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THE MUMFORD-TATE CONJECTURE

FOR DRINFELD-MODULES

by

Richard PINK*

Abstract

Consider the Galois representation on the Tate module of a Drinfeld module over a finitely generated

field in generic characteristic. The main object of this paper is to determine the image of Galois in this

representation, up to commensurability. We also determine the Dirichlet density of the set of places of

prescribed reduction type, such as places of ordinary reduction.

§0. Introduction

Let F be a finitely generated field of transcendence degree 1 over a finite field of

characteristic p. Fix a place ∞ of F , and let A be the ring of elements of F which are

regular outside ∞. Consider a finitely generated extension K of F and a Drinfeld module

ϕ : A → EndK(Ga) of rank n ≥ 1 (cf. Drinfeld [10]). In other words K is a finitely

generated field of transcendence degree ≥ 1 over Fp, and ϕ has “generic characteristic”.

Let Ksep ⊂ K̄ denote a separable, respectively algebraic closure of K. Let Fλ denote the

completion of F at a place λ. If λ 6= ∞ we have a continuous representation

ρλ : Gal(Ksep/K) −→ GLn(Fλ)
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which describes the Galois action on the λ-adic Tate module of ϕ. The main goal of

this article is to give a qualitative characterization of the image of ρλ. Here the term

“qualitative” refers to properties that are shared by all open subgroups, i.e. to those

properties that do not change under replacing K by a finite extension. Our method

actually applies to any given finite number of places simultaneously and shows that the

image of Galois is as big as possible.

Theorem 0.1. Suppose that EndK̄(ϕ) = A. Then for any finite set Λ of places

λ 6= ∞ of F the image of the homomorphism

Gal(Ksep/K) −→
∏

λ∈Λ

GLn(Fλ)

is open.

More generally, the endomorphism ring EndK(ϕ) acts on the Tate module and com-

mutes with the λ-adic representation. In other words, the image of Galois lies in the

centralizer CentGLn(Fλ)(EndK(ϕ)). After replacing K by a finite extension we may as-

sume that all endomorphisms of ϕ over an algebraic closure of K are already defined

over K.

Theorem 0.2. Suppose that EndK̄(ϕ) = EndK(ϕ). Then for any finite set Λ of

places λ 6= ∞ of F the image of the homomorphism

Gal(Ksep/K) −→
∏

λ∈Λ

CentGLn(Fλ)(EndK(ϕ))

is open.

It would be interesting to extend these results to the set of all finite places of F , i.e. to

determine the image of Galois in the adelic representation. But this will require additional

techniques of a different nature. The author hopes to come back to this problem in the

future.

Places of Prescribed Reduction Type: The proof of Theorems 0.1–2 is modeled

largely on Serre’s analysis of the `-adic representations arising from abelian varieties (see

[26], [28], [29], [30], resp. Chi [4]). One crucial ingredient is the study of Frobenius
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elements associated to the reductions of ϕ over finite fields, and in particular of their

Newton polygons. The problem is thus connected with the question of how often a given

Newton polygon occurs. In the analogous case of low dimensional abelian varieties, for

instance for elliptic curves without potential complex multiplication, it is known that

the set of primes of ordinary reduction has Dirichlet density 1 (cf. Serre [26], Ogus [24]

Prop. 2.7). The following result is an analogue of that fact. Let X be an integral scheme

of finite type over Fp whose function field is K.

Theorem 0.3. Let ∆ be the finite quotient of Gal(Ksep/K) which acts faithfully on

EndK̄(ϕ). Let pe be the degree of the totally inseparable part of EndK̄(ϕ) over A.

(a) For any closed point x ∈ X where ϕ has good reduction the height of this reduction is

divisible by pe.

(b) For any integer ` ≥ 1 the set of closed points x ∈ X at which ϕ has good reduction of

height pe` has Dirichlet density

card{δ ∈ ∆ | ord(δ) = `}

card(∆)
.

In particular, note the following special case of Theorem 0.3.

Corollary 0.4. Suppose that EndK̄(ϕ) = A. Then the set of closed points x ∈ X

where ϕ has good ordinary reduction has Dirichlet density 1.

If a Newton polygon is not forbidden by part (a) of Theorem 0.3, but its occurrences

have Dirichlet density 0, it is natural to ask whether there are nevertheless infinitely many

reductions with this Newton polygon and how sparsely they are distributed. The methods

of this article do not illuminate this problem. (However, for some recent results in this

direction see Brown [3], David [5].)

Motivation: The title of this article calls for a few explanations. It is based on the

principle that Drinfeld modules play the same role for function fields that abelian varieties

play for number fields. Consider an abelian variety A of dimension d over a number

field K. Embed K into the complex numbers and consider the singular homology group

V := H1(A(C),Q). This is a Q-vector space of dimension 2d possessing a natural Hodge
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structure of type {(0,−1), (−1, 0)}. That is, its Hodge filtration is a descending filtration

of VC := V ⊗Q C by C-vector spaces Fili VC satisfying Fil−1 VC = Fil0 VC⊕Fil0 VC = VC and

Fil1 VC = 0. For any d ≥ 0 the tensor space T d,d := V ⊗d ⊗ (V ∨)⊗d also inherits a Hodge

structure, i.e. a filtration Fil• T d,d
C with certain properties. The elements of T d,d∩Fil0 T d,d

C

are called Hodge cycles of the original Hodge structure. Choosing an identification V ∼= Q2d

the Hodge group (or Mumford-Tate group) is defined as the subgroup G ⊂ GL2d,Q fixing

all Hodge cycles for all d. On the other hand the rational `-adic Tate module of A is

naturally isomorphic to V ⊗Q Q` and carries a continuous action of Gal(K̄/K). The image

of this representation is a compact subgroup Γ` ⊂ GL2d(Q`), and the Mumford-Tate

conjecture states that some open subgroup of Γ` is open in G(Q`). In fact, this assertion

is a consequence of certain general (unproved) principles for motives and motivic Galois

groups, which will not be explained here. Certain parts of the Mumford-Tate conjecture

have been proved: among others see Deligne et al. [8], Serre [26], [28], [29], [30], resp. Chi

[4]. Note that the Mumford-Tate conjecture can be read in two ways. We shall take the

point of view that it essentially determines the image of Galois when the Hodge group is

known.

Let us work out the analogies in the Drinfeld module case. Let ϕ etc. be as above.

Let C∞ denote the completion of the algebraic closure of F∞ and extend the embedding

F ⊂ C∞ to K ↪→ C∞. Then ϕ possesses an “analytic uniformization” by a projective A-

submodule M ⊂ C∞ of finite type and rank n (see, e.g., Drinfeld [10] §3). Put V := M⊗AF

and let Fil0 VC∞
denote the kernel of the canonical homomorphism VC∞

:= V ⊗F C∞ →

C∞, v ⊗ x 7→ vx. This is a C∞-subspace of codimension 1, which contains no non-zero

element of V ⊗F F∞. (For the relation with de Rham cohomology see Gekeler [14].) Set

Fil−1 VC∞
:= VC∞

and Fil1 VC∞
:= 0. By general principles (cf. Anderson [1]) a Drinfeld

module can be viewed as a “pure motive of rank n and weight 1/n”, so we interpret this

filtration as a pure Hodge structure of weight 1/n on V .

To this object there should be associated a “Hodge group” G, which is an algebraic

subgroup of GLn,F once a basis of V has been chosen. It is tempting to define it as the

stabilizer of all “Hodge cycles”, in the same way as above. Whatever the correct definition

may be, it is natural to expect
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Guess 0.5. G = CentGLn,F
(EndK̄(ϕ)).

Namely, for any λ 6= ∞ the rational λ-adic Tate module of ϕ is canonically isomorphic

to V ⊗F Fλ. Thus the image of Galois can be compared with G and, assuming Guess 0.5,

Theorem 0.2 states that the image of Galois is open in the Hodge group, just as in the

abelian variety case. To remain in keeping with general principles, Guess 0.5 should be

proved by purely algebraic means, using only the information on the Hodge filtration that

was stated above. Also, one should give a conceptual proof within the framework of a

general theory of such Hodge structures. Since all this would go beyond the scope of this

paper, we refrain from discussing these matters further.

Outline of the Article: The proof of Theorem 0.2 follows roughly the lines laid

out by the above motivational remarks. The general case can be reduced to that of The-

orem 0.1, so we may assume EndK̄(ϕ) = A. Let Gλ ⊂ GLn,Fλ
denote the Zariski closure

of the image of ρλ. By recent results of Taguchi, respectively Tamagawa, comprising in

particular the Tate conjecture for Drinfeld modules, the tautological representation of G◦
λ

is absolutely irreducible. Using this information, the existence of places of ordinary reduc-

tion, and some arguments from the representation theory of linear algebraic groups we can

then deduce Gλ = GLn,Fλ
.

Next, the question of openness has two parts, corresponding to the factorization

1 → SLn → GLn
det−−−→ Gm → 1. The image of Galois under the determinant map is

characterized by results of Hayes concerning the abelian class field theory of F . For the

semisimple part we are led to the purely group theoretical problem of studying Zariski

dense compact subgroups of SLn and PGLn over the completion of F at one or a finite

number of places. If we had F = Q it would be well-known and easy to show that such

a subgroup is open. But here the function field case is significantly more involved. A

detailed analysis of such subgroups has — in greater generality — been carried out by this

author in the separate article [25]. The main result of that paper, combined with some

additional arithmetic information about ϕ, implies the desired openness.

An effort has been made to present uniform proofs for all fields K that are finitely

generated over F . It is hoped that the reader will find some advantages in this principle.
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In fact, the arguments hardly simplify when K is assumed to be finite over F . Only in

Theorem 1.4 (Taguchi’s semisimplicity theorem) it was necessary to obtain the general

result by reduction to this case.

The rest of this article is structured as follows. In §1 we fix notations and collect

all known facts on Drinfeld modules that will be needed. §2 contains the proof of Theo-

rems 0.1–2, modulo results from the appendices. In §3 we prove Theorem 0.3. There are

also two appendices which are independent of the rest of the article. Appendix A contains

some results from the representation theory of linear algebraic groups which are used in

§2. Finally, Appendix B discusses the concept of Dirichlet density for schemes of arbitrary

dimension, for which no suitable reference was found.

Last, but not least, the author wishes to express his gratitude to the institutions

and their members that made this work possible. The essential arguments were found

during a stay at the Research Institute for Mathematical Sciences at Kyōto University in

Spring 1994, that was supported partly by the Japan Association for Mathematical Science.

The author extends special thanks to Takayuki Oda for inviting him to Japan and to Akio

Tamagawa for giving the stimulus for this work and for many valuable discussions. Thanks

are also due to the referee for pointing out a number of minor mistakes.

§1. Ingredients from the Arithmetic of Drinfeld Modules

Throughout the article the notations and assumptions of the introduction remain in

order. For the fundamentals on Drinfeld modules we refer to Drinfeld’s original article

[10], to Deligne-Husemoller [9], Goss [16] and [17], or Hayes [19].

The endomorphism ring: For any extension field K ′ of K the endomorphism ring

EndK′(ϕ) consists of the elements of EndK′(Ga) which commute with ϕ(A). It is known

that EndK′(ϕ) has no zero-divisors and is projective of finite type as module over A. Since

we are in generic characteristic, it is also commutative and of A-rank at most n (see [10]

§2 C). In particular, this implies that all endomorphisms over K̄ are defined already over

a fixed finite extension of K.
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Let us abbreviate A′ := EndK̄(ϕ) and F ′ := Quot(A′). Identifying A with its image

in A′, the homomorphism ϕ : A → EndK(Ga) extends to a (tautological) homomorphism

ϕ′ : A′ → EndK̄(Ga). This is again a Drinfeld module, except that A′ may be a non-

maximal order in F ′. There are two ways of dealing with that phenomenon. Following

Hayes [18] we could work with non-maximal orders throughout the article, with essen-

tially no changes. Alternatively, we can modify ϕ′ by a suitable isogeny. Let Ã′ be the

normalization of A′ in F ′. By [18] Prop. 3.2 we have:

Proposition 1.1. There is a Drinfeld module ψ′ : Ã′ → EndK̄(Ga) such that ψ′|A′ is

isogenous to ϕ′, i.e. there exists a non-zero f ∈ EndK(Ga) such that f ◦ϕ′(x) = ψ′(x) ◦ f

for all x ∈ A′. Moreover, ψ′ can be chosen such that the restriction ψ′|A is defined over K.

Specialization: Since A is a finitely generated ring, the coefficients of all elements

in ϕ(A) ⊂ EndK(Ga) lie in a finitely generated subring R ⊂ K. After enlarging R we may

suppose that K = Quot(R). Moreover, after inverting finitely many elements the highest

coefficients become units in R. Then X := Spec(R) is a model of K of finite type over

SpecFp, and by construction ϕ defines a family of Drinfeld modules of rank n over X .

In particular, for any point x ∈ X we obtain a Drinfeld module ϕx : A → Endkx
(Ga) of

rank n defined over the residue field kx.

Let d : EndR(Ga) → R denote the derivative at the origin of Ga, i.e. the action on the

Lie algebra of Ga. Then d◦ϕ : A→ R corresponds to a natural morphism X → SpecA =

C r {∞}, where C is the smooth projective curve with function field F . The image point

of x ∈ X is denoted λx. We say that ϕx has generic or special characteristic according

to whether λx is the generic or a closed point of C. For instance, ϕ itself has generic

characteristic. If λx is a closed point of C, we identify it with the associated valuation

on F .

The Tate-module: Consider any place λ 6= ∞ of F and let pλ ⊂ A denote the

corresponding maximal ideal. Let ksep
x denote a separable closure of the residue field kx.

For any integer i ≥ 0 the elements of ksep
x annihilated by all the endomorphisms in ϕ(pi

λ)

form an A/pi
λ-module ker

(

ϕ(pi
λ) |ksep

x

)

which is free of rank ≤ n. Thus, the rational Tate



8 RICHARD PINK

module

Vλ(ϕx) := HomAλ

(

Fλ,
⋃

i≥0

ker
(

ϕ(pi
λ) |ksep

x

)

)

is an Fλ-vector space of dimension ≤ n. The dimension is equal to n if and only if λ 6= λx.

If ϕx has special characteristic, the dimension of Vλx
(ϕx) is denoted by nx. The deficiency

n−nx is then ≥ 1 and called the height of ϕx. If height(ϕx) = 1, then ϕx is called ordinary

and ϕ is said to have ordinary reduction at x.

Primarily we are interested in the Tate modules of ϕ, but they are related to those

of the reductions ϕx, as follows. For any i ≥ 0 the combined kernel ker
(

ϕ(pi
λ) |Ga,R

)

is a

finite flat commutative group scheme over X . Thus the elements of Ksep annihilated by

ϕ(pi
λ) already lie in the integral closure Rsep ⊂ Ksep of R. Any lift of the point x to a

homomorphism Rsep → ksep
x thus induces a natural restriction map

Vλ(ϕ) −→→ Vλ(ϕx)

which is surjective. For dimension reasons it is an isomorphism whenever λ 6= λx.

By construction the Tate module Vλ(ϕx) carries a natural continuous action of the

Galois group Gal(ksep
x /kx). Also, by definition the above restriction map is equivariant

under the decomposition group of x inside Gal(Ksep/K). Note that the inertia group

always acts trivially on the right hand side. Thus in the case λ 6= λx we deduce that

the representation of Gal(Ksep/K) on Vλ(ϕ) is unramified at x and the action of the

decomposition group is determined already by the arithmetic of ϕx.

In the following we choose a basis of Vλ(ϕ), so that the Galois action corresponds to

a continuous homomorphism

ρλ : Gal(Ksep/K) → GLn(Fλ).

Drinfeld modules over finite fields: Let us apply the preceding remarks to a

closed point x ∈ X . For λ 6= λx the action of the decomposition group is determined

by the image of the Frobenius element Frobx ∈ Gal(Ksep/K). We shall use the following

fundamental facts.
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Theorem 1.2. (cf. [15] Thm. 3.2.3 (b).) The characteristic polynomial of ρλ(Frobx)

has coefficients in A and is independent of λ, as long as λ 6= λx, ∞.

Let α1, . . . , αn be the eigenvalues of ρλ(Frobx) in an algebraic closure F̄ of F . Consider

an arbitrary place λ1 of F and an extension λ̄1 to F̄ . We normalize the valuation ordλ̄1
in

such a way that a uniformizer at λ1 in F has valuation 1. The following can be said about

the valuations of the αi. Let Fλ1
denote the residue field at λ1.

Theorem 1.3. (cf. Drinfeld [11] Prop. 2.1 or [15] Thm. 3.2.3 c–d.)

(a) We have ordλ̄1
(αi) = 0 for all 1 ≤ i ≤ n and λ1 6= λx, ∞.

(b) For all 1 ≤ i ≤ n we have

ord∞(αi) = −
1

n
·

[kx/Fp]

[F∞/Fp]
.

(c) We have

ordλ̄x
(αi)

{

= 0 for precisely nx of the αi, and

> 0 for the remaining n− nx of the αi.

The global Galois representation: In the rest of this section we list three crucial

known facts which give lower bounds on the image of the Galois representation ρλ.

Theorem 1.4. Vλ(ϕ) is a semisimple Fλ[Gal(Ksep/K)]-module.

Proof: This was proved by Taguchi ([31] Th. 0.1) in the case that K is a finite

extension of F . We deduce from this the general case, as follows. First note that the

semisimplicity of the action of a subgroup ∆ ⊂ GLn(Fλ) depends only on the subalgebra

Fλ∆ ⊂Mn×n(Fλ). Let Γλ := ρλ(Gal(Ksep/K)).

Lemma 1.5. There exists an open normal subgroup Γ1 ⊂ Γλ such that for any

subgroup ∆ ⊂ Γλ with ∆Γ1 = Γλ we have Fλ∆ = FλΓλ.

Proof: Select elements γi ∈ Γλ which form a basis of FλΓλ. If each of these is allowed

to move in a small neighborhood, they still remain linearly independent. Thus there exists

an open normal subgroup Γ1 ⊂ Γλ such that the elements γiγ1,i form a basis of FλΓλ for
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any choice of γ1,i ∈ Γ1. If ∆Γ1 = Γλ, we can choose the γ1,i so that γiγ1,i ∈ ∆. The

assertion follows. �

Choose a subgroup Γ1 ⊂ Γλ as in Lemma 1.5 and let K̃ be the corresponding finite

Galois extension of K. Let X̃ be the normalization of X in K̃, and denote the morphism

X̃ → X by π.

Lemma 1.6. There exists a point x ∈ X so that

(a) kx is a finite extension of F , and

(b) π−1(x) ⊂ X̃ is irreducible.

Proof: This is an easy consequence of the fact that F is Hilbertian (cf. [13] Cor.12.8).

As an alternative we give a direct proof using standard Bertini type arguments. Let

Fq ⊂ K and Fq̃ ⊂ K̃ denote the respective fields of constants. Choose an infinite field

Fq ⊂ k ⊂ F̄q̃ with k ∩ Fq̃ = Fq, and put k̃ := k · Fq̃
∼= k ⊗Fq

Fq̃. After shrinking X we may

choose a dominant quasi-finite morphism f : X → Ad
Fq

where d := dim(X). Consider the

commutative diagram

X̃ //π
X //f

Ad
Fq

X̃ ×Fq k̃
//π

OO

X ×Fq k̃
//f

OO

Ad
k̃

OO

X̃ ×Fq̃
k̃

?�

OO
66

g

.

Note that X̃ ×Fq̃
k̃ is geometrically irreducible over k̃, and the morphism g is dominant

and quasi-finite. Thus by repeatedly applying Jouanolou’s version [21] Th. 6.3 of Bertini’s

theorem we find that g−1(L̃) is geometrically irreducible of dimension 1 for every sufficiently

generic affine line L̃ ⊂ Ad
k̃
.

Since k is infinite, we may suppose that L̃ is already defined over k, i.e. that L̃ = L×k k̃
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for a line L ⊂ Ad
k. Then the diagram

X̃ ×Fq̃
k̃ //∼

X̃ ×Fq
k //π X ×Fq

k //f
Ad

k

g−1(L̃) //
?�

OO

f−1(L) //
?�

OO

L
?�

OO

is cartesian. Let x ∈ X be the image of the generic point of f−1(L). Then the irreducibility

of g−1(L̃) implies that of π−1(x), whence condition (b).

In order to satisfy condition (a) let us suppose that the first coordinate of f factors

through the morphism X −→ C r {∞}. Consider the commutative diagram

C // A1
Fp

X ×Fq
k

88
r

r
r

r
r

r
r

r

// Ad
k

::

pr1

u
u

u
u

u
u

f−1(L)
?�

OO

//

EE

L
?�

OO

FF

.

For generic L the morphism L → A1
Fp

is non-constant. It follows that the morphism

f−1(L) → C is non-constant, which implies condition (a). �

To prove Theorem 1.4 we choose x as in Lemma 1.6 and let ∆λ be the image of

Gal(ksep
x /kx) in its representation on Vλ(ϕx). Since ϕx does not have characteristic λ, this

Tate module can be identified with Vλ(ϕ), which makes ∆λ a subgroup of Γλ. Condi-

tion 1.6 (b) now means that ∆λΓ1 = Γλ. Thus from Lemma 1.5 we deduce Fλ∆λ = FλΓλ.

On the other hand, by Lemma 1.6 (a) and the theorem of Taguchi ([31] Th. 0.1) the ring

on the left hand side acts semisimply. This proves Theorem 1.4. �

The next result characterizes the commutant of the image of Galois. The definition

of Tate modules shows that the endomorphism ring of ϕ acts on the Tate module by a

natural homomorphism

EndK(ϕ) ⊗A Fλ −→ EndFλ
(Vλ(ϕ)).

This action commutes with the action of Gal(Ksep/K).
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Theorem 1.7. (The “Tate conjecture”: see Taguchi [32], resp. Tamagawa [33].)

The natural map

EndK(ϕ) ⊗A Fλ −→ EndFλ[Gal(Ksep/K)](Vλ(ϕ))

is an isomorphism.

The last ingredient is the characterization of the determinant of the Galois represen-

tation.

Theorem 1.8. Let Af
F denote the adeles of F outside the place ∞. Then the image

of the composite homomorphism

Gal(Ksep/K) −→ GLn(Af
F ) det−−−→ GL1(A

f
F )

is open.

Proof: If n = 1, then ϕ can be defined already over a finite extension of F . Thus

in this case the openness follows, essentially, from the abelian class field theory of F : see

Hayes [19] Thm. 12.3 and Thm. 16.2 or [18] Thm. 9.2. (The result goes back to Drinfeld

[10] §8 Thm.1, cf. also Goss [17] §7.7). For arbitrary n one can construct a “determinant”

Drinfeld module ψ : A → EndK(Ga) of rank 1 whose Tate modules are isomorphic to

the highest exterior powers of the Tate modules of ϕ. In other words, for every λ 6= ∞

one can define an isomorphism Vλ(ψ) ∼=
∧n

Fλ
Vλ(ϕ) which is Gal(Ksep/K)-equivariant (see

Anderson [1], or Goss [16] Ex. 2.6.3). Thus the assertion reduces to the case n = 1. �

§2. Openness of the Image of Galois

The aim of this section is to prove Theorems 0.1 and 0.2 of the introduction. We

first assume that EndK̄(ϕ) = A; this assumption will remain in force until we turn to

Theorem 0.2 at the end of the section. For any place λ 6= ∞ of F we abbreviate

Γλ := ρλ(Gal(Ksep/K)) ⊂ GLn(Fλ).
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Let Gλ ⊂ GLn,Fλ
denote the Zariski closure of Γλ. Later on we shall see that Gλ = GLn,Fλ

,

but for the moment we do not even know whether Gλ is connected. Let G◦
λ denote its

identity component. Then G◦
λ(Fλ) ∩ Γλ is the image of Gal(Ksep/K ′) for some finite

extension K ′ of K in Ksep. By Theorems 1.4 and 1.7 applied to K ′ in place of K we know

that Gal(Ksep/K ′) acts absolutely irreducibly on the Tate module. It follows that the

tautological representation of G◦
λ is also absolutely irreducible. In particular, this implies

that G◦
λ is a reductive group (cf. Fact A.1 of the Appendix A).

For any closed point x ∈ X we define

ax := tr(ρλ(Frobx)) · tr(ρλ(Frobx)−1).

By Theorem 1.2 this is an element of F which depends only on x, as long as λ 6= λx, ∞.

As x varies, these elements capture enough arithmetic information for all our purposes.

First, by an adaptation of the argument in [24] Prop. 2.7 we obtain the following sufficient

criterion for ordinary reduction.

Lemma 2.1. Assume

(a) [kx/Fλx
] = 1, and

(b) ax is not a constant function in F , if n ≥ 2.

Then ϕ has ordinary reduction at x.

Proof: In the case n = 1 there is nothing to prove, so we assume n ≥ 2. If α1, . . . , αn ∈

F̄ are the eigenvalues of ρλ(Frobx), we have

ax =
(

n
∑

i=1

αi

)

·
(

n
∑

i=1

α−1
i

)

=

n
∑

i,j=1

αi

αj
.

Now Theorem 1.3 has the following consequences. First the term αi/αj is a unit at all

places of F̄ not dividing λx. Therefore ax is integral at these places. Next we have

ordλ̄1

(
∏n

i=1 αi

)

=

{

0 for λ1 6= λx, ∞,

−[kx/Fp]/[F∞/Fp] for λ1 = ∞,

where λ1 is an arbitrary place of F . Since
∏n

i=1 αi is an element of F , the product formula

implies

ordλ̄x
(
∏n

i=1 αi) = [kx/Fλx
].
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By assumption (a) this value is equal to 1. Suppose now that height(ϕx) = n − nx >

1. Then Theorem 1.3 (c) implies that 0 ≤ ordλ̄x
(αi) < 1 for all i. It follows that

ordλ̄x
(αi/αj) > −1 and hence ordλ̄x

(ax) > −1. Since ax is an element of F , its valu-

ation is an integer, so ax is integral at λx. Thus we have shown that ax is integral at all

places of F , contradicting assumption (b). �

Lemma 2.2. The set of closed points x ∈ X satisfying condition (b) of Lemma 2.1

has Dirichlet density > 0.

Proof: Fix a place λ 6= ∞ of F , and recall that the given representation of G◦
λ

is absolutely irreducible. We may assume that n ≥ 2. Then Proposition A.2 of the

Appendix A implies that the morphism

G◦
λ → A1

Fλ
, g 7→ tr(g) · tr(g−1)

is non-constant. Since the constant field of F is finite, we deduce that the elements g ∈ Gλ

for which tr(g) · tr(g−1) lies in this constant field form a Zariski closed proper subset. Let

us call it Zλ. By the definition of Gλ as Zariski closure of Γλ, the intersection Zλ(Fλ)∩Γλ

is a proper closed subset of Γλ. With the Čebotarev density theorem (see Theorem B.9

of the Appendix B) we conclude that the set of closed points x ∈ X with ρλ(Frobx) 6∈ Zλ

has Dirichlet density > 0, as desired. �

By Proposition B.8 of the Appendix B, applied to Y = C, the set of closed points

x ∈ X satisfying condition (a) of Lemma 2.1 has Dirichlet density 1. Combining this with

Lemmas 2.1–2 we obtain a first approximation to Theorem 0.3.

Corollary 2.3. The set of closed points x ∈ X where ϕ has ordinary reduction has

Dirichlet density > 0.

The set of ax also enjoys the following property, which will be needed below.
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Proposition 2.4. Consider any Zariski open dense subset U ⊂ X. If n ≥ 2, then F

is the field generated by the elements ax for all closed points x ∈ U .

Proof: Let E ⊂ F be the subfield generated by the ax in question. By Lemma 2.2,

combined with Proposition B.7 (f) of the Appendix B, some such ax is non-constant. Thus

E has transcendence degree 1 over Fp, and therefore [F/E] is finite. For any closed point

x ∈ U let µx denote the place of E below λx. Let D be the smooth projective curve with

function field E, and apply Proposition B.8 of the Appendix B to the composite morphism

U → C → D. We find that the set of x ∈ U for which [kx/Fµx
] = 1 has Dirichlet

density 1. Using Lemma 2.2 again we may choose x ∈ U such that ax is non-constant and

[kx/Fµx
] = 1.

As in the proof of Lemma 2.1 we see that, as an element of F , the function ax has

a unique pole at λx and this pole is simple. But ax is contained in E, so there it must

have a simple pole at µx, and λx is unramified over µx. The choice of x implies that

[Fλx
/Fµx

] = 1, so the local degree [Fλx
/Eµx

] is equal to 1. On the other hand, going back

to F we find that ax has a pole at every place dividing µx. Thus λx is the only place of F

above µx. It follows that the global degree [F/E] is equal to the local degree, i.e. = 1, as

desired. �

Next we relate the valuations of the Frobenius eigenvalues to information about the

algebraic groups Gλ. Consider a closed point x ∈ X and choose an element tx ∈ GLn(F )

whose characteristic polynomial coincides with that of ρλ(Frobx). As the characteristic of

F is non-zero, some positive power of tx is semisimple and lies in a unique conjugacy class.

Let Tx ⊂ GLn,F be the Zariski closure of the subgroup generated by tx. By construction

the identity component of Tx is a torus, called Frobenius torus (following Serre, cf. [28],

[4]).

Lemma 2.5. If ϕ has ordinary reduction at x, then Tx possesses a cocharacter over

F̄ which in the given representation has weight 1 with multiplicity 1, and weight 0 with

multiplicity n− 1.

Proof: The character groupX∗(Tx) := Hom(Tx×F F̄ ,Gm) is related to the cocharacter
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group by a canonical isomorphism Y∗(Tx) := Hom(Gm, Tx×F F̄ ) ∼= Hom(X∗(Tx),Z). Thus,

with λ̄x as in Theorem 1.3, the linear form

X∗(Tx) −→ Q, χ 7→ ordλ̄x
(χ(tx))

defines an element of Y∗(Tx)⊗Q. By Theorem 1.3 (c) its weights in the given representation

are 0 with multiplicity nx = n − 1, and some positive value with multiplicity 1. After

rescaling this element so that the positive weight is 1, all its weights are integral, so we

obtain an element of Y∗(Tx) with the desired properties. �

Now we have collected enough information about Gλ to be able to prove

Proposition 2.6. For any λ 6= ∞ we have Gλ = GLn,Fλ
.

Proof: It is enough to prove G◦
λ = GLn,Fλ

. Recall that the tautological representation

of this group is absolutely irreducible. By Corollary 2.3 we may choose a closed point x ∈ X

with λx 6= λ, such that ϕ has ordinary reduction at x. Then the semisimple parts of tx and

ρλ(Frobx) are conjugate in GLn(Fλ). Therefore, the group Tx ×F Fλ is conjugate to an

algebraic subgroup of Gλ. It follows that Gλ possesses a cocharacter over F̄λ with the same

weights as in Lemma 2.5. Since any cocharacter factors through the identity component,

the same follows for the group G◦
λ. The assertion now follows from Proposition A.3 of the

Appendix A. �

After these preparations we are ready to prove Theorem 0.1. Let us abbreviate FΛ :=
⊕

λ∈Λ Fλ. Let ΓΛ denote the image of Gal(Ksep/K) in GLn(FΛ) =
∏

λ∈Λ GLn(Fλ), and

Γ′
Λ the closure of its commutator subgroup. By Theorem 1.8 it suffices to show that Γ′

Λ is

open in SLn(FΛ). We may assume that n ≥ 2 since otherwise there is nothing to prove.

By Proposition 2.6 we know already that the image of ΓΛ in PGLn(Fλ) is Zariski

dense for each λ ∈ Λ. We also need to know that the coefficients of ΓΛ in the adjoint

representation of PGLn,FΛ
cannot be made to lie in a proper subring of FΛ. This is

achieved by the following lemma. Let O ⊂ FΛ be the closure of the subring generated by

1 and by tr(AdPGLn
(ΓΛ)).
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Lemma 2.7. FΛ is the total ring of quotients of O.

Proof: Let U ⊂ X be the Zariski open subset consisting of all points x with λx 6∈ Λ.

Then for any x ∈ U and any λ ∈ Λ we have tr(AdPGLn
(ρλ(Frobx))) = ax − 1. It follows

that ax, diagonally embedded in FΛ, lies in O. Now Proposition 2.4 implies that F , also

diagonally embedded, is contained in the total ring of quotients of O. As F is dense in

FΛ, the assertion follows. �

The rest of the argument is pure group theory, though quite involved. The general

problem is to show that compact subgroups of semisimple groups over local fields are in

some sense essentially algebraic. This was achieved by the author in a separate article.

The following special case is enough for our present purposes.

Theorem 2.8. (Combine [25] Main Theorem 0.2 with Prop. 0.4 (c).) For any i in

a finite index set I let Fi be a local field, and put FI =
⊕

i∈I Fi. Let n ≥ 2 and consider a

compact subgroup Γ ⊂ GLn(FI) =
∏

i∈I GLn(Fi) whose image in each PGLn(Fi) is Zariski

dense. Let O ⊂ FI be the closure of the subring generated by 1 and by tr(AdPGLn
(Γ)), and

assume that FI is the total ring of quotients of O. Then the closure of the commutator

subgroup of Γ is open in SLn(FI) =
∏

i∈I SLn(Fi).

With Lemma 2.7 and Theorem 2.8, the proof of Theorem 0.1 is complete. �

Now we turn to Theorem 0.2, which is, in fact, easily deduced from Theorem 0.1. As

in §1 we put A′ := EndK̄(ϕ) and F ′ := Quot(A′), and let Ã′ be the normalization of A′

in F ′. Since every isogeny induces an isomorphism on Tate modules, we may replace ϕ by

the isogenous Drinfeld module of Proposition 1.1. Thus we may assume that A′ = Ã′. By

the assumption in Theorem 0.2 we have EndK(ϕ) = A′. Let ϕ′ : A′ → EndK(Ga) be the

tautological extension of ϕ. This is a Drinfeld module of rank n′, where n = rankA(A′) ·n′.

For any place λ 6= ∞ of F the definition of Tate modules gives a natural isomorphism

Vλ(ϕ) ∼=
⊕

λ′|λ

Vλ′(ϕ′)
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which commutes with the actions of both A′ and Gal(Ksep/K). Now let Λ′ be the set

of places of F ′ lying over some λ ∈ Λ. Then the above isomorphism and the Galois

representations associated to ϕ and ϕ′ induce a commutative diagram

∏

λ∈Λ CentGLn(Fλ)(A
′)

Gal(Ksep/K)
↗

↘
o
∥

∥

∏

λ′∈Λ′ GLn′(F ′
λ′) .

Thus Theorem 0.2 is reduced to Theorem 0.1 for the lower homomorphism. �

§3. Occurrences of a given Newton Polygon

The aim of this section is to determine the Dirichlet density of the set of closed points

in X where the reduction of ϕ has a given Newton polygon, i.e. has prescribed height.

The result has been summarized in Theorem 0.3. As before we put A′ := EndK̄(ϕ) and

F ′ := Quot(A′), and let Ã′ be the normalization of A′ in F ′. After replacing ϕ by the

isogenous Drinfeld module of Proposition 1.1 we may assume A′ = Ã′.

Let K ′ ⊂ K̄ be the finite extension of K generated by the coefficients of all endomor-

phisms in EndK̄(ϕ). The Tate conjecture (Theorem 1.7) implies that all endomorphisms

over K̄ are defined already over Ksep. Thus K ′ is separable and Galois over K. By con-

struction the Galois group ∆ := Gal(K ′/K) acts also on F ′, and by the Tate conjecture

this action is faithful. Let ϕ′ : A′ → EndK′(Ga) be the tautological extension of ϕ. This is

a Drinfeld module of rank n′, where n = [F ′/F ] · n′. We have the following commutative

diagram:

(3.1)

EndK′(Ga) //d
K ′

A′ � � //

66ϕ′
n

n
n

n
n

n
n

F ′
-



;;
w

w
w

w
w

w
w

EndK(Ga) //
?�

OO

K
?�

OO

A
� � //

66ϕ n
n

n
n

n
n

n?�

OO

F
-



;;
w

w
w

w
w

w
w?�

OO
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Here the homomorphism d : EndK′(Ga) → K ′ denotes the derivative at 0, i.e. the action

on the Lie algebra of Ga. The whole diagram is compatible with the obvious actions of ∆.

In particular the inclusion F ′ ↪→ K ′ is ∆-equivariant, so we have K ′ = F ′K. One should

be aware that F ′/F might be inseparable although, as we have seen, the extension K ′/K

is always separable.

Now let X be any model of K of finite type over SpecFq. We may suppose that ϕ

has good reduction everywhere on X . Let X ′ be the normalization of X in K ′. Then ϕ′

has good reduction everywhere on X ′. Consider a closed point x′ ∈ X ′ with image x ∈ X ,

and let λ′x′ denote the place of F ′ below x′. The heights of the reductions ϕx and ϕ′
x′ are

related as follows.

Lemma 3.2. We have

height(ϕx) = [F ′
λ′

x′
/Fλx

] · height(ϕ′
x′).

Proof: By the definition of Tate modules we have an isomorphism

Vλx
(ϕx) ∼=

⊕

λ′|λx

Vλ′(ϕ′
x′).

Thus we can calculate

height(ϕx) = n− dimFλx

(

Vλx
(ϕx)

)

=
∑

λ′|λx

[F ′
λ′/Fλx

] ·
(

n′ − dimF ′
λ′

(

Vλ′(ϕ′
x′)

)

)

= [F ′
λ′

x′
/Fλx

] ·
(

n′ − dimF ′
λ′

x′

(

Vλ′
x′

(ϕ′
x′)

)

)

= [F ′
λ′

x′
/Fλx

] · height(ϕ′
x′) ,

as desired. �

Let pe denote the degree of the totally inseparable part of the extension F ′/F . Then

the first factor in Lemma 3.2 is always divisible by pe. This already proves part (a) of

Theorem 0.3. For part (b) we may replace X by an arbitrary Zariski dense open subset,

since by Proposition B.7 (f) of the Appendix B this does not change Dirichlet densities.
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For instance, we may suppose that X is normal. As ϕ′ has good reduction at any point

of X ′, the inclusion A′ ↪→ K ′ corresponds to a morphism X ′ → SpecA′. Let A′∆ denote

the subring of ∆-invariants in A′, then we have in fact a commutative diagram

(3.3)

X ′ //

��

SpecA′

��
X // SpecA′∆

��
SpecA .

By construction the upper two vertical morphisms are Galois coverings with Galois group

∆. Thus after shrinking X and X ′ we may assume that X ′ is étale over X and that the

upper rectangle in Diagram (3.3) is cartesian. Now we can analyze more closely the first

factor in Lemma 3.2.

Lemma 3.4. We have

pe · [kx′/kx]
∣

∣

∣
[F ′

λ′
x′
/Fλx

],

with equality for x in a set of points of Dirichlet density 1.

Proof: As Diagram (3.3) is cartesian, we have kx′ = Fλ′
x′
kx. This shows that [kx′/kx]

divides [Fλ′
x′
/Fλx

], with equality if [kx/Fλx
] = 1. Note that by Proposition B.8 of the

Appendix B, applied to Y = C, this last condition holds on a set of points x of Dirichlet

density 1. On the other hand the ramification degree of F ′
λ′

x′
over Fλx

is always divisible

by pe, with equality outside a Zariski closed proper subset of X . The assertion follows. �

To bound the second factor in Lemma 3.2 we follow the same procedure as in §2. For

the present purposes it is enough to work with the element

bx′ := tr(ρλ′(Frobx′)−1) ∈ F ′,

where ρλ′ denotes the Galois representation associated to the Drinfeld module ϕ′ for any

sufficiently general place λ′ of F ′.
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Lemma 3.5. Assume

(a) [kx′/Fλ′
x′

] = 1, and

(b) bx′ is not a constant function in F ′.

Then height(ϕ′
x′) = 1.

Proof: The proof is essentially that of Lemma 2.1, with ϕ replaced by ϕ′. By the

same arguments as in 2.1 we find that bx′ is integral at all places of F ′ other than λ′x′ ,

and its valuation at λ′x′ is > −1 if ϕ′
x′ is not ordinary. In that case bx′ must be constant,

contradicting assumption (b). �

Lemma 3.6. The set of closed points x ∈ X for which condition (a) of Lemma 3.5

holds has Dirichlet density 1.

Proof: Since Diagram (3.3) is cartesian, we have [kx′/Fλ′
x′

]
∣

∣ [kx/Fλx
] for all x. By

Proposition B.8 the latter index is 1 for a set of x of density 1. �

Lemma 3.7. The set of closed points x ∈ X for which condition (b) of Lemma 3.5

holds has Dirichlet density 1.

Proof: We restrict attention to those x for which Frobx maps to the conjugacy class

of a fixed element δ ∈ ∆. The choice of x′ determines the image of Frobx in its conjugacy

class, so we may assume that Frobx maps to δ itself. Let ` denote the order of δ.

Next fix a place λ 6= ∞ of F which is maximally split in F ′. In other words, if F̃

denotes the maximal totally inseparable extension of F inside F ′, then the unique place λ̃

of F̃ above λ splits completely in F ′. Recall that Vλ(ϕ) =
⊕

λ′|λ Vλ′(ϕ′). Removing from

X the fiber above λ, the conditions on x imply that Frobx maps each Vλ′(ϕ′) to Vλ′δ(ϕ′).

Let us fix a place λ′|λ. Then the Tate modules Vλ′δi (ϕ′) for imod ` are F̃λ̃-vector

spaces of dimension n′ which are cyclically permuted by Frobx. Let us choose bases for

these Tate modules, not depending on x (but, of course, on δ and λ′). Then for each

imod ` the map

Vλ′δi (ϕ′) −→ Vλ′δi+1 (ϕ′)
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induced by Frobx is given by a matrix gi ∈ GLn′(F̃λ̃). The assumptions on x imply that

Frobx′ = Frob`
x, hence Frobx′ acts on Vλ′(ϕ′) through the product g`−1 · · · g1g0. It follows

that

bx′ = tr
(

(g`−1 · · · g1g0)
−1

)

.

On the other hand Theorem 0.1 applied to ϕ′ and the set of places Λ′ := {λ′δ
i

| imod `}

asserts that Gal(K ′sep/K ′) acts on the above Tate modules through an open subgroup

ΓΛ′ ⊂
∏

i mod `

GLn′(F̃λ̃).

Under the current assumptions on x the tuple (g0, g1, . . . , g`−1) associated to Frobx runs

through a certain coset HΛ′ under ΓΛ′ .

Let m̃ denote the maximal ideal of the valuation ring in F̃λ̃, and for every j ≥ 0 let

Kj be the finite separable extension of K ′ corresponding to the subgroup

{

γ ∈ ΓΛ′

∣

∣ γ ≡ id mod m̃j
}

.

Let Xj be the normalization of X in Kj. Since the fiber above λ was removed from X ,

the theory of moduli of Drinfeld modules with level structure implies that Xj is étale over

X . We want to apply the Čebotarev density theorem to this covering. Let F′ be the field

of constants in F ′. Then the condition bx′ ∈ F′ + m̃j depends only on the behavior of x

in Kj. It suffices to prove that the proportion of those x ∈ X which satisfy this condition

goes to 0 as j → ∞. This follows from Čebotarev (see Theorem B.9 of the Appendix B)

and the following sublemma.

Sublemma 3.8. The volume of the subset

{

(g0, g1, . . . , g`−1) ∈ HΛ′

∣

∣

∣
tr

(

(g`−1 · · · g1g0)
−1

)

∈ F′ + m̃j
}

with respect to any given Haar measure on
∏

i mod ` GLn′(F̃λ̃) goes to zero as j → ∞.

Proof: The isomorphism

∏

i mod `

GLn′(F̃λ̃) ∼−−→
∏

i mod `

GLn′(F̃λ̃)

(g0, g1, . . . , g`−1) 7→
(

(g`−1 · · · g1g0)
−1, g1, . . . , g`−1

)
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maps Haar measure to Haar measure and HΛ′ to a compact subset H ′ which is invariant

under some other open subgroup Γ′ ⊂
∏

i mod ` GLn′(F̃λ̃). It suffices to prove that the

volume of the subset

{

(h0, g1, . . . , g`−1) ∈ H ′
∣

∣

∣
tr(h0) ∈ F′ + m̃j

}

goes to zero as j → ∞. The condition on h0 shows that this volume is a constant times

card(F′)−j for all j � 0. This proves Sublemma 3.8 and thus Lemma 3.7. �

Proof of Theorem 0.3: Part (a) was proved already after Lemma 3.2. For part (b)

note that Lemmas 3.2–7 imply height(ϕx) = pe · [kx′/kx] for all x in a set of points of

Dirichlet density 1. Moreover, [kx′/kx] is just the order of the image of Frobx in ∆. The

Dirichlet density of the set of x with fixed [kx′/kx] is given by the Čebotarev density

theorem (Theorem B.9 of the Appendix B), yielding the desired formula of 0.3 (b). �

Appendix A. Ingredients from the Theory of Algebraic Groups

In this appendix we consider a connected linear algebraic group G ⊂ GLn,L where

L is a field and n a positive integer, both arbitrary. We assume that G acts absolutely

irreducibly on the vector space V := Ln. If L̄ denotes an algebraic closure of L, this means

that G×L L̄ acts irreducibly on V ⊗L L̄ = L̄n.

Fact A.1. G is reductive.

Proof: We must show that G ×L L̄ is reductive. Without loss of generality we may

assume that L = L̄. Let U denote the unipotent radical (i.e. the largest connected unipo-

tent normal subgroup) of G. By the theorem of Lie-Kolchin (cf. Humphreys [20] §17.6)

the subspace of U -invariants in V is non-zero. By construction it is also G-stable, so by

irreducibility it must be the whole space. Thus U acts trivially on V , hence U itself is

trivial. This means that G is reductive ([20] §19.5). �
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Proposition A.2. Let A1
L denote the affine line as algebraic variety over L. Suppose

that n ≥ 2. Then the morphism f : G→ A1
L, g 7→ tr(g) · tr(g−1) is non-constant.

Proof: After base extension we may assume that L is algebraically closed. Choose a

maximal torus and a Borel subgroup T ⊂ B ⊂ G. Since V is an irreducible representa-

tion, it has a unique highest weight λ, which is dominant and occurs with multiplicity 1

([20] §31.3). Since dimL(V ) > 1, we must have λ 6= 0. Let λ∗ be the highest weight

of the dual representation V ∗. Then the weight λ∗ + λ occurs with multiplicity 1 in the

representation V ∗ ⊗L V . For any character χ of T let mχ ∈ Z denote the multiplicity of

χ as a weight on V ∗ ⊗L V . Then we have f |T =
∑

χmχ · χ. By the linear independence

of characters such a function is constant if and only if for every χ 6= 0 the coefficient mχ

maps to 0 in L. Since λ∗ +λ 6= 0 and mλ∗+λ = 1, this function is non-constant. Therefore

the original function f is non-constant. �

Proposition A.3. Suppose that there exists a cocharacter µ : Gm,L̄ → G×L L̄ which

on V ⊗L L̄ has weight 1 with multiplicity 1, and weight 0 with multiplicity n − 1. Then

G = GLn,L.

Proof: (A more general treatment of such situations is in Serre [27] §3, the assumption

of characteristic zero being unnecessary. For convenience we give a full proof here.) Again

we may assume that L is algebraically closed. Since det ◦µ is non-trivial, it suffices to

prove that the derived group Gder is equal to SLn,L. This is obvious when n = 1, so let

us assume n ≥ 2. First we show that Gder is simple. If this is not the case, then V is

⊗-decomposable under G. That is, there exists an isomorphism V ∼= (Ln1) ⊗L (Ln2) with

n1, n2 > 1 such that G is contained in GLn1,L ·GLn2,L ⊂ GLn,L. We can write µ = µ1⊗µ2

for suitable cocharacters µi : Gm,L → GLni,L. If µi is scalar for some i, the multiplicity of

each weight of µ on V is divisible by ni. If, on the other hand, both µi are non-scalar, one

easily shows that µ possesses at least three distinct weights on V . In both cases we obtain

a contradiction to our assumption on µ. Thus Gder is simple.

Next note that the weights of µ on gln,L are ±1 and 0. Thus the weights on LieGder

are also among these values. Choose a maximal torus and a Borel subgroup such that
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µ(Gm,L) ⊂ T ⊂ B ⊂ G, and let W denote the Weyl group of G with respect to T .

By Bourbaki [2] chap. 8 §7.3 the highest weight λ of V is minuscule. It follows that

all the weights of T in V are conjugate to λ under W . (The proof is the same as in

characteristic zero: all weights are contained in the “R-saturation of λ” of loc. cit.) Since

λ has multiplicity 1, so do all the weights. Let us put T in diagonal form. We may suppose

that

µ(Gm,L) =









∗
1

. . .

1









⊂ T ⊂









∗
∗

. . .

∗









.

Since the weights are pairwise distinct and permuted transitively by W , the permuta-

tion representation W → Sn is transitive. Thus the W -conjugates of µ(Gm,L) altogether

generate the torus Gn
m,L. It follows that T = Gn

m,L.

Now we know that Gder is a simple semisimple subgroup of SLn,L of equal rank.

Therefore its root system is an irreducible closed root subsystem of An−1 of equal rank.

It is easy to show that the only such subsystem is An−1 itself (cf. Dynkin [12] Table 9).

We conclude that G = GLn,L, as desired. �

Appendix B. Dirichlet Density in Dimension ≥ 1

For lack of a suitable reference, this appendix describes a formalism of Dirichlet den-

sity for schemes of arbitrary dimension and establishes some of its main properties. If we

are given a field K which is finitely generated over its prime field, we must choose a model

of finite type over SpecZ in order to make sense of the statements below. However, Propo-

sition B.7 (f) will show that the concept depends essentially only on K. The assertions

will be stated regardless of the characteristic of K. But as the positive characteristic case

is all that is needed in this article, any special arguments for the characteristic zero case

will only be sketched. Everything here follows well-known arguments, as for instance those

giving the equidistribution theorem of Deligne [7] Th. 3.5.1 (see also Katz [22] Th. 3.6).

In the following all schemes will be of finite type over SpecZ. The set of closed points

of such a scheme X is denoted |X |. The residue field at x ∈ |X | is denoted kx and its
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cardinality qx. The following statement gives estimates for the number of closed points

with a given residue field.

Proposition B.1. Let f : X → Y be a morphism of schemes of finite type over

SpecZ.

(a) Suppose that all fibers of f have dimension ≤ δ. Then there exists a constant C > 0

such that for all y ∈ |Y | and all n ≥ 1 we have

card
{

x ∈ |X |
∣

∣ f(x) = y and [kx/ky] = n
}

≤ 1
n · C · qnδ

y .

(b) Suppose that f is surjective and all fibres are geometrically irreducible of dimension

δ > 0. Then there exists a constant C′ > 0 such that for all y ∈ |Y | and all n ≥ 1 we

have

card
{

x ∈ |X |
∣

∣ f(x) = y and [kx/ky] = n
}

≥ 1
n ·

(

qnδ
y − C′ · q

n(δ− 1
2 )

y

)

.

Proof: Let Xy denote the fiber of f above y and k
(n)
y an extension of ky of degree n.

By Grothendieck’s Lefschetz trace formula (see [6] Rapport Th.3.2) we have

card
(

Xy(k(n)
y )

)

=
2δ
∑

i=0

(−1)i tr
(

Frobn
y |Hi

c(Xy×ky k̄y ,Q`)

)

,

and by a theorem of Deligne (the “Weil conjecture”, see [7] Th. 3.3.1) the eigenvalues

of Froby on Hi
c(Xy ×ky

k̄y,Q`) are algebraic numbers of complex absolute value ≤ q
i/2
y .

Moreover, by constructibility and proper base change (see Deligne [6] Arcata) the total

number of eigenvalues is bounded independently of y. This implies that

(B.2) card
(

Xy(k(n)
y )

)

≤ C · qnδ
y

for all y and n, with a fixed constant C > 0. Since any point x ∈ |X | with f(x) = y

and [kx/Fq] = n corresponds to precisely n primitive points in Xy(k
(n)
y ), this implies

assertion (a). To prove (b) we first estimate the number of non-primitive points inXy(k
(n)
y ).
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Lemma B.3. In the situation of Proposition B.1 (b) let Xy(k
(n)
y )imprim ⊂ Xy(k

(n)
y )

denote the subset of those points which are defined over some proper subfield of k
(n)
y . Then

for all y ∈ |Y | and all n ≥ 1 we have

card
(

Xy(k(n)
y )imprim

)

≤ 2C · qnδ/2
y .

Proof: Using (B.2) we calculate

card
(

Xy(k(n)
y )imprim

)

≤
∑

m|n
m6=n

card
(

Xy(k(m)
y )

)

≤
∑

1≤m≤n/2

C · qmδ
y

= C ·
q
bn

2 cδ
y − 1

1 − q−δ
y

≤ 2C · qnδ/2
y ,

as desired. �

In the situation of B.1 (b) we also know that H2δ
c (Xy ×ky

k̄y,Q`) has dimension 1 and

the eigenvalue of Froby is equal to qδ
y. Therefore we have

card
(

Xy(k
(n)
y )

)

≥ qnδ
y − C · q

n(δ− 1
2 )

y .

Combining this with Lemma B.3 we deduce

card
{

x ∈ |X |
∣

∣ f(x) = y and [kx/ky] = n
}

≥ 1
n
·
(

card
(

Xy(k
(n)
y )

)

− 2C · qnδ/2
y

)

≥ 1
n
·
(

qnδ
y − C · q

n(δ− 1
2 )

y − 2C · qnδ/2
y

)

≥ 1
n ·

(

qnδ
y − 3C · q

n(δ− 1
2 )

y

)

,

as desired. �

Now fix an integral scheme X of finite type over SpecZ and of dimension d > 0. For

any subset S ⊂ |X | and a complex parameter s we define

(B.4) FS(s) :=
∑

x∈S

q−s
x .
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Proposition B.5.

(a) This series converges absolutely and locally uniformly for Re(s) > d. Thus it defines

a holomorphic function in this region.

(b) We have

lim
s↘d

F|X|(s) = ∞,

where the limit is taken with s approaching d along the real line from the positive

direction.

Proof: Let K be the function field of X , and assume first that char(K) > 0. Let Fq

be its field of constants, of cardinality q. Note that for both assertions we may replace

X by a Zariski dense open subscheme (using noetherian induction for (a)). Thus we may

suppose that X is a geometrically irreducible scheme over Y := SpecFq. Then we have

FS(s) =
∑

n≥1

q−ns · card
{

x ∈ S
∣

∣ [kx/Fq] = n
}

.

Taking absolute values and using Proposition B.1 (a) we see that this series is dominated

by
∑

n≥1

q−n Re(s) · 1
n
· C · qnd = C ·

∣

∣log(1 − qd−Re(s))
∣

∣.

Clearly this is locally uniformly bounded for Re(s) > d, proving (a). For (b) we take s ∈ R

and calculate, using Proposition B.1 (b):

F|X|(s) =
∑

n≥1

q−ns · card
{

x ∈ |X |
∣

∣ [kx/Fq] = n
}

≥
∑

n≥1

q−ns · 1
n · (qnd − C′ · qn(d− 1

2 ))

= − log(1 − qd−s) + C′ · log(1 − qd− 1
2−s).

This implies assertion (b).

The case char(K) = 0 is treated in essentially the same fashion, with Y = SpecFq

replaced by the spectrum of the integral closure of Z in K. One first carries out the above

calculation for the fibers over all y ∈ |Y |, and then estimates the remaining sum over y as

in the number field case. �
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Definition B.6. If the limit

µX(S) := lim
s↘d

FS(s)

F|X|(s)

exists, we say that S has a (Dirichlet) density and µX(S) is called the (Dirichlet) density

of S (in X).

The following facts are straightforward to verify.

Proposition B.7.

(a) If S has a density, then 0 ≤ µX(S) ≤ 1.

(b) The set |X | has density 1.

(c) If S is contained in a Zariski closed proper subset of X, then S has density 0.

(d) If S1 ⊂ S ⊂ S2 ⊂ |X | such that µX(S1) and µX(S2) exist and are equal, then µX(S)

exists and is equal to µX(S1) = µX(S2).

(e) For any subsets S1, S2 ⊂ |X |, if three of the following densities exist, then so does the

fourth and we have

µX(S1 ∪ S2) + µX(S1 ∩ S2) = µX(S1) + µX(S2).

(f) Let f : X → Y be a dominant morphism of integral schemes of finite type over SpecZ.

Suppose that dim(X) = dim(Y ) and that f is totally inseparable at the generic point.

Then any given subset S ⊂ |X | has a density if and only if f(S) has a density, and

then µX(S) = µY (f(S)).

Proof: Assertions (a), (b), (d), and (e) are clear from the definition. The statement (c)

follows from Proposition B.5, because we obtain that FS(s) converges near s = d while

F|X|(s) diverges. To prove (f) we choose a Zariski dense open subset V ⊂ Y such that

U := f−1(V ) → V is finite and totally inseparable at every point. Using assertions (c–e)

we may replace X by U and Y by V . Then f induces isomorphisms on the residue fields,

hence we have FS(s) = Ff(S)(s) for any subset S ⊂ |X |. Now the assertion (f) follows

immediately. �
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The following proposition is a generalization of the fact that the set of primes of

absolute degree 1 in a number field has Dirichlet density 1 (with respect to that field!).

Proposition B.8. Let f : X → Y be a morphism of schemes of finite type over

SpecZ. Suppose that X is integral and that f is non-constant. Then the set

{

x ∈ |X |
∣

∣ [kx/kf(x)] = 1
}

has Dirichlet density 1.

Proof: First we replace Y by the closure of the image of f . Next we abbreviate

d := dim(X) and e := dim(Y ), and choose a Zariski dense open subset U ⊂ X such that

the fiber dimension of f |U : U → Y is everywhere equal to δ := d− e. By Proposition B.7

we may replace X by U . Now put

S :=
{

x ∈ |X |
∣

∣ [kx/kf(x)] ≥ 2
}

.

By Proposition B.5 (b) it suffices to show that FS(s) converges absolutely and uniformly

near s = d. Taking absolute values and using Proposition B.1 (a) we see that this series is

dominated by
∑

x∈S

q−Re(s)
x =

∑

y∈|Y |

∑

x∈S
f(x)=y

q−[kx/ky]·Re(s)
y

=
∑

y∈|Y |

∑

n≥2

q−n Re(s)
y · card

{

x ∈ |X |
∣

∣ f(x) = y and [kx/ky] = n
}

≤
∑

y∈|Y |

∑

n≥2

q−n Re(s)
y · 1

n
· C · qnδ

y

≤
∑

y∈|Y |

C ·
q2(δ−Re(s))

y

1−q
δ−Re(s)
y

≤ C
1−2δ−Re(s) · F|Y |

(

2(Re(s) − δ)
)

.

By Proposition B.5 (a) this converges locally uniformly for Re(s) > δ+ e
2 = d− e

2 . Since f

is non-constant, we have e > 0 and hence uniform convergence near s = d, as desired. �

Now we come to the Čebotarev density theorem. Consider a finite étale Galois covering

X̃ → X with Galois group G such that X̃ is irreducible. The Frobenius substitution of

any point x̃ ∈ |X̃| over its image point x is a unique element of G. The conjugacy class of

this element depends only on x and is denoted Frobx.
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Theorem B.9. For every conjugacy class C ⊂ G the set

{

x ∈ |X |
∣

∣ Frobx = C
}

has Dirichlet density
card(C)

card(G)
.

Proof: From the representation theory of finite groups we know that the vector space

of central functions G → C has (at least) two natural bases, namely the characteristic

functions of the conjugacy classes in G, respectively the irreducible characters of G. Let us

denote the latter by ϕi, with ϕ0 ≡ 1 being the trivial character. If ϕC is the characteristic

function of a conjugacy class C, we have ϕC =
∑

i aC,iϕi with

aC,0 = (ϕC, ϕ0) =
card(C)

card(G)
.

Now for any central function ϕ we consider the series

Fϕ(s) :=
∑

x∈|X|

ϕ(Frobx) · q−s
x .

If SC denotes the set in the theorem, we clearly have FSC
(s) = FϕC

(s). On the other hand

we have F|X|(s) = Fϕ0
(s). Thus we must prove

lim
s↘d

FϕC
(s)

Fϕ0
(s)

= (ϕC , ϕ0)

for every conjugacy class C. This is equivalent to the assertion

lim
s↘d

Fϕi
(s)

Fϕ0
(s)

= (ϕi, ϕ0) =

{

1 if i = 0,
0 if i 6= 0,

for all i. This is obvious when i = 0, so by Proposition B.5 (b) it suffices to prove that

Fϕ(s) is bounded near s = d for any non-trivial irreducible character ϕ. In the following

we fix such ϕ.

As in the proof of Proposition B.5 we first suppose thatX is a geometrically irreducible

scheme over Y := SpecFq. Then we can rewrite

Fϕ(s) =
∑

n≥1

q−ns ·
∑

x∈|X|
[kx/Fq ]=n

ϕ(Frobx).
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I claim that this differs from

(B.10)
∑

n≥1

q−ns · 1
n ·

∑

x∈X(Fqn )

ϕ(Frobx)

by a function which is bounded near s = d. Indeed, since any point x ∈ |X | with [kx/Fq] =

n corresponds to precisely n primitive points of X(Fqn), the difference is equal to

∑

n≥1

q−n Re(s) · 1
n ·

∑

x∈X(Fqn )imprim

ϕ(Frobx).

By Lemma B.3 this is bounded by

∑

n≥1

q−n Re(s) · 1
n
· Const · qnd/2 ≤ Const ·

∣

∣log(1 − qd/2−Re(s))
∣

∣.

As d ≥ 1, this is indeed bounded near s = d.

To evaluate formula (B.10) we use the Lefschetz trace formula in étale cohomology.

Choose a number field E ⊂ C such that the irreducible representation ρ of G with ϕ = tr ◦ρ

can be defined over E. Choose a prime ` - q and an embedding E ↪→ Q̄`. Then ρ gives

rise to a representation of the étale fundamental group of X over Q̄` and thus to a lisse

Q̄`-sheaf F`. By construction we have ϕ(Frobx) = tr(Frobx |F`,x̄
) for every point x of X

over a finite field. The Lefschetz trace formula (see [6] Rapport Th.3.2) thus asserts that

∑

x∈X(Fqn)

ϕ(Frobx) =
2d
∑

i=0

(−1)i tr
(

Frobn
q |Hi

c(X×Fq F̄q,F`)

)

for every n ≥ 1. Moreover, since F` is pointwise pure of weight 0, we know by Deligne

[7] Th. 3.3.1 that the eigenvalues of Frobq on Hi
c(X ×Fq

F̄q,F`) are algebraic numbers of

complex absolute value ≤ qi/2.

Let us first consider all the terms with i < 2d. The corresponding part of (B.10) is

bounded by

∑

n≥1

q−n Re(s) · 1
n · Const · qn(d− 1

2 ) ≤ Const ·
∣

∣log(1 − qd− 1
2−Re(s))

∣

∣,

which is clearly bounded near s = d. Next let Fq̃ denote the constant field of X̃ and

G′′ its Galois group over Fq. We have a natural surjection G � G′′ whose kernel comes
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from the geometric fundamental group of X . Now H2d
c (X ×Fq

F̄q,F`) is zero unless F` is

geometrically trivial, i.e. unless ϕ comes from some irreducible character ϕ′′ of G′′. Since

G′′ is cyclic, this must be an abelian character of degree 1. Therefore in that case the

dimension of H2d
c (X ×Fq

F̄q,F`) is 1 and the eigenvalue of Frobq is equal to ϕ′′(Frobq) · q
d.

The remaining part of (B.10) is thus equal to

∑

n≥1

q−ns · 1
n ·

(

ϕ′′(Frobq) · q
d
)n

= − log
(

1 − ϕ′′(Frobq) · q
d−s

)

.

Here ϕ′′(Frobq) is a root of unity, which is non-trivial since ϕ and hence ϕ′′ is a non-trivial

character. Thus this term extends to a holomorphic function near s = d, as desired. This

finishes the proof of Theorem B.9 in the positive characteristic case.

The modifications for characteristic zero are the same as in the proof of Proposi-

tion B.5. The main difference occurs at the very end of the proof, where the remaining

part of Fϕ(s) comes out to be essentially

∑

y∈|Y |

ϕ′′(Froby) · qd−1−s
y

where ϕ′′ is a (not necessarily abelian) Artin character. Estimating this function amounts

simply to the usual Čebotarev theorem in the number field case (see e.g. Neukirch [23]

Kap.VII Th.13.4), which finishes the proof. �
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89, Boston etc.: Birkhäuser (1990), 57–85.
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