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Abstract

Let G be a connected simple semisimple algebraic group over a local
field F of arbitrary characteristic. In a previous article by the author
the Zariski dense compact subgroups of G(F ) were classified. In the
present paper this information is used to give another proof of a theo-
rem of Prasad [8] (also proved by Margulis [3]) which asserts that, if G is
isotropic, every non-discrete closed subgroup of finite covolume contains
the image of G̃(F ), where G̃ denotes the universal covering of G. This
result played a central role in Prasad’s proof of strong approximation.
The present proof relies on some basic properties of Weil restrictions over
possibly inseparable field extensions, which are also proved here.1
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1 Weil restriction of linear algebraic groups

Let F be a field and F ′ a subfield such that [F/F ′] < ∞. In this section

we discuss some properties of the Weil restriction RF/F ′G where G is a linear

algebraic group over F . We are interested particularly in the case that F/F ′ is

inseparable, where the Weil restriction involves some infinitesimal aspects. Thus

the natural setting is that of group schemes. We assume that G is a connected

affine group scheme of finite type that is smooth over F . The smoothness

condition is equivalent to saying that G is reduced and “defined over F” in the

terminology of [11] Ch.11.

Throughout, we will speak of a scheme over a ring R when we really mean

a scheme over SpecR. Similarly, for any ring homomorphism R′ → R and any

scheme X ′ over R′ we will abbreviate X ′ ×R′ R := X ′ ×Spec R′ SpecR. The

basic facts on Weil restrictions that we need are summarized in [4] Appendix 2–3.

Throughout the following we abbreviate

G′ := RF/F ′G.

By [4] A.3.2, A.3.7 this is a connected smooth affine group scheme over F ′. The

universal property of the Weil restriction identifies G′(F ′) with G(F ).

Next, we fix an algebraic closure E′ of F ′ and abbreviate E := F ⊗F ′ E′.

With Σ := HomF ′(F,E′) there is then a unique decomposition E =
⊕

σ∈ΣEσ,

where each Eσ is a local ring with residue field E′ and the composite map

F → Eσ −→→ E′ is equal to σ. The Weil restriction from any finite dimensional

commutative E′-algebra down to E′ is defined, and by [4] A.2.7–8 we have

natural isomorphisms

G′ ×F ′ E′ ∼= RE/E′(G×F E)

= RE/E′

(

⊔

σ∈Σ

G×F Eσ

)

∼=
∏

σ∈Σ

Gσ

(1.1)

with

Gσ := REσ/E′(G×F Eσ).

These isomorphisms are functorial in G and equivariant under Aut(E′/F ′),

which acts on the right hand side by permuting the factors according to its

action on Σ. Next, for every σ ∈ Σ we fix a filtration of Eσ by ideals

Eσ % Iσ,1 % . . . % Iσ,q−1 % Iσ,q = 0
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with subquotients of length 1. Here q is the degree of the inseparable part

of F/F ′. We also choose a basis of every successive subquotient. For every

1 ≤ i ≤ q there is a natural homomorphism

Gσ = REσ/E′(G×F Eσ) −→ R(Eσ/Iσ,i)/E′

(

G×F (Eσ/Iσ,i)
)

.

Let Gσ,i denote its kernel. By [4] A.3.5 we find that each Gσ,i is smooth over

F ′ and there are canonical isomorphisms

Gσ/Gσ,1
∼= G×F,σ E

′(1.2)

and

Gσ,i/Gσ,i+1
∼= LieG⊗F,σ Ga,E′(1.3)

for all 1 ≤ i ≤ q − 1, where Ga denotes the additive group of dimension 1.

Moreover, this description is functorial in G. Namely, let H be another smooth

group scheme over F and define H ′ := RF/F ′H , Hσ and Hσ,i in the obvious

way. Then any homomorphism ϕ : H → G induces homomorphisms RF/F ′ϕ :

H ′ → G′, Hσ → Gσ and Hσ,i → Gσ,i and the resulting homomorphisms on

subquotients are just

ϕ× id : H ×F,σ E
′ −→ G×F,σ E

′(1.4)

and

dϕ⊗ id : LieH ⊗F,σ Ga,E′ −→ LieG⊗F,σ Ga,E′ .(1.5)

Recall that an isogeny of algebraic groups is a surjective homomorphism

with finite kernel. An isogeny ϕ is separable if and only if its derivative dϕ is

an isomorphism.

Proposition 1.6 Let ϕ : H → G be a homomorphism of connected smooth

linear algebraic groups over F .

(a) If F/F ′ is separable, then RF/F ′ϕ : H ′ → G′ is an isogeny if and only if

ϕ is an isogeny.

(b) If F/F ′ is inseparable, then RF/F ′ϕ : H ′ → G′ is an isogeny if and only

if ϕ is a separable isogeny.

Proof. In the separable case we have E′ ∼−−→ Eσ, and assertion (a) follows

directly from the decomposition 1.1 and the functoriality 1.4. So assume that

F/F ′ is inseparable, i.e., that q > 1. First note that dimH ′ = [F/F ′] · dimH

and dimG′ = [F/F ′] · dimG, by the successive extension above or by [4] A.3.3.

Thus if either ϕ or RF/F ′ϕ is an isogeny, we must have dimH = dimG.

If RF/F ′ϕ is an isogeny, its kernel is finite; hence so is the kernel of its

restriction Hσ,q−1 → Gσ,q−1. By 1.5 this means that dϕ is injective. For

dimension reasons it follows that dϕ is an isomorphism; hence ϕ is a separable

isogeny, as desired.

Conversely, suppose that ϕ is a separable isogeny. Then all the homomor-

phisms on subquotients 1.4 and 1.5 induced by RF/F ′ϕ are surjective. Using
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the snake lemma inductively one deduces that RF/F ′ϕ itself is surjective. For

dimension reasons it is therefore an isogeny, as desired. q.e.d.

Theorem 1.7 If G is reductive and F ′ infinite, then G′(F ′) is Zariski dense

in G′.

Proof. If F/F ′ is separable, the isomorphism 1.1 shows that G′ is reduc-

tive. In that case the assertion is well-known: see [11] Cor.13.3.12 (i). We will

adapt the argument to the general case.

Assume first that G = T is a torus. Choose a finite separable extension

F1/F which splits T , and fix an isomorphism Gn
m,F1

∼−−→ T ×F F1, where Gm

denotes the multiplicative group of dimension 1. Combining this with the norm

map yields a surjective homomorphism

RF1/F Gn
m,F1

−→ RF1/F (T ×F F1)
Nm−−−→ T.

Since F1/F is separable, this morphism is smooth. By [4] A.2.4, A.2.12 it

induces a smooth homomorphism

RF1/F ′Gn
m,F1

∼= RF/F ′RF1/F Gn
m,F1

−→ RF/F ′T.

In particular, this morphism is dominant. On the other hand we have an

open embedding Gn
m,F1

↪→ An
F1

and hence, by [4] A.2.11, an open embedding

RF1/F ′Gn
m,F1

↪→ RF1/F ′An
F1

. It is trivial to show that RF1/F ′An
F1

∼= And
F ′ , where

d = [F1/F
′]. It follows that the F ′-rational points in RF1/F ′Gn

m,F1
are Zariski

dense, and so their images form a Zariski dense set of F ′-rational points in

RF/F ′T , proving the theorem in this case.

If G is arbitrary let T be a maximal torus of G. As RF/F ′T is commuta-

tive, it possesses a unique maximal torus T ′, which is smooth over F ′ by [11]

Thm.13.3.6.

Lemma 1.8 RF/F ′T is the centralizer of T ′ in G′.

Proof. If F/F ′ is separable, this follows from the fact that RF/F ′T is a

maximal torus of G′. So assume that F/F ′ is inseparable of characteristic p.

Since (RF/F ′T )/T ′ is unipotent, we have T ′ = (RF/F ′T )pn

for suitable n� 0.

As T ′ is smooth and the rational points of RF/F ′T are Zariski dense, the central-

izer of T ′ is equal to the centralizer of (RF/F ′T )(F ′)pn

. Note that the universal

property of the Weil restriction identifies (RF/F ′T )(F ′) with T (F ).

Consider a scheme S′ over F ′ and an S′-valued point ϕ′ : S′ → G′. Via the

universal property of the Weil restriction ϕ′ corresponds to an S′ ×F ′ F -valued

point ϕ : S′ ×F ′ F → G. We have seen that ϕ′ factors through the centralizer

of T ′ if and only if it commutes with (RF/F ′T )(F ′)pn

. This is equivalent to

saying that ϕ commutes with T (F )pn

. As T is a torus and F infinite, the

subgroup T (F )pn

is Zariski dense in T . The condition therefore amounts to

saying that ϕ factors through the centralizer of T . But this centralizer is equal

to T . Therefore, translated back toG′, the condition says that ϕ′ factors through

RF/F ′T . This proves the lemma. q.e.d.
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By Lemma 1.8 the subgroup RF/F ′T is the centralizer of a maximal torus

of G′, i.e., it is a Cartan subgroup of G′. Thus [11] Cor.13.3.12 implies that

G′(F ′) is Zariski dense in G′, proving Theorem 1.7. q.e.d.

Remark 1.9 If F ′ is a non-discrete complete normed field, Theorem 1.7

is true for arbitrary connected smooth algebraic groups G. This is an easy

consequence of the implicit function theorem.

Next we turn to simple groups. To fix ideas, a smooth linear algebraic group

over a field will be called simple if it is non-trivial and possesses no non-trivial

proper connected smooth normal algebraic subgroup. It is called absolutely

simple if it remains simple over the algebraic closure of the base field.

If G is simply connected semisimple and simple over F , it is isomorphic to

RF1/FG1 for an absolutely simple simply connected semisimple group G1 over

some finite separable extension F1/F (cf. [11] Ex.16.2.9). From [4] A.2.4 we then

deduce that G′ ∼= RF1/F ′G1. In this way questions about G′ can be reduced to

the case that G is absolutely simple.

Theorem 1.10 Assume that G is simply connected semisimple and simple

over F . Then G′ is simple over F ′.

Proof. By the above remarks we may assume that G is absolutely simple.

Consider a non-trivial connected smooth normal algebraic subgroup H ′ ⊂ G′.

Let

H̄ ′ ⊂
∏

σ∈Σ

G×F,σ E
′(1.11)

denote the image of H ′ ×F ′ E′ under the composite of the natural maps

G′ ×F ′ E′
1.1
∼=
∏

σ∈Σ

Gσ −→→
∏

σ∈Σ

Gσ/Gσ,1

1.2
∼=
∏

σ∈Σ

G×F,σ E
′.

Since H ′ is non-trivial and “defined over F ′”, by [11] Cor.12.4.3 we have H̄ ′ 6= 1.

Since H ′ ⊂ G′ is a connected normal subgroup, so is H̄ ′ in 1.11. It is therefore

equal to the product of some of the factors on the right hand side. As H̄ ′ is

non-trivial, it contains at least one of these factors. But by construction it is

also invariant under Aut(E′/F ′), which permutes the factors transitively. We

deduce that the inclusion 1.11 is in fact an equality. Now the following lemma

implies that H ′ ×F ′ E′ = G′ ×F ′ E′; and hence H ′ = G′, as desired. q.e.d.

Lemma 1.12 In the situation of Theorem 1.10, every normal algebraic sub-

group H ⊂ G′ ×F ′ E′ which surjects to
∏

σ∈ΣG×F,σ E
′ is equal to G′ ×F ′ E′.

Proof. Using descending induction on i we will prove that Gσ,i ⊂ H for

all σ ∈ Σ and 1 ≤ i ≤ q. For i = q the assertion is obvious, because Gσ,q = 1.

Let us assume the inclusion for Gσ,i+1 and abbreviate

gri Hσ :=
H ∩Gσ,i

Gσ,i+1
⊂

Gσ,i

Gσ,i+1

1.3
∼= LieG⊗F,σ Ga,E′ .(1.13)
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By functoriality of the isomorphism 1.3, the conjugation action of G′(E′) on

Gσ,i corresponds to the adjoint representation of G ×F,σ E
′ on the right hand

side. As H is a normal subgroup, all commutators between H and Gσ,i must

lie in H . It follows that

(Adh −id)(LieG) ⊗F,σ Ga,E′ ⊂ griHσ(1.14)

for every h ∈ H(E′). Since G is simply connected, it is known that the space of

coinvariants of its adjoint representation is trivial (cf. [1], [2], or [5] Prop.1.11).

On the other hand E′ is algebraically closed, so by assumption H(E′) maps to

a Zariski dense subgroup of G×F,σ E
′. Thus, as h varies, the subgroups in 1.14

generate LieG⊗F,σ Ga,E′ . The inclusion in 1.13 is therefore an equality, and so

we have Gσ,i ⊂ H .

At the end of the induction we have Gσ,1 ⊂ H for all σ ∈ Σ. Combining

this with the fact that H surjects to
∏

σ∈ΣGσ/Gσ,1, we finally deduce H =

G′ ×F ′ E′, as desired. This proves Lemma 1.12 and thereby finishes the proof

of Theorem 1.10. q.e.d.

Remark 1.15 The analogue of Theorem 1.10 fails if G is not simply con-

nected and both F/F ′ and the universal central extension π : G̃ → G are

inseparable. The reason is that by Proposition 1.6 (b) the homomorphism

RF/F ′ϕ : RF/F ′G̃→ G′ is not surjective, so its image is a subgroup that makes

G′ not simple.

Corollary 1.16 If G is semisimple and simply connected, then G′ is perfect.

Proof. We may assume that G is simple. Then G is connected and non-

commutative; hence so is G′. The commutator group of G′ is therefore non-

trivial connected and normal, and by [11] Cor.2.2.8 it is “defined over F” and

thus smooth. By Theorem 1.10 it is therefore equal to G′, as desired. q.e.d.

Theorem 1.17 If G is simple isotropic and simply connected and F is in-

finite, then G′ is generated by split tori.

Proof. By assumption there exists a closed embedding Gm,F ′ ×F ′ F ∼=

Gm,F ↪→ G. The homomorphism Gm,F ′ → G′ corresponding to it by the

universal property of the Weil restriction is again non-trivial; hence G′ contains

a non-trivial split torus. The algebraic subgroup of G′ that is generated by

all split tori in G′ is therefore non-trivial. By construction it is normalized

by G′(F ′), so by Theorem 1.7 it is normal in G′. Being generated by smooth

connected subgroups, it is itself smooth and connected by [11] Prop.2.2.6 (iii).

By Theorem 1.10 it is therefore equal to G′, as desired. q.e.d.
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2 Main results

In the following we consider a connected semisimple group G over a local field F .

Let π : G̃ → G denote its universal central extension. The commutator pairing

G̃× G̃→ G̃ factors through a unique morphism

[ , ]∼ : G×G→ G̃.

For any closed subgroup Γ ⊂ G(F ) we let Γ̃′ denote the closure of the subgroup

of G̃(F ) that is generated by the set of generalized commutators [Γ,Γ]∼.

Theorem 2.1 Let F be a local field, and let G be an isotropic connected

simple semisimple group over F . Let Γ ⊂ G(F ) be a non-discrete closed subgroup

whose covolume for any invariant measure is finite. Then Γ̃′ is open in G̃(F ).

Before proving this, we note the following consequence (cf. [8], [3]).

Corollary 2.2 Under the assumptions of Theorem 2.1 we have Γ̃′ = G̃(F ).

In particular, Γ contains π
(

G̃(F )
)

.

Proof. Since G(F ) is not compact and Γ is a subgroup of finite covolume,

this subgroup is not compact. Thus Γ̃′ is normalized by an unbounded subgroup

of G(F ), and it is open in G̃(F ) by Theorem 2.1. As in [6] Thm.2.2 one deduces

from this that Γ̃′ is unbounded. Let G̃(F )+ denote the subgroup of G̃(F )

that is generated by the rational points of the unipotent radicals of all rational

parabolic subgroups. The Kneser-Tits conjecture, which is proved in this case

(see [7] Thm. 7.6 or [10]), asserts that G̃(F )+ = G̃(F ). On the other hand,

a theorem of Tits [9] states that every unbounded open subgroup of G̃(F )+ is

equal to G̃(F )+. Altogether this implies Γ̃′ = G̃(F ), as desired. q.e.d.

Proof of Theorem 2.1. In the case char(F ) = 0 the proof in [8] §2 cannot

be improved. It covers in particular the archimedean case. We will give a unified

proof in the non-archimedean case, beginning with a few reductions.

Let Γad denote the image of Γ in the adjoint group Gad of G. Then Γ̃′

depends only on Γad. On the other hand, all the assumptions in 2.1 are still

satisfied for Γad ⊂ Gad(F ). Namely, since the homomorphism G(F ) → Gad(F )

is proper with finite kernel, the subgroup Γad is still non-discrete and closed.

On the other hand, as the image of G(F ) in Gad(F ) is cocompact, the covolume

of Γad in Gad(F ) is again finite. To prove the theorem, we may therefore replace

G by Gad and Γ by Γad. In other words, we may assume that G is adjoint.

Next, since G is connected simple and adjoint, it is isomorphic to RF1/FG1

for some absolutely simple connected adjoint group G1 over a finite separable

extension F1/F . If G̃1 denotes the universal covering of G1, we then have

G̃ ∼= RF1/F G̃1. By the definition of Weil restriction we have G(F ) ∼= G1(F1)

and G̃(F ) ∼= G̃1(F1); and since G is isotropic, so is G1. Thus after replacing F

by F1 and G by G1 we may assume that G is absolutely simple.
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For the next preparations note that F is non-archimedean, so G(F ) possesses

an open compact subgroup. Its intersection with Γ is an open compact subgroup

of Γ; let us call it ∆. Let ∆̃′ denote the closure of the subgroup of G̃(F ) that is

generated by the set of generalized commutators [∆,∆]∼.

We will study the relation between these subgroups and various Weil restric-

tions of G. Consider any closed subfield F ′ ⊂ F such that [F/F ′] is finite. Note

that in the case char(F ) = 0 there is a unique smallest such F ′, namely the clo-

sure of Q. But in positive characteristic the extension F/F ′ may be arbitrarily

large and, what is worse, it may be inseparable.

Set G′ := RF/F ′G and G̃′ := RF/F ′G̃, and let π′ : G̃′ → G′ be the homomor-

phism induced by π. From Proposition 1.6 we know that π′ is not necessarily

an isogeny. Identifying G(F ) with G′(F ′) via the universal property of the Weil

restriction, we can view Γ as a non-discrete closed subgroup of finite covolume

of G′(F ′). Similarly, we can view ∆̃′ as a subgroup of G̃′(F ′).

Lemma 2.3 ∆̃′ is Zariski dense in G̃′.

Proof. Let H ′ ⊂ G′ and H̃ ′ ⊂ G̃′ be the Zariski closures of ∆ and ∆̃′,

respectively. By [11] Lemma 11.2.4 (ii) these groups are “defined over F ′”, i.e.,

smooth over F ′. The intersection of ∆ with the identity component of H ′ is

open in ∆ and thus again an open compact subgroup of Γ. After shrinking ∆

we may therefore assume that H ′ is connected. For any γ ∈ Γ the subgroup

γ∆γ−1 is again an open compact subgroup of Γ, so it is commensurable with ∆.

Thus γH ′γ−1 is commensurable with H ′. Since H ′ is connected, they must

be equal; hence H ′ is normalized by Γ. It is therefore also normalized by the

Zariski closure of Γ.

Under the assumptions of 2.1, a theorem of Wang [12] implies that the Zariski

closure of Γ in G′ contains all split tori of G′. Thus, in particular, it contains

the images under π′ of all split tori in G̃′. Since G is simple isotropic, so is G̃;

hence by Theorem 1.17 these tori generate G̃′. It follows that H ′ is normalized

by the image of G̃′. By construction H̃ ′ is the algebraic subgroup of G̃′ that is

generated by the image of the connected variety H ′ ×F ′ H ′ under [ , ]∼. It is

therefore connected and normalized by G̃′.

Since Γ is non-discrete, the group ∆ is not finite, and so H ′ is non-trivial.

Let H denote the image of H ′ ×F ′ F under the canonical adjunction morphism

G′ ×F ′ F → G. By construction H is just the Zariski closure of ∆ in G, so by

the above arguments in the case F ′ = F it is normalized by the image of G̃.

But π : G̃ → G is surjective, so H is a non-trivial connected normal subgroup

of G. As G is absolutely simple, this implies H = G. As G is perfect, it follows

that H̃ ′ ×F ′ F surjects to G.

All in all we now deduce that H̃ ′ is a non-trivial connected smooth normal

algebraic subgroup of G̃′. By Theorem 1.10 this implies H̃ ′ = G̃′, as desired.

q.e.d.

Note that Lemma 2.3 in the case F ′ = F says that ∆̃′ is Zariski dense in G̃.

In particular ∆ is compact and Zariski dense in G, so we can apply [5] Main
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Theorem 0.2. It follows that there exists a closed subfield E ⊂ F such that

[F/E] is finite, an absolutely simple and simply connected semisimple algebraic

group H̃ over E, and an isogeny ϕ̃ : H̃×E F → G̃ with non-vanishing derivative,

such that ∆̃′ is the image under ϕ̃ of an open subgroup of H̃(E).

Lemma 2.4 E = F .

Proof. Via the universal property of the Weil restriction the isogeny ϕ̃

corresponds to a homomorphism ϕ̃′ : H̃ → RF/EG̃, which satisfies

∆̃′ ⊂ ϕ̃′(H̃(E)) ⊂ (RF/EG̃)(E) = G̃(F ).

By Lemma 2.3 in the case F ′ = E we know that ∆̃′ is Zariski dense in RF/EG̃.

It follows that ϕ̃′ is dominant. This implies

dim H̃ ≥ dimRF/EG̃ = [F/E] · dim G̃ = [F/E] · dim H̃ ;

hence [F/E] = 1, as desired. q.e.d.

Lemma 2.5 ϕ̃ is an isomorphism.

Proof. As ϕ̃ is an isogeny between simply connected groups, it is an

isomorphism if and only if it is separable. In characteristic zero this is auto-

matically the case. (Since dϕ̃ 6= 0, this is actually true whenever char(F ) 6= 2, 3

(cf. [5] Thm.1.7), but we do not need that fact.) So for the rest of the proof we

may suppose that p := char(F ) is positive. Set F ′ := {xp | x ∈ F}; then F/F ′

is an inseparable extension of degree p. Consider the induced homomorphism

ψ̃ := RF/F ′ ϕ̃ : RF/F ′H̃ −→ RF/F ′G̃.

By construction it satisfies

∆̃′ ⊂ ψ̃
(

(RF/F ′H̃)(F ′)
)

⊂

‖

(RF/F ′G̃)(F ′)

‖

ϕ̃
(

H̃(F )
)

⊂ G̃(F ).

Since ∆̃′ is Zariski dense in RF/F ′G̃ by Lemma 2.3, we deduce that ψ̃ is domi-

nant. So for dimension reasons it is an isogeny. Proposition 1.6 (b) now shows

that ϕ̃ is separable, as desired. q.e.d.

Combining Lemmas 2.4 and 2.5, we now deduce that ∆̃′ is open in G̃(F ).

Thus Γ̃′ is open in G̃(F ), completing the proof of Theorem 2.1. q.e.d.
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