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Abstract

We correct two mistakes in [1]. The first concerns the exponential
decay in the proof of Theorem 7.4 and the second concerns the bubbling
argument in the proof of Theorem 9.1.

1 Exponential decay

For Theorem 7.1: Replace the hypothesis || Bt|| ;< qxx) + € [|Cll Loy o0
page 615 by the weaker assumption

sup | B:(s,0)ll gy +¢ sup [10(s,0)l o) < co- (1)
(s,t)eQ (s,t)eQ

All the estimates in the proof of Theorem 7.1 continue to hold under this as-
sumption. To see this, use the inclusion WH%(2) < L4(X) to obtain inequalities
of the form

2
||Bt||L4(E) HO||L4(E) < ¢y/Uovo, HBtHL4(E) < v + cuo,
where ug, vg are as in the proof of Theorem 7.1.

Corollary 1.1. Let Q C C be an open set and K C £ be a compact subset.
Then for every constant co > 0, there exist constants g > 0 and ¢ > 0 such
that the following holds. If 0 < e <eg and 2 = A+ ®ds+ VY dt is a connection
on Q) x ¥ that satisfies

Oa
0 e

OA —daV + *s(aSA —dygd — XS(A))
B® — 9,0 — [®, U] + =2 % Fiy

and (1) then

I Bell oo (resessy +ENCH Lo (ks < € (||Bt||L2(Qx2) te ||O||L2(sz)) :



Proof. By Theorem 7.1 (in the above strengthened form), the connection =
satisfies (7.4) in [1, page 615]. The assertion follows by taking p = oo and
using [1, Lemma 7.6] with p = 4. O

For Lemma 7.5: On page 620 replace the inequality (7.7) by

ladl® + llol* + [lo]1?
<e (||*SV504 e dX (A — #dad — dat])?

+e2 HVSz/J — 5_2d,404H2 +e2 HVS *g ¢+ e72dy x4 aHz) .

On page 621 replace the last two sentences in the proof of Lemma 7.5 by the
following text.

Hence it follows from Lemma 7.3 and Lemma 7.4 in [10] that there exist con-
stants g > 0, vy € N, and ¢ > 0 such that the estimate (7.7) holds with
0 < e <egpand A+ Pds replaced by A, + ®,ds where v > vy (here the
estimate for « follows from Lemma 7.4 and the estimate for ¢ and 1 from
Lemma 7.3). With € = ¢, and v > ¢ this contradicts our assumption. a

Proof of Theorem 7.4: The last displayed inequality on page 622 is correct
as it stands, however its proof uses Corollary 1.1 above.
Replace the first displayed inequality on page 623 by

IBu* + 17 < es (IVeB: — dXo(A)Br — daCl + 22 |[daBy]))

(The mistake in [1] is the factor €2 in front of ||C]|? in this inequality; it can
be removed because of the improved inequality in Lemma 7.5.) Inspection of
the formula for f”(t) shows that this stronger estimate is needed to prove the
inequality f(t) > p?f(t) for t > 1 (use the expression after the fourth equal
sign in the formula for f”(t) on page 622). O

2 An a priori estimate

The following a priori estimate is an adaptation of [2, Lemma 9.1] to the present
context. It is needed in the proof of Theorem 9.1.

Lemma 2.1. There is a constant dg > 0 with the following significance. Let
Q C R? be an open set and K C € be a compact subset. Then, for every co > 0
and every p > 2, there are positive constants €y and c¢ such that the following
holds. If 0 < & < ¢ and the maps A : Q@ — A(P) and ®,¥ : Q — Q°(%,gp)
satisfy (2) and

10,A — dA‘I’”Lw(QxE) < ¢o, ||FAHL°°(Q><E) < do, (3)
then
/ (NFAl 25y + 2 IV FallG oy + & [N Fal s ) S ™ (4)
K
U (1l 2w+ [V Fall gy +2 1% Fallpagsy) < 2727 (5)



Proof. As in [1, Lemma 7.6] one can show that there exist constants dg > 0 and
c1 > 0 such that every A € A(P) with [|[Fal| (5 < 0o satisfies the inequalities

ol < erlldadll,

[da (+sdXs(A)a + *sa)[| < cr ([lall + [daal +[|da s af])

for s € R, ¢ € Q°(Z;gp), and a € Q' (Z;g9p). Here and in the following all
norms are L?-norms on X.
Now let A, ®, ¥ satisy the hypotheses of the lemma and define

By = 0,A—da®, By :=9A—da¥, C:=00— 8,0 —[0,0]. (6)
Then the proof of [1, Theorem 7.1] shows that

2 (VWV,C + VViC) = d%daC — 2% By A By] + #[#X(A) A By]
— *k dA (*SdXS(A)Bt + >;<th) .

Hence, with A := 92/0s? 4+ 9?/0t? the standard Laplacian, we have

AlC|* = 2|VOI* +2%CI* + 2(VVC + %ViC, C)
= 27| da xs Be||? + 27| daBy | + 2672 [|daC))?
—4e7(C, *[By A By]) + 267 %(C, #[*s X (A) A By])
— 267 %(C, *d g (*5dX(A) By + %5 By))
1) 2 C
> el -Sel.
The last inequality holds for ¢ < &g, with &g sufficiently small, and suitable
positive constants 6 and ¢, depending only on dy, co, and ¢; (as well as the

metrics on ¥ and the vector fields X,). Since 2A||C||” > p||C||P"> A||C|? for
p > 2, this implies

_ 2e2
clF <SPt + Zac)r.
el < Ser + Eajel
Using the inequality ab < a?/p + b?/q with 1/p+1/¢ = 1, a := ¢/§ and
b:=||C|”~" we obtain b? = ||C||”, and hence
o < &+ Ao @
—6r 1) '
By [2, Lemma 9.2], this implies that

7(R+7r)%c? 82
[ e < TS T lelg
Br(z) r Br+r(2)

for every z € C and every pair of positive real numbers R and 7 such that
Brir(2) C Q. Now observe that £ ||C|| = ||Fa| < oVol(¥) and use the last
inequality repeatedly, with R replaced by R+ r,R+ 2r,...,R+ (p — 1)r, to



obtain the estimate fBR(Z) |C|I” < ¢, for every z € C such that Brypr(2) C Q.

Now choose R and r such that Bripr(2) C Q for every z € K. Cover K by
finitely many balls of radius R to obtain

JAEar = [ er < ey ®

It follows from (7) that the function z — [|C(z)||” + ¢? |z — 2o|* /80P~ 12 is
subharmonic in Q for every zp € C. Hence, by the mean value inequality
and (8), we have
Sup | Fall = 22 sup [ O] < exepe? 207 ©)
K K

for a suitable constant ck p. It follows from (8) and (9) that every connection
E=A+4®ds+ Udt on Q x P that satisfies (2) and (3) also satisfies (1) in
every compact subset of €2 and hence, by Corollary 1.1, satisfies the hypotheses
of [1, Theorem 7.1]. Hence it follows from [1, Theorem 7.1] with p = oo that,
for every open set U with cl(U) C €, there is a constant ¢y such that every
conection = on Q x P that satisfies (2) and (3) also satisfies the estimates

€ ||v5Bt||L°°(U><E) +e ||vtBtHLoo(U><2) < ¢,
Cy, (10)

Cy.

el Lo (xs) + e’ IVsCll oo (xs) + e? IViCll Lo (rxs)

IN A

ICN L2 xs) +EIVSCll2xs) T ENIVECl L2 sy

Note that the last inequality is equivalent to (4) for p = 2.
Now consider the function v : U — R defined by

1
uls, 0 = 5 (10 DI + 2 INCs O + & [V s, 1))

Again all norms are L?-norms on ¥. In the following we shall assume, for
simplicity, that the Hodge x-operator *s; = % is independent of s and that
X5 =0 for all s. Then, as in the proof of [1, Theorem 7.1], we have
Aw? = e daC| + [VOIP + [ + [[daViCl® + [daViC®

+ 2|V C|° + 2 [V %C)? + 2¢ [V %O

—2e%(C, [V,C, V,C]) — 27 2(C, *[B; A By])

— 4(V,C, x[B A VsBy]) — 4(V,C, #[ By A Vi By])

+(daViC, [Bs, C)) + (daVC, [By, C))

—(VC,%[Bs A xd4oC)) — (V,C, %[ By A xd 4C]).

For ¢ sufficiently small it follows that
) c
2 2
Au > 5_2u — gu
with suitable positive constants § and c. To see this examine the last eight
terms in the formula for Au? and use (10). Now it follows as in (7) that

2
uP < gu”* + 2 A

po



for p > 2. By (9) and (10), we have u < ¢’/e for some constant ¢’. Hence we
can argue as above to show that, for every compact subset K C U, there is a
constant cgx , > 0 such that fK u? < ciyp and supy uP < cKyps’z. This proves
the lemma. O

3 Bubbling analysis

The assertion on page 634 that the limit connection =, represents a noncon-
stant holomorphic sphere S? — M(P) does not seem to follow from the ar-
gument in [1]. A modified bubbling argument does result in a nonconstant
holomorphic sphere but only proves a weaker estimate, i.e. we must weaken the
assertion of Theorem 9.1 and the assumption of Theorem 8.1. Then Theorem 9.2
remains valid.

For Theorem 8.1: The assertion of Theorem 8.1 in [1, page 623] continues to
hold if the hypothesis (8.1) is replaced by the weaker inequality

e | Fall e + 1064 = da¥| o < co (11)
To see this, replace the last inequality on page 625 by [|C¥]|;, < cs?/pil or,
equivalently,
1Fa, e < cey™?P.

For p = 2 this follows from the first inequality in Step 2 on page 625, for p = co

it holds by assumption, and for 2 < p < oo it follows by interpolation. Now

replace the constant €2 by 5,1,+2/ P in the following places.

e In the inequality (8.4) on page 626.

e Replace the inequality ||A' — A|;, < c2e? by [|[A' — Al|,, < coelT2/P in
the middle of page 626.

e In the first two inequalities after (8.9), in the first inequality after (8.10),
and in the first inequality in the proof of Step 5 (page 628).

e In the first inequality on page 629 and in the last inequality before (8.11).

The next lemma is a local version of Theorem 8.1; it is needed in the proof
of Theorem 9.1. Let Q, C C be an exhausting sequence of open sets and s,,
g, > 0, 6, > 0 be seqences of real numbers such that s, — sg, ¢, — 0, 6, — 0.
Abbreviate *,s 1= %4, 15,5 and Xys 1= 8, X, 45, s-

Lemma 3.1. Let Z, = A, + ®,ds + ¥, dt be a sequence of solutions of the
equation (2), with (x5, Xs) replaced by (x5, Xus), on Q, X P such that

sup (5;1 1Fa, Nl 20, x5y + 10 AL — dAu‘I’VHp(Qsz)) < 09, (12)

sup (5;1 1Ea, |l oo, x5y + 1064y — dAu‘I’VHLoo(Qsz)) < 0.



Then there is a subsequence, still denoted by Z,, a sequence of gauge transfor-
mations g, : Q, — G(P), and a connection Zg = Ag + Pods + ¥odt on C x P
such that

0¢ Ao — da, Vo + *4,(0sAg — da,Po) =0, Fy, =0,

lim | [lg;A, — Aol + sup 9;1Bv 9v — Bo =0
Bet < Lo (K xX) (s.£)EK H ¢ tHU(z)

for every compact set K C C; here By := 0t Ay —da, ¥, Bot := 0tAp —da,¥o.

Proof. For every compact set K C C there is a constant vg > 0 such that, for
every (s,t) € K and every v > vk, there is a unique section 7, (s, t) € Q°(%, gp)
such that
Fa =0, A= A, +5uda,,
and
||dAV77u||L°°(2) <a HFAVHLoo(z) < 28y (13)

(see Lemma 8.2 in [1]). Choose ®/,(s,t), ¥/ (s,t) € Q°(%, gp) such that
day #us (045, = day @), — Xos(A))) = day #us (4], — da, ¥}) = 0.

Note that the sequence Z/, = A/ + &/ ds + ¥/ dt depends only on v and not
on the compact set K in question. One proves exactly as in [1, pages 626-627]
that the sequence =, satisfies the estimates

||E:/ - EVHl,p,s;K < CK;PElll+2/p7 (14)
HBI//t”LOO(KXE) < ¢k, (15)
1B,y + *us (Bys — Xus (A:/))”Lp(}(xz) < CK,pallz+2/pv (16)

for every compact set K C C and every p > 2, with suitable positive constants
ck and ck p. In addition we wish to prove the estimate

S%P 1B, — ButHL?(E) < ek Ve (17)

To see this we use the identities

Bi— By = da (V' — W)+ x,daVin + *5[By, ),
da*sda(V — V) = daxs By — [daBs, 0] — [Fa, Vin)
—[(A" = A) A ([daVin + [Bi, n))] (18)
daxsdaVin = —daB;—[daVin Adan] —[[Be,n] A dan]

_Q[Bt N *sdAT]] - [dA *g Btu 77]
(see (8.5), (8.7), and (8.8) in [1]). Here we have dropped the subscript v. Since

daB; = ViFa, da x5 By =daBs = VsFa



we obtain from Lemma 2.1 with p = 2 that, for every compact set K C C, there
is a constant ¢ > 0 such that

Sup (”dABtHL?(E) +[lda *s Bt||L2(z)) < dxve
Hence it follows from (13) and the last equation in (18) that
sup 1daVinll sy < ek Ve

Using this estimate and the second equation in (18) we obtain

i

Sl;{P [da(¥’ — ‘I’)”L?(x) < CRVE.

Combining the last two estimates with the first equation in (18) we obtain (17).
Now Z!, descends to a sequence

u, : K — M(P)

of approximate holomorphic curves (see (16)) with uniformly bounded deriva-
tives (see (15)). We must prove that the sequence @/, is bounded in W?2? for
some p > 2. By the elliptic bootstrapping analysis for holomorphic curves
(see [3, Appendix B]), this is equivalent to a W'P-bound on d;(@.,). To obtain
such a bound we examine the following formula from [1, page 627]:

B; + *s(Bg - XS(A/)) = xgkedan — [Xs(A),n] - *S(XS(A/) - X,(4))
+[(A" = A), Van] — *5[(A" = A), Vim] (19)
(' — U+ Vi) — o — & — Ty,

To begin with observe that, by Lemma 2.1, we have estimates of the form
[ (WaBI ) + 150 Billsy) < ey

Carrying the argument in the proof of Lemma 2.1 one step further we obtain
estimates for the second derivatives of the curvature and hence

[ (MaTBls) + 15 B Blsy) < ey

similarly for V;. Differentiate the identities in (18) to obtain

/K (”dAvsvan:z?(E) + ”dAVtVt??H:Z%E) + ||dAVth77||i2(E)) < CKp;

[ (1A% = )l + AT = 9o s) < i

Combining these estimates with (19) we obtain

J I B 4 (B = XAy < e



and similarly for V;. This is the required W' P-estimate for d;(a,). It follows
that @/, is bounded in W?2? and hence has a C'-convergent subsequence. The
limit of this subsequence is the required holomorphic curve in M(P). The
assertion of the lemma now follows from (17) and the C''-convergence of @/,. O

For Theorem 9.1: On Page 630 replace the estimate in the assertion of The-
orem 9.1 by (11) above. In the proof on page 631 replace the factor ;2 in (9.1)
and (9.2) by €, 1. Replace the next displayed formula by

cv = co(wn) = & [[Fa, o) || gy + 10640 (w0) = da, o)y Co(wo)]] 12,

On page 633 the assertion that the limits Ao (0) and @ () exist can be
proved by a similar argument as in [2, Proposition 11.1]. Alternatively, one can
use the beautiful and elegant argument in [4] for a direct proof of the energy
identity.

On page 634 replace the second displayed inequality by

1
sup (— ) <2
lw|<puvew EvCy L2 (%)

We prove that the limit connection = represents a nonconstant holomorphic
sphere. First, note that

1

Evly

+ 6.4, (w) -4 gu(w)\p,,(w)‘

F3, <w>’m |

-1
L2(x)

|

1 .0

O Ay (O) - djy(o)\yu(o)

FZ, 0 } L2(%)

and use Corollary 1.1 with ¢ replaced by &, := €,¢, — 0 to deduce that the
functions 9; A, —d 3 ¥, and (evey)™ 1F~ are uniformly bounded on every com-
Eact subset of C >< Z Second, use Lemma 3.1 to deduce that the sequence
Z, = A, + ®,ds + U, dt has a O convergent subsequence (after gauge trans-
formation). Third, use Lemma 2.1 to deduce that (sl,c,,)*Hng(O)HLz(E) — 0
and hence

=1

[0:A0(0) — day0)¥0(0) L2 ()

3t v(0) = djy(o)‘iv(o)’

oy = Jim |
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