4)
•
�
�
� P̃1 •

�
�
� P̃2 •

�
�
� P̃n

•
>0

�
�
�

>0 ____t̃ • >0 ____ >0 ____ • >0 ____ •P̃n+1

• Q̃1

Here t̃ is the unique vertex in T̃ where the shortest path from Q̃1 to P̃2 branches off towards
P̃1 or where it meets P̃1. The same properties characterize the vertex t in the diagram (9.2);
hence we must have t̃ = t. By combining the diagrams (9.2) and (9.4) at this point it thus
follows that T̃ contains a subtree of the form An+1, as desired. �

Now assume that T̃ contains a subtree of the form:

(9.5)
•
a

�
�
� P̃0

•
e>0

�
�
�

b ____t • P̃1

•
c

�
�
�

d ____t′ • Q̃1

• Q̃0

Our ultimate goal is to show that such a subtree is impossible, but that will require several
steps. First observe that, as in the proof of Lemma 9.1, by Proposition 6.3 (e) this subtree
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maps isomorphically to its image in T̃ /〈σ〉. In view of the right half of the diagram (8.4)
it follows that T+ contains a subtree of the form:

(9.6)
•
a

�
�
� P+

1

•
e>0

�
�
�

b ____t̄ •P+
2

•
c

�
�
�

d ____t̄′ • Q+
2

• Q+
1

On the other hand T+ can also be obtained from T̃ by stabilization with respect to the
marking s̃|Γ+. Here the vertices t and t′ lie between P̃0 and Q̃0; hence we can apply Lemma
8.5 to them.

Case 1: The vertex t survives in T+: In this case, constructing T+ from T̃ by
stabilization, we deduce from (9.5) that T+ contains a subtree of the form

(9.7)
•
�
�
�

b′ ____t •P+
1

• Q+
1

with 0 6 b′ 6 b.

Lemma 9.8 The case that t survives in T+ and that b′ > a is impossible.

Proof. Suppose that b′ > a. Then b > b′ > a > 0 implies that b > 0. Moving along the
shortest path in T+ from P+

1 towards Q+
1 in the diagrams (9.6) and (9.7), the inequality

b′ > a shows that we first reach the branch off point towards P+
2 before reaching t. This

implies that T+ contains a subtree of the form:

•
a

�
�
� P+

1

•
�
�
�
b′−a>0____t • b>0 ____ •P+

2

• Q+
1
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Since T̃ can be obtained from T+ by inserting edges, it follows that T̃ contains a subtree
of the form:

•
�
�
� P̃1

•
�
�
�

>0 ____t • >0 ____ • P̃2

• Q̃1

Combining this with the subtree (9.5) it follows that T̃ contains a subtree of the form
forbidden by Lemma 9.1. Thus the case is impossible. �

Lemma 9.9 The case that both t and t′ survive in T+ and that b′ = a is impossible.

Proof. Suppose that b′ = a. Measuring the distances along the shortest path in T+

from P+
1 towards Q+

1 in the diagrams (9.6) and (9.7), we then find that t̄ = t. Let t′′

be the vertex in T̃ adjacent to t in the direction towards t′. Then either t′′ = t′ and it
survives in T+ by assumption, or it lies strictly between t and t′, and hence also strictly
between P̃0 and Q̃0, in which case it survives in T+ by Lemma 8.5 (a). By comparing
the diagrams (9.5) and (9.6) we then find that t′′ is mapped to itself under the projection
T̃ ։ T̃ /〈σ〉 ∼= T+. It follows that the edge (t, t′′) of T̃ survives in T+ under stabilization
and is mapped to itself under the projection T̃ ։ T̃ /〈σ〉 ∼= T+.

By the definition of the dual tree, the edge (t, t′′) represents a singular point x̃0 of the
closed fiber of X̃, respectively a singular point x+

0 of the closed fiber of X+. The fact
that the edge survives under stabilization means that the stabilization morphism X̃ → X+

maps x̃0 to x+
0 and is a local isomorphism there. The fact that the edge is mapped to

itself under the projection T̃ ։ T̃ /〈σ〉 ∼= T+ means that the morphism X̃ ։ X̃/〈σ〉 ∼= X+

also maps x̃0 to x+
0 . By Proposition 6.2 (b) the latter implies that X̃ is étale locally

isomorphic to SpecR[y, z]/(yz − πn) at x̃0, and that X+ is étale locally isomorphic to
SpecR[u, v]/(uv − π2n) at x+

0 , for some integer n > 1. As the other morphism X̃ → X+

is a local isomorphism at x̃0, it follows that the two charts are étale locally isomorphic at
the singular point of the fiber. But the local equations yz = πn and uv = π2n are not
equivalent for n > 1; hence the case is not possible. �

Lemma 9.10 The case that both t and t′ survive in T+ is impossible.

Proof. Suppose that t and t′ both survive in T+. Then any vertex strictly between t and
t′ lies strictly between P̃0 and Q̃0 and hence also survives in T+ by Lemma 8.5 (a). Thus
from (9.5) we deduce that T+ contains a subtree of the form

(9.11)
•
e>0

�
�
�

b′ ____t •P+
1

• d′ ____t′ • Q+
1
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with 0 6 b′ 6 b and 0 6 d′ 6 d, but where where the distance e between t and t′ has not
changed. Comparing the distances between P+

1 and Q+
1 in both (9.6) and (9.11) we find

that a + e+ c = b′ + e + d′ and hence

(9.12) a + c = b′ + d′.

By Lemmas 9.8 and 9.9 we already know that b′ < a. On the other hand, the present
situation is invariant under interchanging the two critical points s(i1) and s(i2). This
interchanges P̃i with Q̃i and flips the diagrams (9.5) and (9.11) upside down. In particular,
it interchanges the vertices t and t′ and the distances (a, b′) and (c, d′). Thus by symmetry,
the proof of b′ < a also shows that d′ < c. But together these inequalities imply that
b′ + d′ < a + c, which contradicts the equality (9.12). Thus the case that both t and t′

survive in T+ is impossible. �

Case 2: The vertex t does not survive in T+: By Lemma 8.5 this requires that
t = P̃0 and a = 0, so that the subtree of T̃ in (9.5) really looks like this:

(9.13)

•
e>0

�
�
�

b ____
t=P̃0 • P̃1

•
c

�
�
�

d ____t′ • Q̃1

• Q̃0

Then the subtree of T+ in (9.6) looks like this:

(9.14)

•
e>0

�
�
�

b ____
t̄=P+

1 •P+
2

•
c

�
�
�

d ____t̄′ • Q+
2

• Q+
1

Lemma 9.15 The case that t does not survive in T+ and that b > 0 is impossible.

Proof. Suppose that b > 0. Since t = P̃0 does not survive, we must then be in the
case (ii) of Lemma 8.5 (b), with P̃1 in the connected component S of T̃ r {P̃0}. The
condition in 8.5 (b) (ii) implies that all markings of vertices in S are of the form s̃(γ) for
γ ∈ Γ+. This implies that all vertices in S satisfy the condition in Proposition 5.5 (a) and
therefore survive in T+. Thus on passing from T̃ to T+, the whole subtree S is preserved.
In particular P̃1 = P+

1 survives in T+, and all distances within S are preserved.
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Let t′′′ be the vertex in S connected by an edge to t = P̃0. Since t′′′ survives but t
does not, the edge (t′′′, t) is either moved from t to another vertex t̃ in T̃ r S or removed
entirely. Suppose that during the stabilization process, some marking in T̃ r S is moved
into S. Since marked points are moved only when end vertices, i.e., leaves of the tree are
removed, this requires that the whole complement T̃ rS is pushed onto t′′′. Thus we have
two possibilities: Either the edge (t′′′, t) is replaced by an edge (t′′′, t̃ ) for some t̃ outside S
and all markings of T̃ outside S remain outside S. Or the edge (t′′′, t) is removed and all
markings of T̃ outside S are moved onto t′′′.

In either case we observe that t′′′ lies between Q+
1 and P+

1 . Note also that the diagram
(9.14) and the assumption b > 0 show that P+

1 lies strictly between Q+
1 and P+

2 in T+.
Thus we have the following subtree of T+:

(9.16)

•
�
�
� ____
t′′′

• >0 ____
P+
1 •

P+
2

• Q+
1

This shows that P+
2 lies in S and that Q+

1 , P
+
1 , P+

2 are all distinct.
If P̃2 does not lie in S, we must have the second case of the above remarks, and so

during stabilization, the points P̃2 and Q̃1 are both moved to t′′′. This contradicts the fact
that P+

2 6= Q+
1 . Thus P̃2 lies in S and is therefore equal to P+

2 .
Moreover, the subtree (9.16) shows that P+

1 lies between t′′′ and P+
2 within the image

of S. As S is mapped isomorphically to its image, it follows that P̃1 lies between t′′′ and
P̃2 within S. Thus T̃ contains a subtree of the form:

•
�
�
� ____
t′′′

• >0 ____
P̃1 •

P̃2

• Q̃1

Combining this with the diagram (9.13) we deduce that T̃ contains a subtree of the form:

•
>0

�
�
�

>0 ____
P̃0 • >0 ____

P̃1 • P̃2

•
�
�
� ____ • Q̃1

• Q̃0
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But this is a special case of the subtree excluded by Lemma 9.1. Thus the case under
consideration is impossible. �

Lemma 9.17 The case that precisely one of t, t′ survives in T+ is impossible.

Proof. By the same symmetry as in the proof of Lemma 9.10, we may without loss of
generality assume that t survives in T+ while t′ does not. Then by Lemma 9.8 we must
have b′ 6 a. On the other hand, by Lemma 9.15 and the remarks preceding it, and by
symmetry, we must also have c = d = 0. Thus the subtree of T̃ in the diagram (9.5) looks
like this:

•
a

�
�
� P̃0

•
e

�
�
�

b ____t • P̃1

•
t′=Q̃0=Q̃1

Consequently, the subtree of T+ obtained by taking quotients in (9.6) looks like this:

•
a

�
�
� P+

1

•
e

�
�
�

b ____ •P+
2

•Q+
1 =Q+

2

Moreover, the subtree of T+ obtained by stabilization in (9.7) looks like this:

•
e′

�
�
�

b′ ____t •P+
1

• Q+
1

Here 0 6 e′ < e, because the vertex t′ = Q̃1 does not survive in T+. Comparing the
distances between P+

1 and Q+
1 in the last two diagrams we find that a + e = b′ + e′. But

since b′ 6 a and e′ < e, we also have b′ + e′ < a + e. Together this gives a contradiction;
hence the case under consideration is not possible. �

Lemma 9.18 The case that none of t, t′ survives in T+ is impossible.
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Proof. If none of t, t′ survives, by Lemma 9.15 and the remarks preceding it, and by
symmetry, we must have a = b = c = d = 0. Thus the subtree of T̃ in the diagram (9.5)
looks like this:

•
e

�
�
�

t=P̃0=P̃1

•
t′=Q̃0=Q̃1

Consequently, the subtree of T+ obtained by taking quotients in (9.6) looks like this:

•
e

�
�
� P+

1 =P+
2

•Q+
1 =Q+

2

Moreover, the subtree of T+ obtained by stabilization has the form

•
e′

�
�
� P+

1

• Q+
1

Here 0 6 e′ 6 e − 2, because both t and t′ do not survive in T+. But comparing the
distances between P+

1 and Q+
1 in the last two diagrams we find that e = e′, which yields a

contradiction. Thus the case under consideration is not possible. �

By combining Lemmas 9.10, 9.17, and 9.18 we thus arrive at the following conclusion:

Theorem 9.19 The tree T̃ does not contain a subtree of the form (9.5):

•
�
�
� P̃0

•
>0

�
�
� ____ • P̃1

•
�
�
� ____ • Q̃1

• Q̃0

31



10 Proof of Theorem 3.3

We must show that the fiber of the moduli space MΓ over any field k of characteristic
6= 2 is finite. Suppose that this is not the case. Then the fiber contains an irreducible
affine curve D. After extending k and shrinking D, if necessary, we may assume that D is
smooth over k. Let D̄ be a smooth compactification of D over k. Then over the local ring
at each point of D̄ r D we can study the degeneration as in Sections 8 and 9. The key
consequence is this:

Lemma 10.1 The cross ratio of s(i1), s(i2), s(τ(i1)), s(τ(i2)) is constant over D.

Proof. The cross ratio of four points in P1 induces an isomorphism from the fine moduli
space of stable 4-pointed curves of genus zero to P1. Here the smooth curves correspond to
cross ratios 6= 0, 1, ∞, while the three exceptional values correspond to degenerate curves
consisting of two rational curves connected by an ordinary double point, each of which
carries two marked points. The three degenerate curves correspond to the three ways of
separating the four points into two pairs.

In our case, if the elements i1, i2, τ(i1), τ(i2) of Γ are not all distinct, some of the
corresponding marked points are equal, and so their cross ratio is 0, 1, or ∞, in which case
we are done. So assume that i1, i2, τ(i1), τ(i2) are distinct.

Then the corresponding sections are disjoint, and so their cross ratio defines a morphism
D → P1

k r {0, 1,∞}, which classifies the associated smooth stable curve with the four
distinct marked points s(i1), s(i2), s(τ(i1)), s(τ(i2)). Assume that this morphism is not
constant. Then the unique extension D̄ → P1

k is surjective. Pulling back the universal
family from the fine moduli space P1

k we obtain a stable 4-pointed curve of genus zero
over D̄. By surjectivity, all possible degenerations must occur. In particular, there is a
point in D̄rD where the points s(i1) and s(τ(i1)) lie in one irreducible component of the
fiber, while s(i2) and s(τ(i2)) lie in the other. Let R denote the local ring of D̄ at this
point and X ′ the pullback of the universal family to SpecR and s′ the associated marking.
Then the dual tree T ′ of the closed fiber of X ′ looks like this:

•
1

�
�
�

s′(i1)=s′(τ(i1))

•
s′(i2)=s′(τ(i2))

Now let (X̃, s̃) be the stable marked curve over SpecR described in Section 8. By
construction, the generic fiber of (X ′, s′) is obtained from the generic fiber of (X̃, s̃) by
forgetting some marked points. Thus the whole family (X ′, s′) is obtained from (X̃, s̃)
by the stabilization process described in Section 5. In the same way the dual tree T ′ is
obtained from the dual tree T̃ .
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The above form of T ′ shows that the markings P̃0 = s̃(i1) and P̃1 = s̃(τ(i1)) of T̃ are
moved to one vertex of T ′, and the markings Q̃0 = s̃(i2) and Q̃1 = s̃(τ(i2)) are moved to
a different vertex of T ′. Since we can, conversely, obtain T̃ from T ′ by inserting edges and
thereby moving certain marked points apart or further apart, but never the opposite, it
follows that T̃ contains a subtree of the form:

•
D

D
DP̃0 • P̃1

•
>0

�
�
�

z
z

z

•
D

D
D

•
z

z
z

Q̃0 • Q̃1

But this contradicts Theorem 9.19. �

The remaining arguments are quite pedestrian. (Although I expect that with the
methods of the preceding section one can also exclude certain subtrees of T̃ containing
the marked points P̃0, P̃1, P̃2, Q̃0, Q̃1, and from this deduce that the parameter t discussed
below is constant.)

Since |Γ| > 3 by assumption, we may without loss of generality assume that τ(i1) 6=
i1, i2. Then as in the proof of Proposition 1.7 we may assume that C = P1 × D with
s(i1) = 0 and s(i2) = ∞ and s(τ(i1)) = 1, and hence f(x) = cx2+1

dx2+1
for c, d ∈ Γ(D,OD).

Then s(τ(i2)) = f(∞) = c
d
, and by Lemma 10.1 this is a constant section C → P1. Since f

is a well-defined quadratic morphism in every fiber, we also have c 6= d everywhere. Thus
in projective coordinates we can write (c : d) = (α : β) for constants α 6= β. This means
that we can substitute c = αt and d = βt for some function t on C. Thereafter we have

(10.2) f(x) =
αtx2 + 1

βtx2 + 1
.

Lemma 10.3 There exist k > ℓ > 0 with fk(0) = −f ℓ(0).

Proof. Since Γ is finite, there exist n > m > 0 with τn(i1) = τm(i1). Among these pairs
(n,m) select one where m is minimal. If m = 0, the equation simply reads τn(i1) = i1 and
implies that fn(0) = fn(s(i1)) = s(τn(i1)) = s(i1) = 0. Then f 2n(0) = 0 = −fn(0) and the
desired assertion holds with (k, ℓ) = (2n, n). If m = 1, we have τ(τn−1(i1)) = τn(i1) = τ(i1)
and τn−1(i1) 6= i1, contradicting the condition 2.1 (c). So assume that m > 2. Then we
have τn−1(i1) 6= τm−1(i1), and hence fn(0) = fm(0) while fn−1(0) 6= fm−1(0). Since f is a
Galois covering of degree 2 with the non-trivial Galois automorphism x 7→ −x, this implies
that fn−1(0) = −fm−1(0). Thus the desired assertion holds with (k, ℓ) = (n−1, m−1). �

To finish the proof of Theorem 3.3, we must show that for any Γ-marked quadratic
morphism of the form (10.2) over a curve over a field, where α 6= β are fixed constants,
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the parameter t is constant as well. We will achieve this by writing out the equation
fk(0) = −f ℓ(0) in terms of t and showing that it has only finitely many solutions over any
field of characteristic 6= 2.

Case 1: β = 0. This is the case where f(∞) = ∞, that is, where τ(i2) = i2 in Γ.
Here we may without loss of generality assume that α = 1, so that f(x) = tx2 + 1. Then
gn := fn(0) ∈ Z[t] is characterized recursively by

g0 := 0 and gn+1 := tg2n + 1 for all n > 0.

By an easy induction this implies that for every n > 1 the polynomial gn is monic of degree
2n−1−1 in t. The equation fk(0) = −f ℓ(0) from Lemma 10.3 now has the form gk+gℓ = 0.
Since k > ℓ > 0, this equation is monic of degree 2k−1−1 in t. It therefore has only finitely
many solutions over any field, as desired.

Case 2: α = 0. This is the case where f(∞) = 0, that is, where τ(i2) = i1 in Γ. Here
we may without loss of generality assume that β = 1, so that f(x) = 1

tx2+1
. In projective

coordinates we can then write fn(0) = (gn : hn) where gn, hn ∈ Z[t] are characterized
recursively by

{

g0 := 0

h0 := 1

}

and

{

gn+1 := h2
n

hn+1 := tg2n + h2
n

}

for all n > 0.

Lemma 10.4 Here for every n > 0 the polynomial hn is monic in t.

Proof. The recursion formula implies that h0 = h1 = 1 and hn+2 = th4
n + h2

n+1 for all
n > 0. If hn and hn+1 are monic, then th4

n and h2
n+1 are monic of odd, respectively, even

degree. Then hn+2 is monic of the greater of these two degrees, and the lemma follows by
induction. �

In projective coordinates the equation fk(0) = −f ℓ(0) now reads (gk : hk) = (−gℓ : hℓ),
which means that gkhℓ + gℓhk = 0. By the recursion formula this is equivalent to

h2
k−1hℓ + h2

ℓ−1hk = 0.

Here Lemma 10.4 implies that both summands are monic in t of certain degrees. If these
degrees are equal, the highest term in t of the equation has the form 2tN , while otherwise
it has the form tN , for some N > 0. In either case the equation has only finitely many
solutions over any field of characteristic 6= 2, as desired.

Case 3: α, β 6= 0. This is the case where f(∞) = α
β
6= 0, ∞. Since α 6= β we also have

f(∞) 6= 1, so that s(i1) = 0 and s(i2) = ∞ and s(τ(i1)) = 1 and s(τ(i2)) = f(∞) = α
β

are all distinct. In projective coordinates we can write fn(0) = (gn : hn) where gn,
hn ∈ Z[α, β, t] are characterized recursively by

{

g0 := 0

h0 := 1

}

and

{

gn+1 := αtg2n + h2
n

hn+1 := βtg2n + h2
n

}

for all n > 0.
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Lemma 10.5 Here g1 = h1 = 1, and for every n > 2 we have

gn = α2n−1−1 · t2n−1−1 + lower terms in t,

hn = β · α2n−1−2 · t2n−1−1 + lower terms in t.

Proof. The recursion formula implies that g1 = h1 = 1 and g2 = αt+ 1 and h2 = βt+ 1.
In particular the second statement holds for n = 2. For arbitrary n > 2 it follows by direct
induction. �

In projective coordinates the equation fk(0) = −f ℓ(0) now reads (gk : hk) = (−gℓ : hℓ),
which means that gkhℓ + gℓhk = 0. Recall that k > ℓ > 0. If ℓ > 2, from Lemma 10.5 we
can deduce that

gkhℓ + gℓhk = 2 · β · α2k−1+2ℓ−1−3 · t2k−1+2ℓ−1−2 + lower terms in t.

With fixed constants α, β 6= 0 this equation has only finitely many solutions over a field
of characteristic 6= 2, as desired. If ℓ = 1, we still have k > 2, and so from Lemma 10.5 we
deduce that

gkhℓ + gℓhk = gk + hk = (α+ β) · α2k−1−2 · t2k−1−1 + lower terms in t.

For fixed constants α, β with α, α + β 6= 0 this equation again has only finitely many
solutions over a field of characteristic 6= 2. Thus we must do one more case distinction.

Case 3a: ℓ > 1 or α + β 6= 0. In this case the above analysis already shows that the
equation fk(0) = −f ℓ(0) has only finitely many solutions over any field of characteristic
6= 2, as desired.

Case 3b: ℓ = 1 and α + β = 0. In this case we have f(∞) = α
β
= −1 and hence

f 2(∞) = f(−1) = f(1) = f 2(0). Moreover, since k > ℓ = 1, we can deduce from this
and the equation fk(0) = −f ℓ(0) that fk(∞) = fk(0) = −f(0) = −1 = f(∞). As ∞ is a
ramification point of f , this implies that fk−1(∞) = ∞ with k− 1 > 0. Thus the mapping
scheme Γ has the form

i1 τ(i1)

• // •

  A
AA

AA
AA

i2 τ(i1) τ2(i1)

• // • // • // • // . . . // •hh

Set k′ := 3(k − 1) and ℓ′ := 2(k − 1). Then the equation fk−1(∞) = ∞ implies that
fk′(∞) = ∞ = −f ℓ′(∞) with k′ > ℓ′ > 2. Thus after interchanging the roles of 0 and ∞,
which amounts to interchanging i1 and i2 in Γ, we can replace (k, ℓ) by (k′, ℓ′). Afterwards
we are back in the case 3a, which has already been completed.

This finishes the proof of Theorem 3.3.
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