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Abstract

We study pseudoholomorphic curves in symplectic quotients as adia-
batic limits of solutions to the symplectic vortex equations. Our main the-
orem asserts that the genus zero invariants of Hamiltonian group actions
defined by these equations are related to the genus zero Gromov–Witten
invariants of the symplectic quotient (in the monotone case) via a natu-
ral ring homomorphism from the equivariant cohomology of the ambient
space to the quantum cohomology of the quotient.
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1 Introduction

The main theorem of this paper asserts that under certain hypotheses there is a
ring homomorphism from the equivariant cohomology of a symplectic manifold
M with a Hamiltonian G-action to the quantum cohomology of the symplectic
quotient M̄ such that the following diagram commutes

H∗(MG)
ϕ //

ΦB

##GG
GGG

GGG
G

QH∗(M̄)

GW B̄
{{wwwwwwwww

Z

.

Here GW B̄ denotes the genus zero Gromov–Witten invariants of M̄ with fixed
marked points associated to a homology class B̄ ∈ H2(M̄ ; Z), and ΦB denotes
the genus zero invariants of Hamiltonian group actions associated to the equiv-
ariant homology class B = κ(B̄) ∈ H2(MG; Z). The latter invariant was intro-
duced in [CGS, CGMS, M1, M2]. The homomorphism ϕ is defined indirectly as
a consequence of a comparison theorem for the two invariants. A more direct
definition in terms of vortices over the complex plane with values in M will be
given elsewhere. The proof of the comparison theorem is based on an adiabatic
limit analysis which relates the solutions of the symplectic vortex equations to
pseudoholomorphic curves in the symplectic quotient. Our hypotheses are that
the moment map is proper, that M is convex at infinity, and that the quotient
M̄ is smooth; these hypotheses are needed to even state the result. We also
assume that there are no holomorphic spheres in the ambient manifold (and
hence M is necessarily noncompact); Corollary A’ cannot be expected to be
true without it. Finally, we assume that M̄ is monotone; this hypothesis is of a
technical nature and it might be possible to remove it. But this would require
more analysis than is carried out in the present paper. Before stating the main
results more precisely (Theorem A and Corollary A’) we review the invariants
introduced in [CGMS].

Invariants of Hamiltonian group actions

Let (M,ω) be a symplectic manifold (not necessarily compact) and G be a com-
pact connected Lie group with Lie algebra g. We fix an invariant inner product
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〈·, ·〉 on g and identify g with its dual g
∗. We assume that G acts onM by Hamil-

tonian symplectomorphisms and that the action is generated by an equivariant
moment map µ : M → g. This means that, for every η ∈ g, the vector field
Xη ∈ Vect(M) that generates the action is determined by ι(Xη)ω = d〈µ, η〉. Let
π : P → Σ be a principal G-bundle over a compact oriented Riemann surface
(Σ, jΣ, dvolΣ). We fix a smooth family Σ → JG(M,ω) : z 7→ Jz of G-invariant
and ω-compatible almost complex structures on M . This determines a family
of metrics 〈·, ·〉z := ω(·, Jz·). The invariants are derived from the equations

∂̄J,A(u) = 0, ∗FA + µ(u) = 0, (1)

for a pair (u,A), where u : P →M is a G-equivariant map and A is a connection
on P . Here FA is the curvature of A and ∂̄J,A is the nonlinear Cauchy-Riemann
operator twisted by A (see [CGS, CGMS] for a detailed explanation). Both
terms in the second identity in (1) are sections of the Lie algebra bundle gP :=
P ×Ad g. In contrast to the theory of pseudoholomorphic curves, equations (1)
involve the volume form dvolΣ (via the Hodge ∗-operator in the second equation)
and not just the complex structure jΣ. Equations (1) are invariant under the
action of the gauge group G = G(P ) (of equivariant maps from P to G) by

g∗(u,A) = (g−1u, g−1dg + g−1Ag).

From a geometric point of view, the solutions of (1) correspond to the absolute
minima of the energy functional

E(u,A) =
1

2

∫

Σ

(
|dAu|2 + |FA|2 + |µ(u)|2

)
dvolΣ

in a given homotopy class. The solutions of (1) have energy

E(u,A) =

∫

Σ

(
u∗ω − d〈µ(u), A〉

)
=: 〈[ω − µ], [u]〉

and this number is an invariant of the equivariant homology class represented
by the map u. We impose the following hypothesis throughout this paper.

(H1) The moment map µ is proper, zero is a regular value of µ, and G acts
freely on µ−1(0).

Under this hypothesis the quotient

M̄ := M//G := µ−1(0)/G

is a compact symplectic manifold. The induced symplectic form will be denoted
by ω̄. The equivariant homology class [u] ∈ H2(MG; Z) is defined by the fol-
lowing diagram, which also shows how it is related to the characteristic class
[P ] ∈ H2(BG; Z) and to the class [ū] ∈ H2(M̄ ; Z) in the case µ ◦ u ≡ 0. Note

3



that, since G is connected, the class [u] determines the isomorphism class of the
bundle P . We denote MG := M ×G EG.

[Σ] ∈ H2(Σ; Z)
ū∗ // H2(M̄ ; Z)

κ

��

∋ [ū]

H2(PG; Z)

≃

OO

u∗ //

��

H2(MG; Z)

wwppppppppppp
∋ [u]

[P ] ∈ H2(BG; Z)

Fix a homology class B̄ ∈ H2(M̄ ; Z), let B := κ(B̄) ∈ H2(MG; Z), and
denote the space of solutions of (1) that represent this homology class by

M̃B,Σ := {(u,A) ∈ C∞
G (P,M) ×A(P ) | [u] = B, u and A satisfy (1)} .

Here P → Σ denotes a principal G-bundle whose characteristic class [P ] ∈
H2(BG; Z) is determined by B as above. The quotient by the action of the
gauge group will be denoted by

MB,Σ := M̃B,Σ/G.

We impose another hypothesis which guarantees compactness [CGMS].

(H2) There is a G-invariant almost complex structure J ∈ JG(M,ω), a proper
G-invariant function f : M → [0,∞), and a constant c > 0 such that

f(x) ≥ c =⇒ 〈∇ξ∇f(x), ξ〉 + 〈∇Jξ∇f(x), Jξ〉 ≥ 0

for every nonzero vector ξ ∈ TxM and

f(x) ≥ c =⇒ df(x)JXµ(x)(x) ≥ 0.

Moreover,
∫
S2 v

∗ω = 0 for every smooth map v : S2 →M .

This hypothesis implies that supP (f ◦u) ≤ c for every solution (u,A) of (1) over
any Riemann surface and in any homology class (see [CGMS]). In [CGMS] it is
shown that the moduli space MB,Σ is a smooth compact manifold of dimension

dim MB,Σ =

(
1

2
dim M − dim G

)
χ(Σ) + 2〈cG1 (TM), B〉

for a generic J , provided that (H1−2) are satisfied, B is a nontorsion homology
class, and the area of Σ is sufficiently large. The latter condition, together
with the energy identity, guarantees that every solution of (1) is somewhere
close to the zero set of the moment map. The class cG1 (TM) ∈ H2(MG; Z) in
the dimension formula denotes the equivariant first Chern class of the complex
vector bundle (TM, J).
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Examples. (i) In [CGS] it is shown that (H2) follows from (H1) in the case of
linear actions on Cn.

(ii) The completion of a symplectically aspherical G-manifold M with contact
boundary satisfies (H2) whenever it admits a Liouville vector field X near ∂M
satisfying ω(Xµ(x), X(x)) ≥ 0 for every x ∈ ∂M (see [CGMS, Example 2.9]).
A special case is an action of G on a cotangent bundle T ∗S that arises from
an action on S. Namely, if g → Vect(S) : ξ 7→ vξ is the infinitesimal action
on S then a moment map of the action on T ∗S is 〈µ(x, y), ξ〉 = 〈y, vξ(x)〉
for y ∈ T ∗

xS and hence the Liouville vector field X(x, y) = (0, y) satisfies

ω(Xµ(x,y), X(x, y)) = 〈y, vµ(x,y)(x)〉 = |µ(x, y)|2 ≥ 0.

(iii) Let M = E be the total space of a complex vector bundle π : E → S
over a compact symplectically aspherical Kähler manifold S, equipped with a
Hermitian structure, a unitary G-action, and a Hermitian connection ∇ that
preserves the G-action. Suppose that the endomorphism iF∇(v, Jv) is nega-
tive semidefinite for every v ∈ TS. Then M admits a G-invariant symplectic
structure satisfying (H2) (see [CGMS, Example 2.10]).

Consider the evaluation map evG : MB,Σ →MG, defined by

evG([u,A]) := [u(p0),Θ0(u,A)],

where p0 ∈ P is fixed and Θ0 : M̃B,Σ → EG is a smooth map such that

Θ0(g
−1u, g∗A) = g(p0)

−1Θ0(u,A).

This means that Θ0 is a classifying map for the principal G-bundle PB,Σ →
MB,Σ obtained as the quotient of M̃B,Σ by the based gauge group

G0 := {g ∈ G | g(p0) = 1l} .

Let α ∈ H∗(MG; Z) be a class of degree deg(α) = dim MB,Σ and define

ΦB,Σ(α) :=

∫

MB,Σ

ev∗
Gα.

In [CGMS] it is shown that this integer is independent of the almost complex
structure J , the metric on Σ, and the point p0 used to define it.

Now let D := {z ∈ C | |z| ≤ 1} and consider the space of maps v : D → M
that map the boundary ∂D to a G-orbit in µ−1(0):

V :=
{
v : D →M | ∃g : R/2πZ → G ∃x ∈ µ−1(0) ∀θ ∈ R v(eiθ) = g(θ)x

}
.

Let m : V → Z denote the function which assigns to each element v ∈ V
the Maslov index of the loop of symplectic matrices obtained from the linear
maps g(θ) : TxM → Tg(θ)xM in a trivialization along v. Every smooth map
v̄ : S2 → M̄ lifts to a map v ∈ V and in this case the Maslov index m(v) is equal
to the first Chern number 〈c1(TM̄), v̄∗[S

2]〉. The minimal Maslov number will
be denoted by

N := inf
v∈V, m(v)>0

m(v).
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This is a lower bound for the minimal Chern number of M̄ . We impose a third
hypothesis.

(H3) There exists a constant τ > 0 such that

∫

D

v∗ω = τm(v)

for every v ∈ V.

This hypothesis implies that the quotient M̄ is a monotone symplectic manifold
and that the energy of every holomorphic sphere in M̄ is an integer multiple of
~ := τN . The main result of this paper asserts that under hypotheses (H1-3)
the invariant ΦB,S2 agrees with the corresponding genus zero Gromov–Witten
invariant of M̄ , provided that the cohomology classes αi have degrees less than
2N .

Theorem A. Assume (H1-3) and let B̄ ∈ H2(M̄ ; Z) and αi ∈ H∗
G(M ; Z) be

given such that deg(αi) < 2N for i = 1, . . . , k and

k∑

i=1

deg(αi) =

(
1

2
dim M − dim G

)
χ(Σ) + 2〈cG1 (TM), B〉,

where B := κ(B̄) ∈ HG
2 (M ; Z). Then

ΦB,S2(α1 ⌣ · · ·⌣ αk) = GW B̄,S2(ᾱ1, . . . , ᾱk),

where ᾱi := κ(αi) ∈ H∗(M̄ ; Z). If [ω − µ] = τcG1 (TM) then the assertion
continues to hold for Riemann surfaces Σ of arbitrary genus.

Remarks. (i) In the definition of ΦB,Σ the complex structure on Σ and the
point p0 ∈ P at which the map u is evaluated are fixed and the cohomology class
ev∗

Gα ∈ H∗(MB,Σ; Z) is independent of the choice of complex structure on Σ
and the point p0 used in the definition of evG. The Gromov–Witten invariants
in Theorem A are also to be understood with a fixed complex structure on Σ
and with fixed marked points in the definitions of the evaluation maps, and with
almost complex structures that are allowed to depend on the base point z ∈ S2.

(ii) The assertion of Theorem A does not continue to hold in the case deg(αi) ≥
2N. For example, consider the standard action of S1 on Cn, let P → S2 be an
S1-bundle of degree d ≥ 0, and denote by c ∈ H2(BS1; Z) = H2

S1(Cn; Z) the
positive generator. Then the minimal Chern number is N = n, the dimension of
Md,S2 is 2nd+2n−2, and we have Φd,S2(cm) = 1 whenever m = nd+n−1. The
corresponding Gromov–Witten invariant (for a k-tuple of classes cm1 , . . . , cmk

with m1 + · · · + mk = m) counts holomorphic spheres of degree d in CPn−1

passing at k given points z1, . . . , zk ∈ S2 through generic copies of CPn−1−mi for
i = 1, . . . , k. Thus the Gromov–Witten invariant is zero whenever deg(cmi) =
2mi ≥ 2n for some i.
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(iii) The condition deg(αi) < 2N in Theorem A leads to simplified bubbling
phenomena which do not require an analysis of bubble trees. Namely, if we
have a sequence of J̄-holomorphic curves in M̄ passing through submanifolds
dual to the ᾱi at the marked points zi, and a holomorphic sphere bubbles off
at a marked point zj, then the limit curve (assumed to be in general position)
cannot satisfy the remaining marked point conditions, for dimensional reasons.
A similar phenomenon occurs in the adiabatic limit ε→ 0 explained below.

Equivariant and quantum cohomology

Assume M̄ is monotone. Additively, the quantum cohomology QH∗(M̄) is the
cohomology of M̄ with coefficients in the group ring of H2(M̄ ; Z). Write an
element of QH∗(M̄) as a finite sum

ᾱ =
∑

B̄∈H2(M̄ ;Z)

ᾱB̄e
B̄,

where ᾱB̄ ∈ H∗(M̄ ; R) and

deg(eB̄) := 2〈c1(TM̄), B̄〉.

Choose an integral basis ē0, . . . , ēn of H∗(M̄ ; R) and let ē∗i denote the dual
basis in the sense that

∫
M̄
ēi ⌣ ē∗j = δij . Then the ring structure on QH∗(M̄)

is defined by

ᾱ1 ∗ ᾱ2 :=
∑

B̄1,B̄2,B̄

n∑

i=0

GW B̄−B̄1−B̄2,S2(ᾱ1B̄1
, ᾱ2B̄2

, ē∗i )ēie
B̄.

The sum is over all quadruples i, B̄1, B̄2, B̄ satisfying deg(ᾱ1) + deg(ᾱ2) =
deg(ēi) + 2〈c1(TM̄), B̄〉.

The Gromov–Witten invariant associated to a Riemann surface Σ, with a
fixed complex structure jΣ and fixed marked points z1, . . . , zk, can be extended
to a map GW B̄,Σ : QH∗(M̄) ⊗ · · · ⊗ QH∗(M̄) → Z by the formula

GW B̄,Σ(ᾱ1, . . . , ᾱk) :=
∑

B̄i

GW B̄−B̄1−···−B̄k,Σ(ᾱ1B̄1
, . . . , ᾱkB̄k

).

With this convention the gluing formula for the Gromov–Witten invariants can
be expressed in the form

GW B̄,Σ(ᾱ1, . . . , ᾱk) = GW B̄,Σ(ᾱ1 ∗ · · · ∗ ᾱk) (2)

(see [MS1, Exercise 11.1.14]).

Corollary A’. Assume (H1 − 3) and suppose that H∗(MG; R) is generated by
classes of degrees less than 2N . Then there exists a unique ring homomorphism
ϕ : H∗(MG; R) −→ QH∗(M̄) such that

deg(α) < 2N =⇒ ϕ(α) = κ(α)
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for every α ∈ H∗(MG; R). This ring homomorphism satisfies

Φκ(B̄),S2(α) = GW B̄,S2(ϕ(α)).

for every α ∈ H∗(MG; R) and every B̄ ∈ H2(M̄ ; Z).

Proof. Let α ∈ H∗(MG; R) and choose αij ∈ H∗(MG; R) such that

α =

k∑

i=1

αi1 ⌣ · · ·⌣ αiℓ, deg(αij) < 2N. (3)

Define

ϕ(α) :=

k∑

i=1

κ(αi1) ∗ · · · ∗ κ(αiℓ). (4)

We prove that ϕ(α) is independent of the choice of αij . To see this, note
that, since the cohomology of M̄ is generated by classes of degree less than
2N , so is the quantum cohomology. This means that a quantum cohomology
class ᾱ ∈ QH∗(M̄) is zero if and only if GW B̄,S2(ᾱ, β̄1, . . . , β̄m) = 0 for every

B̄ ∈ H2(M̄ ; Z) and all β̄1, . . . β̄m ∈ H∗(M̄ ; R) such that deg(β̄j) < 2N for all j.
Now suppose that the expression on the right of (4) is nonzero. Then, by what
we have just observed, there exist cohomology classes β̄1, . . . , β̄m of degrees less
than 2N and a homology class B̄ ∈ H2(M̄ ; Z) such that

k∑

i=1

GW B̄,S2(κ(αi1), . . . , κ(αiℓ), β̄1, . . . , β̄m) 6= 0.

Since the homomorphism κ : H∗(MG; R) → H∗(M̄ ; R) is surjective (cf. [K]),
there exist classes βj ∈ H∗(MG; R) (of degrees less than 2N) such that κ(βj) =
β̄j for every j. Hence, by Theorem A,

k∑

i=1

Φκ(B̄),S2(αi1 ⌣ · · ·⌣ αiℓ ⌣ β1 ⌣ · · ·⌣ βm) 6= 0,

and hence α 6= 0. This shows that ϕ is well defined. The map ϕ is obviously
a ring homomorphism. The formula ΦB,S2(α) = GW B̄,S2(ϕ(α)) follows imme-
diately from Theorem A and the gluing formula (2) for the Gromov–Witten
invariants.

Remark. Under our assumptions both the Gromov–Witten and the vortex
invariants take integer (not rational) values. Hence the assertion of Corollary A’
continues to hold for (quantum) cohomology groups with coefficients in Z or Z2,
for example.

Remark. Let R denote the group ring of H2(M̄ ; Z). Then QH∗(M̄) is an
R-module and the ring structure is compatible with the R-module structure.
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Hence the ring homomorphism of Corollary A’ extends uniquely to a homomor-
phism

ϕ : H∗(MG;R) → QH∗(M̄)

of rings and R-modules. This extended homomorphism is surjective. This
follows, by an easy induction argument, from the surjectivity of Kirwan’s ho-
momorphism to the ordinary cohomology of M̄ .

Remark. The homomorphism ϕ : H∗(MG) → QH∗(M̄) can be defined geo-
metrically in terms of the vortex equations over C:

∂su+ LuΦ + J(∂tu+ LuΨ) = 0, ∂sΨ − ∂tΦ + [Φ,Ψ] + µ(u) = 0. (5)

Here u : C → M and Φ,Ψ : C → g are smooth functions. Equation (5) is a
special case of (102) with Σ = C and A = Φ ds+ Ψ dt. For every finite energy
solution of (5) in radial gauge there is a loop g : S1 → G and a point x0 ∈ µ−1(0)
such that

lim
r→∞

u(reiθ) = g(eiθ)x0. (6)

(See Section 11.) Every map u : C → M that satisfies (6) determines a class
B = [u] ∈ H2(MG; Z). Now the moduli space MB(J) of gauge equivalence
classes of solutions of (5) and (6) that represent the class B has two evaluation
maps ev0 : MB →MG and ev∞ : MB → M̄. The map ϕ can be defined by

ϕ(α) =
n∑

i=0

∑

B̄

(∫

Mκ(B̄)

ev∗
0α ⌣ ev∗

∞ē
∗
i

)
ēie

B̄.

The details of this construction will be carried out elsewhere.

Outline of the proof of Theorem A

The proof of Theorem A is based on an adiabatic limit argument in which the
metric on the Riemann surface is scaled by a large factor ε−2. Then equations (1)
have the form

∂̄J,A(u) = 0, ∗FA + ε−2µ(u) = 0. (7)

The solutions of (7) minimize the ε-dependent energy

Eε(u,A) =
1

2

∫

Σ

(
|dAu|2 + ε2|FA|2 + ε−2|µ(u)|2

)
dvolΣ,

and the value of this functional at a solution of (7) is independent of ε in a given
equivariant homology class. In this paper we examine the limit behaviour of
the solutions of (7) as ε tends to zero for Riemann surfaces of any genus. The
limit equations have the form

∂̄J,A(u) = 0, µ(u) = 0. (8)

The solutions of (8) can be interpreted as pseudoholomorphic curves in the
symplectic quotient M̄ = µ−1(0)/G with respect to the induced family of almost
complex structures J̄z (see Section 2). We impose a further hypothesis that is
satisfied for a generic family of G-invariant almost complex structures on M :
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(H4) Every nonconstant J̄-holomorphic curve ū : Σ → M̄ is regular, i.e. the
linearized Cauchy-Riemann operator along ū is surjective.

This hypothesis guarantees that the moduli space of holomorphic curves in M̄
is smooth.

The proof of Theorem A requires three preliminary theorems which are of
interest in their own rights. Theorem B constructs a G(P )-equivariant map

(u0, A0) 7→ (uε, Aε) =: T̃ ε(u0, A0)

which assigns to every regular solution of (8) a nearby solution of (7) for ε

sufficiently small. Theorem C shows that the map T̃ ε constructed in Theorem B
is locally surjective in the sense that every solution of (7) that is sufficiently close

to a solution (u0, A0) of (8) must be in the image of T̃ ε. The neighbourhood
in which surjectivity holds depends on ε: it becomes smaller as ε tends to zero.
Theorem D strengthens the local surjectivity result of Theorem C. We remove
the assumption that the solution of (7) is close to some given solution of (8).
However, we consider only solutions of (7) that satisfy a suitable L∞-bound
on the first derivatives and prove that every solution of (7) that satisfies this

bound lies in the image of T̃ ε for ε small. The proof of Theorem A is then
based on a bubbling argument in the small ε limit which establishes a one-
to-one correspondence between the solutions of (8) and those of (7) in a zero
dimensional setting, where additional conditions have been imposed.

In Section 2 we review standard results about the moduli space of pseu-
doholomorphic curves in the symplectic quotient M//G and rephrase them in
terms of solutions of (8). Theorems B, C, and D will be stated in Section 3.
The remaining sections are devoted to the proofs of the four main theorems.

The general outline of the proof of Theorem A is analogous to the proof of
the Atiyah–Floer conjecture in [DS1, DS2]; there are several new ingredients.

In Sections 4 and 5 we establish the linear and quadratic estimates needed
for the construction of the map T ε; this construction is carried out in Section 6
where Theorem B is proved. In contrast to [DS2] (where the relevant moduli
space is a finite set) care must be taken to establish that the constants in the
estimates depend continuously on the point in M0 and we must control the
second instead of just the first derivatives.

In Section 7 we establish an ε-local slice theorem and in Section 8 we con-
struct a tubular neighbourhood of Mε and carry out the proof of Theorem C.
The ε-local slice theorem is analogous to [DS2, Proposition 6.2]. The tubu-
lar neighbourhood theorem for Mε involves an estimate for the derivative of
the map given by the ε-local slice theorem; this is where the estimates for the
(2, p, ε)-norms are needed. As a result the entire adiabatic limit argument has
to be carried out for these higher norms. By contrast, the analogous result
in [DS2, Proposition 6.3] can be disposed of with a simple time shift argument.

In Section 9 we prove an apriori estimate which asserts that every solution
of (7) that satisfies a certain L∞ bound must be ε2-close to the zero set of
the moment map. As a consequence we obtain in Theorem D a strong local
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surjectivity result for the map T ε, which is proved in Section 10.1

In Section 11 we establish the asymptotic behaviour and the quantization of
the energy for solutions of the nonlinear vortex equations on the complex plane.
In Section 12 we construct a classifying map on an open set in C∞

G (P,M)×A(P ),
which contains the moduli spaces Mε for all ε ∈ [0, ε0], with values in a finite
dimensional approximation of EG; we also establish C1-convergence for the
evaluation map and prove Theorem A.

2 Pseudoholomorphic curves

For z ∈ Σ let J̄z denote the almost complex structure on M̄ induced by Jz, let
P̄ −→ M̄ denote the principal G-bundle P̄ := µ−1(0) ⊂ M, and let Ā denote
the connection on P̄ determined by ω and J . If (u,A) is a solution of (8) then
u descends to a J̄-holomorphic curve ū : Σ → M̄ and A is the pullback of Ā
under ū. Two gauge equivalent solutions descend to the same map ū and every
J̄-holomorphic curve ū : Σ → M̄ lifts to a solution of (8) for some principal
G-bundle P (isomorphic to the pullback of P̄ under ū).

Fix a homology class B̄ ∈ H2(M̄ ; Z), let B := κ(B̄) ∈ HG
2 (M ; Z), and

consider the space

M̃0
B,Σ := {(u,A) ∈ C∞

G (P,M) ×A(P ) | [u] = B and (8) holds} .
This space is invariant under the action of the gauge group G(P ). Under our
standing hypothesis (H4) the quotient

M0
B,Σ := M̃0

B,Σ/G(P )

is a smooth manifold of dimension

dim M0
B,Σ =

(
1

2
dim M − dim G

)
χ(Σ) + 2〈cG1 (TM), B〉

(see [MS1, Theorem 3.3.4]). Note that MB,Σ and M0
B,Σ have the same dimen-

sion.
For later reference we now introduce explicit notation for a local parame-

trization of M0
B,Σ by the kernel of the linearized operator. Linearizing equa-

tions (8) at a solution (u,A) gives rise to the Cauchy–Riemann operator

D0 := D0
(u,A) : Ω0(Σ, Hu) → Ω0,1(Σ, Hu)

given by
D0ξ0 := πuD(u,A)ξ0,

where D(u,A) : Ω0(Σ, u∗TM/G) → Ω0,1(u∗TM/G) is the operator (110) in
Appendix B. The bundle Hu → Σ and the projection πu : u∗TM → Hu are
defined as follows. Consider the bundle H −→ Σ × µ−1(0) with fibres

Hz,x := ker dµ(x) ∩ ker dµ(x)Jz .

1Compare this with [DS2, Theorem 8.1]; the strenghtened form of [DS2, Theorem 8.1] is
needed to close a gap in the bubbling argument in the proof of [DS2, Theorem 9.1].
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There is an orthogonal decomposition

TxM = imLx ⊕Hz,x ⊕ imJzLx

for every (z, x) ∈ Σ× µ−1(0), where Lx : g → TxM the infinitesimal action, i.e.

Lxη := Xη(x).

Its dual operator with respect to the metric determined by Jz is given by

L∗
x = L∗z

x = dµ(x)Jz(x).

Now let u : P → µ−1(0) be an equivariant map and consider the pullback of H
under the map ũ : P → Σ×µ−1(0), given by ũ(p) := (π(p), u(p)). This pullback
is a G-equivariant vector bundle over P and its quotient

Hu := ũ∗H/G −→ Σ

is naturally isomorphic to the pullback of the tangent bundle TM̄ under the
induced map ū : Σ → M̄ . Let πu : u∗TM/G → Hu denote the orthogonal pro-
jection onto the harmonic part. Thus πu[ξ] := [πuξ] where the lifted projection
u∗TM → u∗H (also denoted by πu) is given by

πuξ := ξ − Lu(L
∗
uLu)

−1L∗
uξ + JLu(L

∗
uLu)

−1L∗
uJξ (9)

for a G-equivariant section ξ : P → u∗TM .

Theorem 2.1. Assume (H1) and (H4) and fix a constant p > 2. For every

(ū0, Ā0) ∈ M̃0
B,Σ there exist a sequence of positive constants δ, c, c1, c2, . . . and

a map

F0 := F0
(ū0,Ā0)

: B0
δ → M̃0

B,Σ, B0
δ := {ξ0 ∈ ker D0

(ū0,Ā0)
| ‖ξ0‖Lp < δ},

such that the following holds.

(i) If ξ0 ∈ B0
δ then there exists a unique pair of sections ξ1 ∈ Ω0(Σ, Hū0) and

ξ2 ∈ Ω0(Σ, im JLū0/G) such that

ξ1 ∈ im (D0
(ū0,Ā0)

)∗, ‖ξ1‖W 1,p + ‖ξ2‖W 1,p ≤ c ‖ξ0‖W 1,p .

and the pair (u0, A0), given by

u0 := exp
µ−1(0)
ū0

(ξ0 + ξ1) = expū0
(ξ0 + ξ1 + ξ2), A0 := −(L∗

u0
Lu0)

−1L∗
u0
du0,

satisfies (8). The pair (u0, A0) is the image of ξ0 under F0.

(ii) For every integer k ≥ 1 and every ξ0 ∈ B0
δ we have

‖ξ1‖Wk,p + ‖ξ2‖Wk,p ≤ ck ‖ξ0‖2
Wk,p ,

∥∥A0 − Ā0

∥∥
Wk,p ≤ ck ‖ξ0‖Wk,p ,

where ξ1, ξ2, and A0 are as in (i).

(iii) The map F0 is smooth and dF0(0)ξ0 = (ξ0, α0), where α0 ∈ Ω1(Σ, gP ) is
uniquely determined by the equation

D∂̄J,Ā0
(ū0)ξ0 +Xα0(ū0)

0,1 = 0.
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Theorem 2.1 is a standard result in the theory of holomorphic curves (see for
example [MS1, Theorem 3.5.2]). It follows from Fredholm theory and an infinite
dimensional version of the implicit function theorem. In most applications the
moduli space M0

B,Σ is not compact. However, it can be exhausted by the
compact subsets

M0
B,Σ(c0) := M̃0

B,Σ(c0)/G(P ),

where c0 > 0 and

M̃0
B,Σ(c0) :=

{
(u,A) ∈ M̃0

B,Σ | ‖dAu‖L∞ + ‖FA‖L∞ ≤ c0

}
.

Note that M̃0
B,Σ(c0) is invariant under the action of G(P ). For later reference

we prove the following lemma.

Lemma 2.2. Fix a reference connection Â ∈ A(P ). Then, for every c0 > 0
and every integer ℓ ∈ N, there exists a constant c = c(c0, ℓ) > 0 such that, for

every (u0, A0) ∈ M̃0
B,Σ(c0), we have

inf
g∈G(P )

(
‖g−1u‖Cℓ + ‖g∗A0 − Â‖Cℓ

)
≤ c.

Proof. Suppose, by contradiction, that there is a sequence (uν , Aν) ∈ M̃0
B,Σ(c0)

such that ‖g−1uν‖Cℓ + ‖g∗Aν − Â‖Cℓ ≥ ν for every ν and every g ∈ G(P ).
By [MS1, Theorem B.4.2] there exists a subsequence, still denoted by (uν , Aν),
such that the induced maps ūν : Σ → M//G converge in the C∞-topology to
a smooth J̄-holomorphic curve. The limit curve represents the same homo-
topy class as the approximating curves and hence can be represented by a pair
(u,A) ∈ M̃0

B,Σ(c0). Since the sequence ūν converges to ū : Σ → M//G in the

Cℓ+1-topology, there exists a constant ν0 ≥ 0 such that, for every ν ≥ ν0, there
exist a gauge transformation gν and a section ξν ∈ Ω0(Σ, Hu) such that

g−1
ν uν = expu(ξν), lim

ν→∞
‖ξν‖Cℓ+1 = 0.

The formulae

g∗νAν = −(L∗
g−1

ν uν
Lg−1

ν uν
)−1Lg−1

ν uν
d(g−1

ν uν), A = −(L∗
uLu)

−1Ludu,

show that g∗ν(uν , Aν) converges to (u,A) in the Cℓ topology. This contradicts
the choice of the sequence (uν , Aν) and hence proves the lemma.

Theorem 2.3. Assume (H1) and (H4), let B̄ ∈ H2(M ; Z) be a nontorsion
homology class, and let (Σ, dvolΣ, jΣ) be a compact Riemann surface. Then, for
every c0 > 0 and every p > 2, there exist positive constants c and δ such that
the following holds. If ū : Σ → M̄ is a smooth map such that [ū] = B̄ and

‖dū‖L∞ ≤ c0, ‖∂̄J̄(ū)‖Lp ≤ δ

then there exists a section ξ̄ ∈ Ω0(Σ, ū∗TM̄) such that

∂̄J̄ (expū(ξ̄)) = 0, ‖ξ̄‖W 1,p ≤ c‖∂̄J̄(ū)‖Lp .
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Proof. This is again a standard result for pseudoholomorphic curves and the
proof is almost word by word the same as that of [DS2, Theorem 2.5]. Here is
a sketch. One argues by contradiction. If the result were false, there would be
a sequence of smooth maps ūi : Σ → M̄ that satisfies

sup
i

‖dūi‖L∞ <∞, lim
i→∞

‖∂̄J̄(ūi)‖Lp = 0,

but which does not satisfy the conclusion of the theorem for any constant c.
This means that the W 1,p-distance of ūi to the space of J̄-holomorphic curves is
not controlled uniformly by the Lp-norm of ∂̄J̄(ūi). Now, by the Arzéla–Ascoli
and Banach–Alaoglu theorems, a suitable subsequence of ūi converges, strongly
with respect to the sup-norm and weakly in W 1,p, to a J̄-holomorphic curve
ū. It follows from standard elliptic regularity for J̄-holomorphic curves that
ūi then converges strongly with respect to the W 1,p-norm. To see this, write
ūi = expū(ξ̄i) and observe that

‖ξ̄i‖W 1,p ≤ c1
(
‖Dūξ̄i‖Lp + ‖ξ̄i‖Lp

)

≤ c2
(
‖∂̄J̄(ūi)‖Lp + ‖ξ̄i‖W 1,p‖ξ̄i‖L∞

)
+ c1‖ξ̄i‖Lp .

Here the first inequality is the elliptic estimate for the Cauchy–Riemann oper-
ator Dū and the second is the quadratic estimate for ∂̄J̄ . With this established
it follows from hypothesis (H4) and the implicit function theorem for the oper-
ator ∂̄J̄ that there exists a sequence of J̄-holomorphic curves ū0i whose W 1,p-
distance to ūi is bounded above by a fixed constant times the Lp-norm of ∂̄J̄(ūi)
(see [DS2, Theorem 2.1]). This shows that the sequence ūi does after all satisfy
the conclusion of the theorem, in contradiction to our assumption.

3 Adiabatic limits

Before stating our main results we introduce some notation. Fix an equivariant
homology class B̄ ∈ H2(M̄ ; Z), let B := κ(B̄), and denote

B := {(u,A) ∈ C∞
G (P,M) ×A(P ) | [u] = B} .

This space is an infinite dimensional Frêchet manifold with tangent space

T(u,A)B := Ω0(Σ, u∗TM/G)× Ω1(Σ, gP ).

It carries an action of the gauge group G = G(P ) by g∗(u,A) = (g−1u, g∗A).
Consider the vector bundle E → B with fibres

E(u,A) := Ω0,1(Σ, u∗TM/G)⊕ Ω0(Σ, gP )

and the G-equivariant section Fε : B → E given by

Fε(u,A) := (∂̄J,A(u), ∗FA + ε−2µ(u)).
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The zero set of this section is the space

M̃ε
B,Σ := {(u,A) ∈ B |u and A satisfy (7)} .

Its quotient by the action of the gauge group will be denoted by

Mε
B,Σ := M̃ε

B,Σ/G(P ).

The following theorem asserts the existence of solutions of (7) for sufficiently
small ε near every regular solution of (8). The result is quantitative and the
estimates are expressed in terms of suitable ε-dependent norms. Moreover, an
operator Dε : T(u,A)B → E(u,A) ⊕ Ω0(Σ, gP ) appears. This operator is the
augmented vertical differential of Fε. The operator and the norms will be
defined in Section 4.

Theorem B. Assume (H1) and (H4) and let B̄ ∈ H2(M̄ ; Z) be a nontorsion ho-
mology class. Then, for every c0 > 0 and every p > 2, there exist positive cons-
tants ε0, c, and δ such that for every ε ∈ (0, ε0] there exists a G(P )-equivariant
map

T̃ ε : M̃0
B,Σ(c0) → M̃ε

B,Σ

that satisfies the following conditions.

(a) If (u0, A0) ∈ M̃0
B,Σ(c0) then T̃ ε(u0, A0) = (expu0

(ξε), A0 + αε), where ζε =
(ξε, αε) ∈ T(u0,A0)B satisfies

‖ζε‖2,p,ε;(u0,A0)
≤ cε2,

−d∗A0
αε + ε−2L∗

u0
ξε = 0, ζε ∈ im (Dε

(u0,A0)
)∗. (10)

(b) If (u0, A0) ∈ M̃0
B,Σ(c0) and (u,A) = (expu0

(ξ), A0 + α) ∈ M̃ε
B,Σ where

ζ = (ξ, α) ∈ T(u0,A0)B satisfies (10) and

‖ζ‖1,p,ε;(u0,A0)
≤ δε2/p+1/2,

then (u,A) = T̃ ε(u0, A0).

The map T̃ ε of Theorem B descends to a map between the quotient spaces
which we denote by

T ε : M0
B,Σ(c0) −→ Mε

B,Σ.

Assertion (a) is proved by a Newton type iteration (see Section 6). It requires
linear and quadratic estimates for the ε-dependent norms with constants that
are independent of ε. These estimates are proved in Sections 4 and 5. As-
sertion (b) is a strengthened form of the corresponding uniqueness statement.
Here the neighbourhood in which uniqueness holds is larger than in the exis-
tence result (namely it is of radius δε2/p+1/2 instead of cε2). The uniqueness
statement shows that the maps T ε are independent of c0 in the sense that two
such maps corresponding to different values of c0 (but the same value of ε) agree
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on the intersection of their domains. The next theorem shows that T ε is locally
surjective.

Theorem C. Assume (H1) and (H4) and let B̄ ∈ H2(M̄ ; Z) be a nontorsion
homology class. Then, for every c0 > 0 and every p > 2, there exist positive
constants ε0 and δ such that the following holds for every ε ∈ (0, ε0]. If

(ū0, Ā0) ∈ M̃0
B,Σ(c0 − 1), (u,A) = (expū0

(ξ̄), Ā0 + ᾱ) ∈ M̃ε
B,Σ,

where ζ̄ = (ξ̄, ᾱ) ∈ T(ū0,Ā0)B satisfies
∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
≤ δε2/p+1/2,

then (u,A) ∈ T̃ ε(M̃0
B,Σ(c0)).

This result is restated more precisely in Theorem 8.1 in Section 8. There it
is proved that g∗(u,A) = T̃ ε(u0, A0) for some gauge transformation g and some
pair (u0, A0) in the image of the map F0 of Theorem 2.1. Moreover, it is shown
that the distances of g to 1l (in the (2, p, ε)-norm) and of (u0, A0) to (ū0, Ā0) (in
any norm) are controlled by the (1, p, ε)-norm of ζ̄.

Theorem C strengthens the local uniqueness result of Theorem B (b) in that
condition (10) is no longer required. The proof relies on an ε-dependent local
slice theorem (Section 7) and on the construction of a tubular neighbourhood of
the moduli space M0

B,Σ(c0) in which the normal bundle is the intersection of the
ε-dependent local slice with the image of the adjoint operator Dε∗ (Section 8).

The next theorem strengthens the local surjectivity result of Theorem C. It
does not require the solution (u,A) of (7) to be close to any solution of (8).
However, it only applies to solutions that satisfy a uniform L∞-bound on dAu
and for which u takes values in the compact set

MC := {x ∈M | |µ(x)| ≤ C, |η| ≤ C|Lxη| ∀ η ∈ g} .
Theorem D. Assume (H1) and (H4) and let B̄ ∈ H2(M̄ ; Z) be a nontorsion
homology class. Then, for every C > 0, there exist positive constants ε0 and c1
such that the following holds for every ε ∈ (0, ε0]. If (u,A) ∈ M̃ε

B,Σ such that

‖dAu‖L∞ ≤ C, u(P ) ⊂MC (11)

then (u,A) ∈ T̃ ε(M̃0
B,Σ(c1)).

Under hypotheses (H1 − 2) the moduli space Mε
B,Σ is compact [CGMS].

In this case all solutions of (7) satisfy ‖dAu‖L∞ + ‖µ(u)‖L∞ ≤ Cε for some ε-
dependent constant Cε. However, this does not guarantee surjectivity because,
on the one hand, the constant Cε may diverge to infinity as ε tends to zero and,
on the other hand, the solutions of (7) may not all satisfy the second condition
in the definiton of MC , namely that the image of u belongs to the set of regular
points of µ. There may be sequences (εi, ui, Ai) of solutions of (7) with εi → 0
such that either ui(P ) intersects the set of singular points of µ or dAi

ui does
not stay bounded, and then bubbling occurs in the small ε limit. Under the
hypotheses of Theorem A we shall prove that such bubbling cannot occur and
establish a bijection between suitable zero dimensional moduli spaces.
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4 Linear estimates

The estimates in this section follow the ones in [DS2, Section 4]. In adapting
the proofs to the present context we encounter additional zeroth order terms.
These arise from the Levi-Civita connection and the almost complex structure
on M ; they are not present in [DS2] where M is replaced by the space of
connections over a Riemann surface and the almost complex structure by the
Hodge ∗-operator. We extend the results of [DS2] by including estimates for the
second derivatives. Moreover, in the present case it is crucial that the constants
depend continuously on the pair (u,A). In [DS2] the moduli space is a finite set
and so the question of continuous dependence does not arise.

For u ∈ C∞
G (P,M) we introduce the spaces

Xu := Ω0(Σ, u∗TM/G)× Ω1(Σ, gP ),

X ′
u := Ω0,1(Σ, u∗TM/G)× Ω0(Σ, gP ) × Ω0(Σ, gP ).

Thus Xu = T(u,A)B and X ′
u = E(u,A) × Ω0(Σ, gP ) for every A ∈ A(P ). If the

map u is understood from the context then we shall omit the subscript u. It is
convenient to introduce the norms

‖ξ‖1,p,ε;(u,A) := ‖ξ‖Lp + ε
∥∥∥∇̃Aξ

∥∥∥
Lp
,

‖ξ‖2,p,ε;(u,A) := ‖ξ‖Lp + ε
∥∥∥∇̃Aξ

∥∥∥
Lp

+ ε2
∥∥∥∇̃A

∗∇̃Aξ
∥∥∥
Lp
,

‖α‖1,p,ε;A := ‖α‖Lp + ε ‖dAα‖Lp + ε ‖d∗Aα‖Lp ,

‖α‖2,p,ε;A := ‖α‖Lp + ε ‖dAα‖Lp + ε ‖d∗Aα‖Lp + ε2 ‖d∗AdAα+ dAd
∗
Aα‖Lp

for ξ ∈ Ω0,k(Σ, u∗TM/G), α ∈ Ωk(Σ, gP ), k = 0, 1, and 1 ≤ p ≤ ∞. Here ∇̃A
denotes the Hermitian connection on u∗TM/G defined by (109). For ℓ = 0, 1, 2,
1 ≤ p ≤ ∞, and ζ = (ξ, α) ∈ Xu, ζ′ = (ξ′, ϕ′, ψ′) ∈ X ′

u we consider the norms

‖ζ‖ℓ,p,ε;(u,A) := ‖ξ‖ℓ,p,ε;(u,A) + ε ‖α‖ℓ,p,ε;(u,A) ,

‖ζ′‖ℓ,p,ε;(u,A) := ‖ξ′‖ℓ,p,ε;(u,A) + ε ‖ϕ′‖ℓ,p,ε;(u,A) + ε ‖ψ′‖ℓ,p,ε;(u,A) ,

where ‖ξ‖0,p,ε;(u,A) := ‖ξ‖Lp . These norms are gauge invariant. If the pair

(u,A) is understood from the context we shall drop it to simplify the notation.
In particular, we abbreviate ‖ζ‖∞,ε := ‖ζ‖0,∞,ε;(u,A) .

The augmented vertical differential of Fε at a zero (u,A) ∈ B is the operator
Dε = Dε

(u,A) : Xu → X ′
u given by

Dε

(
ξ
α

)
=




Dξ + (Luα)0,1

ε−2L∗
uξ − d∗Aα

ε−2dµ(u)ξ + ∗dAα


 , (12)

where D = D(u,A) : Ω0(Σ, u∗TM/G) → Ω0,1(Σ, u∗TM/G) is the Cauchy–
Riemann operator defined by (110). The second coordinate in the definition of
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Dε corresponds to the local slice condition for the G-action. For the definition
of the adjoint operator it is convenient to use the ε-dependent inner products
associated to the (0, 2, ε)-norms. In addition we use twice the standard inner
product on the space Ω0,1(Σ, u∗TM/G). Then the adjoint of Dε is given by

Dε∗




ξ′

ϕ′

ψ′


 =

(
2D∗ξ′ + Luϕ

′ + JLuψ
′

2ε−2L∗
uξ

′ − dAϕ
′ − ∗dAψ′

)
.

Remark 4.1 (Local coordinates). Let υ : U → Σ be a holomorphic coordi-
nate chart defined on an open set U ⊂ C and let υ̃ : U → P be a lift of υ. In
this trivialization the map u, the connection A, the vector field ξ along u, and
the 1-form α are represented by

uloc := u ◦ υ̃, Aloc := υ̃ ∗A = Φ ds+ Ψ dt,
ξloc := ξ ◦ υ̃, αloc := υ̃ ∗α = ϕds+ ψ dt,

where Φ,Ψ, ϕ, ψ are Lie algebra valued functions on U . The volume form on
U is given by λ2 ds ∧ dt := υ∗dvolΣ for some function λ : U → (0,∞) and the
metric has the form λ2(ds2 + dt2). From now on we shall drop the superscript
“loc” and introduce the notation

vs := ∂su+XΦ(u), vt := ∂tu+XΨ(u),
∇A,sξ := ∇sξ + ∇ξXΦ(u), ∇A,tξ := ∇tξ + ∇ξXΨ(u),

∇̃A,sξ := ∇A,sξ − 1
2J(∇vs

J + ∂sJ)ξ, ∇̃A,tξ := ∇A,tξ − 1
2J(∇vt

J + ∂tJ)ξ,
∇A,sη := ∂sη + [Φ, η], ∇A,tη := ∂tη + [Ψ, η],

for η : U → g and a vector field ξ : U → u∗TM along u. Then

dAu = vs ds+ vt dt, ∇Aξ = ∇A,sξ ds+ ∇A,tξ dt,
∗FA = λ−2 (∂sΨ − ∂tΦ + [Φ,Ψ]) , ∗dAα = λ−2 (∇A,sψ −∇A,tϕ) ,

d∗Aα = −λ−2(∇A,sϕ+ ∇A,tψ).

In local coordinates a (0, 1)-form on Σ with values in u∗TM/G has the form
1
2 (ξ′ds− Jξ′dt), where ξ′(s, t) ∈ Tu(s,t)M . In particular,

∂̄J,A(u) =
1

2
(vs + Jvt) ds+

1

2
(vt − Jvs) dt,

(∇Aξ)0,1 =
1

2
(∇A,sξ + J∇A,tξ) ds+

1

2
(∇A,tξ − J∇A,sξ) dt,

We represent a (0, 1)-form by twice the coefficient of ds. Then

Dξ = ∇̃A,sξ + J∇̃A,tξ +
1

4
N(ξ, vs − Jvt) +

1

2
(J∂sJ − ∂tJ)ξ,

where N(ξ1, ξ2) = 2J((∇ξ2J)ξ1 − (∇ξ1J)ξ2) denotes the Nijenhuis tensor, and

2D∗ξ′ =
1

λ2

(
−∇̃A,sξ′ + J∇̃A,tξ′ −

1

2
J(∇ξ′J)(vs − Jvt) +

1

2
(J∂sJ − ∂tJ)ξ

)
.
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The Weitzenböck formula has the form D∗Dξ = 1
2∇̃A

∗∇̃Aξ+l.o.t. In the Kähler

case we have ∇A = ∇̃A, ∇J = 0, and ∂sJ = ∂tJ = 0. Hence in this case

D∗Dξ = − 1

2λ2
(∇A,s∇A,sξ + ∇A,t∇A,tξ)

− 1

2λ2
JR(vs, vt)ξ −

1

2λ2
J∇ξX∂sΨ−∂tΦ+[Φ,Ψ](u).

In local coordinates the operators Dε and Dε∗ have the form

Dεζ =




Dξ + Luϕ+ JLuψ
λ−2(∇A,sϕ+ ∇A,tψ) + ε−2L∗

uξ
λ−2(∇A,sψ −∇A,tϕ) + ε−2dµ(u)ξ


 ,

Dε∗ζ′ =




2D∗ + Luϕ
′ + JLuψ

′

−∇A,sϕ′ + ∇A,tψ′ + ε−2L∗
uξ

′

−∇A,sψ′ −∇A,tϕ′ + ε−2dµ(u)ξ′


 .

Proposition 4.2. For every p ≥ 2 and every c0 > 0 there exist positive cons-
tants ε0 and c such that

‖ζ‖1,p,ε;(u,A) ≤ c (ε‖Dεζ‖0,p,ε + ‖πuξ‖Lp) ,

‖ζ − πuζ‖1,p,ε;(u,A) ≤ cε (‖Dεζ‖0,p,ε + ‖πuξ‖Lp) ,

‖ζ′‖1,p,ε;(u,A) ≤ c (ε‖Dε∗ζ′‖0,p,ε + ‖πuξ′‖Lp) ,

‖ζ′ − πuζ
′‖1,p,ε;(u,A) ≤ cε (‖Dε∗ζ′‖0,p,ε + ‖πuξ′‖Lp) ,

for all (u,A) ∈ M̃0
B,Σ(c0), ζ = (ξ, α) ∈ Xu, ζ′ = (ξ′, ϕ′, ψ′) ∈ X ′

u, and ε ∈
(0, ε0]. Here we abbreviate Dε := Dε

(u,A) and πuζ := (πuξ, 0) and πuζ
′ :=

(πuξ
′, 0, 0), where πu is defined by (9).

In this paper we prove Proposition 4.2 only in the case p = 2. The proof for
p > 2 is similar to the proof of an analogous result in [S].

Lemma 4.3. (i) If ∂̄J,A(u) = 0 then

DεDε∗ζ′ =




2DD∗ξ′ + 2ε−2(LuL
∗
uξ

′)0,1 + (DJ − JD)Luψ
′

∆εϕ
′ + [∗FA + ε−2µ(u), ψ′]

∆εψ
′ − [∗FA + ε−2µ(u), ϕ′] + 2ε−2L∗

u(DJ − JD)∗ξ′




for ζ′ := (ξ′, ϕ′, ψ′) ∈ X ′
u, where ∆ε := d∗AdA + ε−2L∗

uLu.

(ii) If ∂̄J,A(u) = 0 and µ(u) = 0 then

Dε∗Dεζ =

(
2D∗Dξ + ε−2LuL

∗
uξ + ε−2JLuL

∗
uJ

∗ξ +Q∗α
d∗AdAα+ dAd

∗
Aα+ ε−2L∗

uLuα+ ε−2Qξ

)
,

for ζ = (ξ, α) ∈ Xu, where Q : Ω0(Σ, u∗TM/G) → Ω1(Σ, gP ) denotes the zeroth
order operator

Qξ := 2L∗
uDξ − dAL

∗
uξ − ∗dAdµ(u)ξ

= ρ(ξ, dAu) − ∗ρ(Jξ, dAu) + ∗L∗
uJ̇ξ +

1

2
L∗
uN(ξ, ∂J,A(u)).
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Proof. We shall repeatedly use the identities

d∗Aα = − ∗ dA ∗ α, ∗dAdAϕ = [∗FA, ϕ],
L∗
u = dµ(u)J, dµ(u)Luϕ = −[µ(u), ϕ]

for α ∈ Ω1(Σ, gP ) and ϕ ∈ Ω0(Σ, gP ). To prove (i) note that the triple
(ξ̃′, ϕ̃′, ψ̃′) := DεDε∗(ξ′, ϕ′, ψ′) is given by

ξ̃′ = D(2D∗ξ′ + Luϕ
′ + JLuψ

′) + (Lu(2ε
−2L∗

uξ
′ − dAϕ

′ − ∗dAψ′))0,1

= 2DD∗ξ′ + 2ε−2(LuL
∗
uξ

′)0,1

+DLuϕ
′ − (LudAϕ

′)0,1 +DJLuψ
′ − (Lu ∗ dAψ′)0,1,

ϕ̃′ = ε−2L∗
u(2D

∗ξ′ + Luϕ+ JLuψ) − d∗A(2ε−2L∗
uξ

′ − dAϕ− ∗dAψ)

= d∗AdAϕ
′ + ε−2L∗

uLuϕ
′ + 2ε−2(DLu − LudA)∗ξ′ + [∗FA + ε−2µ(u), ψ′],

ψ̃′ = ε−2dµ(u)(2D∗ξ′ + Luϕ
′ + JLuψ

′) + ∗dA(2ε−2L∗
uξ

′ − dAϕ
′ − ∗dAψ′)

= d∗AdAψ
′ + ε−2L∗

uLuψ
′ − [∗FA + ε−2µ(u), ϕ′]

+ 2ε−2(L∗
uJ

∗D∗ξ′ + d∗A ∗ L∗
uξ

′).

The assertion now follows from the fact that

J(Luα)0,1 = (Lu ∗ α)0,1, L∗
uJ

∗ξ′ = − ∗ L∗
uξ

′, (13)

for α ∈ Ω1(Σ, gP ) and ξ′ ∈ Ω0,1(Σ, u∗TM/G), and

∂̄J,A(u) = 0 =⇒ DLuϕ = (LudAϕ)0,1 (14)

for ϕ ∈ Ω0(Σ, gP ). The first equation in (13) follows from the fact that ∗α =
−α◦JΣ for every 1-form α on Σ (with values in any vector bundle). The second
equation in (13) follows from the first by duality. Equation (14) follows from the
fact that the section (u,A) 7→ ∂̄J,A(u) of the vector bundle over B with fibres
Ω0,1(Σ, u∗TM/G) is G(P )-equivariant.

To prove (ii) note that the pair

(ξ̃, α̃) := Dε∗Dε(ξ, α)

is given by

ξ̃ = 2D∗(Dξ + (Luα)0,1)

+Lu(ε
−2L∗

uξ − d∗Aα) + JLu(ε
−2dµ(u)ξ + ∗dAα)

= 2D∗Dξ + 2ε−2(LuL
∗
uξ

′)0,1 +
(
2D∗(Luα)0,1 − Lud

∗
Aα+ JLu ∗ dAα

)
,

α̃ = 2ε−2L∗
u(Dξ + (Luα)0,1)

− dA(ε−2L∗
uξ − d∗Aα) − ∗dA(ε−2dµ(u)ξ + ∗dAα)

= d∗AdAα+ dAd
∗
Aα+ ε−2L∗

uLuα+ ε−2 (2L∗
uDξ − dAL

∗
uξ − ∗dAdµ(u)ξ) .

Here we have used the fact that µ(u) = 0 and hence 2L∗
u(Luα)0,1 = L∗

uLuα. The
formula for the operator Q := 2L∗

uD − dAL
∗
u − ∗dAdµ(u) follows by computing

in local coordinates.

20



Proof of Proposition 4.2 for p = 2. Let

ζ′ := (ξ′, ϕ′, ψ′) := Dεζ.

Then, by Lemma 4.3, the formula

Dε∗Dεζ = Dε∗ζ′

is equivalent to

2D∗Dξ + ε−2LuL
∗
uξ + ε−2JLuL

∗
uJ

∗ξ +Q∗α = 2D∗ξ′ + Luϕ
′ + JLuψ

′,

d∗AdAα+ dAd
∗
Aα+ ε−2L∗

uLuα+ ε−2Qξ = 2ε−2L∗
uξ

′ − dAϕ
′ − ∗dAψ′.

Take the L2-inner product of the first equation with ξ and of the second equation
with ε2α. The sum of the resulting identities gives

ε−2 ‖L∗
uξ‖2 + ε−2 ‖L∗

uJξ‖2 + 2 ‖Dξ‖2 + ‖Luα‖2 + ε2 ‖dAα‖2 + ε2 ‖d∗Aα‖2

= 2〈ξ′, Dξ〉 + 2〈ξ′, Luα〉 − 2〈α,Qξ〉
+ 〈ϕ′, L∗

uξ〉 − 〈ψ′, L∗
uJξ〉 − ε2〈ϕ′, d∗Aα〉 + ε2〈ψ′, ∗dAα〉

≤ 3 ‖ξ′‖2
+ ‖Dξ‖2

+ 2−1 ‖Luα‖2
+ δ ‖α‖2

+ δ−1 ‖Qξ‖2

+ ε2 ‖ϕ′‖2
+ ε2 ‖ψ′‖2

+ 2−1ε−2 ‖L∗
uξ‖2 + 2−1ε−2 ‖L∗

uJξ‖2

+ 2−1ε2 ‖d∗Aα‖2 + 2−1ε2 ‖dAα‖2 .

Here all norms are L2-norms and all inner products are L2-inner products.
Choose δ > 0 so small that δ ‖α‖2 ≤ 4−1 ‖Luα‖2

for all α. Then

ε−2 ‖L∗
uξ‖2

+ ε−2 ‖L∗
uJξ‖2

+ ‖Dξ‖2
+ ‖Luα‖2

+ ε2 ‖dAα‖2
+ ε2 ‖d∗Aα‖2

≤ 12 ‖ξ′‖2
+ 4ε2 ‖ϕ′‖2

+ 4ε2 ‖ψ′‖2
+ 4δ−1 ‖Q‖2

L∞ ‖ξ‖2

≤ 12 ‖Dε(ξ, α)‖2
0,2,ε + 4δ−1 ‖Q‖2

L∞ ‖ξ‖2
L2 .

Now the required estimates follow from the inequalities

‖∇̃Aπuξ‖L2 ≤ c
(
‖∇̃Aξ‖L2 + ‖ξ‖L2

)
,

‖ξ − πuξ‖L2 ≤ c′ (‖L∗
uξ‖L2 + ‖L∗

uJξ‖L2) ,

‖∇̃Aξ‖L2 ≤ c′′ (‖Dξ‖L2 + ‖ξ‖L2) .

The first inequality follows from (15) below. In the second inequality the cons-
tant c′ can be chosen as an upper bound for the norms of the linear maps
Lx(L

∗
xLx)

−1 over all x ∈ µ−1(0). The third inequality is the L2-estimate
for the Cauchy–Riemann operator and it follows from the Weitzenböck for-
mula. The constant c′′ is gauge invariant and depends continuously on the pair
(u,A) with respect to the C1-norm and hence can be chosen independent of

(u,A) ∈ M̃0
B,Σ(c0). This proves the proposition in the case p = 2.

The next lemma expresses the Sobolev inequalities in terms of the ε-depen-
dent norms.
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Lemma 4.4. For every p > 2 and every c0 > 0 there exists a constant c > 0
such that

‖ζ‖∞,ε ≤ cε−2/p‖ζ‖1,p,ε;(u,A), ‖ζ‖1,∞,ε ≤ cε−2/p‖ζ‖2,p,ε;(u,A)

for all (u,A) ∈ M̃0
B,Σ(c0), ζ ∈ Xu, and ε ∈ (0, 1).

Proof. Multiply the metric on Σ by ε−2. Then the W k,p-norm of (ξ, α) with
respect to the rescaled metric is equal to ε−2/p times the (k, p, ε)-norm of ζ,
and the L∞-norm with respect to the rescaled metric is equal to the (∞, ε)-
norm. Hence the estimates follows from the Sobolev embedding theorem for the
rescaled metric. The constant is gauge invariant and it depends continuously
on u (with respect to the C1-norm) and A (with respect to the C0-norm). By
Lemma 2.2, the estimate holds with a uniform constant c.

Lemma 4.5. For every p ≥ 2 and every c0 > 0 there exist positive constants
ε0 and c such that

‖πuDεζ −D0πuζ‖k,p,ε ≤ c‖ξ − πuξ‖k,p,ε,
‖πuDεζ −Dεπuζ‖k,p,ε ≤ c‖ξ‖k,p,ε,

‖πuDε∗ζ′ −D0∗πuζ
′‖k,p,ε ≤ c‖ξ′ − πuξ

′‖k,p,ε,
‖πuDε∗ζ′ −Dε∗πuζ

′‖k,p,ε ≤ c‖ξ′‖k,p,ε

for every (u,A) ∈ M̃0
B,Σ(c0), ζ = (ξ, α) ∈ Xu, ζ′ = (ξ′, ϕ′, ψ′) ∈ X ′

u, ε ∈ (0, 1],
and k = 0, 1. Here we abbreviate Dε := Dε

(u,A) for ε ≥ 0.

Proof. We prove first that, for every vector field v ∈ Vect(Σ), there exists a
constant c = c(p, c0, v) > 0 such that

‖πu∇̃A,vξ − ∇̃A,vπuξ‖Wk,p,A ≤ c‖ξ‖Wk,p,A,

‖πu∇̃A,vξ − πu∇̃A,vπuξ‖Wk,p,A ≤ c‖ξ − πuξ‖Wk,p,A,
(15)

for (u,A) ∈ M̃0
B,Σ(c0), ξ ∈ Ω0(Σ, u∗TM/G) and k = 0, 1. Here the W 1,p-

norm labelled by A is understood as the (gauge invariant) (1, p, ε)-norm for
ε = 1. To prove (15) we choose local holomorphic coordinates s+ it on Σ. Thus
ξ(s, t) ∈ T(u(s,t)M , and vs, vt, ∇A,sξ, and ∇A,tξ are as in Remark 4.1. Write

ξ = πuξ + Luη1 + JLuη2,

where ηi(s, t) ∈ g. Define Bs(s, t) : g → Tu(s,t)M and Bt(s, t) : g → Tu(s,t)M by

Bsη := ∇vs
Xη(u), Btη := ∇vt

Xη(u).

Then
∇A,sLuη − Lu∇A,sη = Bsη, ∇A,tLuη − Lu∇A,tη = Btη

and hence

∇A,sπuξ − πu∇A,sξ = πu(Bsη1 + JBsη2 + (∇vs
J + ∂sJ)Luη2).

22



Since η1 = (L∗
uLu)

−1L∗
u(ξ − πuξ) and η2 = −(L∗

uLu)
−1L∗

uJ(ξ − πuξ), we have

‖∇A,sπuξ − πu∇A,sξ‖Lp ≤ c‖ξ − πuξ‖Lp .

This proves (15) for the local vector field ∂/∂s. For ∂/∂t the proof is analo-
gous. Hence the result follows for any linear combination of these vector fields
supported in the given coordinate chart, and hence for every vector field on Σ.
For ξ′ ∈ Ω0,1(Σ, u∗TM/G) there are similar inequalities.

By (15), there exists a constant c′ = c′(p, c0) > 0 such that

‖πu(∇̃Aξ)0,1 − (∇̃A,vπuξ)0,1‖Wk,p,A ≤ c′‖ξ‖Wk,p,A,

‖πu(∇̃Aξ)0,1 − πu(∇̃A,vπuξ)0,1‖Wk,p,A ≤ c′‖ξ − πuξ‖Wk,p,A,

for (u,A) ∈ M̃0
B,Σ(c0), ξ ∈ Ω0(Σ, u∗TM/G), and k = 0, 1. Since

Dξ := D(u,A)ξ = (∇Aξ)0,1 − J(∇ξJ)∂J,A(u)

we have
‖πuDξ −Dπuξ‖Wk,p,A ≤ c′′‖ξ‖Wk,p,A,
‖πuD(ξ − πuξ)‖Wk,p,A ≤ c′′‖ξ − πuξ‖Wk,p,A,

(16)

for (u,A) ∈ M̃0
B,Σ(c0), ξ ∈ Ω0(Σ, u∗TM/G), and k = 0, 1. Since

πuDεζ = πuDξ, D0πuζ = πuDπuξ, Dεπuζ = (Dπuξ, 0, 0),

the required estimates for the operator Dε follow from (16). The proof for the
adjoint operator is analogous.

In the following we use the notation

∇̃A,vζ := (∇̃A,vξ,∇A,vα), ∇̃A,vζ′ := (∇̃A,vξ′,∇A,vϕ′,∇A,vψ′)

for v ∈ Vect(Σ), ζ = (ξ, α) ∈ Xu, and ζ′ = (ξ′, ϕ′, ψ′) ∈ X ′
u, where ∇̃A is the

connection on u∗TM/G defined by (109) and ∇A,vα ∈ Ω1(Σ, gP ) is the covariant
derivative induced by the connection A and the Levi-Civita connection on Σ.

Lemma 4.6. For every p ≥ 2, every c0 > 0, and every equivariant vector field
v ∈ Vect(Σ) there exists a constant c > 0 such that

‖Dε∇̃A,vζ − ∇̃A,vDεζ‖k,p,ε ≤ cε−1‖ζ‖k+1,p,ε, (17)

‖Dε∗∇̃A,vζ′ − ∇̃A,vDε∗ζ′‖k,p,ε ≤ cε−1‖ζ′‖k+1,p,ε (18)

for all (u,A) ∈ M̃0
B,Σ(c0), ζ ∈ Xu, ζ′ ∈ Xu, ε ∈ (0, 1], and k = 0, 1.

Proof. We compute in local coordinates. Let ζ′ = (ξ′, ϕ′, ψ′) := Dεζ. Then

ξ′ = ∇̃A,sξ + J∇̃A,tξ +
1

4
N(ξ, vs − Jvt) +

1

2
(J∂sJ − ∂tJ)ξ + Luϕ+ JLuψ,

ϕ′ = λ−2 (∇A,sϕ+ ∇A,tψ) + ε−2L∗
uξ, (19)

ψ′ = λ−2 (∇A,sψ −∇A,tϕ) + ε−2dµ(u)ξ.
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Here
A = Φds+ Ψdt, α = ϕds+ ψdt,

and vs, vt, ∇A,sϕ, ∇̃A,sξ, ∇A,tϕ, and ∇̃A,tξ are as in Remark 4.1. It suffices to

prove the estimate for the local operators ∇̃A,s and ∇̃A,t. Let ζ′s = (ξ′s, ϕ
′
s, ψ

′
s) be

defined by (19) with (ξ, ϕ, ψ) replaced by (∇̃A,sξ,∇A,sϕ,∇A,sψ). Since ∇̃AJ = 0
we obtain

∇̃A,sξ′ − ξ′s = J(∇̃A,s∇̃A,tξ − ∇̃A,t∇̃A,sξ) + ∇vs
Xϕ(u) + J∇vs

Xψ(u)

+
1

4
∇̃A,s(N(ξ, vs − Jvt)) −

1

4
N(∇̃A,sξ, vs − Jvt)

+
1

2
∇̃A,s((J∂sJ − ∂tJ)ξ) − 1

2
(J∂sJ − ∂tJ)∇̃A,sξ

− 1

2
J(∇vs

J + ∂sJ)(Luϕ− JLuψ),

∇A,sϕ′ − ϕ′
s = λ−2 (∇A,s∇A,tψ −∇A,t∇A,sψ) + (∂sλ

−2) (∇A,sϕ+ ∇A,tψ)

+ ε−2ρ(vs, ξ) −
1

2
ε−2dµ(u)(∇vs

J + ∂sJ)ξ,

∇A,sψ′ − ψ′
s = −λ−2 (∇A,s∇A,tϕ+ ∇A,t∇A,sϕ) + (∂sλ

−2) (∇A,sψ −∇A,tϕ)

− ε−2ρ(vs, Jξ) −
1

2
ε−2L∗

u(∇vs
J + ∂sJ)ξ.

Here we have used Lemma C.2. For the vector field ∂/∂s, multiplied by any
cutoff function, the estimates (17) and (18) follow from these three identities.
The proof for ∂/∂t is similar, and so is the proof for the adjoint operator.

Lemma 4.7. Let p ≥ 2 and c0 > 0. Suppose that D0 := D0
(u,A) is onto for every

(u,A) ∈ M̃0
B,Σ(c0). Then there exist positive constants ε0 and c such that the

operator Dε := Dε
(u,A) is onto for every (u,A) ∈ M̃0

B,Σ(c0) and every ε ∈ (0, ε0]
and

‖ζ′‖k+1,p,ε ≤ c
(
ε ‖Dε∗ζ′‖k,p,ε + ‖πuDε∗ζ′‖k,p,ε

)
, (20)

‖ζ′ − πuζ
′‖k+1,p,ε ≤ cε ‖Dε∗ζ′‖k,p,ε , (21)

for ζ′ ∈ X ′
u and k = 0, 1.

Proof. By elliptic regularity, there exists a constant C0 > 0 such that

‖ξ0‖Lp ≤ C0‖D0∗ξ0‖Lp (22)

for every (u,A) ∈ M̃0
B,Σ(c0) and every ξ′0 ∈ Ω0,1(Σ, Hu). Hence

‖πuζ′‖Lp ≤ C0‖D0∗πuζ
′‖Lp

≤ C0‖πuDε∗ζ′‖Lp + C0‖πuDε∗ζ′ −D0∗πuζ
′‖Lp

≤ C0‖πuDε∗ζ′‖Lp + C0c1‖ζ′ − πuζ
′‖0,p,ε

≤ C0‖πuDε∗ζ′‖Lp + C0c1c2ε (‖Dε∗ζ′‖0,p,ε + ‖πuζ′‖Lp) .
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Here c1 is the constant of Lemma 4.5 and c2 is the constant of Proposition 4.2.
With C0c1c2ε ≤ 1/2 we obtain

‖πuζ′‖Lp ≤ c3
(
ε‖Dε∗ζ′‖0,p,ε + ‖πuDε∗ζ′‖Lp

)
, (23)

where c3 := 2C0c1c2. The inequality (20) for k = 0 now follows from (23) and
Proposition 4.2. To prove (21) for k = 0 we use Proposition 4.2 and (23) again
to obtain

‖ζ′ − πuζ
′‖1,p,ε ≤ c2ε (‖Dε∗ζ′‖0,p,ε + ‖πuζ′‖Lp)

≤ c2ε(1 + c3ε)‖Dε∗ζ′‖0,p,ε + c2c3ε‖πuDε∗ζ′‖Lp

≤ c4ε‖Dε∗ζ′‖0,p,ε,

where c4 := c2(1 + 2c3).
Now let v ∈ Vect(Σ). By definition of the (1, p, ε)-norm and (15), there

exists a constant c5 = c5(v, p, c0) such that

‖∇̃A,vζ‖0,p,ε ≤ c5ε
−1‖ζ‖1,p,ε, ‖πu∇̃A,vζ − ∇̃A,vπuζ‖Lp ≤ c5‖ζ‖0,p,ε,

for (u,A) ∈ M̃0
B,Σ(c0), ζ ∈ Xu and ε ∈ (0, 1]. Let c6 = c6(v, p, c0) be the

constant of Lemma 4.6. Then, by (20) with k = 0 and Lemma 4.6, we have

ε‖∇̃A,vζ′‖1,p,ε ≤ cε
(
ε‖Dε∗∇̃A,vζ′‖0,p,ε + ‖πuDε∗∇̃A,vζ′‖Lp

)

≤ cε2‖Dε∗∇̃A,vζ′ − ∇̃A,vDε∗ζ′‖0,p,ε + cε2‖∇̃A,vDε∗ζ′‖0,p,ε

+ cε‖πu(Dε∗∇̃A,vζ′ − ∇̃A,vDε∗ζ′)‖Lp

+ cε‖πu∇̃A,vDε∗ζ′ − ∇̃A,vπuDε∗ζ′‖Lp + cε‖∇̃A,vπuDε∗ζ′‖Lp

≤ 2cc5 (ε‖Dε∗ζ′‖1,p,ε + ‖πuDε∗ζ′‖1,p,ε) + 2cc6‖ζ′‖1,p,ε

≤ 2c(c5 + cc6) (ε‖Dε∗ζ′‖1,p,ε + ‖πuDε∗ζ′‖1,p,ε) .

The last inequality follows again from (20) with k = 0. The estimate (20) for
k = 1 now follows by taking the sum over finitely many suitably chosen vector
fields v.

To prove (21) for k = 1 we observe that πuDε∗πuζ
′ = D0∗πuζ

′ and choose
c7 such that ‖πuζ‖1,p,ε ≤ c7‖ζ‖1,p,ε for every ζ ∈ Xu. Let c8 be the constant of
Lemma 4.5. Then, by (20) with k = 1 and Lemma 4.5, we have

‖ζ′ − πuζ
′‖2,p,ε ≤ c (ε‖Dε∗(ζ′ − πuζ

′)‖1,p,ε + ‖πuDε∗(ζ′ − πuζ
′)‖1,p,ε)

≤ cε (‖Dε∗ζ′‖1,p,ε + ‖πuDε∗ζ′‖1,p,ε)

+ cε‖Dε∗πuζ
′ − πuDε∗ζ′‖1,p,ε

+ c‖πuDε∗ζ′ −D0∗πuζ
′‖1,p,ε

≤ c(1 + c7)ε‖Dε∗ζ′‖1,p,ε

+ cc8ε‖ζ′‖1,p,ε + cc8‖ζ′ − πuζ
′‖1,p,ε

≤ c9ε‖Dε∗ζ′‖1,p,ε.

The last inequality follows from (20) and (21) with k = 0.
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Lemma 4.8. Let p ≥ 2 and c0 > 0. Suppose that D0 := D0
(u,A) is onto for

every (u,A) ∈ M̃0
B,Σ(c0). Then there exist positive constants c and ε0 such that

‖Dε∗ζ′‖k+1,p,ε ≤ c
(
ε ‖DεDε∗ζ′‖k,p,ε + ‖πuDεDε∗ζ′‖k,p,ε

)
,(24)

‖Dε∗ζ′ − πuDε∗ζ′‖k+1,p,ε ≤ cε ‖DεDε∗ζ′‖k,p,ε (25)

for every (u,A) ∈ M̃0
B,Σ(c0), ζ

′ ∈ X ′
u, ε ∈ (0, ε0], and k = 0, 1.

Proof. The proof has nine steps.

Step 1. Let q > 1 such that 1/p+ 1/q = 1. Then there exists a constant c0 > 0
such that

‖ξ0‖Lp + ‖ξ0‖Lq ≤ c0 ‖ξ0‖L2 , ‖ξ′0‖Lq ≤ c0

∥∥∥D0∗ξ′0

∥∥∥
Lq

for every (u,A) ∈ M̃0
B,Σ(c0), every ξ0 ∈ kerD0, and every ξ′0 ∈ Ω0,1(Σ, Hu).

These are standard estimates for elliptic pdes. The first estimate uses L2 regu-
larity for the operator D0, the Sobolev embedding W 1,2 →֒ Lp, and the Hölder
inequality. The second estimate uses Lq regularity for D0∗ and the fact that
D0∗ is injective.

Step 2. There exists a constant c1 > 0 such that

∥∥∥D0∗ξ′0

∥∥∥
Lp

≤ c1 sup
ξ′′0 6=0

〈D0∗ξ′0,D0∗ξ′′0 〉∥∥D0∗ξ′′0
∥∥
Lq

for every (u,A) ∈ M̃0
B,Σ(c0) and every ξ′0 ∈ Ω0,1(Σ, Hu).

Let ξ1, . . . , ξm be an L2-orthonormal basis of kerD0. Given ξ′0 choose ξ ∈
Lq(Σ, Hu) such that

〈ξ,D0∗ξ′0〉 =
∥∥∥D0∗ξ′0

∥∥∥
Lp
, ‖ξ‖Lq = 1.

Let ξ′′0 ∈ W 1,q(Σ,Λ0,1T ∗Σ ⊗Hu) be the unique section such that

ξ = D0∗ξ′′0 +

m∑

j=1

〈ξ, ξj〉ξj .

Then ∥∥∥D0∗ξ′0

∥∥∥
Lp

= 〈D0∗ξ′′0 ,D0∗ξ′0〉

=

∥∥∥∥∥∥
ξ −

m∑

j=1

〈ξ, ξj〉ξj

∥∥∥∥∥∥
Lq

〈D0∗ξ′′0 ,D0∗ξ′0〉∥∥D0∗ξ′′0
∥∥
Lq

≤


1 +

m∑

j=1

‖ξj‖Lp ‖ξj‖Lq


 〈D0∗ξ′′0 ,D0∗ξ′0〉∥∥D0∗ξ′′0

∥∥
Lq

≤ (1 +mc0
2)
〈D0∗ξ′′0 ,D0∗ξ′0〉∥∥D0∗ξ′′0

∥∥
Lq

.

26



Step 3. There exists a constant c2 > 0 such that

‖πuDε∗ζ′‖Lp ≤ c2

(∥∥∥πuDε∗ζ′ −D0∗πuζ
′
∥∥∥
Lp

+
∥∥D0πuDε∗ζ′

∥∥
Lp

)

for every (u,A) ∈ M̃0
B,Σ(c0), every ζ′ ∈ X ′

u, and every ε ∈ (0, 1].

For every ξ′0 ∈ Ω0,1(Σ, Hu) we have

〈D0∗ξ′0,D0∗πuζ
′〉∥∥D0∗ξ′0

∥∥
Lq

=
〈D0∗ξ′0,D0∗πuζ

′ − πuDε∗ζ′〉∥∥D0∗ξ′0
∥∥
Lq

+
〈ξ′0,D0πuDε∗ζ′〉∥∥D0∗ξ′0

∥∥
Lq

≤
∥∥∥D0∗πuζ

′ − πuDε∗ζ′
∥∥∥
Lp

+
∥∥D0πuDε∗ζ′

∥∥
Lp

‖ξ′0‖Lq∥∥D0∗ξ′0
∥∥
Lq

≤
∥∥∥D0∗πuζ

′ − πuDε∗ζ′
∥∥∥
Lp

+ c0
∥∥D0πuDε∗ζ′

∥∥
Lp .

Here the last inequality follows from Step 1. Now, by Step 2,

‖πuDε∗ζ′‖Lp ≤
∥∥∥D0∗πuζ

′ − πuDε∗ζ′
∥∥∥
Lp

+
∥∥∥D0∗πuζ

′
∥∥∥
Lp

≤
∥∥∥D0∗πuζ

′ − πuDε∗ζ′
∥∥∥
Lp

+ c1 sup
ξ′0 6=0

〈D0∗πuζ
′,D0∗ξ′0〉∥∥D0∗ξ′0
∥∥
Lq

≤ (1 + c1)
∥∥∥D0∗πuζ

′ − πuDε∗ζ′
∥∥∥
Lp

+ c0c1
∥∥D0πuDε∗ζ′

∥∥
Lp .

Step 4. There exist positive constants ε0 and c3 such that

‖πuDε∗ζ′‖Lp ≤ c3

(
ε ‖Dε∗ζ′‖0,p,ε + ε ‖DεDε∗ζ′‖0,p,ε + ‖πuDεDε∗ζ′‖Lp

)

for every (u,A) ∈ M̃0
B,Σ(c0), every ζ′ ∈ X ′

u, and every ε ∈ (0, ε0].

We apply Lemma 4.5 to both operators Dε and Dε∗. Then, by Step 3,

‖πuDε∗ζ′‖Lp ≤ c2

(∥∥∥πuDε∗ζ′ −D0∗πuζ
′
∥∥∥
Lp

+
∥∥D0πuDε∗ζ′ − πuDεDε∗ζ′

∥∥
0,p,ε

+ ‖πuDεDε∗ζ′‖Lp

)

≤ c2

(
c ‖ζ′ − πuζ

′‖0,p,ε + c ‖Dε∗ζ′ − πuDε∗ζ′‖0,p,ε

+ ‖πuDεDε∗ζ′‖Lp

)

≤ c4

(
ε ‖Dε∗ζ′‖0,p,ε + ε ‖DεDε∗ζ′‖0,p,ε + ‖πuDεDε∗ζ′‖Lp

)
.

The last inequality follows from Lemma 4.7 and Proposition 4.2.

Step 5. We prove (24) for k = 0.
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By Proposition 4.2 and Step 4,

‖Dε∗ζ′‖1,p,ε ≤ c
(
ε ‖DεDε∗ζ′‖1,p,ε + ‖πuDε∗ζ′‖Lp

)

≤ c
(
c3ε ‖Dε∗ζ′‖0,p,ε + (1 + c3)ε ‖DεDε∗ζ′‖0,p,ε

+ c3 ‖πuDεDε∗ζ′‖Lp

)

for all (u,A) ∈ M̃0
B,Σ(c0) and ζ′ ∈ X ′

u and ε ∈ (0, ε0]. With cc3ε ≤ 1/2 we
obtain (24) for k = 0.

Step 6. We prove (25) for k = 0.

By Proposition 4.2 and Step 4,

‖Dε∗ζ′ − πuDε∗ζ′‖1,p,ε ≤ cε
(
‖DεDε∗ζ′‖1,p,ε + ‖πuDε∗ζ′‖Lp

)

≤ cε
(
c3ε ‖Dε∗ζ′‖0,p,ε + (1 + c3)ε ‖DεDε∗ζ′‖0,p,ε

+ c3 ‖πuDεDε∗ζ′‖Lp

)

≤ c5ε ‖DεDε∗ζ′‖0,p,ε .

Here the last inequality follows from Step 5.

Step 7. There exist positive constants ε0 and c6 such that

ε2‖[DεDε∗, ∇̃A,v]ζ′‖Lp ≤ c6‖ζ′‖2,p,ε,

ε‖[πuDεDε∗, ∇̃A,v]ζ′‖Lp ≤ c6 (ε‖DεDε∗ζ′‖0,p,ε + ‖πuDεDε∗ζ′‖Lp + ‖ζ′‖1,p,ε)

for every (u,A) ∈ M̃0
B,Σ(c0), every ζ′ ∈ X ′

u, and every ε ∈ (0, ε0].

The first estimate follows immediately from Lemma 4.6. To prove the second
estimate, recall from Lemma 4.3 that

πuDεDε∗ζ′ = πu2DD
∗ξ′ + πu(DJ − JD)Luψ

′

where D : Ω0(Σ, u∗TM/G) → Ω0,1(Σ, u∗TM/G) is the Cauchy–Riemann op-
erator defined by (110) and R := (DJ − JD)Lu is a zeroth order operator
(Lemma B.5). Hence

2DD∗πuξ
′ = −2[πu, DD

∗]ξ′ + πuDεDε∗ζ′ − πuRψ
′.

By (16) in the proof of Lemma 4.5, the commutator [πu, DD
∗] is a first order

operator in ξ′. Hence there exists a constant c7 = c7(p, c0) such that

‖∇̃A
∗∇̃Aπuξ′‖Lp ≤ c7

(
‖πuDεDε∗ζ′‖Lp + ε−1‖ζ′‖1,p,ε

)

Moreover, by Lemma 4.7,

‖∇̃A
∗∇̃A(ξ′ − πuξ

′)‖Lp ≤ ε−2‖ξ′ − πuξ
′‖2,p,ε

≤ c8ε
−1‖Dε∗ζ′‖1,p,ε

≤ c9
(
‖DεDε∗ζ′‖0,p,ε + ε−1‖πuDεDε∗ζ′‖0,p,ε

)
.
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The last inequality follows from Step 5. Now the commutator

[∇̃A,v, πuDεDε∗]ζ′ = 2[∇̃A,v, πuDD∗]ξ′ + [∇̃A,v, πuR]ψ′

is a second order operator in ξ′ and a zeroth order operator in ψ′. Hence the
assertion follows from the last two inequalities.

Step 8. We prove (24) for k = 1.

Let c10 be the constant in (24) for k = 0 and c11 be the constant of Lemma 4.6
Then, for every v ∈ Vect(Σ), we have

ε‖∇̃A,vDε∗ζ′‖1,p,ε

≤ ε‖Dε∗∇̃A,vζ′‖1,p,ε + ε‖∇̃A,vDε∗ζ′ −Dε∗∇̃A,vζ′‖1,p,ε

≤ c10ε
2‖DεDε∗∇̃A,vζ′‖0,p,ε + c10ε‖πuDεDε∗∇̃A,vζ′‖Lp + c11‖ζ′‖2,p,ε

≤ c10ε
2‖∇̃A,vDεDε∗ζ′‖0,p,ε + c10ε‖∇̃A,vπuDεDε∗ζ′‖Lp

+ c10ε
2‖[DεDε∗, ∇̃A,v]ζ′‖0,p,ε + c10ε‖[πuDεDε∗, ∇̃A,v]ζ′‖Lp + c11‖ζ′‖2,p,ε

≤ c10ε
2‖∇̃A,vDεDε∗ζ′‖0,p,ε + c10ε‖∇̃A,vπuDεDε∗ζ′‖Lp

+ c6c10 (ε‖DεDε∗ζ′‖0,p,ε + ‖πuDεDε∗ζ′‖Lp) + (2c6c10 + c11)‖ζ′‖2,p,ε

≤ c12 (ε‖DεDε∗ζ′‖1,p,ε + ‖πuDεDε∗ζ′‖1,p,ε) .

The penultimate inequality follows from Step 7, and the last step from (20)
and (24) and the definition of the (1, p, ε)-norm. Now (24) for k = 1 follows by
taking the sum over finitely many vector fields v ∈ Vect(Σ).

Step 9. We prove (25) for k = 1.

By Step 8, suppose that (24) holds with k = 1 and c = c13, choose c14 such
that ‖πuζ‖1,p,ε ≤ c14‖ζ‖1,p,ε for every ζ ∈ Xu, and let c15 be the constant of
Lemma 4.5. Then

‖Dε∗ζ′ − πuDε∗ζ′‖2,p,ε ≤ c13ε‖Dε(Dε∗ζ′ − πuDε∗ζ′)‖1,p,ε

+ c13‖πuDε(Dε∗ζ′ − πuDε∗ζ′)‖1,p,ε

≤ c13ε (‖DεDε∗ζ′‖1,p,ε + ‖πuDεDε∗ζ′‖1,p,ε)

+ c13ε‖DεπuDε∗ζ′ − πuDεDε∗ζ′‖1,p,ε

+ c13‖(πuDε −D0πu)Dε∗ζ′‖1,p,ε

≤ (1 + c14)c13ε‖DεDε∗ζ′‖1,p,ε

+ c15c13 (ε‖Dε∗ζ′‖1,p,ε + ‖Dε∗ζ′ − πuDε∗ζ′‖1,p,ε)

≤ c16ε‖DεDε∗ζ′‖1,p,ε.

The last inequality follows from Steps 5 and 6.

5 Quadratic estimates

Fix p > 2, c0 > 0 and (u,A) ∈ M̃0
B,Σ(c0), and consider the map

Fε = Fε
(u,A) : Xu → X ′

u
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given by

Fε(ξ, α) =



ρ(ξ)

(
∂̄J,A+α(expu(ξ))

)

ε−2L∗
uξ − d∗Aα

ε−2µ(expu(ξ)) + ∗FA+α


 . (26)

Here ρ(ξ) : Texpu(ξ)M → TuM denotes parallel transport along the geodesic
r 7→ expu(rξ) with respect to the Hermitian connection

∇̃ := ∇− 1

2
J∇J

on TM . The differential of Fε at zero is given by

dFε(0) = Dε
(u,A).

Let Fε
i denote the ith component of Fε. Since Fε

2 is a linear map, the following
proposition only deals with the first and third components of Fε.

Proposition 5.1. For every p > 2 and every c0 > 0 there exists a constant
c > 0 such that the following holds for every (u,A) ∈ M̃0

B,Σ(c0), any two pairs

ζ = (ξ, α), ζ̂ = (ξ̂, α̂) ∈ Xu, and every ε ∈ (0, 1].

(i) If ‖ξ‖L∞ + ‖ξ̂‖L∞ ≤ 1 then

‖Fε
1 (ζ + ζ̂) −Fε

1 (ζ) − dFε
1 (ζ)ζ̂‖Lp

≤ c‖ξ̂‖L∞

(
‖ξ̂‖Lp + ‖∇̃Aξ̂‖Lp + ‖α̂‖Lp

)

+ c‖ξ̂‖2
L∞

(
‖∇̃Aξ‖Lp + ‖α‖Lp + ‖∇̃Aξ̂‖Lp + ‖α̂‖Lp

)
.

If, in addition, ‖∇̃Aξ‖Lp + ‖∇̃Aξ̂‖Lp + ‖α‖Lp + ‖α̂‖Lp ≤ ε2/p−1 then

‖Fε
1 (ζ + ζ̂) −Fε

1 (ζ) − dFε
1 (ζ)ζ̂‖Lp

≤ c‖ξ̂‖L∞

(
ε−1‖ξ̂‖Lp + ‖∇̃Aξ̂‖Lp + ‖α̂‖Lp

)
.

(ii) If ‖ξ‖L∞ + ‖ξ̂‖L∞ ≤ 1 then

‖Fε
3(ζ + ζ̂) −Fε

3 (ζ) − dFε
3 (ζ)ζ̂‖Lp ≤ c

(
‖α̂‖L∞‖α̂‖Lp + ε−2‖ξ̂‖L∞‖ξ̂‖Lp

)
.

(iii) If ‖ξ‖L∞ ≤ 1 then

‖dFε
1 (ζ)ζ̂ − dFε

1 (0)ζ̂‖Lp ≤ c‖ξ̂‖L∞

(
‖ξ‖Lp + ‖∇̃Aξ‖Lp + ‖α‖Lp

)

+ c‖ξ‖L∞

(
‖ξ̂‖Lp + ‖∇̃Aξ̂‖Lp + ‖α̂‖Lp

)
.

(iv) If ‖ξ‖L∞ ≤ 1 then

‖dFε
3 (ζ)ζ̂ − dFε

3 (0)ζ̂‖Lp ≤ c
(
ε−2‖ξ‖Lp‖ξ̂‖L∞ + ‖α‖Lp‖α̂‖L∞

)
.
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The estimates in Proposition 5.1 differ from the ones in [DS2] in that the first
derivatives of ξ appear on the right hand sides of the inequalities. This is because
the nonlinearities in the Cauchy-Riemann equations appear in the first order
terms whereas the nonlinearities in the anti-self-duality equations only appear
in the zeroth order terms. In our equations the nonlinear terms involving α are
of zeroth order. Hence no derivatives of α appear in the quadratic estimates.
This is crucial for our adiabatic limit argument.

Proof of Proposition 5.1. In local holomorphic coordinates s+ it on Σ the map
Fε is given by

Fε(ζ) =




ρ(ξ)
(
∂suξ +XΦ+ϕ(uξ) + J

(
∂tuξ +XΨ+ψ(uξ)

))

ε−2L∗
uξ + λ−2 (∇A,sϕ+ ∇A,tψ)

ε−2µ(uξ) + λ−2 (∂s(Ψ + ψ) − ∂t(Φ + ϕ) + [Φ + ϕ,Ψ + ψ])


 ,

where
uξ := expu(ξ), ζ := (ξ, ϕ, ψ), α := ϕds+ ψ dt.

Suppose that
‖ξ‖L∞ ≤ 1.

The second derivatives of Fε
1 and Fε

3 satisfy the following pointwise estimates for
suitable constants c1 = c1(u,A, vs, vt) and c2 = c2(u) (i.e. c2 does not depend
on the derivatives of u):

|d2Fε
1 (ζ)(ζ1, ζ2)| ≤ c1

((
1 + |α| + |∇̃Aξ|

)
|ξ1| |ξ2|

+ |ξ1|
(
|∇̃Aξ2| + |α2|

)
+ |ξ2|

(
|∇̃Aξ1| + |α1|

))
(27)

|d2Fε
3 (ζ)(ζ1, ζ2)| ≤ c2

(
|α1||α2| + ε−2|ξ1||ξ2|

)
. (28)

The estimate (28) is obvious and (27) follows from the fact that Fε
1 (ζ) is linear

and of zeroth order in ϕ and ψ and that the first order terms in ξ are independent
of ϕ and ψ. Now consider the identities

Fε(ζ + ζ̂) −Fε(ζ) − dFε(ζ)ζ̂ =

∫ 1

0

(1 − r)d2Fε(ζ + rζ̂)(ζ̂ , ζ̂) dr (29)

dFε(ζ)ζ̂ − dFε(0)ζ̂ =

∫ 1

0

d2Fε(rζ)(ζ, ζ̂) dr. (30)

To prove assertions (i) and (ii) replace (ζ, ζ1, ζ2) by (ζ+rζ̂, ζ̂, ζ̂) in (27) and (28),
insert the resulting inequalities in (29), and integrate over Σ. Moreover, to derive

the second assertion in (i) from the first we use the inequality ε2/p−1‖ξ̂‖L∞ ≤
c(ε−1‖ξ̂‖Lp + ‖∇̃Aξ̂‖Lp) of Lemma 4.4. To prove assertions (iii) and (iv) replace

(ζ, ζ1, ζ2) by (rζ, ζ, ζ̂) in (27) and (28), insert the resulting inequalities in (30),
and integrate over Σ.
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Proposition 5.2. For every p > 2 and every c0 > 0 there exists a constants
c > 0 such that the following holds for every (u,A) ∈ M̃0

B,Σ(c0), any two pairs

ζ = (ξ, α), ζ̂ = (ξ̂, α̂) ∈ Xu, and every ε ∈ (0, 1].

(i) If ‖ξ‖L∞ + ‖ξ̂‖L∞ ≤ 1 and ‖ζ‖1,p,ε + ‖ζ̂‖1,p,ε ≤ ε2/p then

‖Fε(ζ + ζ̂) −Fε(ζ) − dFε(ζ)ζ̂‖0,p,ε ≤ cε−1−2/p‖ζ̂‖2
1,p,ε.

(ii) If ‖ξ‖L∞ + ‖ξ̂‖L∞ ≤ 1 and ‖ζ‖2,p,ε + ‖ζ̂‖2,p,ε ≤ ε2/p then

‖Fε(ζ + ζ̂) −Fε(ζ) − dFε(ζ)ζ̂‖1,p,ε ≤ cε−1−2/p‖ζ̂‖2
2,p,ε.

(iii) If ‖ξ‖L∞ ≤ 1 then

‖dFε(ζ)ζ̂ − dFε(0)ζ̂‖0,p,ε ≤ cε−1−2/p‖ζ‖1,p,ε‖ζ̂‖1,p,ε.

(iv) If ‖ξ‖L∞ ≤ 1 and ‖ζ‖1,p,ε ≤ ε2/p then

‖dFε(ζ)ζ̂ − dFε(0)ζ̂‖1,p,ε ≤ cε−1−2/p‖ζ‖2,p,ε‖ζ̂‖2,p,ε.

Proof. Assertions (i) and (iii) follow immediately from Proposition 5.1. To
prove (ii) we observe that in estimating the quadratic terms in ∂Fε

1 we encounter
products of the following forms

• ∂2ξ · ξ̂ · ξ̂ and ∂ϕ · ξ̂ · ξ̂. Here the Lp-norms of ∂2ξ and ∂ϕ can be estimated
by ε2/p−2 and the L∞-norm of ξ̂ · ξ̂ by ε−4/p‖ζ̂‖2

1,p,ε.

• ξ ·∂ξ̂ ·∂ξ̂, ξ · ξ̂ ·∂2ξ̂, ξ ·∂ξ̂ · ϕ̂, and ξ ·∂ϕ̂ · ξ̂. The Lp-norms of these products
can be estimated by ε−2−2/p‖ζ̂‖1,p,ε‖ζ̂‖2,p,ε.

• ∂ξ · ∂ξ̂ · ξ̂, ϕ · ∂ξ̂ · ξ̂, and ∂ξ · ϕ̂ · ξ̂. In these cases the Lp-norm of ∂ξ is
bounded by ε2/p−1 and the L∞-norms of ∂ξ̂ · ξ̂ and ϕ̂ · ξ̂ are bounded by
ε−1−4/p‖ζ̂‖1,p,ε‖ζ̂‖2,p,ε.

Similarly, in estimating the quadratic terms in ∂Fε
3 we encounter products of

the following forms

• ε−2ξ̂ ·∂ξ̂ and ∂ϕ̂ · ψ̂. The Lp-norms of these products can be estimated by
ε−3−2/p‖ζ̂‖2

1,p,ε.

• ε−2∂ξ · ξ̂ · ξ̂. Here the Lp-norm of ∂ξ bounded by ε2/p−1 and the L∞-norm
of ε−2ξ̂ · ξ̂ is bounded by ε−2−4/p‖ζ̂‖2

1,p,ε.

This proves (ii). The proof of (iv) is similar.

Assertions (i) and (iii) in Proposition 5.2 are weaker than Proposition 5.1;
in the former the first derivatives of α appear on the right hand sides of the
estimates. The full strength of Proposition 5.1 will be required in the proof of
Theorem 6.2 below.
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6 Proof of Theorem B

From now on we assume (H1) and (H4). In this section we establish the ex-

istence of a G(P )-equivariant map T̃ ε : M̃0
B,Σ(c0) → M̃ε

B,Σ that satisfies the
requirements of Theorem B.

Theorem 6.1. For every c0 > 0 and every p > 2 there exist positive cons-
tants ε0 and c such that for every ε ∈ (0, ε0] the following holds. For every

(u0, A0) ∈ M̃0
B,Σ(c0) there exists a unique pair ζε = (ξε, αε) ∈ Xu0 such that

(uε, Aε) := (expu0
(ξε), A0 + αε) ∈ M̃ε

B,Σ, (31)

−d∗A0
αε + ε−2L∗

u0
ξε = 0, ζε ∈ im (Dε

(u,A))
∗, (32)

‖ζε‖2,p,ε;(u0,A0)
≤ cε2. (33)

The map (u0, A0) 7→ (uε, Aε) is G(P )-equivariant and will be denoted by T̃ ε.

The next theorem shows that uniqueness holds under a slightly weaker hy-
pothesis, namely in a larger neighbourhood of (u,A).

Theorem 6.2. For every c0 > 0 and every p > 2 there exist positive cons-
tants δ and ε0 such that for every ε ∈ (0, ε0] the following holds. Suppose that

(u0, A0) ∈ M̃0
B,Σ(c0) and (ξ, α) ∈ Xu0 satisfy (31), (32), and

‖ξ‖1,p,ε + ε ‖α‖Lp + ε2/p ‖(ξ, α)‖∞,ε ≤ δε2/p+1/2. (34)

Then (expu0
(ξ), A0 + α) = T̃ ε(u,A).

Corollary 6.3. For every c0 > 0 and every p > 2 there exist positive cons-
tants δ and ε0 such that for every ε ∈ (0, ε0] the following holds. Suppose that

(u0, A0) ∈ M̃0
B,Σ(c0) and ζ = (ξ, α) ∈ Xu0 satisfy (31), (32), and

‖ζ‖1,p,ε;(u0,A0)
≤ δε2/p+1/2. (35)

Then (expu0
(ξ), A0 + α) = T̃ ε(u,A).

Proof. Theorem 6.2 and Lemma 4.4.

Proof of Theorem 6.1. The proof is similar to that of Theorem 5.1 in [DS2].
However, in the present case the nonlinearities (in the quadratic estimates)
appear in the highest order terms, and we establish estimates for the (2, p, ε)-
norms and not just the (1, p, ε)-norms (as in [DS2]). We assume throughout
that the exponential map at each point in µ−1(0) is defined in a ball of radius
one.

Abbreviate Dε := Dε
(u0,A0)

and let Fε : Xu0 → X ′
u0

be defined by (26). Then

dFε(0) = Dε, Fε(0) = (0, 0, ∗FA0).
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Hence, by Lemma 2.2, there exists a constant C0 > 0, depending only on c0 and
p, such that

‖Fε(0)‖1,p,ε = ε ‖FA0‖Lp + ε2 ‖dA0 ∗ FA0‖Lp ≤ C0ε.

We use Newton iteration to obtain a zero of Fε, and hence a solution of (7).
Let ζν = (ξν , αν) ∈ Xu0 be the sequence defined recursively by ζ0 := 0 and

ζν+1 := ζν + ζ̂ν , ζ̂ν ∈ imDε∗, Dεζ̂ν = −Fε(ζν). (36)

We prove by induction over ν that there exist positive constants ε0, c1, C, de-
pending only on c0 and p, such that

‖ζ̂ν‖2,p,ε ≤ c1‖Fε(ζν)‖1,p,ε, (37)

‖ζ̂ν‖2,p,ε ≤ 2−νC0c1ε
2, (38)

‖Fε(ζν+1)‖1,p,ε ≤ Cε1−2/p‖ζ̂ν‖2,p,ε (39)

for ε ∈ (0, ε0] and ν ≥ 0. The constants are chosen such that the linear estimates
of Lemma 4.8 hold for 0 < ε ≤ ε0 with c = c1 ≥ 1, the quadratic estimates
of Proposition 5.2 hold for 0 < ε ≤ 1 with c = c2 ≥ 1, the L∞ estimates of
Lemma 4.4 hold for 0 < ε ≤ 1 with c = c∞ ≥ 1, and

C = 3C0c1c2, Cc1ε
1−2/p
0 ≤ 1/2, 3C0c1c∞ε

2−2/p
0 ≤ 1.

For ν = 0 the estimates (37) and (38) follow from Lemma 4.8. Namely, by (24)
with k = 1, we have

‖ζ̂0‖2,p,ε ≤ c1ε‖Fε(0)‖1,p,ε ≤ C0c1ε
2.

The estimate (39) for ν = 0 follows from the identity dFε(0)ζ̂0 = −Fε(0) and
Proposition 5.2 (ii). Namely, since C0c1c∞ε

2−2/p ≤ 1 we have

‖ζ̂0‖2,p,ε ≤ C0c1ε
2 ≤ ε2/p, ‖ζ̂0‖∞,ε ≤ C0c1c∞ε

2−2/p ≤ 1.

Hence the hypotheses of Proposition 5.2 (ii) are satisfied with ζ = 0 and ζ̂ = ζ̂0,
and hence

‖Fε(ζ1)‖1,p,ε = ‖Fε(ζ̂0) −Fε(0) − dFε(0)ζ̂0‖1,p,ε

≤ c2ε
−1−2/p‖ζ̂0‖2

2,p,ε

≤ C0c1c2ε
1−2/p‖ζ̂0‖2,p,ε.

Since C ≥ C0c1c2 this proves (39) for ν = 0. Now assume that the sequences

ζ0, . . . , ζν and ζ̂0, . . . , ζ̂ν−1 have been constructed up to some integer ν ≥ 1 and
that the estimates (37-39) have been established for all integers up to ν − 1.
Then, by (38),

‖ζν‖2,p,ε ≤
ν−1∑

j=0

‖ζj+1 − ζj‖2,p,ε =

ν−1∑

j=0

‖ζ̂j‖2,p,ε ≤ 2C0c1ε
2, (40)
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and hence
‖ζν‖∞,ε ≤ 2C0c1c∞ε

2−2/p ≤ 1.

This shows that ξν(p) lies in the domain of the exponential map at u0(p) for

every p ∈ P and so ζν lies in the domain of Fε. Let ζ̂ν and ζν+1 be defined
by (36). Then, by Lemma 4.8, ζ̂ν satisfies the estimate (37). To prove (38) we
observe that, by the induction hypothesis,

‖ζ̂ν‖2,p,ε ≤ c1‖Fε(ζν)‖1,p,ε

≤ Cc1ε
1−2/p‖ζ̂ν−1‖2,p,ε

≤ 2−1‖ζ̂ν−1‖2,p,ε

≤ 2−νC0c1ε
2.

To prove (39) we observe that, by (40),

‖ζν‖2,p,ε + ‖ζ̂ν‖2,p,ε ≤ 3C0c1ε
2 ≤ ε2/p,

‖ζν‖∞,ε + ‖ζ̂ν‖∞,ε ≤ 3C0c1c∞ε
2−2/p ≤ 1.

Thus the hypotheses of Proposition 5.2 (ii) and (iv) are satisfied with ζ = ζν
and ζ̂ = ζ̂ν . Hence

‖Fε(ζν+1)‖1,p,ε ≤ ‖Fε(ζν + ζ̂ν) −Fε(ζν) − dFε(ζν)ζ̂ν‖1,p,ε

+ ‖dFε(ζν)ζ̂ν − dFε(0)ζ̂ν‖1,p,ε

≤ c2ε
−1−2/p

(
‖ζ̂ν‖2,p,ε + ‖ζν‖2,p,ε

)
‖ζ̂ν‖2,p,ε

≤ 3C0c1c2ε
1−2/p‖ζ̂ν‖2,p,ε

= Cε1−2/p‖ζ̂ν‖2,p,ε.

This completes the induction.
By (38), the sequence ζν is Cauchy in the (2, p, ε)-norm, and hence in the

W 2,p-norm because ε is fixed. Moreover, by examining the second component
of Fε we find that ζν satisfies (32) for every ν and hence so does its limit

ζε := (ξε, αε) := lim
ν→∞

(ξν , αν).

By (40), this limit also satisfies (33) with c := 2C0c1. Moreover, by (38)
and (39), the sequence Fε(ζν) converges to zero in the (1, p, ε)-norm and hence
Fε(ζε) = 0. Hence ζε satisfies (31) and it follows from elliptic regularity that ζε
is smooth. This proves existence.

We prove uniqueness. Suppose ζ = (ξ, α) ∈ Xu0 satisfies (31), (32), and
‖ζ‖1,p,ε ≤ cε2. Then, by Lemma 4.8 and Proposition 5.2 (i) and (iii),

‖ζ − ζε‖1,p,ε ≤ c1‖Dε(ζ − ζε)‖0,p,ε

≤ c1‖Fε(ζ) −Fε(ζε) − dFε(ζε)(ζ − ζε)‖0,p,ε

+ c1‖dFε(0)(ζ − ζε) − dFε(ζε)(ζ − ζε)‖0,p,ε

≤ c1c2ε
−1−2/p

(
‖ζ − ζε‖1,p,ε + ‖ζε‖1,p,ε

)
‖ζ − ζε‖1,p,ε

≤ 3cc1c2ε
1−2/p‖ζ − ζε‖1,p,ε.
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If 3cc1c2ε
1−2/p < 1 then ζ = ζε. This proves uniqueness.

Since the conditions (31), (32), and (33) are gauge invariant, it follows that
the map (u,A) 7→ (uε, Aε) is G(P )-equivariant.

Proof of Theorem 6.2. In this proof we drop the subscript 0. Fix two pairs
(u,A) ∈ M̃0

B,Σ(c0) and ζ = (ξ, α) ∈ Xu that satisfy (32), (34), and

(expu(ξ), A + α) ∈ M̃ε
B,Σ.

We prove that ζ satisfies (33), provided that δ and ε are sufficiently small. By
ellipticity of the operator D0 := D0

(u,A), there exists a constant c1 = c1(p, c0) > 0
such that

‖∇̃Aπuξ‖Lp ≤ c1
(
‖D0πuξ‖Lp + ‖πuξ‖Lp

)
.

Now let c2 = c2(p, c0) be the constant of Lemma 4.5 and c3 = c3(p, c0) be the
constant of Proposition 4.2. Then

‖∇̃Aξ‖Lp ≤ ε−1‖ξ − πuξ‖1,p,ε + ‖∇̃Aπuξ‖Lp

≤ ε−1‖ξ − πuξ‖1,p,ε + c1
(
‖D0πuξ‖Lp + ‖πuξ‖Lp

)

≤ ε−1‖ξ − πuξ‖1,p,ε

+ c1
(
‖(D0πu − πuDε)ξ‖Lp + ‖πuDεζ‖Lp + ‖πuξ‖Lp

)

≤ (ε−1 + c1c2)‖ξ − πuξ‖1,p,ε + c1 (‖πuDεζ‖Lp + ‖πuξ‖Lp)

≤ c4 (‖Dεζ‖0,p,ε + ‖ξ‖Lp) ,

where c4 := c3(1 + c1c2) + c1. Hence

‖∇̃Aξ‖Lp + ‖α‖Lp ≤ c4‖Dεζ‖0,p,ε + c4‖ξ‖Lp + ε−1‖ζ − πuζ‖1,p,ε

≤ (c4 + c5)‖Dεζ‖0,p,ε + c4‖ξ‖Lp ,

where c5 = c5(p, c0) is the constant of Lemma 4.8. Since

Fε(ζ) = 0, Fε(0) = (0, 0, ∗FA), Dε = dFε(0)

we obtain

‖∇̃Aξ‖Lp + ‖α‖Lp ≤ c6‖Fε(ζ) −Fε(0) − dFε(0)ζ‖0,p,ε

+ c6ε‖FA‖Lp + c4‖ξ‖Lp, (41)

where c6 := c4+c5. Now we use the refined quadratic estimate of Proposition 5.1
with c = c7. By (34), we have

‖∇̃Aξ‖Lp + ‖α‖Lp ≤ δε2/p−1/2 ≤ ε2/p−1

(provided that δ ≤ 1). Thus the hypotheses of Proposition 5.1 (i) and (ii) are
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satisfied with ζ = 0 and ζ̂ replaced by ζ. Hence, by (41),

‖∇̃Aξ‖Lp + ‖α‖Lp ≤ c6c7‖ξ‖L∞

(
ε−1‖ξ‖Lp + ‖∇̃Aξ‖Lp + ‖α‖Lp

)

+ c6c7ε
(
‖α‖L∞‖α‖Lp + ε−2‖ξ‖L∞‖ξ‖Lp

)

+ c6ε‖FA‖Lp + c4‖ξ‖Lp

≤ 3c6c7‖ζ‖∞,ε

(
ε−1‖ξ‖Lp + ‖∇̃Aξ‖Lp + ‖α‖Lp

)

+ c6ε‖FA‖Lp + c4‖ξ‖Lp

≤ 3c6c7δε
1/2
(
ε−1‖ξ‖Lp + ‖∇̃Aξ‖Lp + ‖α‖Lp

)

+ c0c6ε+ c4‖ξ‖Lp

≤ 3c6c7δε
1/2
(
‖∇̃Aξ‖Lp + ‖α‖Lp

)

+ c0c6ε+ c4δε
2/p+1/2 + 3c6c7δ

2ε2/p.

Here the last two inequalities follow from (34). With 3c6c7δε
1/2 ≤ 1/2 we have

‖∇̃Aξ‖Lp + ‖α‖Lp ≤ c8(δ + ε1−2/p)ε2/p, (42)

where c8 := 2c0c6 + 2c4 + 6c6c7. Since ζ satisfies (32) we can apply Lemma 4.8
(with c = c5) to obtain

‖ζ‖1,p,ε ≤ c5 (ε‖Dεζ‖Lp + ‖πuDεζ‖Lp)

≤ c5
(
2‖dFε

1 (0)ζ‖Lp + ε2‖dFε
3 (0)ζ‖Lp

)
. (43)

By Proposition 5.1 (i) with c = c7 and (42), we now have

‖dFε
1 (0)ζ‖Lp = ‖Fε

1 (ζ) −Fε
1 (0) − dFε

1 (0)ζ‖Lp

≤ c7‖ξ‖L∞

(
‖ξ‖Lp + ‖∇̃Aξ‖Lp + ‖α‖Lp

)

+ c7‖ξ‖2
L∞

(
‖∇̃Aξ‖Lp + ‖α‖Lp

)

≤ 2c7‖ξ‖L∞

(
‖ξ‖Lp + ‖∇̃Aξ‖Lp + ‖α‖Lp

)

≤ 2c7‖ζ‖∞,ε

(
δε2/p+1/2 + c8(δ + ε1−2/p)ε2/p

)

≤ c9(δ + ε1−2/p)‖ζ‖1,p,ε.

Here we have used the fact that ‖ξ‖L∞ ≤ δε1/2 ≤ 1. Moreover, the penultimate
inequality follows from (34) and (42) and the last inequality, with a suitable
constant c9 = c9(p, c0), follows from Lemma 4.4. By Proposition 5.1 (ii) with
c = c7, we have

‖dFε
3 (0)ζ‖Lp ≤ ‖Fε

3 (0) −Fε
3 (ζ) − dFε

3 (0)ζ‖Lp + ‖FA‖Lp

≤ c7
(
‖α‖L∞‖α‖Lp + ε−2‖ξ‖L∞‖ξ‖Lp

)
+ ‖FA‖Lp

≤ 2c7
(
ε−1‖α‖Lp + ε−2‖ξ‖Lp

)
‖ζ‖∞,ε + ‖FA‖Lp

≤ 2c7δε
2/pε−3/2‖ζ‖∞,ε + ‖FA‖Lp

≤ c10δε
−3/2‖ζ‖1,p,ε + ‖FA‖Lp .
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Here the penultimate inequality follows from (34) and the last follows from
Lemma 4.4. Combining these two estimates with (43) we obtain

‖ζ‖1,p,ε ≤ c5

(
2c9(δ + ε1−2/p) + c10δε

1/2
)
‖ζ‖1,p,ε + c5ε

2‖FA‖Lp .

If δ and ε are sufficiently small, we obtain

‖ζ‖1,p,ε ≤ 2c5ε
2‖FA‖Lp ≤ 2c0c5ε

2.

Hence the result follows from the uniqueness argument at the end of the proof
of Theorem 6.1.

Corollary 6.3 has a slightly stronger hypothesis than Theorem 6.2, how-
ever, it does not seem to have a simpler proof. In order to significantly sim-
plify the proof we would have to further strengthen the hypothesis and assume
‖ζ‖1,p,ε ≤ δε2/p+1 with a small constant δ (instead of ‖ζ‖1,p,ε ≤ δε2/p+1/2 as in
Corollary 6.3). Under this hypothesis uniqueness can be established with the
same straight forward argument that is used at the end of the proof of The-
orem 6.1. However, such a weaker result just fails to suffice for the proof of
Theorem D. Namely, in Section 10 we shall establish an inequality of the form

‖ζ‖1,p,ε ≤ cε2/p+1

under the hypotheses of Theorem D. In this inequality the constant c is not
small and so the argument in the proof of Theorem 6.1 does not suffice to give
uniqueness. However, if ε is chosen so small that cε1/2 ≤ δ then we can use
Corollary 6.3 to obtain uniqueness.

7 Relative Coulomb gauge

This section is of preparatory nature. We prove a local slice theorem for the
action of the gauge group G = G(P ) on B = C∞

G (P,M)×A(P ). The infinitesimal
action is the operator d(u,A) : Ω0(Σ, gP ) → T(u,A)B given by

d(u,A)η := (−Luη, dAη).

Denote by d∗ε

(u,A) its formal adjoint with respect to the ε-inner product, i.e.

d∗ε

(u,A)(ξ, α) := ε2d∗Aα− L∗
uξ

for (ξ, α) ∈ T(u,A)B. The next proposition restates the local slice theorem for
the G-action on B with ε-dependent norms for elements (u0, A0) of the moduli

space M̃0
B,Σ. The result continues to hold for every element (u0, A0) ∈ B with

µ(u0) = 0. However, in this generality, more care must be taken in determining
the norm on B with respect to which the constants c and δ depend continuously
on (u0, A0). In the case of J-holomorphic curves the W 1,p-norm controls all
higher derivatives and therefore the choice of the norm is immaterial.
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Proposition 7.1. Assume (H1). For every p > 2 and every c0 > 0 there exist
positive constants δ and c such that the following holds for every ε ∈ (0, 1]. Let

(u0, A0) ∈ M̃0
B,Σ(c0) and ζ = (ξ, α) ∈ T(u0,A0)B such that

‖ζ‖1,p,ε;(u0,A0)
≤ δε2/p. (44)

Denote (u,A) := (expu0
(ξ), A0 + α). Then there exist a unique pair ζ0 =

(ξ0, α0) ∈ T(u0,A0)B and a unique section η0 ∈ Ω0(Σ, gP ) such that

d∗ε

(u0,A0)
ζ0 = 0, g∗(u,A) = (expu0

(ξ0), A0 + α0), g := eη0 ,

‖η0‖2,p,ε;A0 + ‖ζ0‖1,p,ε;(u0,A0)
≤ c ‖ζ‖1,p,ε;(u0,A0)

. (45)

Lemma 7.2 (Linear estimate). For every p ≥ 2 and every c0 > 0 there is a

constant c > 0 such that the following holds for every (u0, A0) ∈ M̃0
B,Σ(c0) and

every ε ∈ (0, 1]. If ζ = (ξ, α) ∈ W 1,p(Σ, u∗0TM/G) ⊕ T ∗Σ ⊗ gP ) then there is a
unique η ∈ W 2,p(Σ, gP ) such that

d∗ε

(u0,A0)
d(u0,A0)η = d∗ε

(u0,A0)
ζ. (46)

Moreover, η satisfies the estimates

‖η‖1,p,ε ≤ c ‖ζ‖0,p,ε , ‖η‖2,p,ε ≤ c
∥∥∥d∗ε

(u0,A0)
ζ
∥∥∥
Lp
. (47)

Lemma 7.3 (Quadratic estimate). For every p > 2 and every c0 > 0 there
exist positive constants δ and c such that the following holds for every (u0, A0) ∈
M̃0

B,Σ(c0) and every ε ∈ (0, 1]. Assume that ζ0 = (ξ0, α0) ∈ T(u0,A0)B and

η ∈ Ω0(Σ, gP ) satisfy
‖η‖2,p,ε + ‖ζ0‖1,p,ε ≤ δε2/p. (48)

Then there exists a unique pair ζ1 = (ξ1, α1) ∈ T(u0,A0)B such that

(expu0
(ξ1), A0 + α1) = g∗(expu0

(ξ0), A0 + α0), g := eη, (49)

‖ζ1 − ζ0‖0,p,ε ≤ c ‖η‖1,p,ε , ‖ζ1 − ζ0‖1,p,ε ≤ c ‖η‖2,p,ε . (50)

Moreover,
∥∥∥d∗ε

(u0,A0)

(
ζ1 − ζ0 − d(u0,A0)η

)∥∥∥
Lp

≤ cε−2/p
(
‖ζ0‖1,p,ε + ‖η‖2,p,ε

)
‖η‖1,p,ε .

(51)

Lemma 7.4. For every p ≥ 2 and every c0 > 0 there exist positive constant
δ and c such that the following holds for every (u0, A0) ∈ M̃0

B,Σ(c0) and every

ε ∈ (0, 1]. If η1, η2 ∈ Ω0(Σ, gP ) satisfy ‖η1‖L∞ ≤ δ and ‖η2‖L∞ ≤ δ then there
exists a unique element η ∈ Ω0(Σ, gP ) such that

eη = eη1eη2 , 2−1 ‖η‖L∞ ≤ ‖η1 + η2‖L∞ ≤ 2 ‖η‖L∞ .

Moreover, η satisfies the estimate

c−1 ‖η‖2,p,ε;A0
≤ ‖η1 + η2‖2,p,ε;A0

≤ c ‖η‖2,p,ε;A0
.
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Proof. For a fixed connection A0 and ε = 1 the result is obvious. Choose
c1, c2, c3 such that

c−1
k ‖η‖Wk,p ≤ ‖η1 + η2‖Wk,p ≤ ck ‖η‖Wk,p

for k = 1, 2, 3, whenever η1, η2, η are sufficiently small in the C0-norm and
satisfy eη = eη1eη2 . Here the W k,p norms are understood with respect to the
connection A0. It follows that

ε ‖dA0(η1 + η2)‖Lp ≤ εc1 (‖dA0η‖Lp + ‖η‖Lp) ≤ c1 ‖η‖1,p,ε;A0

and hence
‖η1 + η2‖1,p,ε;A0

≤ (c0 + c1) ‖η‖1,p,ε;A0

for 0 ≤ ε ≤ 1. The other three inequalities follow by similar arguments. This
proves the lemma for a fixed connection A0. The constant c depends continu-
ously on A0 with respect to the C1-norm, and is gauge invariant (with respect
to the action of G on Ω0(Σ, gP ) by conjugation). Hence, by Lemma 2.2, it can

be chosen independent of A0 as long as (u0, A0) ∈ M̃0
B,Σ(c0) for some u0.

Proof of Lemma 7.2. The operator d∗ε

(u0,A0)
d(u0,A0) : W 2,p(Σ, gP ) → Lp(Σ, gP )

is given by
d∗ε

(u0,A0)
d(u0,A0)η = ε2d∗A0

dA0η + L∗
u0
Lu0η.

By our standing hypotheses, µ−1(0) is compact and Lx : g → TxM is injective
for every x ∈ µ−1(0). Hence there exists a constant c1 > 0 such that

c−1
1 |η| ≤ |Lxη|z ≤ c1 |η| (52)

for every x ∈ µ−1(0), every η ∈ g, and every z ∈ Σ. (Here |·|z denotes the metric
on M induced by Jz and ω.) Hence the operator d∗ε

(u0,A0)
d(u0,A0) is injective and

hence, by elliptic regularity, it is bijective.
Next we prove that there exists a constant c2 = c2(p, c0) > 0 such that, for

every pair (u0, A0) ∈ M̃0
B,Σ(c0), every η ∈ Ω0(Σ, gP ), and every ε ∈ (0, 1], we

have
‖dA0η‖Lp ≤ ε

∥∥d∗A0
dA0η

∥∥
Lp + c2ε

−1 ‖η‖Lp . (53)

For a fixed connection A0 ∈ A(P ) this follows directly from the interpolation
inequality in [GT, Theorem 7.27] and the Lp-estimate for the operator d∗A0

dA0 .
Now the identity

d∗AdAη − d∗A0
dA0η = [A−A0 ∧ dA0η] + ∗[∗(A−A0) ∧ dA0η]

− ∗ [dA0 ∗ (A−A0), η] + ∗[∗(A−A0) ∧ [A−A0, η]]

shows that the constant in (53) depends continuously on A with respect to the
C1-norm. Moreover, the inequality (53) is gauge invariant. Hence it follows
from Lemma 2.2 (with ℓ = 2) and the Arzéla-Ascoli theorem that (53) holds

with a uniform constant c2 for all (u0, A0) ∈ M̃0
B,Σ(c0).
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Using the identity

d |η|p−2 = (p− 2) |η|p−4 〈η, dA0η〉 ∈ Ω1(Σ)

for η ∈ Ω0(Σ, gP ) and integration by parts we obtain

∫

Σ

|η|p−2 |dA0η|2 =

∫

Σ

|η|p−2 〈η, d∗A0
dA0η〉 − (p− 2)

∫

Σ

|η|p−4 |〈η, dA0η〉|2 .

The last term on the right is negative. Now (46) is equivalent to

ε2d∗A0
α− L∗

u0
ξ = ε2d∗A0

dA0η + L∗
u0
Lu0η.

Hence, by the previous identity and (52), we have

∫

Σ

(
c−2
1 |η|p + ε2 |η|p−2 |dA0η|2

)

≤
∫

Σ

|η|p−2
(
|Lu0η|2 + ε2 |dA0η|2

)

≤
∫

Σ

|η|p−2 〈η, ε2d∗A0
dA0η + L∗

u0
Lu0η〉

=

∫

Σ

|η|p−2 〈η, ε2d∗A0
α− L∗

u0
ξ〉 (54)

=

∫

Σ

|η|p−2 (ε2〈dA0η, α〉 + ε2(p− 2)|η|−2〈〈η, dA0η〉, 〈η, α〉〉 − 〈Lu0η, ξ〉
)

≤ c1

∫

Σ

|η|p−1 |ξ| + ε2(p− 1)

∫

Σ

|η|p−2 |dA0η| |α|

≤ c1

∫

Σ

|η|p−1 |ξ| + ε2(p− 1)2

2

∫

Σ

|η|p−2 |α|2 +
ε2

2

∫

Σ

|η|p−2 |dA0η|2 .

Therefore, by Hölder’s inequality,

c−2
1 ‖η‖pLp ≤ c1 ‖η‖p−1

Lp ‖ξ‖Lp +
ε2(p− 1)2

2
‖η‖p−2

Lp ‖α‖2
Lp ,

c−2
1 ‖η‖pLp ≤ ‖η‖p−1

Lp ‖η̃‖Lp , η̃ := ε2d∗A0
dA0η + L∗

u0
Lu0η.

The last inequality follows from the third line in (54). Hence

c−2
1 ‖η‖2

Lp ≤ c1 ‖η‖Lp ‖ξ‖Lp +
ε2(p− 1)2

2
‖α‖2

Lp ,

and hence, using c31 ‖η‖Lp ‖ξ‖Lp ≤ 1
2 ‖η‖

2
Lp + 1

2c
6
1 ‖ξ‖2

Lp we obtain

‖η‖2
Lp ≤ c61 ‖ξ‖2

Lp + c21ε
2(p− 1)2 ‖α‖2

Lp .

Thus we have proved the inequalities

‖η‖Lp ≤ c1 max{p− 1, c21} ‖ζ‖0,p,ε , ‖η‖Lp ≤ c21 ‖η̃‖Lp . (55)

41



By (52), (53), and (55),

‖η‖2,p,ε;A0
= ‖η‖Lp + ε ‖dA0η‖Lp + ε2

∥∥d∗A0
dA0η

∥∥
Lp

≤ (1 + c2) ‖η‖Lp + 2ε2
∥∥d∗A0

dA0η
∥∥
Lp

≤ (1 + c2 + 2c21) ‖η‖Lp + 2 ‖η̃‖Lp

≤
(
2 + c21(1 + c2 + 2c21)

)
‖η̃‖Lp .

This proves the second estimate in (47).
To prove the first estimate in (47) we use a rescaling argument in local

holomorphic coordinates on Σ. Cover Σ by finitely many open sets, each of
which is holomorphically diffeomorphic to the unit square in C, suppose that
the coordinate charts extend to a closed square of side length two, and choose
trivializations of the bundle P over each of these (extended) open sets. In
these coordinates we write the metric in the form λ2(ds2 + dt2), and we write
A := A0 = Φ ds + Ψ dt, α = ϕds + ψ dt. Moreover, u := u0 : [0, 2]2 → M ,
ξ : [0, 2]2 → TM is a vector field along u, and η : [0, 2]2 → g. In this notation
equation (46) has the form

∇s∇sη + ∇t∇tη = ∇sϕ+ ∇tψ + (λ/ε)2L∗
u(Luη + ξ), (56)

where ∇sη := ∇G
A,sη = ∂sη + [Φ, η] and ∇tη := ∇G

A,tη = ∂tη + [Ψ, η]. Now we

introduce new functions, defined on the square [0, 2/ε]2, by

η̃(s, t) := η(εs, εt), λ̃(s, t) := λ(εs, εt),

ξ̃(s, t) := ξ(εs, εt), ũ(s, t) := u(εs, εt),

ϕ̃(s, t) := εϕ(εs, εt), Φ̃(s, t) := εΦ(εs, εt),

ψ̃(s, t) := εψ(εs, εt), Ψ̃(s, t) := εΨ(εs, εt).

Then (56) is equivalent to

∇̃s∇̃sη̃ + ∇̃t∇̃tη̃ = ∇̃sϕ̃+ ∇̃tψ̃ + λ̃2L∗
ũ(Lũη̃ + ξ̃),

where ∇̃sη̃ := ∂sη̃ + [Φ̃, η̃] and ∇̃tη̃ := ∂tη̃ + [Ψ̃, η̃]. With ∆ := ∂s∂s + ∂t∂t this
equation can be written in the form

∆η̃ = ∂sf̃ + ∂tg̃ + h̃, f̃ := ϕ̃− 2[Φ̃, η̃], g̃ := ψ̃ − 2[Ψ̃, η̃],

h̃ := λ̃2L∗
ũ(Lũη̃ + ξ̃) + [Φ̃, ϕ̃− [Φ̃, η̃]] + [Ψ̃, ψ̃ − [Ψ̃, η̃]] + [∂sΦ̃ + ∂tΨ̃, η̃].

Hence there exists a constant c3 > 0 such that, for all real numbers a, b such
that 1/2 ≤ a < b ≤ 2/ε− 1/2, we have

∫

[a,b]2

(
|∇̃sη̃|p + |∇̃tη̃|p

)
≤ c3

∫

[a−1/2,b+1/2]2

(
|f̃ |p + |g̃|p + |h̃|p + |η̃|p

)
.

Here the constant c3 is independent of a and b. It follows that
∫

[a,b]2

(
|∇̃sη̃|p + |∇̃tη̃|p

)
λ̃2−p ≤ c4

∫

[a−1/2,b+1/2]2

(
|ϕ̃|p + |ψ̃|p

)
λ̃2−p

+ c4

∫

[a−1/2,b+1/2]2

(
|ξ̃|p + |η̃|p

)
λ̃2,
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where the constant c4 depends on the metric and on the C1-norms of Φ̃ and Ψ̃.
With a = 1/2ε, b = 3/2ε, and 0 < ε ≤ 1 we obtain

εp
∫

[1/2,3/2]2
(|∇sη|p + |∇tη|p)λ2−p ≤ c4ε

p

∫

[0,2]2
(|ϕ|p + |ψ|p)λ2−p

+ c4

∫

[0,2]2
(|ξ|p + |η|p) λ2.

Hence, by taking the sum over the coordinate charts,

ε ‖dA0η‖Lp ≤ N1/pc4 (ε ‖α‖Lp + ‖ξ‖Lp + ‖η‖Lp) .

Here N is the number of open sets in the cover and the constant c4 depends
continuously on A0 with respect to the C1-norm. Hence, by Lemma 2.2, c4 can
be chosen independent of the pair (u0, A0) ∈ M̃0

B,Σ(c0). Combining the last
inequality with (55) we obtain the first estimate in (47) as claimed.

In the following proof we use the identity

(eη)∗A−A− dAη =

∞∑

k=1

(−1)k

(k + 1)!
ad(η)kdAη (57)

for A ∈ A(P ) and η ∈ Ω0(Σ, gP ), where ad(η)α := [η, α] for α ∈ Ω1(Σ, gP ).

Proof of Lemma 7.3. We denote by c1, c2, c3, . . . positive constants depending
only on p and c0. Fix a pair (u0, A0) ∈ M̃0

B,Σ(c0) and choose a positive constant
δ0 that is smaller than the injectivity radius of M on the compact set u0(P ).
Suppose that η ∈ Ω0(Σ, gP ) and ζ0 = (ξ0, α0) ∈ T(u0,A0)B satisfy the hypotheses
of Lemma 7.3 with a sufficiently small constant δ > 0. Let c1 be the constant
of Lemma 4.4. Then, by (48),

‖ξ0‖L∞ + ‖η‖L∞ ≤ c1ε
−2/p

(
‖ξ0‖1,p,ε + ‖η‖2,p,ε

)
≤ c1δ.

If δ is sufficiently small, it follows that the C0-distance between e−rη expu0
(ξ0)

and u0 is smaller than δ0 for every r ∈ [0, 1]. Hence there exists a unique smooth
path [0, 1] → T(u0,A0)B : r 7→ ζr = (ξr, αr) starting at ζ0 such that

(expu0
(ξr), A0 + αr) = g∗(u,A),

where
(u,A) := (expu0

(ξ0), A0 + α0), g := erη. (58)

The endpoint ζ1 of this path obviously satisfies (49). We prove the inequalities

‖∂rζr‖0,p,ε ≤ c ‖η‖1,p,ε , ‖∂rζr‖1,p,ε ≤ c ‖η‖2,p,ε , (59)

∥∥∥d∗ε

(u0,A0)

(
∂rζr − d(u0,A0)η

)∥∥∥
Lp

≤ cε−2/p
(
‖ζ0‖1,p,ε + ‖η‖2,p,ε

)
‖η‖1,p,ε (60)
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for 0 ≤ r ≤ 1, where the constant c depends only on c0 and p. Then the
inequalities (50) and (51) follow by integrating the function r 7→ ∂rζr over the
interval 0 ≤ r ≤ 1.

For every u ∈ C∞
G (P,M) whose C0-distance to u0 is less than δ0 we define

the linear operator Z(u) : Ω0(Σ, gP ) → Ω0(Σ, u∗0TM/G) by

Z(u)η̂ := d exp−1
u0

(u)Luη̂

for η̂ ∈ Ω0(Σ, gP ). Then

∂rζr = (−Z(g−1u)η, dg∗Aη0), (61)

where (u,A) and g are as in (58). We prove the first inequality in (59). Since
A = A0 + α0 we have

dg∗Aη = dA0η + [g∗A0 −A0, η] + [g−1α0g, η] (62)

and we must estimate the three terms on the right with g := erη. Since ‖η‖L∞ ≤
c1δ it follows from (57), with η replaced by rη, that

‖[g∗A0 −A0, η]‖Lp ≤ c2 ‖dA0η‖Lp ‖η‖L∞ ≤ c3ε
−1−2/p ‖η‖2

1,p,ε .

Moreover, ∥∥[g−1α0g, η]
∥∥
Lp ≤ ε−1−2/p ‖ζ0‖0,p,ε ‖η‖1,p,ε .

Hence, by (48) and (62), ‖dg∗Aη‖Lp ≤ c4ε
−1 ‖η‖1,p,ε and hence the first inequal-

ity in (59) follows from (61).
Next we prove the second inequality in (59) and (60). Using the identity

dA0 [g
−1α0g, η] = [g−1(dA0α0)g, η]+[[(A0−g∗A0)∧g−1α0g], η]− [g−1α0g∧dA0η]

and (57) we obtain

∥∥[g−1α0g, η]
∥∥

1,p,ε
=

∥∥[g−1α0g, η]
∥∥
Lp

+ ε
∥∥dA0 [g

−1α0g, η]
∥∥
Lp + ε

∥∥dA0 [∗g−1α0g, η]
∥∥
Lp

≤ c5ε
−1−2/p ‖ζ0‖1,p,ε ‖η‖1,p,ε .

Similarly, using the identity

dA0 [(A0 − g∗A0), η] = [dA0(A0 − g∗A0), η] − [(A0 − g∗A0) ∧ dA0η]

and (57) we obtain

‖[(A0 − g∗A0), η]‖1,p,ε ≤ c6ε
−1−2/p ‖η‖2,p,ε ‖η‖1,p,ε .

Hence, by (62),

‖dg∗Aη − dA0η‖1,p,ε ≤ c7ε
−1−2/p

(
‖ζ0‖1,p,ε + ‖η‖2,p,ε

)
‖η‖1,p,ε .
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Moreover, since Z(u0) = Lu0 , we have
∥∥Z(g−1u)η − Lu0η

∥∥
1,p,ε

≤
∥∥Z(g−1u)η − Z(u)η

∥∥
1,p,ε

+ ‖Z(u)η − Z(u0)η‖1,p,ε

≤ c8

(
‖η‖1,p,ε ‖η‖L∞ + ‖ξ0‖1,p,ε ‖η‖L∞ + ‖ξ0‖L∞ ‖η‖1,p,ε

)

≤ c9ε
−2/p

(
‖ζ0‖1,p,ε + ‖η‖2,p,ε

)
‖η‖1,p,ε .

Here we have used the inequality ‖η‖L∞ ≤ c1δ from (48) and Lemma 4.4.
The constants c7 and c9 in the last two estimates depend continuously on the
pair (u0, A0) with respect to the C1-norm and are gauge invariant. Hence, by

Lemma 2.2, they can be chosen independent of (u0, A0) ∈ M̃0
B,Σ(c0). Hence

the second inequality in (59) follows from (61). To prove (60) we observe that

d∗ε

(u0,A0)
∂rζr − d∗ε

(u0,A0)
d(u0,A0)η

= ε2d∗A0
(dg∗Aη − dA0η) + L∗

u0

(
Z(g−1u)η − Lu0η

)
,

where (u,A) and g := erη are as in (58). The terms on the right have been
estimated above and this proves (60). Thus we have proved the existence of ζ1.
The inequality (50) with δ sufficiently small guarantees that the C0 distance
between u0 and expu0

(ξ1) is smaller than the injectivity radius. This proves
uniqueness.

Proof of Proposition 7.1. The proof is based on a Newton type iteration. Let

(u1, A1) := (u,A) = (expu0
(ξ), A0 + α), ζ1 := ζ.

For ν ≥ 2 we define ζν = (ξν , αν) ∈ T(u0,A0)B inductively by

(expu0
(ξν+1), A0 + αν+1) := (uν+1, Aν+1) := g∗ν(uν , Aν),

where (uν , Aν) := (expu0
(ξν), A0 + αν), gν := eη̂ν , and η̂ν ∈ Ω0(Σ, gP ) is the

unique solution of the equation

d∗ε

(u0,A0)
d(u0,A0)η̂ν + d∗ε

(u0,A0)
ζν = 0.

To construct these sequences we must ensure that in each step ζν and η̂ν satisfy
the hypotheses of Lemma 7.3 so that ζν+1 can be chosen as in the assertion
of Lemma 7.3. We shall prove this below. And we shall also prove that these
sequences satisfy the following estimates.

‖ζν‖1,p,ε ≤ C ‖ζ‖1,p,ε , (63)
∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Lp

≤ Cε−2/p ‖ζν−1‖1,p,ε

∥∥∥d∗ε

(u0,A0)
ζν−1

∥∥∥
Lp
, (64)

∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Lp

≤ 21−ν
∥∥∥d∗ε

(u0,A0)
ζ
∥∥∥
Lp
, (65)

‖η̂ν‖2,p,ε ≤ C2−ν ‖ζ‖1,p,ε , (66)

The constants C and δ are chosen as follows. Suppose that the constants
c1, c2, c3, c4, c5 ≥ 1 and δ0, δ3, δ4 ∈ (0, 1] satisfy the following conditions.
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• The injectivity radius of M on u0(P ) is bigger than δ0.

• The inequality (52) holds with c1 for every x ∈ µ−1(0).

• The assertion of Lemma 7.2 holds for 0 < ε ≤ 1 with c replaced by c2.

• The assertion of Lemma 7.3 holds for 0 < ε ≤ 1 with c replaced by c3 and
δ replaced by δ3.

• The assertion of Lemma 7.4 holds for 0 < ε ≤ 1 with c replaced by c4 and
δ replaced by δ4.

• The assertion of Lemma 4.4 holds for 0 < ε ≤ 1 with c replaced by c5.

Now choose positive constants C and δ such that

c1c2(1 + 2c2)c3 ≤ C, 2c2(1 + c2)c3Cδ ≤ 1, 2Cδ ≤ δ3, 4c4c5Cδ ≤ δ4.

We prove that the estimates (63-66) hold for ν = 1. Since C/2 ≥ c1c2, the
inequality (66) with ν = 1 follows from Lemma 7.2. Since C ≥ 1, the inequal-
ity (63) holds for ν = 1. The inequality (64) is vacuous for ν = 1 and (65) is
obvious.

Now suppose that the sequences have been constructed and the inequali-
ties (63-66) have been established up to some integer ν ≥ 1. Then

‖η̂ν‖2,p,ε + ‖ζν‖1,p,ε ≤ C(1 + 2−ν) ‖ζ‖1,p,ε ≤ 2Cδε2/p ≤ δ3ε
2/p.

Hence the hypotheses of Lemma 7.3 are satisfied with ζ0 replaced by ζν and η
replaced by η̂ν . Choose ζν+1 = (ξν+1, αν+1) as in the assertion of Lemma 7.3.
By Lemma 7.2, we have

‖η̂ν‖1,p,ε ≤ c2 ‖ζν‖0,p,ε , ‖η̂ν‖2,p,ε ≤ c2

∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Lp
.

Moreover, d∗ε

(u0,A0)
(ζν + d(u0,A0)ην) = 0, and hence, by (51),

∥∥∥d∗ε

(u0,A0)
ζν+1

∥∥∥
Lp

≤ c3ε
−2/p

(
‖ζν‖1,p,ε + ‖η̂ν‖2,p,ε

)
‖η̂ν‖1,p,ε

≤ c2(1 + c2)c3ε
−2/p ‖ζν‖1,p,ε

∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Lp
.

Since c2(1 + c2)c3 ≤ C, this proves (64) with ν replaced by ν + 1. Moreover,
by (63),

∥∥∥d∗ε

(u0,A0)
ζν+1

∥∥∥
Lp

≤ c2(1 + c2)c3Cε
−2/p ‖ζ‖1,p,ε

∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Lp

≤ c2(1 + c2)c3Cδ
∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Lp
.

Since 2c2(1 + c2)c3Cδ ≤ 1, this proves (65) with ν replaced by ν + 1. Now let
η̂ν+1 be the unique solution of d∗(u0,A0)

d(u0,A0)η̂ν+1 +d∗(u0,A0)
ζν+1 = 0. Then, by

Lemma 7.2 and (65),

‖η̂ν+1‖2,p,ε ≤ c2

∥∥∥d∗ε

(u0,A0)
ζν+1

∥∥∥
Lp

≤ c22
−ν
∥∥∥d∗ε

(u0,A0)
ζ
∥∥∥
Lp

≤ c1c22
−ν ‖ζ‖1,p,ε .
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Since 2c1c2 ≤ C this implies (66) with ν replaced by ν + 1. It remains to
prove (63) with ν replaced by ν + 1. By (50) and (65), we have

‖ζj+1 − ζj‖1,p,ε ≤ c3 ‖η̂j‖2,p,ε ≤ c2c32
1−j

∥∥∥d∗ε

(u0,A0)
ζ
∥∥∥
Lp

≤ c1c2c32
1−j ‖ζ‖1,p,ε

(67)
for j = 1, . . . , ν. Hence

‖ζν+1‖1,p,ε ≤ ‖ζ‖1,p,ε +

ν∑

j=1

‖ζj+1 − ζj‖1,p,ε ≤ (1 + 2c1c2c3) ‖ζ‖1,p,ε .

Since 1+2c1c2c3 ≤ C this proves (63) with ν replaced by ν+1. This completes
the induction.

By (67), ζν is a Cauchy sequence in the W 1,p-norm. Moreover,

(uν , Aν) =
(
expu0

(ξν), A0 + αν
)

= h∗ν(u,A),

where hν := g1g2 · · · gν−1. We prove by induction that there exists a sequence
ην ∈ Ω0(Σ, gP ) such that

hν = eην , ‖ην+1 − ην‖2,p,ε ≤ c4C2−ν ‖ζ‖1,p,ε . (68)

For ν = 1 we set h1 := 1l and η1 := 0. Suppose that the sequence has been
constructed for all integers up to ν ≥ 1. Then

‖ην‖2,p,ε ≤
ν−1∑

j=1

‖ηj+1 − ηj‖2,p,ε ≤ c4C ‖ζ‖1,p,ε . (69)

Hence, by Lemma 4.4, (44), and (66),

‖ην‖L∞ ≤ c5ε
−2/p ‖ην‖2,p,ε ≤ c4c5Cε

−2/p ‖ζ‖1,p,ε ≤ c4c5Cδ ≤ δ4/4,

‖η̂ν‖L∞ ≤ c5ε
−2/p ‖η̂ν‖2,p,ε ≤ c5Cε

−2/p ‖ζ‖1,p,ε ≤ c5Cδ ≤ δ4/4.

By Lemma 7.4, there exists a section ην+1 ∈ Ω0(Σ, gP ) such that

eην+1 = eηνeη̂ν = hνgν = hν+1, ‖ην+1‖L∞ ≤ 2 ‖ην + η̂ν‖L∞ ≤ δ4.

Applying Lemma 7.4 to −ην and ην+1 we find

‖ην+1 − ην‖2,p,ε ≤ c4 ‖η̂ν‖2,p,ε ≤ c4C2−ν ‖ζ‖1,p,ε .

The last inequality follows from (66). This completes the induction. Thus we
have proved that hν satisfies (68) and hence is a Cauchy sequence in G2,p(P ).
Denote

ζ := lim
ν→∞

ζν , h := lim
ν→∞

hν , η := lim
ν→∞

ην .

Then

eη = h, h∗(u,A) = (expu0
(ξ), A0 + α), d∗ε

(u0,A0)
ζ = 0.
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The last equation follows from (65). Moreover, by (63) and (69), we have
‖η‖2,p,ε + ‖ζ‖1,p,ε ≤ C(1 + c4) ‖ζ‖1,p,ε . Hence (45) holds with c := C(1 + c4).

To complete the existence proof we must show that η and ζ are smooth.
We shall prove that the sequence ζν is bounded on W k,p for every k. Here
it suffices to obtain rather crude estimates with constants which depend on
ε and are allowed to diverge as ε tends to zero. We fix a constant ε > 0
and prove by induction that for every integer k ≥ 1 there exists a constant
ck = ck(p, ε, u0, A0, u, A) such that, for every ν,

‖ζν‖Wk,p ≤ ck, ‖η̂ν‖Wk+1,p ≤ ck2
−ν . (70)

For k = 1 this follows from (63) and (66). Now let k ≥ 2 and assume that these
estimates have been established with k replaced by k − 1. Observe that there
exists a constant Ck ≥ 1 such that, for every ν,

‖ζν+1 − ζν‖Wk,p ≤ Ck ‖η̂ν‖Wk+1,p ,

‖η̂ν‖Wk+1,p ≤ Ck

∥∥∥d∗ε

(u0,A0)
ζν

∥∥∥
Wk−1,p

,
∥∥∥d∗ε

(u0,A0)
ζν+1

∥∥∥
Wk−1,p

≤ Ck (‖ζν‖Wk,p + ‖η̂ν‖Wk+1,p) ‖η̂ν‖Wk,p .

The first two inequalities are obvious, and the last follows by inspecting the
formula (61) in the proof of Lemma 7.3. Combining these inequalities with the
induction hypothesis, we obtain

‖ζν+1‖Wk,p ≤ ‖ζν‖Wk,p + Ck ‖η̂ν‖Wk+1,p ,

‖η̂ν+1‖Wk+1,p ≤ C2
kck−1 (‖ζν‖Wk,p + ‖η̂ν‖Wk+1,p) 2−ν .

Abbreviate
aν := ‖ζν+ν0‖Wk,p + Ck ‖η̂ν+ν0‖Wk+1,p

and choose ν0 so large that C3
kck−12

−ν0 ≤ 1. Then

aν+1 ≤ ‖ζν+ν0‖Wk,p + Ck ‖η̂ν+ν0‖Wk+1,p + Ck ‖η̂ν+ν0+1‖Wk+1,p

= aν + Ck ‖η̂ν+ν0+1‖Wk+1,p

≤ aν + C3
kck−1 (‖ζν‖Wk,p + ‖η̂ν‖Wk+1,p) 2−ν−ν0

≤ (1 + 2−ν)aν

for all ν and hence the sequence aν is bounded. It follows that the sequences
‖ζν‖Wk,p and 2ν ‖η̂ν‖Wk+1,p are bounded. Thus we have proved that η̂ν and
ζν satisfy (70). This completes the induction. It follows that ζ is smooth and
hence, so is η. This proves existence.

We prove uniqueness. Choose δ > 0 so small that

c5cδ ≤ δ0, 2c4cδ ≤ δ3, c5cδ ≤ δ4, 2c2c3c4cδ < 1.

Assume that ζ0, ζ1 ∈ T(u0,A0)B and η0, η1 ∈ Ω0(Σ, gP ) satisfy the requirements
of the proposition. Then

d∗ε

(u0,A0)
ζi = 0, g∗i (u,A) = (expu0

(ξi), A0 + αi),

48



for i = 0, 1, where gi := eηi . By Lemma 4.4, we have

‖ηi‖L∞ ≤ c5ε
−2/p ‖ηi‖2,p,ε ≤ c5cε

−2/p ‖ζ‖1,p,ε ≤ c5cδ ≤ δ4

for i = 0, 1. Hence, by Lemma 7.4, there exists a unique element η ∈ Ω0(Σ, gP )
such that

g := eη = g−1
0 g1, c−1

4 ‖η1 − η0‖2,p,ε ≤ ‖η‖2,p,ε ≤ c4 ‖η1 − η0‖2,p,ε .

The gauge transformation g satisfies

g∗(expu0
(ξ0), A0 + α0) = (expu0

(ξ1), A0 + α1).

Moreover,

‖ζ0‖1,p,ε + ‖η‖2,p,ε ≤ 2c4c ‖ζ‖1,p,ε ≤ 2c4cδε
2/p ≤ δ3ε

2/p.

Hence ζ0 and η satisfy the hypotheses of Lemma 7.3. We use Lemma 7.2 and
the estimate (51) of Lemma 7.3 to obtain

‖η‖2,p,ε ≤ c2

∥∥∥d∗ε

(u0,A0)
d(u0,A0)η

∥∥∥
Lp

≤ c2c3ε
−2/p

(
‖ζ1 − ζ0‖1,p,ε + ‖η‖2,p,ε

)
‖η‖1,p,ε

≤ c2c3c4ε
−2/p

(
‖ζ1 − ζ0‖1,p,ε + ‖η1 − η0‖2,p,ε

)
‖η‖1,p,ε

≤ 2c2c3c4cε
−2/p ‖ζ‖1,p,ε ‖η‖1,p,ε

≤ 2c2c3c4cδ ‖η‖1,p,ε .

Since 2c2c3c4cδ < 1 we have η = 0 and hence η1 = η0. Hence α0 = α1 and
expu0

(ξ0) = expu0
(ξ1). By (44), (45), and Lemma 4.4, we have

‖ξi‖L∞ ≤ c5ε
−2/p ‖ζi‖1,p,ε ≤ c5cε

−2/p ‖ζ‖1,p,ε ≤ c5cδ ≤ δ0

for i = 0, 1. Hence ξ0 = ξ1.

8 Proof of Theorem C

In this section we prove that the map T̃ ε : M̃0
B,Σ(c0) → M̃ε

B,Σ introduced
in Theorem 6.1 is locally surjective. This is the content of Theorem C and is
restated more precisely as follows.

Theorem 8.1. Assume (H1) and (H4) and let B̄ ∈ H2(M̄ ; Z) be a nontor-
sion homology class. Then, for every c0 > 0 and every p > 2, there exist
positive constants ε0 and δ such that the following holds for every ε ∈ (0, ε0].

If (ū0, Ā0) ∈ M̃0
B,Σ(c0 − 1) and (u,A) = (expū0

(ξ̄), Ā0 + ᾱ) ∈ M̃ε
B,Σ where

ζ̄ = (ξ̄, ᾱ) ∈ T(ū0,Ā0)B satisfies

∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
≤ δε2/p+1/2,
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then there exist ξ̄0 ∈ ker D0
(ū0,Ā0)

and η0 ∈ Ω0(Σ, gP ) such that

g∗(u,A) = T̃ ε(u0, A0), g := eη0 , (u0, A0) := F0
(ū0,Ā0)

(ξ̄0),

∥∥ξ̄0
∥∥
W 1,p + ‖η0‖2,p,ε;A0

≤ c
∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
.

Here F0
(ū0,Ā0)

is the map of Theorem 2.1. The proof of Theorem 8.1 is based

on Corollary 6.3 and on the construction of a tubular neighbourhood of the
moduli space M0

B,Σ(c0) in the quotient B/G.

Proposition 8.2. Assume (H1) and (H4) and let B̄ ∈ H2(M̄ ; Z) be a non-
torsion homology class. For every p > 2 and every c0 > 0 there exist positive
constants δ, ε0, and c such that, for every ε ∈ (0, ε0], the following holds.

Let (ū0, Ā0) ∈ M̃0
B,Σ(c0 − 1) and (u,A) = (expū0

(ξ̄), Ā0 + ᾱ), where the pair

ζ̄ := (ξ̄, ᾱ) ∈ T(ū0,Ā0)B satisfies

∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
≤ δε2/p. (71)

Then there exist ξ̄0 ∈ kerD0
(ū0,Ā0)

, η0 ∈ Ω0(Σ, gP ), (u0, A0) ∈ M̃0
B,Σ(c0), and

ζ0 = (ξ0, α0) ∈ T(u0,A0)B, such that

g∗(u,A) = (expu0
(ξ0), A0 + α0), (u0, A0) = F0

(ū0,Ā0)
(ξ̄0), (72)

where g := eη0 , and

d∗ε

(u0,A0)
ζ0 = 0, ζ0 ∈ im (Dε

(u0,A0)
)∗, (73)

∥∥ξ̄0
∥∥
W 1,p + ‖η0‖2,p,ε;A0

+ ‖ζ0‖1,p,ε;(u0,A0)
≤ c

∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
. (74)

F

.
.

G (u

G . (u

.

0

A,

,A

)0

)u( ,*g
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0

0)(u0 ,A 0)

(u0 ,A

A)

Figure 1: A tubular neighbourhood of M0.
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The proof of Proposition 8.2 is based on Proposition 7.1. The latter can be
restated as follows. Let Hε ⊂ TB denote the horizontal subbundle with fibres

Hε
(u,A) := ker d∗ε

(u,A) ⊂ T(u,A)B.

Given a pair (u,A) ∈ B and constants p, c0, δ, ε denote by U0 = U0(δ, ε) ⊂
M̃0

B,Σ(c0) the set

U0 :=
{

(u0, A0) ∈ M̃0
B,Σ(c0)

∣∣∣ ∃ζ = (ξ, α) ∈ Tu,AB ∋ ‖ζ‖1,p,ε;(u0,A0)
≤ δε2/p

and (u,A) = (expu0
(ξ), A0 + α),

}
.

If δ and ε are sufficiently small then Proposition 7.1 defines two maps

Sε : U0 → Hε, N ε : U0 → Ω0(Σ, gP )

such that Sε is a section of Hε over U0 and, for every (u0, A0) ∈ U0, the
pair (ξ0, α0) := Sε(u0, A0) and the gauge transformation g := eη, where η :=
N ε(u0, A0), satisfy g∗(u,A) = (expu0

(ξ0), A0 + α0) and (45). In particular,

‖Sε(u0, A0)‖1,p,ε;(u0,A0) ≤ c‖ζ‖1,p,ε;(u0,A0),

where (u,A) = (expu0
(ξ), A0 + α) and ‖ζ‖1,p,ε;(u0,A0)

≤ δε2/p. In this notation

Proposition 8.2 asserts that for every (u,A) ∈ B, whose distance to M̃0
B,Σ in the

(1, p, ε)-norm is less than δε2/p for a sufficiently small constant δ, there exists a
pair (u0, A0) ∈ U0 such that Sε(u0, A0) lies in the image of (Dε

(u0,A0)
)∗.

Lemma 8.3. For every p > 2 and every c0 > 0 there exist positive constants
δ, ε0, and c such that the following holds for every ε ∈ (0, ε0]. Let (u,A) ∈ B
and I ⊂ R be an interval. Suppose that I → U0(δ, ε) : r 7→ (u0(r), A0(r)) is a
smooth path, and let ζ(r) = (ξ(r), α(r)) ∈ T(u0(r),A0(r))B be the corresponding
vector field along this path that satisfies

(u,A) = (expu0
(ξ), A0 + α), ‖ζ‖1,p,ε ≤ δε2/p.

Denote ζε(r) := Sε(u0(r), A0(r)) and ∇̃rζε := (∇rξε− 1
2J(∇∂ru0J)ξε, ∂rαε). Then

∥∥∥(∂ru0, ∂rA0) + ∇̃rζε
∥∥∥

1,p,ε
≤ c

(
‖ζ‖1,p,ε +

∥∥ε2d∗A0
∂rA0 − L∗

u0
∂ru0

∥∥
Lp

)
. (75)

Proof. Let g(r) := eηε(r), where ηε(r) := N ε(u0(r), A0(r)) ∈ Ω0(Σ, gP ), and
denote u̇0 := ∂ru0, Ȧ0 := ∂rA0, ġ := ∂rg. Let δ1 and c1 be the constants of
Proposition 7.1. Then

‖ηε(r)‖2,p,ε + ‖ζε(r)‖1,p,ε ≤ c1 ‖ζ(r)‖1,p,ε ≤ c1δ1ε
2/p, (76)

g−1u = expu0
(ξε), g∗A = A0 + αε, ε2d∗A0

αε − L∗
u0
ξε = 0.

Differentiating these identities we obtain

−Lg−1u(g
−1ġ) = E1u̇0 + E2∇rξε, dg∗A(g−1ġ) = Ȧ0 + α̇ε, (77)
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where E1 := E1(u0, ξε) and E2 := E2(u0, ξε) (see Appendix C), and

ε2d∗A0
α̇ε − ε2 ∗ [Ȧ0 ∧ ∗αε] − L∗

u0
∇rξε − ρ(u̇0, ξε) = 0, (78)

where ρ ∈ Ω2(M, g) is given by 〈η, ρ(ξ1, ξ2)〉 := 〈∇ξ1Xη, ξ2〉 (see Lemma C.2).
Inserting the expressions for ∇rξε and α̇ε in (77) into (78) gives

ε2d∗A0
dg∗A(g−1ġ) + L∗

u0
E−1

2 Lg−1u(g
−1ġ)

= ε2d∗A0
Ȧ0 + ε2 ∗ [Ȧ0 ∧ ∗αε] − L∗

u0
E−1

2 E1u̇0 + ρ(u̇0, ξε).

Since g−1u = expu0
(ξε) and g∗A = A0 + αε we have, by Lemma C.1,

E−1
2 Lg−1u(g

−1ġ) = Lu0(g
−1ġ) +

(
E−1

2 E1 − 1l
)
Lu0(g

−1ġ) + ∇ξε
Xg−1ġ(u0),

d∗A0
dg∗A(g−1ġ) = d∗A0

dA0(g
−1ġ) + [d∗A0

αε, g
−1ġ] + ∗[∗αε ∧ dA0(g

−1ġ)].

Hence

ε2d∗A0
dA0(g

−1ġ) + L∗
u0
Lu0(g

−1ġ)

= − ε2[d∗A0
αε, g

−1ġ] − ε2 ∗ [∗αε ∧ dA0(g
−1ġ)]

−L∗
u0

(
E−1

2 E1 − 1l
)
Lu0(g

−1ġ) − L∗
u0
∇ξε

Xg−1ġ(u0)

+ ε2 ∗ [Ȧ0 ∧ ∗αε] + L∗
u0

(1l − E−1
2 E1)u̇0 + ρ(u̇0, ξε)

+ ε2d∗A0
Ȧ0 − L∗

u0
u̇0.

By Lemma 7.2 and Lemma 4.4, there exists a constant c2 > 0 such that

∥∥g−1ġ
∥∥

2,p,ε
≤ c2ε

−2/p ‖ζε‖1,p,ε

∥∥g−1ġ
∥∥

2,p,ε

+ c2

(
‖ζε‖0,p,ε +

∥∥∥ε2d∗A0
Ȧ0 − L∗

u0
u̇0

∥∥∥
Lp

)

≤ c1c2δ1
∥∥g−1ġ

∥∥
2,p,ε

+ c2

(
‖ζε‖0,p,ε +

∥∥∥ε2d∗A0
Ȧ0 − L∗

u0
u̇0

∥∥∥
Lp

)
.

The last inequality follows from (76). With c1c2δ1 ≤ 1/2 it follows that

∥∥g−1ġ
∥∥

2,p,ε
≤ 2c2

(
‖ζε‖0,p,ε +

∥∥∥ε2d∗A0
Ȧ0 − L∗

u0
u̇0

∥∥∥
Lp

)
.

Hence (75) follows from (77) and (45).

Consider the vector bundle

V0 −→ M̃0
B,Σ

whose fibre over (u0, A0) ∈ M̃0
B,Σ is the finite dimensional vector space V0

(u0,A0)

of all pairs (ξ0, α0) ∈ Ω0(Σ, Hu0) × Ω1(Σ, gP ) that satisfy the equation

D∂̄J,A0(u0)ξ0 +Xα0(u0)
0,1 = 0. (79)
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This space can be identified with the kernel of the operator D0
(u0,A0)

. Namely,

the kernel of D0
(u0,A0)

consists of all sections ξ0 ∈ Ω0(Σ, Hu0) that satisfy (79) for

some 1-form α0 ∈ Ω1(Σ, gP ), and the 1-form α0 is uniquely determined by ξ0.

Thus V0 −→ M̃0
B,Σ is a vector bundle of rank m := dimM0

B,Σ.

Lemma 8.4. For every p > 2 and every c0 > 0 there exist positive constants
ε0 and c such that the following holds for every ε ∈ (0, ε0]. Let I ⊂ R be an

interval and I → M̃0
B,Σ(c0) : r 7→ (u0(r), A0(r)) be a smooth path such that, for

every r ∈ I,
‖∂ru0(r)‖C2(Σ) + ‖∂rA0(r)‖C1(Σ) ≤ c0. (80)

Then every smooth vector field r 7→ ζ(r) = (ξ(r), α(r)) ∈ T(u0(r),A0(r))B satisfies
the inequality ∥∥∥∇̃rDεζ −Dε∇̃rζ

∥∥∥
k,p,ε

≤ cε−1 ‖ζ‖k+1,p,ε

for k = 0, 1, where Dε := Dε
(u0(r),A0(r))

and ∇̃rζ := (∇rξ − 1
2J(∇∂ru0J)ξ, ∂rα).

Proof. We denote

(ξ, α) := ζ, ζ′ := (ξ′, ϕ′, ψ′) := Dεζ, ζ′r := (ξ′r , ϕ
′
r, ψ

′
r) := Dε∇̃rζ.

Moreover, we drop the subscript 0 and write (u,A) := (u0, A0). Then, in local
holomorphic coordinates on Σ and a local frame of P , ζ′ is given by

ξ′ = ∇̃A,sξ + J∇̃A,tξ +
1

4
N(ξ, vs − Jvt) +

1

2
(J∂sJ − ∂tJ)ξ + Luϕ+ JLuψ,

ϕ′ = λ−2 (∇A,sϕ+ ∇A,tψ) + ε−2L∗
uξ,

ψ′ = λ−2 (∇A,sψ −∇A,tϕ) + ε−2dµ(u)ξ.

Here we use the notation of Remark 4.1. Differentiating these formulae with
respect to r we obtain

∇̃rξ′ − ξ′r = ∇̃r∇̃A,sξ − ∇̃A,s∇̃rξ + J(∇̃r∇̃A,tξ − ∇̃A,t∇̃rξ)

+
1

4
∇̃rN(ξ, vs − Jvt) −

1

4
N(∇̃rξ, vs − Jvt)

+
1

2
∇̃r((J∂sJ − ∂tJ)ξ) − 1

2
(J∂sJ − ∂tJ)∇̃rξ

+ ∇∂ruXϕ(u) + J∇∂ruXψ(u) − 1

2
J(∇∂ruJ)(Luϕ− JLuψ),

∂rϕ
′ − ϕ′

r = λ−2 ([∂rΦ, ϕ] + [∂rΨ, ψ])

+ ε−2

(
ρ(∂ru, ξ) −

1

2
dµ(u)(∇∂ruJ)ξ

)
,

∂rψ
′ − ψ′

r = λ−2 ([∂rΦ, ψ] − [∂rΨ, ϕ])

− ε−2

(
ρ(∂ru, Jξ) +

1

2
L∗
u(∇∂ruJ)ξ

)
.

Here ρ = ρs,t ∈ Ω2(M, g) is defined by Lemma C.2. The required estimates
follow from these three identities via a term by term inspection.
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Lemma 8.5. For every p > 2 and every c0 > 0 there exist positive constants ε0
and c such that the following holds for every ε ∈ (0, ε0]. Let r 7→ (u0(r), A0(r))
be as in Lemma 8.4 and suppose that r 7→ ζ0(r) is a smooth section of V0 along
this path. Abbreviate Dε := Dε

(u0(r),A0(r))
and let ζε(r) ∈ kerDε be given by

ζε(r) := ζ0(r) −Dε∗ (DεDε∗)
−1 Dεζ0(r).

Then

‖ζε − ζ0‖0,2,ε ≤ cε2‖ξ0‖L2 , (81)

‖∇̃rζε − ∇̃rζ0‖0,2,ε ≤ c
(
‖ξ0‖L2 + ‖∇̃rξ0‖L2

)
. (82)

Proof. Let (ξε, αε) := ζε for ε ≥ 0 and ζ := (ξ, α) := ζε − ζ0. Then

ζ ∈ imDε∗, Dεζ =




0
d∗A0

α0

− ∗ dA0α0


 .

Hence, by Lemma 4.8, there exist constants c1, c2 > 0 (depending only on c0)
such that

‖ζ‖1,2,ε ≤ c1ε ‖Dεζ‖0,2,ε = c1ε
2
(
‖dA0α0‖L2 +

∥∥d∗A0
α0

∥∥
L2

)
≤ c2ε

2 ‖ξ0‖L2 .

The last inequality follows from (79) and the basic elliptic estimates for the
operator D0. Thus we have proved (81). To prove (82) let

ζ′ := ζ′(r) := −(DεDε∗)−1Dεζ0(r) ∈ X ′
u0(r)

so that ζ = Dε∗ζ′. Then, by Lemma 4.7 with p = 2,

‖ζ′‖2,2,ε ≤ c3 ‖Dε∗ζ′‖1,2,ε = c3 ‖ζ‖1,2,ε ≤ c2c3ε
2 ‖ξ0‖L2 ,

and hence, by Lemma 8.4 (with c = c4 and Dε replaced by Dε∗),

‖Dε∗∇̃rζ′ − ∇̃rDε∗ζ′‖1,2,ε ≤ c4ε
−1 ‖ζ′‖2,2,ε ≤ c2c3c4ε ‖ξ0‖L2 .

Now it follows from Lemmata 4.8 (with c = c5) and 8.4 (with c = c4) that

‖Dε∗∇̃rζ′‖1,2,ε ≤ c5‖DεDε∗∇̃rζ′‖0,2,ε

≤ c5‖Dε(Dε∗∇̃rζ′ − ∇̃rDε∗ζ′)‖0,2,ε

+ c5‖Dε∇̃rζ − ∇̃rDεζ‖0,2,ε + c5‖∇̃rDεζ‖0,2,ε

≤ c6ε
−1‖Dε∗∇̃rζ′ − ∇̃rDε∗ζ′‖1,2,ε

+ c5

(
c4ε

−1‖ζ‖1,2,ε + ‖∇̃rDεζ‖0,2,ε

)

≤ c7

(
‖ξ0‖L2 + ‖∇̃rξ0‖L2

)
.
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Hence

‖∇̃rζ‖0,2,ε ≤ ‖∇̃rDε∗ζ′ −Dε∗∇̃rζ′‖0,2,ε + ‖Dε∗∇̃rζ′‖0,2,ε

≤ (c7 + c2c3c4ε)
(
‖ξ0‖L2 + ‖∇̃rξ0‖L2

)
.

This proves (82).

The estimate (82) is fairly crude. More careful considerations give an addi-
tional factor ε. However, we shall not use this fact.

Lemma 8.6. For every p > 2 and every c0 > 0 there exist positive constants δ,
ε0, and c such that the following holds for every ε ∈ (0, ε0]. Let (u,A) ∈ B and
I ⊂ R be an interval. Suppose that the path I → U0(δ, ε) : r 7→ (u0(r), A0(r))
and the vector field r 7→ ζ(r) ∈ T(u0(r),A0(r))B are as in Lemma 8.3. Moreover,
assume (80) and let r 7→ ζ0(r) and r 7→ ζε(r) be as in Lemma 8.5. Then

∣∣∣∣
d

dr
〈ζε,Sε(u0, A0)〉ε + 〈ξ0, u̇0〉

∣∣∣∣

≤ c
(
‖ξ0‖L2 + ‖∇̃rξ0‖L2

) (
ε2 + ‖ζ‖1,p,ε + ‖L∗

u0
∂ru0‖Lp

)
.

Proof. Abbreviate Sε := Sε(u0, A0). Consider the identity

d

dr
〈ζε,Sε〉ε + 〈ξ0, ∂ru0〉ε =

〈
∇̃rζε,Sε

〉
ε
+
〈
ζε, (∂ru0, ∂rA0) + ∇̃rSε

〉
ε

+ 〈ζ0 − ζε, (∂ru0, ∂rA0)〉ε − ε2〈α0, ∂rA0〉.

By Lemma 8.5, the (0, 2, ε)-norm of ∇̃rζε is bounded above by a constant times
‖ξ0‖L2+‖∇̃rξ0‖L2 . By Proposition 7.1, the (0, 2, ε)-norm of Sε is bounded above
by a constant times ‖ζ‖1,p,ε. Hence the first term satisfies the required bound.
For the second term the estimate follows from Lemma 8.3 and the fact that the
(0, 2, ε)-norm of ζε is bounded above by a constant times ‖ξ0‖L2 . For the third
term we use (80) and (81) and for the last the estimate follows from (80).

Proof of Proposition 8.2. Let U ⊂ Rm be an open set containing zero and

U −→ M̃0
B,Σ(c0) : x 7→ (u0(x), A0(x))

be the composition of the map F0
(ū0,Ā0)

defined in Theorem 2.1 with a Hilbert

space isomorphism Rm → kerD0
(ū0,Ā0)

. Then

(u0(0), A0(0)) = (ū0, Ā0), (∂iu0(0), ∂iA0(0)) ∈ V0
(ū0,Ā0)

for i = 1, . . . ,m; in particular,

L∗
ū0
∂iu0(0) = 0, 〈∂iu0(0), ∂ju0(0)〉L2(Σ) = δij .

Now choose m smooth sections ζ10, . . . , ζm0 : U → V0 so that

ζj0(x) = (ξj0(x), αj0(x)) ∈ V0
(u0(x),A0(x))
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and
ζj0(0) = −(∂ju0(0), ∂jA0(0)), 〈ξi0(x), ξj0(x)〉L2(Σ) = δij

for x ∈ U and j = 1, . . . ,m. Given x ∈ U we abbreviate Dε := Dε
(u0(x),A0(x))

. If
ε is sufficiently small then, by Lemma 4.8, this operator is surjective for every
x ∈ U . In this case we define ζjε(x) ∈ kerDε by

ζjε(x) := ζj0(x) −Dε∗ (DεDε∗)
−1 Dεζj0(x)

for j = 1, . . . ,m. By Lemma 8.5, these vectors form a basis of ker Dε for
ε sufficiently small. Now let δ1 and c1 be the constants of Proposition 7.1.
Choose δ0 > 0 so small that

|x| < δ0ε
2/p =⇒ (u0(x), A0(x)) ∈ U0(δ1, ε)

for x ∈ U and 0 < ε ≤ 1. Let Sε : U0 → Hε be the map of Proposition 7.1 as
introduced above. Define θ = (θ1, . . . , θm) : U → Rm by

θj(x) := 〈ζjε(x),Sε(u0(x), A0(x))〉ε ,

where 〈·, ·〉ε denotes the (0, 2, ε)-inner product on T(u0(x),A0(x))B. Then

θ(x) = 0 ⇐⇒ Sε(u0(x), A0(x)) ∈ imDε∗.

We shall establish the existence of a zero of θ with the inverse function theorem.
We must prove that |dθ(x) − 1l| ≤ 1/2 on a ball of radius r and that θ(0) is less
than r/2.

To see this, we first observe that

|θj(0)| ≤ ‖ζj0(0)‖0,2,ε

∥∥Sε(ū0, Ā0)
∥∥

0,2,ε
≤ c2

∥∥ζ̄
∥∥

1,p,ε
≤ c2δε

2/p.

Here we have used the fact that the (0, 2, ε)-norm of ζjε(0) is less than or equal to
the (0, 2, ε)-norm of ζj0(0) = −(∂ju0(0), ∂jA0(0)), that the L2-norm of ∂jA0(0)
is controlled by ‖∂ju0(0)‖L2 = 1, that the (0, 2, ε)-norm of Sε(ū0, Ā0) is con-
trolled by its (1, p, ε)-norm, and that, by Proposition 7.1 and (71), the latter is
bounded above by c1‖ζ̄‖1,p,ε ≤ c1δε

2/p. Thus we have proved that

|θ(0)| ≤ √
mc2

∥∥ζ̄
∥∥

1,p,ε
≤ √

mc2δε
2/p. (83)

Now let ζ(x) = (ξ(x), α(x)) ∈ T(u0(x),A0(x))B be the unique smooth section
defined by

(u,A) = (expu0(x)(ξ(x)), A0(x) + α(x)), ζ(0) = ζ̄,

for x sufficiently small. Then there exists a constant c3 > 0 such that

‖ζ(x)‖1,p,ε ≤
∥∥ζ̄
∥∥

1,p,ε
+ c3|x|
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for x sufficiently small and 0 < ε ≤ 1. Hence, by Proposition 7.1, we have that,
for |x| < δ0ε

2/p and 0 < ε ≤ 1,

‖N ε(u0(x), A0(x))‖2,p,ε + ‖Sε(u0(x), A0(x))‖1,p,ε

≤ c1 ‖ζ(x)‖1,p,ε ≤ c1

(∥∥ζ̄
∥∥

1,p,ε
+ c3|x|

)
. (84)

Moreover, there exists a constant c4 > 0 such that

|δij + 〈ξj0(x), ∂iu0(x)〉L2 | + ‖L∗
u0(x)

∂iu0(x)‖Lp ≤ c4|x|,

‖ξj0(x)‖L2 + ‖∇̃iξj0(x)‖L2 ≤ c4

for x sufficiently small. Now suppose that δ1 and ε0 have been chosen so small
that the assertion of Lemma 8.6 holds, with c replaced by c5, for the paths
xi 7→ (u0(x), A0(x)), xi 7→ ζ(x), xi 7→ ζj0(x), and xi 7→ ζjε(x). Then

|∂iθj(x) − δij | ≤ |δij + 〈ξj0(x), ∂iu0(x)〉| + |∂iθj(x) + 〈ξj0(x), ∂iu0(x)〉|
≤ c4|x| + c5

(
‖ξj0(x)‖L2 + ‖∇̃iξj0(x)‖L2

)
·

·
(
ε2 + ‖ζ(x)‖1,p,ε + ‖L∗

u0(x)
∂iu0(x)‖Lp

)

≤ c4|x| + c4c5
(
ε2 + ‖ζ̄‖1,p,ε + (c3 + c4)|x|

)

≤ c6
(
ε2 + ‖ζ̄‖1,p,ε + |x|

)

for |x| < δ0ε
2/p and 0 < ε ≤ ε0. Thus the Jacobian dθ(x) ∈ Rm×m satisfies

|dθ(x) − 1l| ≤ c7

(
ε2 + δε2/p + |x|

)
.

Choose δ0 and ε0 so small that c7(ε
2
0 + 2δ0ε

2/p
0 ) ≤ 1/2. Then

|x| ≤ δ0ε
2/p, 0 < ε ≤ ε0, 0 < δ ≤ δ0 =⇒ |dθ(x) − 1l| ≤ 1/2.

Hence the inverse function theorem asserts that θ(Br(0)) ⊃ Br/2(θ(0)) whenever

r < δ0ε
2/p. Now suppose that

√
mc2δ < δ0/2. Then, by (83), we have 2 |θ(0)| <

δ0ε
2/p and hence we can apply the inverse function theorem with r = 2 |θ(0)|.

Then Br/2(θ(0)) contains zero and, by the inverse function theorem, there exists
a point x0 ∈ Rm such that

θ(x0) = 0, |x0| ≤ 2 |θ(0)| ≤ 2
√
mc2

∥∥ζ̄
∥∥

1,p,ε
.

The last inequality follows from (83). Now define

(u0, A0) := (u0(x0), A0(x0)), ζ0 := Sε(u0, A0), η0 := N ε(u0, A0).

Then (72) and (73) are satisfied by definition. The estimate (74) follows from
Proposition 7.1:

‖η0‖2,p,ε + ‖ζ0‖1,p,ε ≤ c1 ‖ζ(x0)‖1,p,ε ≤ c1

(∥∥ζ̄
∥∥

1,p,ε
+ c3|x0|

)
≤ c8

∥∥ζ̄
∥∥

1,p,ε
.
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Moreover, the vector ξ̄0 in the assertion of Proposition 8.2 is the image of x0

under our Hilbert space isomorphism Rm → kerD0
(ū0,Ā0)

. Hence, by elliptic

regularity for the Cauchy–Riemann operator, its W 1,p-norm is bounded by |x0|
and hence by the (1, p, ε)-norm of ζ̄.

Proof of Theorem 8.1. Let p > 2 and c0 > 0 be given. Choose positive constants
ε0, δ1, δ2, and c1 such that Proposition 8.2 holds with δ replaced by δ1 and c
replaced by c1, Corollary 6.3 holds with δ replaced by δ2, and both results hold
for 0 < ε ≤ ε0. Now choose δ > 0 so small that

δε0
1/2 ≤ δ1, c1δ ≤ δ2.

Let ε ∈ (0, ε0] and suppose that (u,A) and (ū0, Ā0) satisfy the hypotheses of
Theorem B, namely

(ū0, Ā0) ∈ M̃0
B,Σ(c0 − 1), (u,A) = (expū0

(ξ̄), Ā0 + ᾱ) ∈ M̃ε
B,Σ,

where ζ̄ := (ξ̄, ᾱ) ∈ T(ū0,Ā0)B satisfies

∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
≤ δε2/p+1/2 ≤ δ1ε

2/p.

By Proposition 8.2, there exist

ξ̄0 ∈ kerD0
(ū0,Ā0)

, η0 ∈ Ω0(Σ, gP ),

and
(u0, A0) ∈ M̃0

B,Σ(c0), ζ0 = (ξ0, α0) ∈ T(u0,A0)B,
satisfying (72), (73), and (74), with c replaced by c1. Hence

‖ζ0‖1,p,ε;(u0,A0)
≤ c1

∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
≤ c1δε

2/p+1/2 ≤ δ2ε
2/p+1/2.

This estimate together with (73) shows that (u0, A0) and ζ0 satisfy the hypothe-
ses of Corollary 6.3. Hence, by (72),

g∗(u,A) = (expu0
(ξ0), A0 + α0) = T̃ ε(u0, A0), g := eη0 .

Moreover, again by (72), (u0, A0) = F0
(ū0,Ā0)

(ξ̄0) and, by (74),

∥∥ξ̄0
∥∥
W 1,p + ‖η0‖2,p,ε;A0

≤ c1
∥∥ζ̄
∥∥

1,p,ε;(ū0,Ā0)
.

This proves the theorem.

9 A priori estimates

In this section we assume that J ∈ JG(M,ω) is independent of z ∈ Σ (or in local
coordinates is independent of s and t). Let Ω ⊂ C be an open set, K ⊂ Ω be
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a compact subset and λ : Ω → (0,∞) be a smooth function. Given u : Ω → M
and Φ,Ψ : Ω → g we define vs, vt : Ω → u∗TM and κ : Ω → g by

vs := ∂su+XΦ(u), vt := ∂tu+XΨ(u), κ := ∂sΨ − ∂tΦ + [Φ,Ψ].

Moreover, as in Remark 4.1, we use the notation

∇A,sξ := ∇sξ + ∇ξXΦ(u), ∇A,tξ := ∇tξ + ∇ξXΨ(u),
∇A,sη := ∂sη + [Φ, η], ∇A,tη := ∂tη + [Ψ, η],

for ξ : Ω → u∗TM and η : Ω → g. Then

∇A,sµ(u) = dµ(u)vs = −L∗
uJvs, ∇A,tµ(u) = dµ(u)vt = −L∗

uJvt.

Moreover,
∇A,svt −∇A,tvs = Luκ,

by Lemma C.3,

∇A,sLuη − Lu∇A,sη = ∇vs
Xη(u), ∇A,tLuη − Lu∇A,tη = ∇vt

Xη(u),

and, by Lemma B.4,

∇A,s∇A,tξ −∇A,t∇A,sξ = R(vs, vt)ξ + ∇ξXκ(u).

In local coordinates equations (7) have the form

vs + Jvt = 0, λ−2κ+ ε−2µ(u) = 0. (85)

If (85) holds then

(∇vs
J)vt = (∇vt

J)vs, ∇A,svs + ∇A,tvt = −JLuκ.

Given a constant C > 0 we denote by MC ⊂M the compact subset of all x ∈M
that satisfy |µ(x)| ≤ C and |η| ≤ C|Lxη| for every η ∈ g.

Lemma 9.1. Let C > 0, p ≥ 2, Ω ⊂ C be an open set, and K ⊂ Ω be a compact
subset. Then there are positive constants ε0 and c such that the following holds.
If 0 < ε ≤ ε0, λ : Ω → R is a smooth function satisfying λ ≥ 1/C, and (u,Φ,Ψ)
is a solution of (85) satisfying

‖vs‖L∞(Ω) ≤ C, u(Ω) ⊂MC ,

then ∫

K

|µ(u)|p ≤ cε2p, sup
K

|µ(u)| ≤ cε2−2/p.

Proof. Let ∆ = ∂2/∂s2 + ∂2/∂t2 denote the standard Laplacian. For r > 0
denote Br(z0) := {z ∈ C | |z − z0| < r} and Br := Br(0). By (85), we have

dµ(u)vs = −L∗
uJvs = −L∗

uvt, dµ(u)vt = −L∗
uJvt = L∗

uvs,
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and hence

∇A,s∇A,sµ(u) + ∇A,t∇A,tµ(u) = ∇A,sdµ(u)vs + ∇A,tdµ(u)vt

= ∇A,tL∗
uvs −∇A,sL∗

uvt

= L∗
u(∇A,tvs −∇A,svt) − 2ρ(vs, vt)

= −L∗
uLuκ− 2ρ(vs, vt)

= (λ/ε)2L∗
uLuµ(u) − 2ρ(vs, vt).

Here ρ ∈ Ω2(M, g) is as in Lemma C.2. Thus

∆|µ(u)|2 = 2|∇A,sµ(u)|2 + 2|∇A,tµ(u)|2
+ 2〈µ(u),∇A,s∇A,sµ(u) + ∇A,t∇A,tµ(u)〉

= 2|∇A,sµ(u)|2 + 2|∇A,tµ(u)|2
+ 2(λ/ε)2|Luµ(u)|2 − 4〈µ(u), ρ(vs, vt)〉.

Now choose positive constants δ and c such that

2 min
Ω
λ2 ≥ δC2, 4|ρ(ξ1, ξ2)| ≤

c

C2
|ξ1| |ξ2| ,

for all x ∈MC and ξ1, ξ2 ∈ TxM . Then

∆ |µ(u)|2 ≥ δ

ε2
|µ(u)|2 − c |µ(u)| .

Since 2∆ |µ(u)|p ≥ p |µ(u)|p−2
∆ |µ(u)|2 for p ≥ 2, this implies

|µ(u)|p ≤ cε2

δ
|µ(u)|p−1 +

2ε2

pδ
∆ |µ(u)|p .

Using the inequality ab ≤ ap/p + bq/q with 1/p + 1/q = 1, a := cε2/δ and

b := |µ(u)|p−1
we obtain bq = |µ(u)|p, and hence

|µ(u)|p ≤ cpε2p

δp
+

2ε2

δ
∆ |µ(u)|p . (86)

By Lemma 9.2 below, this implies that

∫

BR(z)

|µ(u)|p ≤ π(R+ r)2cpε2p

δp
+

8ε2

r2δ

∫

BR+r(z)

|µ(u)|p .

for all z ∈ C and R, r > 0 such that BR+r(z) ⊂ Ω. Use the last inequality
repeatedly, with R replaced by R + r,R + 2r, . . . , R + (p − 1)r, to obtain the
estimate ∫

BR(z)

|µ(u)|p ≤ c′ε2p
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for every z ∈ C such that BR+pr(z) ⊂ Ω. Now choose R and r such that
BR+pr(z) ⊂ Ω for every z ∈ K. Cover K by finitely many balls of radius R to
obtain the inequality ∫

K

|µ(u)|p ≤ c′′ε2p.

By (86), the function

z 7→ |µ(u(z))|p +
cpε2p−2

8δp−1
|z − z0|2

is subharmonic in Ω for every z0 ∈ C. Hence, by the mean value inequality, we
have

|µ(u(z))|p ≤ cpε2p−2

8πR2

∫

BR

|z|2 +
1

πR2

∫

BR(z)

|µ(u)|p ≤ c′′′ε2p−2

for z ∈ C such that BR+pr(z) ⊂ Ω. This proves the lemma.

Lemma 9.2. Let u : BR+r → R be a C2-function and f, g : BR+r → R be
continuous such that

f ≤ g + ∆u, u ≥ 0, f ≥ 0, g ≥ 0.

Then ∫

BR

f ≤
∫

BR+r

g +
4

r2

∫

BR+r\BR

u.

Moreover, if g = cu then

π

2
sup
BR

u ≤
(
c+

4

r2

)∫

BR+r

u.

Proof. For 0 ≤ s ≤ r we have

∫

BR

f −
∫

BR+r

g ≤
∫

BR+s

(f − g) ≤
∫

BR+s

∆u =

∫

∂BR+s

∂u

∂ν

and hence

d

ds

∫

∂BR+s

u =

∫

∂BR+s

∂u

∂ν
+

1

R + s

∫

∂BR+s

u ≥
∫

BR

f −
∫

BR+r

g.

Integrate this inequality over the interval 0 ≤ s ≤ t to obtain
∫

BR

f −
∫

BR+r

g ≤ 1

t

∫

∂BR+t

u ≤ 2

r

∫

∂BR+t

u

for r/2 ≤ t ≤ r. The first inequality follows by integrating this inequality
over the interval r/2 ≤ t ≤ r. The second inequality was proved in [DS2,
Lemma 7.3].
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Lemma 9.3. Let C0 > 0, Ω ⊂ C be a bounded open set, K ⊂ Ω be a compact
subset, and λ : Ω̄ → (0,∞) be a smooth function. Then there are positive
constants ε0 and c such that the following holds. If 0 < ε ≤ ε0 and (u,Φ,Ψ) is
a solution of (85) satisfying

‖vs‖L∞(Ω) + ε−1‖µ(u)‖L∞(Ω) ≤ C0,

then

ε−1‖µ(u)‖Lp(K) + ‖L∗
uvs‖Lp(K) + ‖L∗

uJvs‖Lp(K)

+ ε‖∇A,svs‖Lp(K) + ε‖∇A,tvs‖Lp(K) (87)

≤ cε2/p
(
‖vs‖L2(Ω) + ε−1‖µ(u)‖L2(Ω)

)

for 2 ≤ p ≤ ∞.

Proof. Consider the functions u0, v0 : Ω → R given by

u0 :=
1

2

(
|vs|2 +

λ2

ε2
|µ(u)|2

)
,

v0 :=
1

2

(
|∇A,svs|2 + |∇A,tvs|2 +

λ4

ε4
|Luµ(u)|2 +

λ2

ε2
|L∗
uvs|2 +

λ2

ε2
|L∗
uJvs|2

)
.

We prove that there exists a constant c0 > 0 such that

∆u0 ≥ v0 − c0u0. (88)

To see this, recall from the proof of Lemma 9.1 that

1

2
∆|µ(u)|2 = |L∗

uvs|2 + |L∗
uJvs|2 +

λ2

ε2
|Luµ(u)|2 − 2〈µ(u), ρ(vs, vt)〉,

and hence

1

2ε2
∆(λ2|µ(u)|2)

=
∆λ2

2ε2
|µ(u)|2 +

λ2

2ε2
∆|µ(u)|2 +

∂sλ
2

ε2
∂s|µ(u)|2 +

∂tλ
2

ε2
∂t|µ(u)|2

=
∆λ2

2ε2
|µ(u)|2 +

2∂tλ
2

ε2
〈µ(u), L∗

uvs〉 −
2∂sλ

2

ε2
〈µ(u), L∗

uJvs〉

+
λ2

ε2
|L∗
uvs|2 +

λ2

ε2
|L∗
uJvs|2 +

λ4

ε4
|Luµ(u)|2 − 2λ2

ε2
〈µ(u), ρ(vs, vt)〉.

Moreover, by Lemma B.4 and Lemma C.3,

(∇A,s∇A,s + ∇A,t∇A,t) vs
= (∇A,t∇A,s −∇A,s∇A,t)vt + ∇A,s(∇A,svs + ∇A,tvt) −∇A,t(∇A,svt −∇A,tvs)
= −R(vs, vt)vt −∇vt

Xκ(u) −∇A,s(JLuκ) −∇A,t(Luκ)

= −R(vs, vt)vt +
λ2

ε2
J∇vs

Xµ(u)(u) +
λ2

ε2
(∇vs

J)Luµ(u) +
2λ2

ε2
∇vt

Xµ(u)(u)

+
λ2

ε2
LuL

∗
uvs −

λ2

ε2
JLuL

∗
uJvs +

∂sλ
2

ε2
JLuµ(u) +

∂tλ
2

ε2
Luµ(u). (89)
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Hence

1

2
∆|vs|2 = |∇A,svs|2 + |∇A,tvs|2 + 〈vs, (∇A,s∇A,s + ∇A,t∇A,t) vs〉

= |∇A,svs|2 + |∇A,tvs|2 +
λ2

ε2
|L∗
uvs|2 +

λ2

ε2
|L∗
uJvs|2

− 3λ2

ε2
〈µ(u), ρ(vs, vt)〉 +

λ2

ε2
〈vs, (∇vs

J)Luµ(u)〉

− 〈vs, R(vs, vt)vt〉 −
∂sλ

2

ε2
〈L∗

uJvs, µ(u)〉 +
∂tλ

2

ε2
〈L∗

uvs, µ(u)〉.

Combining this with the formula for ∆(λ2|µ(u)|2)/2ε2 we obtain

∆u0 = |∇A,svs|2 + |∇A,tvs|2 +
2λ2

ε2
|L∗
uvs|2 +

2λ2

ε2
|L∗
uJvs|2 +

λ4

ε4
|Luµ(u)|2

− 5λ2

ε2
〈µ(u), ρ(vs, vt)〉 +

3∂tλ
2

ε2
〈µ(u), L∗

uvs〉 −
3∂sλ

2

ε2
〈µ(u), L∗

uJvs〉

+
∆λ2

2ε2
|µ(u)|2 +

λ2

ε2
〈vs, (∇vs

J)Luµ(u)〉 − 〈vs, R(vs, vt)vt〉. (90)

The first row on the right is bounded below by 2v0. Moreover, by assumption,
the image of u is contained in the compact set {|µ(x)| ≤ εC0}. Hence the last six
terms can be estimated from below by v0 − c0u0 for some constant c0 whenever
ε is sufficiently small. Thus we have proved the inequality (88). Hence, by
Lemma 9.2, there exist constants ε0 > 0 and c′0 > 0 such that

sup
K
u0 +

∫

K

v0 ≤ c′0

∫

Ω

u0

for every ε ∈ (0, ε0]. Since |µ(u)| ≤ C0ε0 and zero is a regular value of µ there
is an inequality |Luη| ≥ δ|η| whenever ε0 is sufficiently small. Thus we have
proved (87) for p = 2 as well as

‖vs‖L∞(K) + ε−1 ‖µ(u)‖L∞(K) ≤ c′0

(
‖vs‖L2(Ω) + ε−1 ‖µ(u)‖L2(Ω)

)
. (91)

Now let us define u1 : Ω → R by

u1 :=
1

2
|∇A,svs|2 .

We shall prove that there exist positive constants δ1, c1, and ε0 such that

∆(u0 + ε2u1) ≥ −c1u0 (92)

for 0 < ε ≤ ε0. We consider the equation

∆u1 = |∇A,s∇A,svs|2 + |∇A,t∇A,svs|2 + 〈(∇A,s∇A,s + ∇A,t∇A,t)∇A,svs,∇A,svs〉

and use the formula

(∇A,s∇A,s + ∇A,t∇A,t)∇A,svs = I + II + III,
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where

I := (∇A,t∇A,s −∇A,s∇A,t)∇A,tvs

= −R(vs, vt)∇A,tvs +
λ2

ε2
∇∇A,tvs

Xµ(u),

II := ∇A,t (∇A,t∇A,s −∇A,s∇A,t) vs

= −∇A,tR(vs, vt)vs +
λ2

ε2
∇A,t(∇vs

Xµ(u)) +
∂tλ

2

ε2
∇vs

Xµ(u),

III := ∇A,s (∇A,s∇A,s + ∇A,t∇A,t) vs

= ∇A,s
(
−R(vs, vt)vt +

λ2

ε2
LuL

∗
uvs −

λ2

ε2
JLuL

∗
uJvs +

λ2

ε2
(∇vs

J)Xµ(u)

+
λ2

ε2
J∇vs

Xµ(u) +
2λ2

ε2
∇vt

Xµ(u) +
∂sλ

2

ε2
JXµ(u) +

∂tλ
2

ε2
Xµ(u)

)
.

Here we abbreviate Xµ(u) = Xµ(u)(u) = Luµ(u). The last equality for III
follows from (89). Now consider the tensors ∇2J and ∇2Xη defined by

∇2J(X,Y, Z) := ∇X((∇Y J)Z) − (∇∇XY J)Z − (∇Y J)∇XZ,
∇2Xη(Y, Z) := ∇Y (∇ZXη) −∇∇Y ZXη

for η ∈ g and X,Y, Z ∈ Vect(M). Then

∇A,s((∇vs
J)Luµ(u)) = ∇2J(vs, vs, Luµ(u)) + (∇∇A,svs

J)Luµ(u)

+ (∇vs
J)∇vs

Xµ(u)(u) − (∇vs
J)LuL

∗
uJvs,

∇A,t(∇vs
Xµ(u)(u)) = ∇2Xµ(u)(vt, vs) + ∇∇A,tvs

Xµ(u)(u)∇vs
XL∗

uvs
(u),

∇A,s(R(vs, vt)vt) = ∇R(vs, vs, vt, vt) +R(∇A,svs, vt)vt
+R(vs,∇A,s(Jvs))vt) +R(vs, vt)∇A,s(Jvs).

Hence, by a term by term inspection, we obtain an inequality

ε2〈∇A,svs, I + II + III〉 ≥ −cu0 − v0

for ε > 0 sufficiently small. Note, in particular, that the term ε2〈∇A,svs, III〉
contains the two positive summands λ2|L∗

u∇A,svs|2 and λ2|L∗
uJ∇A,svs|2. Since

∆u0 ≥ v0−c0u0 the last inequality implies (92) with c1 := c+c0. Now it follows
from (92), (91), Lemma 9.2, and the formula

∇A,tvs = −J∇A,svs − (∇vs
J)vs + (λ/ε)2Luµ(u)

that (87) holds for p = ∞. For 2 < p <∞ the result follows by interpolation.

10 Proof of Theorem D

Theorem 10.1. Assume (H1) and (H4), let B̄ ∈ H2(M̄ ; Z) be a nontorsion
homology class, and denote B := κ(B̄) ∈ H2(MG; Z). Then, for every C > 0,
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there exist positive constants ε0 and c0 such that for every ε ∈ (0, ε0] the follow-

ing holds. If (u,A) ∈ M̃ε
B,Σ satisfies

‖dAu‖L∞ ≤ C, u(P ) ⊂MC

then (u,A) ∈ T̃ ε(M̃0
B,Σ(c0)).

Proof. Suppose the assertion is false. Then there exist a constant C > 0 and
sequences εi → 0 and (ui, Ai) ∈ M̃εi

B,Σ such that

‖dAi
ui‖L∞ ≤ C, ui(P ) ⊂MC , (ui, Ai) /∈ T̃ εi(M0

B,Σ(i)).

Here εi is chosen smaller than the number ε0(i) required for the definition of
the map T εi . We prove in four steps that there exist an integer i0 ∈ N, positive
constants c and c0, and sequences

(ui0, Ai0) ∈ M̃0
B,Σ(c0 − 1), ζi0 = (ξi0, αi0) ∈ T(ui0,Ai0)B

such that

(ui, Ai) = (expui0
(ξi0), Ai0 + αi0), ‖ζi0‖1,p,εi

≤ cε
2/p+1
i (93)

for every i ≥ i0. For i sufficiently large it then follows from Theorem 8.1 that
(ui, Ai) ∈ T̃ εi(M̃0

B,Σ(c0)), in contradiction to our assumption.

Step 1. There exist constants c > 0 and i0 ∈ N such that, for i ≥ i0 and
2 ≤ p ≤ ∞, we have,

ε−1
i ‖µ(ui)‖Lp +

∥∥L∗
ui
dAi

ui
∥∥
Lp +

∥∥L∗
ui
JdAi

ui
∥∥
Lp + εi ‖∇Ai

∗dAi
ui‖Lp ≤ cε

2/p
i .

By the graph construction in Appendix A, it suffices to establish the estimate
under the hypothesis that J is independent of z ∈ Σ. Namely,

L∗
ũi
dAi

ũi = L∗
ui
dAi

ui, L∗
ũi
J̃dAi

ũi = L∗
ui
JdAi

ui,

∇̃Ai

∗
dAi

ũi = (∇Σ
∗id,∇Ai

∗dAi
ui),

where ũi = (π, ui) : P → M̃ = Σ ×M , ∇̃A is the connection induced by A on
ũ∗iTM̃/G, and id ∈ Ω1(Σ, TΣ). Hence we can use the results of Section 9. Since
‖dAi

ui‖L∞ ≤ C and ui(Ω) ⊂ MC , the pair (ũi, Ai) satisfies the hypotheses of
Lemma 9.1 and so the sequence εi

−3/2µ̃(ũi) is uniformly bounded. Hence there
exists a constant c0 > 0 such that

‖dAi
ui‖L∞ + εi

−3/2 ‖µ(ui)‖L∞ ≤ c0 (94)

for every i. This implies that, in local holomorphic coordinates on Σ, the pair
(ũi, Ai) satisfies the hypotheses of Lemma 9.3 for i sufficiently large. Hence the
estimate holds in local holomorphic coordinates on Σ with ui replaced by ũi.
Hence, by a partition of unity argument, it holds globally.
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Step 2. There exists an integer i0 ∈ N and a constant c > 0 such that, for
every i ≥ i0, there exists a unique ηi ∈ Ω0(Σ, gP ) such that

µ(expui
(JLui

ηi)) = 0, ‖ηi‖L∞ ≤ c ‖µ(ui)‖L∞ .

Define u′i : P →M and A′
i ∈ A(P ) by

u′i := expui
(JLui

ηi), L∗
u′

i
dA′

i
u′i = 0,

so that dA′

i
u′i ∈ Ω1(Σ, Hu′

i
), and let ζi := (JLui

ηi, A
′
i − Ai). Then there exists

a constant c′ > 0 such that, for i ≥ i0,

‖ζi‖1,p,εi
≤ c′ε

1+2/p
i ,

∥∥∂̄J,A′

i
(u′i)

∥∥
Lp

≤ c′ε
1+2/p
i ,

∥∥dA′

i
u′i
∥∥
L∞

≤ c′.

The existence of ηi for large i follows from the implicit function theorem for the
map η 7→ µ(expui(p)(JLui(p)η)). This sequence satisfies an estimate of the form

‖ηi‖Lp ≤ c1 ‖µ(ui)‖Lp ≤ c2ε
1+2/p

for every i ≥ i0 and every p ∈ [2,∞]. Here the constants c1 and c2 are indepen-
dent of i and p, and the second inequality follows from Step 1. For p = ∞ there
is actually a better estimate (by ε3/2 instead of ε), but we shall not use this here.
In the following we suppress the subscript i and write u, u′, A,A′, ε instead of
ui, u

′
i, Ai, A

′
i, εi, respectively. We establish the required estimates in local holo-

morphic coordinates on Σ. As in Remark 4.1, we write A′ = Φ′ ds + Ψ′ dt for
some Lie algebra valued functiona Φ′ and Ψ′, and denote

v′s := ∂su
′ +XΦ′(u′), v′t := ∂tu

′ +XΨ′(u′).

Then L∗
u′v′s = L∗

u′v′t = 0. We assume that the functions u, u′,Φ,Ψ,Φ′,Ψ′ are
defined on an open set Ω ⊂ C and fix any compact subset K ⊂ Ω. We must
prove the estimates

‖(ξ, ϕ, ψ)‖1,p,ε ≤ cε1+2/p, ‖v′s + Jv′t‖Lp ≤ cε1+2/p, ‖v′s‖L∞ + ‖v′t‖L∞ ≤ c

on the subset K, where

ξ := JLuη, ϕ := Φ′ − Φ, ψ := Ψ′ − Ψ.

Abbreviate Ei := Ei(u, JLuη), i = 1, 2. Then

∇A,tξ = JLu∇A,tη + (∇vt
J + ∂tJ)Luη + J∇vt

Xη(u). (95)

Hence, by Lemma C.3,

v′t − E1vt = Lu′ψ + E2∇A,tξ = Lu′ψ + E2JLu∇A,tη +Rtη, (96)

where
Rtη := E2(∇vt

J + ∂tJ)Luη + E2J∇vt
Xη(u).
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Hence
dµ(u′)(v′t − E1vt) = dµ(u′)E2JLu∇A,tη + dµ(u′)Rtη.

Since L∗
u = dµ(u)J we have

L∗
uLu∇A,tη = (dµ(u) − dµ(u′)E2)JLu∇A,tη

+ dµ(u′)(v′t − E1vt) − dµ(u′)Rtη,

and, since dµ(u′)v′t = 0,

L∗
uLu∇A,tη = (dµ(u) − dµ(u′)E2)JLu∇A,tη

+ (dµ(u) − dµ(u′)E1)vt + L∗
uJvt − dµ(u′)Rtη.

It follows that

‖∇A,tη‖Lp ≤ c2
(
‖η‖L∞ ‖∇A,tη‖Lp + ‖L∗

uJvt‖Lp + ‖η‖Lp

)

≤ c3

(
ε1+2/p ‖∇A,tη‖Lp + ε2/p

)
.

If ε is sufficiently small this gives

‖∇A,tη‖Lp ≤ c4ε
2/p, ‖∇A,tη‖L∞ ≤ c4.

Here the second inequality follows from a similar argument as the first. Com-
bining these inequalities with (95) we obtain

‖∇A,tξ‖Lp ≤ c5ε
2/p, ‖∇A,tξ‖L∞ ≤ c5.

In order to estimate ψ we apply the operator L∗
u′ to (96) and use the formula

L∗
u′v′t = 0 to obtain

L∗
u′Lu′ψ = (L∗

u − L∗
u′E1)vt − L∗

uvt − L∗
u′E2JLu∇A,tη − L∗

u′Rtη.

Combining this with Step 1 and the estimate for ∇A,tη we obtain

‖ψ‖Lp ≤ c6ε
2/p, ‖ψ‖L∞ ≤ c6.

Hence, by (96),

‖v′t − E1vt‖Lp ≤ c7ε
2/p, ‖v′t − E1vt‖L∞ ≤ c7.

Similarly,
‖∇A,sη‖Lp + ‖ϕ‖Lp + ‖v′s − E1vs‖Lp ≤ c7ε

2/p,

‖∇A,sη‖L∞ + ‖ϕ‖L∞ + ‖v′s − E1vs‖L∞ ≤ c7.

Now use (96) again to obtain

v′s + J(u′)v′t = Lu′(ϕ−∇A,tη) + JLu′(ψ + ∇A,sη)
+ (E2JLu − JLu′)∇A,sη + J(E2JLu − JLu′)∇A,tη
+E1vs + JE1vt + (Rs + JRt)η

= πu′

(
(E2JLu − JLu′)∇A,sη + J(E2JLu − JLu′)∇A,tη

)

+ πu′

(
(JE1 − E1J)vt + (Rs + JRt)η

)
.
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The second equality uses the fact that vs+Jvt = 0 and that the 1-form ∂̄J,A′(u′)
takes values in Hu′ . It follows that

‖v′s + J(u′)v′t‖Lp ≤ c8ε
1+2/p.

It remains to show that

‖∇A,sϕ‖Lp + ‖∇A,tϕ‖Lp + ‖∇A,sψ‖Lp + ‖∇A,tψ‖Lp ≤ cε2/p−1.

To estimate the term ∇A,tψ differentiate (96) with respect to t. Then apply the
operator dµ(u′) to the resulting expression to eliminate ∇A,tψ and obtain an
estimate of the form

‖∇A,t∇A,tη‖Lp ≤ c9ε
2/p−1.

Then apply the operator L∗
u′ to the equation obtained from differentiating (96),

and estimate ∇A,tψ using the upper bound found for ∇A,t∇A,tη. The estimate
for ∇A,sψ is obtained in a similar manner. To estimate ∇A,sϕ and ∇A,tϕ, we
begin with the identity

v′s − E1vs = Lu′ϕ+ E2JLu∇A,sη +Rsη

instead of (96) and then follow the same procedure.

Step 3. There exist an integer i0 ∈ N, a constant c > 0, and a sequence
(u′′i , A

′′
i ) ∈ M̃0

B,Σ such that, for i ≥ i0, we have

u′′i = expu′

i
(ξ′i), ξ′i ∈ Ω0(Σ, Hu′

i
),

‖ξ′i‖W 1,p + ‖A′′
i −A′

i‖Lp ≤ cε
1+2/p
i ,

∥∥dA′′

i
u′′i
∥∥
L∞

≤ c.

By Step 2,
sup
i

∥∥dA′

i
u′i
∥∥
L∞

<∞.

Hence the induced maps ū′i : Σ → M̄ form a sequence of approximate J̄-
holomorphic curves which satisfy a uniform L∞-bound on their first derivatives.
Hence, by (H4) and Theorem 2.3, there is nearby a true J̄-holomorphic curve
ū′′i : Σ → M̄ whose W 1,p-distance to ū′i is controlled by the Lp-norm of ∂̄J̄(ū′i).
Now this J̄-holomorphic curve has a unique lift u′′i : P → µ−1(0) of the form

u′′i = expu′

i
(ξ′i), ξ′i ∈ Ω0(Σ, Hu′

i
).

Let A′′
i ∈ A(P ) be the connection determined by u′′i via L∗

u′′

i
dA′′

i
u′′i = 0. Then

‖ξ′i‖W 1,p ≤ c1
∥∥∂̄J,A′

i
(u′i)

∥∥
Lp

≤ c2εi
1+2/p.

Here the last inequality follows from Step 2. Since L∗
u′

i
dA′

i
u′i = L∗

u′′

i
dA′′

i
u′′i = 0

we obtain
‖A′′

i −A′
i‖Lp ≤ c3ε

1+2/p
i .
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In particular, these inequalities together give a uniform W 1,p-bound on the
J̄-holomorphic curves ū′′i : Σ → M̄ . Hence, by the elliptic bootstrapping tech-
niques for J-holomorphic curves, the sequence ū′′i satisfies a uniform L∞ bound
on the first derivatives. This proves Step 3.

Unfortunately, the estimate on A′′
i −A′

i in Step 3 is only in the Lp-norm and
not in the W 1,p-norm. A further modification of the pair (u′′i , A

′′
i ) is required

to improve this estimate.

Step 4. There exist an integer i0 ∈ N, a constant c > 0, and a sequence of
gauge transformations gi ∈ G(P ) such that the sequence

(ui0, Ai0) := g∗i (u
′′
i , A

′′
i ) ∈ M̃0

B,Σ

satisfies the following. For i ≥ i0 the original sequence (ui, Ai) has the form

(ui, Ai) = (expui0
(ξi), Ai0 + αi)

where ζi := (ξi, αi) ∈ T(ui0,Ai0)B satisfies (93).

The idea is to choose gi for large i such that

ui = expui0
(ξi), L∗

ui0
ξi = 0, ui0 := g−1

i u′′i .

This can be done by using pointwise, for every p ∈ P , the implicit function
theorem to obtain the local slice condition. This suffices to obtain the missing
estimates for the first derivatives of g∗iA

′′
i −Ai.

By (94) and Step 2, the distance between ui and u′i is unformly bounded

by a constant times ε
3/2
i while the distance in the W 1,p-norm is bounded by a

constant times ε
2/p
i . By Step 3, the distance between u′i and u′′i is bounded in

the W 1,p-norm by a constant times ε
1+2/p
i . Hence there exists a sequence of

smooth sections ξi ∈ Ω0(Σ, ui
∗TM/G) and a constant c > 0 such that

u′′i = expui
(ξi), ‖ξi‖L∞ ≤ c1εi, ‖∇Ai

ξi‖Lp ≤ c1ε
2/p
i . (97)

Moreover, the sequence dA′′

i
u′′i is uniformly bounded in the L∞-norm and

‖A′′
i −Ai‖Lp ≤ c1ε

2/p,
∥∥dA′′

i
u′′i − E1(ui, ξi)dAi

ui
∥∥
Lp

≤ c1ε
2/p. (98)

Here the last inequality follows from the identity

dA′′

i
u′′i = E1(ui, ξi)dAi

ui + E2(ui, ξi)∇Ai
ξi

+E1(ui, ξi)XA′′

i −Ai
(ui) + E2(ui, ξi)∇ξi

XA′′

i −Ai
(ui),

which in turn follows from Lemma C.1. Now, by the inverse function theorem
for the map

G × ker L∗
x →M : (g, ξ) 7→ g−1 expx(ξ),

there exists a constant c2 > 0 and (unique) sequences gi ∈ G(P ) and ξ′′i ∈
Ω0(Σ, u′′i

∗
TM/G) such that

ui = g−1
i expu′′

i
(ξ′′i ), L∗

u′′

i
ξ′′i = 0, ‖ξ′′i ‖L∞ ≤ c2εi, ‖gi − 1l‖L∞ ≤ c2εi.
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Define

ui0 := g−1
i u′′i , Ai0 := gi

∗A′′
i , ξi0 := g−1

i ξ′′i , αi0 := Ai −Ai0.

We shall prove that the pair (ξi0, αi0) satisfies (93). To see this note first that

ui = expui0
(ξi0), Ai = Ai0 + αi0.

The endomorphism E1(ui, ξi)g
−1
i E1(u

′′
i , ξ

′′
i ) of u′′i

∗
TM is εi-close to the identity,

dAi0ui0 = g−1
i dA′′

i
u′′i , and

E1(ui, ξi)(dAi
ui − E1(ui0, ξi0)dAi0ui0)

= E1(ui, ξi)dAi
ui − dA′′

i
u′′i + (1l − E1(ui, ξi)g

−1E1(u
′′
i , ξ

′′
i ))dA′′

i
u′′i .

Hence, by (98), there is an estimate

‖dAi
ui − E1(ui0, ξi0)dAi0ui0‖Lp ≤ c3ε

2/p
i , ‖dAi0ui0‖L∞ ≤ c3

for all i. Hence, by Corollary C.4, there exists a constant c4 > 0 such that

‖αi0‖Lp ≤ c4ε
2/p
i , ‖αi0‖L∞ ≤ c4.

Next observe that, by Lemma C.1,

dAi
ui = E1(ui0, ξi0)dAi0ui0 + E2(ui0, ξi0)∇Ai0ξi0

+E1(ui0, ξi0)Xαi0(ui0) + E2(ui0, ξi0)∇ξi0Xαi0(ui0)

Hence there exists a constant c5 > 0 such that

‖∇Ai0ξi0‖Lp ≤ c5ε
2/p
i , ‖∇Ai0ξi0‖L∞ ≤ c5

for all i. Thus we have proved that

‖ξi0‖Lp + εi ‖αi0‖Lp + εi ‖∇Ai0ξi0‖Lp ≤ c6ε
1+2/p
i ,

‖ξi0‖L∞ + εi ‖αi0‖L∞ + εi ‖∇Ai0ξi0‖L∞ ≤ c6εi.
(99)

It remains to estimate the Lp-norm of the first derivatives of αi0. We drop
the subscript i and write u, u0, A,A0, ξ0, α0 instead of ui, ui0, Ai, Ai0, ξi0, αi0.
Moreover, we use local coordinates on Σ as in Step 2 and write

A0 := Φ0 ds+ Ψ0 dt, A := Φ ds+ Ψ dt,
v0s := ∂su0 + Lu0Φ0, vs := ∂su+ LuΦ,
v0t := ∂tu0 + Lu0Ψ0, vt := ∂tu+ LuΨ,

and ϕ0 := Φ − Φ0 and ψ0 := Ψ − Ψ0 . Consider the formula

∇A,svs + J∇A,tvs = −(∇vt
J)vs +

λ2

ε2
JLuµ(u).
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By Step 1, we have

‖∇A,svs + J∇A,tvs‖Lp ≤ c7ε
2/p−1

and hence, by elliptic regularity for the Cauchy-Riemann operator,

‖∇A,svs‖Lp + ‖∇A,tvs‖Lp ≤ c8ε
2/p−1. (100)

Moreover, since L∗
u0
ξ0 = 0, it follows from Lemma C.2 that

L∗
u0
∇A0,t∇A0,sξ0 = ∇A0,t(L

∗
u0
∇A0,sξ0) − ρ(v0t,∇A0,sξ0)

= −∇A0,tρ(v0s, ξ0) − ρ(v0t,∇A0,sξ0).

and hence ∥∥L∗
u0
∇A0,t∇A0,sξ0

∥∥ ≤ c10ε
2/p. (101)

Here we use the fact that, by elliptic bootstrapping for J̄-holomorphic curves,
there is a uniform Lp-bound on ∇A0,tv0s. Now consider the inequality

|∇A,tϕ0| ≤ c11|L∗
uLu∇A,tϕ0|

≤ c11|(L∗
u − L∗

u0
E−1

2 )Lu∇A,tϕ0| + c11|L∗
u0
E−1

2 Lu∇A,tϕ0|

Since the operator (L∗
u − L∗

u0
E−1

2 )Lu is small, we obtain

‖∇A,tϕ0‖Lp ≤ c12
∥∥L∗

u0
E−1

2 Lu∇A,tϕ0

∥∥
Lp .

Now use Lemma C.5 and the estimates (99), (100), and (101) to obtain

‖∇A,tϕ0‖Lp ≤ c13ε
2/p−1.

The terms ‖∇A,sϕ0‖Lp , ‖∇A,tψ0‖Lp , and ‖∇A,sϕ0‖Lp are estimated similarly.
This proves Step 4.

It follows from Step 4 and Theorem 8.1 that (ui, Ai) ∈ T̃ ε
i (M̃0

B,Σ(c0)) for
some constant c0 and i sufficiently large. This contradicts our assumption and
hence proves the theorem.

11 Vortices

In this section we examine the finite energy solutions of (1) over the complex
plane Σ = C. The equations have the form

∂su+XΦ(u) + J(∂tu+XΨ(u)) = 0,
∂sΨ − ∂tΦ + [Φ,Ψ] + µ(u) = 0,

(102)

where u : C → M and Φ,Ψ : C → g. The energy of the triple (u,Φ,Ψ) is given
by

E(u,Φ,Ψ) :=

∫

C

(
|∂su+XΦ(u)|2 + |µ(u)|2

)
dsdt.
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The vortex equations (102) and the energy are invariant under the action of the
gauge group G := C∞(C,G) by

g∗(u,Φ,Ψ) := (g−1u, g−1∂sg + g−1Φg, g−1∂tg + g−1Ψg).

A solution of (102) is said to be in radial gauge if

cos θΦ(reiθ) + sin θΨ(reiθ) = 0

for every θ ∈ R and every sufficiently large r ≥ 0. It is said to be bounded if
supC |µ(u)| <∞.

Proposition 11.1. Assume (H1) and (H2). Suppose that (u,Φ,Ψ) is a smooth
bounded finite energy solution of (102) in radial gauge. Then there exists a
W 1,2-function x : R/2πZ →M and an L2-function η : R/2πZ → g such that

ẋ+Xη(x) = 0, µ(x) = 0, (103)

lim
r→∞

sup
θ∈R

d(u(reiθ), x(θ)) = 0, lim
r→∞

∫ 2π

0

|η(θ) − ηr(θ)|2 dθ = 0, (104)

where ηr(θ) := r cos(θ)Ψ(reiθ) − r sin θΦ(reiθ). Moreover,

E(u,Φ,Ψ) =

∫

C

u∗ω,

there is a constant δ > 0 such that

lim
r→∞

sup
θ∈R

r2+δ
(
|∂su+XΦ(u)|2 + |µ(u)|2

)
= 0,

where s+ it =: reiθ, and supC(f ◦ u) ≤ c, where c is as in hypothesis (H2) and
µ−1(0) ⊂ f−1([0, c]). If (H3) holds then E(u,Φ,Ψ) is an integer multiple of
~ = τN .

Note that the removable singularity theorem for J-holomorphic curves is a
corollary of Proposition 11.1 (consider the special case G = {1l} and M = M̄).
Before entering into the proof we introduce the notion of the local equivariant
symplectic action. The definition of this local action functional relies on the
following lemma. We identify S1 ∼= R/2πZ.

Lemma 11.2. Assume (H1). Then there are positive constants δ and c such
that the following holds. If x : S1 → M and η : S1 → g are smooth loops
such that supS1 |µ(x)| < δ, then there is a point x0 ∈ µ−1(0) and a smooth loop
g0 : S1 → G such that

c−1 sup
S1

∣∣η + ġ0g0
−1
∣∣ ≤ ℓ(x, η) :=

∫ 2π

0

|ẋ+Xη(x)| dθ,

d(x(θ), g0(θ)x0) ≤ c (|µ(x(θ))| + ℓ(x, η)) .
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Proof. Fix an almost complex structure J ∈ JG(M,ω) and choose r > 0 so
small that the map f : µ−1(0) × {η0 ∈ g | |η0| < r} → M , defined by

f(x0, η0) := expx0
(JLx0η0),

is an embedding. Choose δ > 0 so small that the set {|µ| < δ} is contained in
the image of f . Since JLx0 = dµ(x0)

∗ there is a constant c0 > 0 such that

|η0| ≤ c0|µ(f(x0, η0))|

for x0 ∈ µ−1(0) and η0 ∈ g with |η0| ≤ r. Let c1 > 0 be an upper bound for the
differential of f−1 and denote

c2 := sup
µ−1(0)

|Lx| .

Given a loop x such that |µ(x)| ≤ δ define (x0(θ), η0(θ)) := f−1(x(θ)). Then

d(x(θ), x0(0)) ≤ d(x(θ), x0(θ)) + ℓ(x0) ≤ c0c2|µ(x(θ))| + c1ℓ(x),

where ℓ(x) := ℓ(x, 0). This proves the lemma in the case η ≡ 0.
Now consider the general case. Suppose δ has been chosen so small that G

acts freely on the set {|µ| < δ}. Then there is a constant c3 > 0 such that

d(g, 1l) ≤ c3d(gx, x)

for g ∈ G and x ∈M with |µ(x)| < δ. Suppose (x, η) : S1 →M × g satisfies the
assumptions of the lemma. Define g : R → G by

ġ + ηg = 0, g(0) = 1l.

Then the length of the path [0, 2π] → M : θ 7→ g(θ)−1x(θ) is equal to ℓ(x, η).
Hence

d(g(2π), 1l) ≤ c3d(g(2π)−1x(2π), x(0)) ≤ c3ℓ(x, η).

Choose η1 ∈ g such that g(2π) = exp(2πη1) and |η1| ≤ c3ℓ(x, η)/2π. Since
g(θ + 2π) = g(θ)g(2π), the formula

g0(θ) := g(θ) exp(−θη1)

defines a loop in G. It satisfies |η + ġ0g
−1
0 | = |η1| ≤ c3ℓ(x, η)/2π. Hence the

length of the loop
y(θ) := g0(θ)

−1x(θ)

is bounded by a constant times ℓ(x, η). By the first part of the proof, there is
an x0 ∈ µ−1(0) such that d(y(θ), x0) ≤ c(|µ(y(θ))| + ℓ(y)). Since d(y(θ), x0) =
d(x(θ), g0(θ)x0) and |µ(y(θ))| = |µ(x(θ))|, this proves the lemma.
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Fix an almost complex structure J ∈ JG(M,ω), let δ and c be as in
Lemma 11.2, and suppose that 2cδ is smaller than the injectivity radius of
M (with respect to the metric determined by J). Let (x, η) : S1 →M × g be a
loop such that supS1 |µ(x)| < δ and ℓ(x, η) < δ. Then the local equivariant
symplectic action of the pair (x, η) is defined by

A(x, η) := −
∫
u∗ω +

∫ 2π

0

〈µ(x(θ)), η(θ)〉 dθ,

where x0 ∈ µ−1(0) and g0 : S1 → G are as in Lemma 11.2, ξ0(θ) ∈ Tg0(θ)x0
M is

the unique small tangent vector such that

x(θ) = expg0(θ)x0
(ξ0(θ)),

and u : [0, 1]× S1 →M is defined by

u(τ, θ) := expg0(θ)x0
(τξ0(θ)).

The local action is independent of the choice of x0 and g0.

Lemma 11.3. Assume (H1). There exist positive constants δ and c such that
the following holds. If (x, η) : S1 →M is a smooth loop such that supS1 |µ(x)| <
δ and ℓ(x, η) < δ then

|A(x, η)| ≤ c

∫ 2π

0

(
|ẋ+Xη(x)|2 + |µ(x)|2

)
dθ.

Proof. Let ξ0 ∈ C∞(S1, x∗0TM) and u : [0, 1]× S1 →M be as above. Then the
local equivariant symplectic action can be expressed in the form

A(x, η) =

∫ 1

0

∫ 2π

0

ω(∂τu, ∂θu+Xη(u)) dθdτ.

By Lemma 11.2, we have the pointwise inequality

|∂τu| = |ξ0| = d(x, g0x0) ≤ c1 (|µ(x)| + ℓ(x, η)) .

Moreover, by Lemma C.1,

∂θu+Xη(u) = E1Lg0x0(η + ġ0g0
−1) + τE2 (∇ξ0 + ∇ξ0Xη(g0x0)) ,

where Ei := Ei(g0x0, τξ0) for i = 1, 2. With τ = 1 we obtain, by Lemma 11.2,

|∇ξ0 + ∇ξ0Xη(g0x0)| ≤ c2 (|ẋ+Xη(x)| + ℓ(x, η)) .

This implies |∂θu+Xη(u)| ≤ c3 (|ẋ+Xη(x)| + ℓ(x, η)) and hence

|A(x, η)| ≤ c1c3

∫ 2π

0

(
|µ(x)| + ℓ(x, η)

)(
|ẋ+Xη(x)| + ℓ(x, η)

)
dθ

≤ c4

∫ 2π

0

(
|ẋ+Xη(x)|2 + |µ(x)|2

)
dθ.

This proves the lemma.
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Proof of Proposition 11.1. Let (f, J) be as in (H2) and let (u,Φ,Ψ) be a finite
energy solution of (102) in radial gauge. We prove in seven steps that (u,Φ,Ψ)
has the properties asserted in the proposition.

Step 1. limr→∞ r2
(
|∂su+XΦ(u)|2 + |µ(u)|2

)
= 0 uniformly in θ.

Abbreviate vs := ∂su+ LuΦ and vt := ∂tu+ LuΨ as in Section 9. Let

e :=
1

2
(|vs|2 + |µ(u)|2).

Then the formula (90) with λ = ε = 1 has the form

∆e = |∇A,svs|2 + |∇A,tvs|2 + 2|L∗
uvs|2 + 2|L∗

uJvs|2 + |Luµ(u)|2
− 5〈µ(u), ρ(vs, vt)〉 + 〈vs, (∇vs

J)Luµ(u)〉 − 〈vs, R(vs, vt)vt〉.

Since u(C) is contained in a compact subset of M this gives an inequality

∆e ≥ −c1e2.

Namely, choose δ > 0 such that Lx is injective whenever |µ(x)|2 < δ. Then the
first term in the second row can be estimated from below by −|Luµ(u)|2/2 −
c|vs|4 whenever e ≤ δ. In case e ≥ δ we can use the inequalities ∆e ≥ −c(e+e2)
and e ≤ e2/δ. Now it follows from [MS1, Lemma 4.3.2] that there is a constant
c2 > 0 such that

|z| − r ≥ c2 =⇒ e(z) ≤ 8

πr2

∫

Br(z)

e.

With r := |z|/2 this implies lim|z|→∞ |z|2e(z) = 0.

Step 2. For R > 0 sufficiently large, we have

E(u,Φ,Ψ; C \BR) = A(xR, ηR),

where xR(θ) := u(Reiθ) and ηR(θ) := R cos θΨ(Reiθ) −R sin θΦ(Reiθ).

The energy identity on BR = {|z| ≤ R} has the form

E(u,Φ,Ψ;BR) =

∫

BR

u∗ω −
∫ 2π

0

〈µ(xR(θ)), ηR(θ)〉 dθ.

For R sufficiently large denote by uR : [0, 1]×S1 →M the function used in the
definition of the local symplectic action of (xR, ηR). Then uR(1, θ) = xR(θ) and
uR(0, θ) = gR(θ)xR0 for some point xR0 ∈ µ−1(0) and some loop gR : S1 → G.
The homotopy class of the connected sum vR := u|BR

#(−uR) (the orientation
of uR is reversed) is independent of R. Hence the number

∫
vR

∗ω = E(u,Φ,Ψ;BR) + A(xR, ηR)
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is independent of R. Since A(xR, ηR) tends to zero as R → ∞ it follows that

E(u,Φ,Ψ;BR) + A(xR, ηR) = E(u,Φ,Ψ)

for every sufficiently large number R. This proves Step 2.

Step 3. supC(f ◦ u) ≤ c.

Suppose, by contradiction, that supC(f ◦ u) > c. Then there exists a regular
value a of f ◦ u such that

c < a < sup
C

(f ◦ u).

Hence the set
U := {z ∈ C | f(u(z)) ≥ a}

is a smooth submanifold of C with boundary. Since µ−1(0) ⊂ f−1([0, c]) it
follows from Step 1 that there exists a number R > 0 such that

sup
C\BR

(f ◦ u) < a < sup
C

(f ◦ u).

Hence U is compact and has a nonempty boundary. By (H2), ∆(f ◦ u) ≥ 0 in
U (see [CGMS]). Hence

0 ≤
∫

U

∆(f ◦ u) =

∫

∂U

∂(f ◦ u)
∂ν

< 0.

This contradiction proves Step 3.

Step 4. Consider equation (102) in polar coordinates s + it = eτ+iθ. Define
ũ : R × S1 →M and Φ̃, Ψ̃ : R × S1 → g by

ũ(τ, θ) := u(eτ+iθ),

Φ̃(τ, θ) := eτ cos θΦ(eτ+iθ) + eτ sin θΨ(eτ+iθ),

Ψ̃(τ, θ) := eτ cos θΨ(eτ+iθ) − eτ sin θΦ(eτ+iθ).

Then ds ∧ dt = e2τdτ ∧ dθ, Φ ds+ Ψ dt = Φ̃ dτ + Ψ̃ dθ, and (102) is equivalent
to

ṽτ + Jṽθ = 0, κ̃+ e2τµ(ũ) = 0,

where

ṽτ := ∂τ ũ+ LũΦ̃, ṽθ := ∂θũ+ LũΨ̃, κ̃ := ∂τ Ψ̃ − ∂θΦ̃ + [Φ̃, Ψ̃].

The radial gauge condition has the form Φ̃(τ, θ) = 0 for large τ . The energy of
the triple (ũ, Φ̃, Ψ̃) is given by

E(ũ, Φ̃, Ψ̃) =

∫ ∞

−∞

∫ 2π

0

(
|ṽτ |2 + e2τ |µ(ũ)|2

)
dθdτ.
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Step 5. There exist positive constants c and δ such that, for every τ0 ≥ 0,

ε(τ0) :=

∫ ∞

τ0

∫ 2π

0

(
|ṽτ |2 + e2τ |µ(ũ)|2

)
dθdτ ≤ ce−δτ0 .

By Step 2 and Lemma 11.3, we have

ε(τ) = A(xeτ , ηeτ )

≤ δ−1

∫ 2π

0

(
|ṽτ (τ, θ)|2 + e2τ |µ(ũ(τ, θ))|2

)
dθ

= −δ−1ε′(τ)

for some constant δ > 0 and every sufficiently large real number τ . In other
words, the function τ 7→ eδτε(τ) is nonincreasing for τ sufficiently large. Hence
there exists a real number τ0 such that

τ ≥ τ0 =⇒ ε(τ) ≤ e−δ(τ−τ0)ε(τ0).

Step 6. There exist positive constants c and δ such that, for every τ0 ≥ 0,

sup
θ∈R

(
|ṽτ (τ0, θ)|2 + e2τ0 |µ(ũ(τ0, θ))|2

)
≤ ce−δτ0 ,

∫ ∞

τ0

∫ 2π

0

e4τ |µ(ũ(τ, θ)|2 dθdτ ≤ ce−δτ0 .

By Step 1, the function |ṽτ |2 + e2τ |µ(ũ)|2 is bounded. Hence we can apply
Lemma 9.3 to the open set Ω := (−1, 2) × (−2π, 4π), the compact subset K :=
[0, 1] × [0, 2π], the function λ(τ, θ) := eτ , the constant ε := e−τ0 , and the
shifted functions (τ, θ) 7→ (ũ(τ + τ0, θ), Φ̃(τ + τ0, θ), Ψ̃(τ + τ0, θ)). It follows from
Lemma 9.3 with p = 2 that there is a constant c > 0 such that

e4τ0
∫ τ0+1

τ0

∫ 2π

0

|µ(ũ)|2 dθdτ ≤ c

∫ τ0+2

τ0−1

∫ 4π

−2π

(
|ṽτ |2 + e2τ0 |µ(ũ)|2

)
dθdτ

for every τ0 ∈ R. This implies

∫ τ0+1

τ0

∫ 2π

0

e4τ |µ(ũ)|2 dθdτ ≤ 3ce6
∫ τ0+2

τ0−1

∫ 2π

0

(
|ṽτ |2 + e2τ |µ(ũ)|2

)
dθdτ.

Replace τ0 by τ0 + k and take the sum over all integers k ≥ 0 to obtain

∫ ∞

τ0

∫ 2π

0

e4τ |µ(ũ)|2 dθdτ ≤ 9ce6
∫ ∞

τ0−1

∫ 2π

0

(
|ṽτ |2 + e2τ |µ(ũ)|2

)
dθdτ.

Hence the L2-estimate follows from Step 5. To prove the L∞-estimate use
Lemma 9.3 again with p = ∞.
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Step 7. There exists a W 1,2-function x : S1 → µ−1(0) and an L2-function
η : S1 → g such that

lim
τ→∞

sup
θ∈R

d(ũ(τ, θ), x(θ)) = 0, lim
τ→∞

∫ 2π

0

∣∣∣Ψ̃(τ, θ) − η(θ)
∣∣∣
2

dθ = 0,

and ẋ + Xη(x) = 0. Moreover, E(u,Φ,Ψ) =
∫
u∗ω, and if (H3) holds then

E(u,Φ,Ψ) ∈ Z~.

By Hölder’s inequality and the radial gauge assumption, we have, for τ1 > τ0,

∣∣∣Ψ̃(τ1, θ) − Ψ̃(τ0, θ)
∣∣∣
2

≤
(∫ τ1

τ0

e2τ |µ(ũ(τ, θ))| dτ
)2

≤ (τ1 − τ0)

∫ τ1

τ0

e4τ |µ(ũ(τ, θ))|2 dτ.

Hence the existence of the L2-limit of Ψ̃ follows from Step 6. That ũ(τ, θ)
converges uniformly as τ tends to infinity follows from the exponential decay of
ṽτ = ∂τ ũ in Step 6. That the limit is aW 1,2-function and satisfies ẋ+Xη(x) = 0
follows from the fact that ṽθ = ∂θu+XΨ̃(ũ) converges (exponentially) to zero as
τ tends to infinity. That E(u,Φ,Ψ) =

∫
u∗ω follows from the energy identity in

the proof of Step 2 and the L2-convergence of Ψ̃. That E(u,Φ,Ψ) is an integer
multiple of ~ (when (H3) holds) follows from the proof of Step 2.

Remark 11.4. Every map u : C →M that satisfies (104) and (103) determines
an equivariant homology class B = [u] ∈ H2(MG; Z) as follows. Homotop u to
a map v : D →M such that

v(eiθ) = g(eiθ)x0.

Now define a principal bundle P → S2 ∼= (Z2 ×D)/ ∼ by

P := (Z2 ×D × G)/ ∼, (0, eiθ, h) ∼ (1, eiθ, g(eiθ)h).

Then v determines a G-equivariant map w : P →M by w(0, z, h) := h−1x0 and
w(1, z, h) := h−1v(z). The equivariant homology class of u is defined to be the
equivariant homology class of w.

12 Proof of Theorem A

We begin by constructing a G-equivariant smooth function from a suitable open
subset of B × P = C∞

G (P,M) × A(P ) × P into a suitable finite dimensional
approximation of EG. For positive constants δ and r denote

M δ := {x ∈M | |µ(x)| ≤ δ} ,

Bδ,r :=

{
(u,A) ∈ C∞

G (P,M) ×A(P )
∣∣∣ ∃z ∈ Σ sup

Br(z)

|µ ◦ u| < δ

}
.
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Throughout we assume that G is a Lie subgroup of U(k). Then, for every integer
n ≥ k, a finite dimensional approximation of the classifying space of G is the
quotient

BGn := EGn/G, EGn := F(k, n) :=
{
Θ ∈ C

n×k |Θ∗Θ = 1l
}
.

There is an obvious embedding of the space EGn = F(k, n) (of unitary k-frames
in C

n) into F(k, n+ 1) for every n ≥ k and the direct limit is a model for EG.
The homotopy groups of the approximations EGn stabilize. Let δ > 0 be so
small that G acts freely on M δ and choose a smooth G-equivariant classifying
map θ : M δ → EGm for some integer m ≥ k. Such a map exists for abstract
homotopy theoretic reasons but can also be constructed explicitly from local
trivializations of the principal G-bundle M δ →M δ/G.

Proposition 12.1. Let θ : M δ → EGm be as above. Then, for every r > 0,
there exist an integer n ≥ m and a map Θ : Bδ,r ×P → EGn with the following
properties.

(i) For g ∈ G, h ∈ G, and (u,A, p) ∈ Bδ,r × P ,

Θ(g−1u, g∗A, pg(p)−1) = Θ(u,A, p) = hΘ(u,A, ph). (105)

(ii) Θ is smooth with respect to the C0 Banach manifold structure on (the com-
pletion of) Bδ,r × P .

(iii) Let ι : EGm → EGn be the obvious inclusion. Then

|µ(u(p))| < δ =⇒ Θ(u,A, p) = ι ◦ θ(u(p)).

Proof. Cover Σ by finitely many distinct balls Br(zi), i = 1, . . . , ℓ, and choose
points p1, . . . , pℓ ∈ P such that π(pi) = zi. Then, for every (u,A) ∈ Bδ,r, there
exists an i ∈ {1, . . . , ℓ} such that u(pi) ∈ M δ. Thus the open set Bδ,r × P
is contained in the finite union of the following open sets Uij , i, j = 1, . . . , ℓ.
Choose ε > 0 so small that θ extends to an equivariant function (still denoted
by θ) from M δ+ε to EGm and define

U0 := {(u,A, p) | |µ(u(p))| < δ + ε} ,
Uij := {(u,A, p) |π(p) ∈ Br(zi), |µ(u(pj))| < δ + ε} .

For every smooth path γ : [0, 1] → Σ and any two points p0 ∈ π−1(γ(0)) and
p1 ∈ π−1(γ(1)) the holonomy ρA(p1, γ, p0) ∈ G of the connection A ∈ A(P ) is
defined by p1ρA(p1, γ, p0) := γ̃(1), where γ̃ : [0, 1] → P is the unique horizontal
lift of γ with γ̃(0) = p0. It satisfies

ρA(p1g1, γ, p0g0) = g1
−1ρA(p1, γ, p0)g0,

ρg∗A(p1, γ, p0) = g(p1)
−1ρA(p1, γ, p0)g(p0)

for g0, g1 ∈ G and g ∈ G. Hence the map

B × π−1(γ(0)) →M : (u,A, p0) 7→ ρA(p1, γ, p0)
−1u(p1)
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is G-invariant and G-equivariant. Choose a finite sequence of smooth functions
γij : [0, 1] ×Br(zi) → Σ such that

γij(0, z) = z, γij(1, z) = zj.

Then the functions Θ0 : U0 → EGm and Θij : Uij → EGm, defined by

Θ0(u,A, p) := θ(u(p)), Θij(u,A, p) := θ
(
ρA
(
pj , γij(·, π(p)), p

)−1
u(pj)

)

for i, j = 1, . . . , ℓ, satisfy (105). Now choose a G-invariant smooth function
β : M → [0, 1] such that β(x) = 1 for x ∈M δ and β(x) = 0 for x ∈M \M δ+ε/2.

Define ρj :
⋃ℓ
i=1 Uij → [0, 1] and ρ0 : U0 → [0, 1] by

ρ0(u,A, p) :=
β(u(p))√

β(u(p))2 + (1 − β(u(p)))2
,

ρj(u,A, p) :=
β(u(pj))(1 − β(u(p)))√

(β(u(p))2 + (1 − β(u(p)))2)
∑ℓ

k=1 β(u(pk))2

for j = 1, . . . , ℓ. Then ρj is smooth with respect to the C0 Banach manifold
structure on (the completion of) B × P . Moreover,

ℓ∑

j=0

ρj(u,A, p)
2 = 1

and ρ0(u,A, p) = 1 whenever |µ(u(p))| ≤ δ. Now choose a finite sequence of
smooth functions σi : Σ → [0, 1], i = 1, . . . , ℓ, such that suppσi ⊂ Br(zi) and∑ℓ
i=1 σi

2 = 1. Then the function Θ : Bδ,r × P → EG(ℓ2+1)m, defined by

Θ(u,A, p) :=




ρ0(u,A, p)Θ0(u,A, p)
...

σi(π(p))ρj(u,A, p)Θij(u,A, p)
...



,

is the required classifying map.

The integer n = (ℓ2 + 1)m in the proof of Proposition 12.1 diverges to
infinity as r tends to zero. In general, there is no G-equivariant map from
Bδ := {(u,A) ∈ B | min |µ ◦ u| < δ} to any finite dimensional approximation
of EG.

Lemma 12.2. Assume (H1−3). Let B ∈ H2(MG; Z), (Σ, jΣ, dvolΣ) be a com-
pact Riemann surface, π : P → Σ be the principal G-bundle determined by B,
and Σ → JG(M,ω) be a smooth family of G invariant ω-compatible almost com-
plex structures on M such that each Jz agrees with the almost complex structure
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of (H2) outside of a sufficiently large compact subset of M . Then for every
δ > 0 there exist positive constants r and ε0 such that

M̃ε
B,Σ ⊂ Bδ,r

for 0 < ε ≤ ε0.

Proof. Suppose the result is false. Then there exist a constant δ > 0 and
sequences

ri → 0, εi → 0, (ui, Ai) ∈ M̃εi

B,Σ

such that (ui, Ai) /∈ Bδ,ri for every i. This means that, for every p ∈ P , there
exists a sequence pi ∈ P such that

lim
i→∞

pi = p, |µ(ui(pi))| ≥ δ.

This contradicts the bubbling argument in Step 5 of the proof of Theorem A
below.

Let ε0 > 0 be as in Lemma 12.2. For 0 ≤ ε ≤ ε0 we consider the evaluation
map

evεG : Mε
B,Σ × Σ →M ×G EGn,

given by
evεG([u,A, p]) := [u(p),Θ(u,A, p)]

where δ > 0 is chosen such that Gx = {1l} for every x ∈ M δ, r > 0 is as in
Lemma 12.2, and Θ : Bδ,r × P → EGn is the map of Proposition 12.1. Recall
that M0

B,Σ and Mε
B,Σ have the same dimension.

Proposition 12.3. For every c0 > 0 there exist positive constants c and ε0
such that the following holds.

(i) For 0 < ε ≤ ε0 the map T ε : M0
B,Σ(c0) → Mε

B,Σ is an orientation preserving
embedding.

(ii) For 0 < ε ≤ ε0,

dC1(ev0
G, ev

ε
G ◦ (T ε × id)) ≤ cε1−2/p,

where the C1-distance is understood on the space of continuously differentiable
maps from M0

B,Σ(c0) × Σ to M ×G EGn.

Lemma 12.4. Assume (H1) and (H4) and let B̄ ∈ H2(M̄ ; Z) be a nontorsion
homology class. For every p > 2 and every c0 > 0 there exist positive constants
ε0 and c such that the following holds for every ε ∈ (0, ε0]. Let I ⊂ R be an
interval and

I → M̃0
B,Σ(c0) : r 7→ (u0(r), A0(r))

be a smooth path that satisfies (80). Then every smooth vector field

r 7→ ζ(r) ∈ im
(
Dε

(u0(r),A0(r))

)∗
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satisfies the inequality

∥∥∥∇̃rζ
∥∥∥

1,p,ε
≤ c

(
ε
∥∥∥∇̃rDεζ

∥∥∥
0,p,ε

+
∥∥∥∇̃rπu0Dεζ

∥∥∥
Lp

+ ε−1 ‖ζ‖1,p,ε

)

for r ∈ I, where Dε := Dε
(u0(r),A0(r))

and πu0 is defined by (9).

Proof. Let r 7→ ζ′(r) ∈ X ′
u0(r) be the smooth path defined by ζ = Dε∗ζ′. Then,

by Lemmata 4.7, 4.8, and 8.4, we have
∥∥∥∇̃rζ

∥∥∥
1,p,ε

≤
∥∥∥Dε∗∇̃rζ′

∥∥∥
1,p,ε

+
∥∥∥∇̃rDε∗ζ′ −Dε∗∇̃rζ′

∥∥∥
1,p,ε

≤ c2

(
ε
∥∥∥DεDε∗∇̃rζ′

∥∥∥
0,p,ε

+
∥∥∥πu0DεDε∗∇̃rζ′

∥∥∥
Lp

)

+
∥∥∥∇̃rDε∗ζ′ −Dε∗∇̃rζ′

∥∥∥
1,p,ε

≤ c2

(
ε
∥∥∥Dε∇̃rζ

∥∥∥
0,p,ε

+
∥∥∥πu0DεDε∗∇̃rζ′

∥∥∥
Lp

)

+ c3

∥∥∥∇̃rDε∗ζ′ −Dε∗∇̃rζ′
∥∥∥

1,p,ε

≤ c2

(
ε
∥∥∥∇̃rDεζ

∥∥∥
0,p,ε

+
∥∥∥πu0DεDε∗∇̃rζ′

∥∥∥
Lp

)

+ c2ε
∥∥∥Dε∇̃rζ − ∇̃rDεζ

∥∥∥
0,p,ε

+ c4ε
−1 ‖ζ′‖2,p,ε

≤ c2

(
ε
∥∥∥∇̃rDεζ

∥∥∥
0,p,ε

+
∥∥∥∇̃rπu0Dεζ

∥∥∥
Lp

)

+ c2

∥∥∥[πu0DεDε∗, ∇̃r]ζ′
∥∥∥
Lp

+ c5ε
−1 ‖ζ‖1,p,ε

≤ c2

(
ε
∥∥∥∇̃rDεζ

∥∥∥
0,p,ε

+
∥∥∥∇̃rπu0Dεζ

∥∥∥
Lp

)

+ c6

(
‖Dεζ‖0,p,ε + ε−1 ‖πu0Dεζ‖Lp + ε−1 ‖ζ‖1,p,ε

)
.

The last inequality follows as in Step 7 in the proof of Lemma 4.8. Since

‖Dεζ‖0,p,ε + ε−1 ‖πu0Dεζ‖Lp ≤ c7ε
−1 ‖ζ‖1,p,ε ,

the lemma is proved.

Proof of Proposition 12.3. Let r 7→ (u0(r), A0(r)) be as in Lemma 12.4 and
r 7→ ζε(r) = (ξε(r), αε(r)) ∈ im (Dε

(u0(r),A0(r))
)∗ be as in Theorem 6.1 so that

T̃ ε(u0(r), A0(r)) = (uε(r), Aε(r)) := (expu0(r)(ξε(r)), A0(r) + αε(r)).

Let Fε
r : Xu0(r) → X ′

u0(r) be defined by (26). Then Fε
r (ζε(r)) = 0 and hence

Dεζε =




0
0

∗FA0(r)


+

(
Fε
r (ζε(r)) −Fε

r (0) − dFε
r (0)ζε(r)

)
.
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Differentiating this identity with respect to r we find

∥∥∥∇̃rDεζε

∥∥∥
0,p,ε

≤ c

(
ε+ ε−1−2/p ‖ζε(r)‖1,p,ε

(
‖ζε(r)‖1,p,ε +

∥∥∥∇̃rζε(r)
∥∥∥

1,p,ε

))
.

(See Proposition 5.2.) Hence, by Lemma 12.4,

∥∥∥∇̃rζε
∥∥∥

1,p,ε
≤ c′ε. (106)

Since

(∂ruε, ∂rAε) = (E1(u0, ξε)∂ru0 + E2(u0, ξε)∇rξε, ∂rA0 + ∂rαε) ,

this shows that T ε : M0
B,Σ(c0) → Mε

B,Σ is an orientation preserving embedding.
Indeed, it follows that the restriction of T ε to every ball of radius δ is an
embedding for δ and ε sufficiently small and hence, by Theorem 6.1, T ε is an
embedding for ε sufficiently small. For ε ≥ 0 denote

PεB,Σ(c0) := M̃ε
B,Σ(c0) ×G P

and consider the map evε : PεB,Σ(c0) →M defined by

evε([uε, Aε, p]) := uε(p).

Then it follows from (106) and the inequality ‖ζε‖2,p,ε ≤ c′ε2 of Theorem 6.1
that

dC1(ev0, evε ◦ (T ε × id)) ≤ c′′ε1−2/p.

For ε sufficiently small we have evεG = θδ ◦ evε, where θδ : M δ →M ×G EGn is
given by θδ(x) := [x, θ(x)]. This proves the proposition.

Proof of Theorem A. The result is obvious when B̄ = 0. Moreover, both mod-
uli spaces are empty when B̄ is a nonzero torsion class. Hence assume that
B̄ ∈ H2(M̄ ; Z) is a nontorsion homology class, denote by B ∈ H2(MG; Z)
the corresponding equivariant homology class, fix a compact Riemann surface
(Σ, jΣ, dvolΣ), and let π : P → Σ be a principal G-bundle whose characteristic
class b ∈ H2(BG; Z) is the pushforward of B. In the course of the proof it will
be necessary to also consider other bundles π′ : P ′ → Σ with corresponding
equivariant homology clsses B′ ∈ H2(MG; Z). By (H2), there exists a constant
c > 0 such that u(P ) ⊂ M c := {x ∈ M | |µ(x)| ≤ c} for every solution (u,A)
of (7) over any Riemann surface. Note that c can be chosen to be a regular
value of the function M → R : x 7→ |µ(x)|.

Let δ > 0 such that Gx = {1l} for every x ∈ M δ and let r and ε0 be as in
Lemma 12.2. Fix k points p1, . . . , pk ∈ P such that the points zi := π(pi) ∈
Σ are pairwise distinct. Choose an integer n, a G-equivariant smooth map
θ : M δ → EGn, and k smooth classifying maps Θi : Bδ,r → EGn, defined by
Θi(u,A) := Θ(u,A, pi), where Θ is as in Proposition 12.1. Then

Θi(g
−1u, g∗A) = g(pi)

−1Θi(u,A)
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and
|µ(u(pi))| ≤ δ =⇒ Θi(u,A) = θ(u(pi))

for i = 1, . . . , k. For 0 ≤ ε ≤ ε0 consider the evaluation maps

evεB,i : Mε
B,Σ → M c

G := M c ×G EGn

given by evεB,i([u,A]) := [u(pi),Θi(u,A)]. Let evεB : Mε
B,Σ → (M c

G)k denote the
product map defined by

evεB([u,A]) :=
(
evεB,1([u,A]), . . . , evεB,k([u,A])

)
.

For any subset I = {i1, . . . , ij} ⊂ {1, . . . , k} such that i1 < · · · < ij and any
class B′ ∈ H2(MG; Z) that descends to H2(M̄ ; Z) we consider the evaluation
map ev0

B′,I : M0
B′,Σ → (M c

G)|I| given by

ev0
B′,I([u,A]) :=

(
[u(pi1), θ(u(pi1))], . . . , [u(pij ), θ(u(pij ))]

)
.

Now fix equivariant cohomology classes α1, . . . , αk ∈ H∗(MG; Z) such that

mi := deg(αi) < 2N,

k∑

i=1

deg(αi) = dim M0
B,Σ.

There is a natural embedding M c
G → MG and we denote by αci ∈ Hmi(M c

G; Z)
the pullback of αi under this embedding. Note that M c

G is a compact manifold
with boundary. Replacing αi by some integer multiple of αi, if necessary, we
may assume without loss of generality that, for every i, there exists a compact
oriented manifold with boundary Yi of dimension

dim Yi = dim M c
G −mi

and a smooth map
fi : (Yi, ∂Yi) → (M c

G, ∂M
c
G)

such that the homology class in H∗(M
c
G, ∂M

c
G) represented by fi is Poincaré

dual to αci . For I = {i1, . . . , ij} ⊂ {1, . . . , k} such that i1 < · · · < ij we denote
the corresponding product map by

YI := Yi1 × · · · × Yij , fI := fi1 × · · · × fij : YI → (M c
G)|I|.

For I = {1, . . . , k} we abbreviate Y := Y{1,...,k} and f := f{1,...,k}. The functions
f1, . . . , fk can be chosen such that the following holds.

(H5) fi is transverse to µ−1(0) ×G EGn for every i and fI is transverse to
ev0
B′,I for every subset I ⊂ {1, . . . , ℓ} and every equivariant homology

class B′ ∈ H2(MG; Z).
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Now the notation has been set up and we shall prove Theorem A in five steps.
For 0 ≤ ε ≤ ε0 and B ∈ H2(MG; Z) consider the set

Mε
B,Σ;f :=

{
([u,A], y1, . . . , yk) ∈ Mε

B,Σ × Y | evεB,i([u,A]) = fi(yi)
}
.

Step 1. The map ev0
B : M0

B,Σ → (µ−1(0) ×G EGn)k is a pseudo-cycle.

The map ev0
B is the composition ev0

B = ιk ◦ evB, where the evaluation map
evB : M0

B,Σ → M̄k is given by evB([u,A]) := ([u(p1)], . . . , [u(pk)]) and the

embedding ι : M̄ → µ−1(0) ×G EGn is given by ι([x]) := [x, θ(x)]. That evB is
a pseudo-cycle was proven in [MS1]. Hence ev0

B is a pseudo-cycle. (see [MS1]
for the definitions).

Step 2. M0
B,Σ;f is a finite set and the number of elements of M0

B,Σ;f , counted
with appropriate signs, is the Gromov–Witten invariant:

GW B̄,Σ(ᾱ1, . . . , ᾱk) = ev0
B · f =

∑

([u0,A0],y)∈M0
B,Σ;f

ν0([u0, A0], y).

Here the function ν0 : M0
B,Σ;f → {±1} denotes the intersection index of the

maps ev0
B and f .

Consider the functions ϕi : Xi → µ−1(0) ×G EGn given by

Xi := f−1
i (µ−1(0) ×G EGn) ⊂ Yi, ϕi := fi|Xi

.

Since fi is transverse to µ−1(0)×G EGn, Xi is a smooth submanifold of Yi and
ϕi is dual to the cohomology class α0

i ∈ H∗(µ−1(0) ×G EGn; Z) obtained from
αci by pullback under the obvious inclusion µ−1(0) ×G EGn → M c

G. The class
α0
i agrees with the image of the class ᾱi ∈ H∗(M̄ ; Z) under the homomorphism
H∗(M̄ ; Z) ∼= H∗(µ−1(0) ×G EG; Z) → H∗(µ−1(0) ×G EGn; Z) :

αci ∈ H∗(M c ×G EGn; Z)

��

H∗(MG; Z)oo

κ

��

∋ αi

α0
i ∈ H∗(µ−1(0) ×G EGn; Z) H∗(M̄ ; Z)oo ∋ ᾱi

Hence another representative of the class α0
i can be obtained as follows. Let

ψ̄i : Zi → M̄ be a smooth function, defined on a compact manifold Z̄i that is
dual to ᾱi (replace ᾱi by an integer multiple of ᾱi, if necessary). Lift ψ̄i to a
G-equivariant map ψ̃i : Qi → µ−1(0), defined on the total space of a principal
G-bundle Qi → Zi, and consider the induced map

ψi : Qi ×G EGn → µ−1(0) ×G EGn.

It is homologous to ϕi. Let ϕ := ϕ1 × · · · × ϕk and ψ := ψ1 × · · · × ψk. Then

ev0
B · f = ev0

B · ϕ = ev0
B · ψ = evB · ψ̄ = GW B̄,Σ(ᾱ1, . . . , ᾱk).
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The first equality follows from the definition of ϕ, the second from the fact
that ev0

B is a pseudo-cycle (Step 1) and ϕ is homologous to ψ, and the last
equality follows from the definition of the Gromov–Witten invariants (see [MS1]
for example).

Step 3. The invariant ΦB,Σ can be expressed as the intersection number

ΦB,Σ(α1 ⌣ · · ·⌣ αk) = evεB · f

for ε > 0 sufficiently small.

The map f : Y → (M c
G)k is dual to the class π∗

1α1 ⌣ · · · ⌣ π∗
kαk, where

πi : (M c
G)k → M c

G denotes the projection onto the ith factor. Moreover, evεB,i =
πi ◦ evεB. Hence

evεB · f =

∫

Mε
B,Σ

(evεB)∗ (π∗
1α

c
1 ⌣ · · ·⌣ π∗

kα
c
k)

=

∫

Mε
B,Σ

(evεB,1)
∗αc1 ⌣ · · ·⌣ (evεB,k)

∗αck

=

∫

Mε
B,Σ

(ιc ◦ evεB,1)
∗α1 ⌣ · · ·⌣ (ιc ◦ evεB,k)

∗αk

=

∫

Mε
B,Σ

ev∗
G (α1 ⌣ · · ·⌣ αk) .

Here ιc : M c
G → MG denotes the obvious inclusion. The last equality follows

from the fact that ιc ◦ evεB,i : Mε
B,Σ →MG is homotopic to the evaluation map

evG in the definition of ΦB,Σ.

Step 4. For ε > 0 sufficiently small there is an injective map

T ε
B,Σ;f : M0

B,Σ;f → Mε
B,Σ;f

such that

T ε
B,Σ;f ([u0, A0], y0,1, . . . , y0,k) = ([uε, Aε], yε,1, . . . , yε,k)

satisfies

(uε, Aε) = (expu0
(ξε), A0 + αε), ‖(ξε, αε)‖2,p,ε ≤ cε2−2/p,

νε([uε, Aε], yε,1, . . . , yε,k) = ν0([u0, A0], y0,1, . . . , y0,k).

Here νε : Mε
B,Σ;f → {±1} denotes the intersection index of the maps evεB and

f (in the transverse case).

Choose c0 > 0 such that M0
B,Σ;f ⊂ M0

B,Σ(c0) and consider the map

(evεB ◦ T ε) × f : M0
B,Σ(c0) × Y →M c

G ×M c
G.
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By Proposition 12.3 (ii), this map converges to ev0
B × f in the C1-topology

as ε tends to zero. By (H5) the map ev0
B × f is transverse to the diagonal

∆ ⊂ M c
G × M c

G. Hence (evεB ◦ T ε) × f is transverse to ∆ for ε sufficiently
small. Moreover, by Theorem 6.1, the image of M0

B,Σ;f under (evεB ◦ T ε) × f

is ε2−2/p-close to ∆. Hence, by the implicit function theorem, there is, for ε
sufficiently small, a unique injective map

M0
B,Σ;f → ((evεB ◦ T ε) × f)−1(∆) ⊂ M0

B,Σ(c0) × Y

such that the distance between each point and its image is bounded above by a
constant times ε2−2/p. Composing this map with

T ε × id : M0
B,Σ × Y → Mε

B,Σ × Y

we obtain the required map T ε
B,Σ;f . By Proposition 12.3 (i), the map T ε

B,Σ;f

identifies the two intersection indices.

Step 5. Assume Σ = S2. Then there exists a constant ε0 > 0 such that the
map T ε

B,Σ;f : M0
B,Σ;f → Mε

B,Σ;f of Step 4 is surjective for 0 < ε ≤ ε0.

Suppose, by contradiction, that there exist sequences εν → 0 and

([uν , Aν ], y1ν , · · · , ykν) ∈ Mεν

B,S2;f

such that
([uν , Aν ], y1ν , · · · , ykν) /∈ im T εν

B,S2;f .

Consider the sequence

Cν := sup
P

(
|dAν

uν | + ε−1
ν |µ(uν)|

)
.

We prove that Cν diverges to ∞. Assume otherwise that Cν is bounded. Then,
by Theorem D, there exists a constant c1 > 0 such that [uν , Aν ] belongs to the
image of the map T εν

B,S2 : M0
B,S2(c1) → Mεν

B,S2 for ν sufficiently large. Write

(uν , Aν) = T̃ εν (u0ν , A0ν), (u0ν , A0ν) ∈ M̃0
B,S2(c1).

Since M0
B,S2(c1) is compact (it is a moduli space of holomorphic spheres satis-

fying a uniform bound on their first derivatives) we may assume that the limit

(u0, A0) = lim
ν→∞

(u0ν , A0ν) ∈ M̃0
B,S2(c1)

exists. Moreover, since Y is compact, we may assume, by passing to a further
subsequence if necessary, that the limit

(y1, . . . , yk) = lim
ν→∞

(y1ν , . . . , ykν)

exists. Since evεν

B ◦ T εν converges to ev0
B in the C1-topology, and

evεν

B ◦ T εν ([u0ν , A0ν ]) = f(y1ν , · · · , ykν)
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we deduce that ([u0, A0], y1, . . . , yk) ∈ M0
B,S2;f and, for ν sufficiently large,

(T εν ([u0ν , A0ν ]), y1ν , · · · , ykν) = T εν

B,S2;f([u0, A0], y1, . . . , yk).

The last assertion follows from the uniqueness part of the implicit function theo-
rem used in the definition of the maps T εν

B,S2;f . This contradicts our assumption.
Thus we have proved that Cν diverges to ∞ as claimed.

Now choose a sequence pν ∈ P such that

cν := |dAν
uν(pν)| + ε−1

ν |µ(uν(pν))| → ∞.

Passing to a subsequence, if necessary, we may assume that pν converges. Denote

w := lim
ν→∞

π(pν).

Moreover, by applying Hofer’s trick (see [MS1, Lemma 4.5.3] for example) we
may assume that

sup
Brν (π(pν))

(
|dAν

uν | + ε−1
ν |µ(uν)|

)
≤ 2cν , rνcν → ∞.

We distinguish three cases.

Case 1: cνεν → ∞.

Case 2: There exists a δ > 0 such that δ ≤ cνεν ≤ δ−1 for all ν.

Case 3: cνεν → 0.

We shall prove that in Case 1 a nonconstant J-holomorphic sphere in M bubbles
off at the point w, in Case 2 a nontrivial solution of the vortex equations (102)
bubbles off, and in Case 3 a nonconstant J̄-holomorphic sphere in M̄ bubbles
off. To see this, we choose a local holomorphic coordinate chart s + it on Σ
that maps w to zero, identifies a neighbourhood of w with the ball B2r, and
identifies the volume form dvolΣ with the form λ2ds ∧ dt, where λ(0) = 1.
Moreover, we choose a local frame of the bundle P along this coordinate chart.
We use the notation of Remark 4.1. Then the sequences uν : B2r → M and
Φν ,Ψν : B2r → g satisfy

vνs + Jvνt = 0, λ−2κν + ε−2
ν µ(uν) = 0,

vνs := ∂suν +XΦν
(uν), vνt := ∂tuν +XΨν

(uν),

κν := ∂sΨν − ∂tΦν + [Φν ,Ψν].

Moreover, there is a sequence wν := (sν , tν) → 0 such that

cν = λ(wν)
−1 |vνs(wν)| + ε−1

ν |µ(u(wν))| ≥
1

2
sup

Brν (wν)

(
λ−1 |vνs| + ε−1

ν |µ(uν)|
)
.
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Let us define ũν : Brνcν
→M and Φ̃ν , Ψ̃ν : Brνcν

→ g by

ũν(z) := u(wν + c−1
ν z),

Φ̃ν(z) := c−1
ν Φν(wν + c−1

ν z), Ψ̃ν(z) := c−1
ν Ψν(wν + c−1

ν z),

and λ̃ν : Brνcν
→ (0,∞) and J̃ν : Brνcν

→ JG(M,ω) by

λ̃ν(z) := λ(wν + c−1
ν z), J̃ν(z) = Jwν+c−1

ν z.

Then λ̃ν converges to 1 in the C∞-topology and J̃ν converges to J0 in the
C∞-topology. Moreover,

ṽνs + J̃ν ṽνt = 0, λ̃−2
ν κ̃ν + (cνεν)

−2µ(ũν) = 0,

sup
Brν cν

(
1

λ̃ν
|ṽνs| +

1

cνεν
|µ(ũν)|

)
≤ 2

(
1

λ̃ν(0)
|ṽνs(0)| + 1

cνεν
|µ(ũν(0))|

)
= 2.

Case 1: Suppose that cνεν diverges to infinity. Then, by hypothesis (H2),
the curvature κ̃ν converges uniformly to zero. Hence, by Uhlenbeck’s weak
compactness theorem [U, W], we may assume that Φ̃ν and Ψ̃ν converge in the
sup-norm and weakly in W 1,p. This implies that the sequence ũν is bounded
in W 1,p. Hence, by the usual elliptic bootstrapping argument for pseudoholo-
morphic curves, it is bounded in W 2,p (the lower order terms in the equation
have the form XΦ̃ν

(ũν) and hence are bounded in W 1,p). Hence there exists

a subsequence, still denoted by ũν, that converges strongly in W 1,p to a J0-
holomorphic curve ũ : C → M with finite energy. Since the sequence µ(ũi(0))
is bounded it follows that |∂sũ(0)| = limν→∞ |ṽνs(0)| = 1, and hence ũ extends
to a nonconstant holomorphic sphere in M . This contradicts (H2).

Case 2: Suppose that the sequence cνεν is bounded and does not converge to
zero. Let us assume, without loss of generality, that limν→∞ cνεν = 1. Then
we can use the compactness result of [CGMS] to deduce that, after a suitable
gauge transformation and after passing to a further subsequence, the triple
(ũν , Φ̃ν , Ψ̃ν) converges to a solution (ũ, Φ̃, Ψ̃) of the vortex equations (102) with
finite energy. Moreover,

|∂sũ(0) +XΦ̃(0)(ũ(0))| + |µ(ũ(0))| = 1

and hence the energy is nonzero. Hence, by Proposition 11.1, we have

E(ũ, Φ̃, Ψ̃) ≥ ~.

Case 3: Suppose that limν→∞ cνεν = 0. Then, by Lemma 9.1,

sup
ν

(cνεν)
2/p−2‖µ(ũν)‖L∞(K) + sup

ν
(cνεν)

−2‖µ(ũν)‖Lp(K) <∞

for every compact set K ⊂ C and every p ≥ 2. Fix a constant p > 2. Then the
sequence κ̃i is uniformly bounded in Lp. Hence, by Uhlenbeck’s weak compact-
ness theorem, we may assume that Φ̃ν and Ψ̃ν converge, weakly in W 1,p and
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strongly in L∞, on every compact subset of C. Hence it follows from the elliptic
bootstrapping analysis for pseudoholomorphic curves (see [MS1, Appendix B])
that ũν is bounded in W 2,p. Hence, by the Arzéla–Ascoli theorem, ũν has a sub-
sequence that converges in the C1-norm on every compact subset of C. The limit
(ũ, Φ̃, Ψ̃) is a finite energy solution of (8) on C. This solution represents a J̄-
holomorphic sphere in the quotient M̄ . Moreover, since (cνεν)

−1|µ(ũν(0))| → 0
it follows that

|∂sũ(0) +XΦ̃(0)(ũ(0))| = lim
ν→∞

|∂sũν(0) +XΦ̃ν(0)(ũν(0))| = 1

and hence the resulting holomorphic sphere in M̄ is nonconstant. Hence

E(ũ, Φ̃, Ψ̃) ≥ ~.

Thus we have proved in all three cases that

lim
ν→∞

EBr(w)(uν , Aν) ≥ ~

for every r > 0.
This shows that, after passing to a suitable subsequence, bubbling can only

take place at finitely many points w1, . . . ,wℓ ∈ Σ. On every compact subset of
Σ \ {w1, . . . ,wℓ} the sequence |dAν

uν | + ε−1
ν |µ(uν)| is uniformly bounded. (As

an aside: this is used in the proof of Lemma 12.2.) Hence it follows as in Case 3,
that a suitable subsequence in a suitable gauge converges on this complement
to a finite energy solution of (8). The limit (u,A) descends to a holomorphic
curve

ū : Σ \ {w1, . . . ,wℓ} → M̄

with finite energy. Hence, by the removable singularity theorem for J̄-holomor-
phic curves, it extends to a holomorphic curve on all of Σ, still denoted by ū.
The energy of this J̄-holomorphic curve satisfies

E(ū) ≤ 〈[ω̄], B̄〉 − ℓ~.

By hypothesis (H3), the dimension of the moduli space reduces by at least 2N
at each bubble. Thus the limit [u,A] belongs to a moduli space M0

B′,S2 of
dimension

dim M0
B′,S2 ≤ dim M0

B,S2 − 2Nℓ.

If {w1, . . . ,wℓ} ∩ {z1, . . . , zk} = ∅ then the limit curve (u,A) still satisfies
ev0
B′,i([u,A]) ∈ fi(Yi) for every i and hence cannot exist, by the transversal-

ity condition (H5). In general, denote

I := {i ∈ {1, . . . , k} | zi /∈ {w1, . . . ,wℓ}} .

Then the limit [u,A] satisfies

i ∈ I =⇒ ev0
B′,i([u,A]) ∈ fi(Yi).
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Since the points zi ∈ Σ are pairwise distinct we have

ℓ ≥ k − |I|

and so
dim M0

B′,S2 ≤ dim M0
B,S2 − 2N(k − |I|) <

∑

i∈I

deg(αi).

Here we have used the fact that deg(αi) < 2N for each i ∈ {1, . . . , k} \ I.
It follows again from (H5) that such a limit curve cannot exist. Hence our
assumption that the map T εi

B,S2;f were not surjective for every i must have been
wrong. This proves the theorem.

Remark 12.5. A more subtle argument, as in Gromov compactness for pseu-
doholomorphic spheres, shows that in the higher genus case the limit curve ū
also satisfies

〈c1(TM̄), [ū]〉 ≤ 〈c1(TM̄), B̄〉 −Nℓ,

where ℓ denotes the number of points near which bubbling occurs. Here one
needs to prove that no energy gets lost and one obtains convergence to a bub-
ble tree that represents the homology class B. With this refined compactness
argument one can extend Theorem A to the higher genus case.

Remark 12.6. The more subtle compactness argument of Remark 12.5 is not
needed if we impose the condition [ω − µ] = τcG1 (TM) instead of (H3). Hence,
in this case, Theorem A continues to hold for Riemann surfaces Σ of arbitrary
genus.

Remark 12.7. Assume (H1), (H2), and (H4), but not the monotonicity hy-
pothesis (H3). Suppose that the number ~ > 0 is a lower bound for the energy
of the nonconstant J̄-holomorphic spheres in M̄ as well as for the energy of the
nontrivial (that is positive energy) solutions of the vortex equations (102). Let
(Σ, dvolΣ, jΣ) be a compact Riemann surface of genus g > 0 and suppose that
B̄ ∈ H2(M̄ ; Z) satisfies

0 ≤ 〈[ω̄], B̄〉 < ~.

Then the moduli space M0
B,Σ is compact and the bubbling argument in the

proof of Theorem A together with Proposition 12.3 shows that the map T ε :
M0

B,Σ → Mε
B,Σ of Theorem 6.1 is a diffeomorphism for ε > 0 sufficiently small.

Hence in this case the invariants ΦB,Σ agree with the Gromov–Witten invariants
GW B̄,Σ.

A The graph construction

Let G be a compact Lie group whose Lie algebra g = Lie(G) is equipped with an
invariant inner product and (M,ω) be a symplectic manifold with a Hamiltonian
G-action generated by a moment map µ : M → g. We denote by g → Vect(M) :
η 7→ Xη the infinitesimal action, by C∞

G (M) the space of G-invariant smooth
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functions on M , and by JG(M,ω) the space of G-invariant and ω-compatible
almost complex structures on M . We fix a Riemann surface (Σ, dvolΣ, jΣ) and
a principal G-bundle P → Σ. Given a family of almost complex structures
Σ → JG(M,ω) : z 7→ Jz and a 1-form TΣ → C∞

G (M) : ẑ 7→ Hẑ we consider the
perturbed equations

∂̄J,H,A(u) = 0, ∗FA + ε−2µ(u) = 0, (107)

where
∂̄J,H,A(u) := ∂̄J,A(u) +XH(u)0,1.

Here the (0, 1)-form ∂̄J,A(u) ∈ Ω0,1(Σ, u∗TM/G) is understood with respect to
the family of almost complex structures Jz, parametrized by z ∈ Σ. More-
over, the Hamiltonian perturbation is defined as follows. Associated to H ∈
Ω1(Σ, C∞

G (M)) is the 1-form XH ∈ Ω1(Σ,VectG(M,ω)) which assigns to ev-
ery ẑ ∈ TzΣ the Hamiltonian vector field XH,ẑ associated to the Hamilto-
nian function Hẑ : M → R. Thus ι(XH,ẑ)ω = dHẑ. The 1-form XH(u) ∈
Ω1(Σ, u∗TM/G) lifts to an equivariant and horizontal 1-form on P with values
in u∗TM , also denoted by XH(u) and defined by

(XH(u))p(v) := XH,dπ(p)v(u(p)).

The complex anti-linear part of this 1-form is the Hamiltonian term in the
definition of ∂̄J,H,A(u). In this section we show how to reduce the perturbed
equations (107) to (7) via Gromov’s graph construction [Gr].

Let us denote by αH ∈ Ω1(Σ ×M) the 1-form associated to H . Thus αH
assigns to every pair of tangent vectors (ẑ, x̂) ∈ TzΣ × TxM the real number
Hẑ(x). Denote

M̃ := Σ ×M.

The 2-form
ω̃ := ω − dαH + c dvolΣ

is a symplectic form on M̃ whenever the constant c is sufficiently large. Here
we have abused notation and denoted by ω the pullback of the 2-form ω on M
under the obvious projection Σ ×M → M and likewise for dvolΣ. To see that
ω̃ is symplectic for large c, note first that ω̃ is a connection form: it is closed
and its restriction to each fibre {z} ×M is symplectic. The curvature of this
connection form is the 2-form

ΩH dvolΣ := dH +
1

2
{H ∧H} ∈ Ω2(Σ, C∞

G (M)).

This identity defines the function ΩH : Σ×M → R. Now the top exterior power
of ω̃ is given by

ω̃n+1

(n+ 1)!
= (c− ΩH)

ωn

n!
∧ dvolΣ,

where dimM = 2n. Hence ω̃ is nondegenerate whenever c > maxΩH . Now
consider the almost complex structure J̃ on M̃ given by

J̃(z, x) :=

(
jΣ(z) 0

J(z, x) ◦XH(z, x) −XH(z, x) ◦ jΣ(z) J(z, x)

)
.
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Here J(z, x) := Jz(x) and we denote by XH(z, x) : TzΣ → TxM the linear map
ẑ 7→ XH,ẑ(x). Lemma A.2 below shows that J̃ is compatible with ω̃.

Lemma A.1. Let (u,A) ∈ C∞
G (P,M) × A(P ) and define ũ : P → M̃ by

ũ(p) := (π(p), u(p)). Then u and A satisfy (107) if and only if ũ and A satisfy

∂̄J̃,A(ũ) = 0, ∗FA + ε−2µ̃(ũ) = 0.

Here µ̃ : M̃ → g is defined by µ̃(z, x) := µ(x).

Proof. By definition of J̃ we have ∂̄J̃ ,A(ũ) = (0, ∂̄J,H,A(u)). Alternatively, we
can compute in local holomorphic coordinates s+ it on Σ. In such coordinates
the Hamiltonian perturbation, the connection A, and the volume form on Σ
have the form

H = F ds+Gdt, A = Φ ds+ Ψ dt, dvolΣ = λ2 ds ∧ dt
and the equations (107) have the form

∂su+ LuΦ +XF (u) + J(∂tu+ LuΨ +XG(u)) = 0,

∂sΨ − ∂tΦ + [Φ,Ψ] + (λ/ε)2µ(u) = 0.

Moreover, the almost complex structure J̃ is given by

J̃ :=




0 −1 0
1 0 0

JXF −XG JXG +XF J


 .

This proves the lemma.

Lemma A.2. Let ẑi ∈ TzΣ and x̂i ∈ TxM for i = 1, 2. Then

ω̃((ẑ1, x̂1), (ẑ2, x̂2)) = 〈x̂1 +XH,ẑ1(x), x̂2 +XH,ẑ2(x)〉z + (c− ΩH)〈ẑ1, ẑ2〉,
where 〈·, ·〉z := ω(·, Jz·).
Proof. Continue the notation of the proof of Lemma A.1. Then the curvature
ΩH is given by

λ2ΩH = ∂sG− ∂tF + {F,G},
where {F,G} := ω(XF , XG) denotes the Poisson bracket on M , and

ω̃ = ω − dF ∧ ds− dG ∧ dt+ (∂tF − ∂sG+ cλ2)ds ∧ dt
where dF and dG denote the differential on M . Abbreviate ζi := (ŝi, t̂i, x̂i) and
ξi := x̂i + ŝiXF + t̂iXG for i = 1, 2. Then

ω̃(ζ1, J̃ζ2) = ω̃(ζ1, (−t̂2, ŝ2, Jξ2 + t̂2XF − ŝ2XG))

= ω(x̂1, Jξ2 + t̂2XF − ŝ2XG)

+ t̂2dF (x̂1) + ŝ1dF (Jξ2 + t̂2XF − ŝ2XG)

− ŝ2dG(x̂1) + t̂1dG(Jξ2 + t̂2XF − ŝ2XG)

+ (∂tF − ∂sG+ cλ2)(ŝ1ŝ2 + t̂1t̂2)

= ω(ξ1, Jξ2) + (cλ2 − ∂sG+ ∂tF − {F,G})(ŝ1ŝ2 + t̂1t̂2).
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The last identity follows from the fact that {F,G} = dF (XG) = −dG(XF ) and
dF (Jξ2) = ω(XF , Jξ2).

B Cauchy–Riemann operators

Fix a compact Lie group G, an invariant inner product on the Lie algebra g =
Lie(G), a symplectic manifold (M,ω), a Hamiltonian G-action on M generated
by a moment map µ : M → g, a compact Riemann surface (Σ, jΣ, dvolΣ),
a principal G-bundle P → Σ, and a family of G-invariant and ω-compatible
almost complex structures Σ → JG(M,ω) : z 7→ Jz. Each almost complex
structure determines a Riemannian metric 〈·, ·〉z := ω(·, Jz·) on M and hence a
Levi-Civita connection ∇ = ∇z. The value of z will usually be clear from the
context and we shall omit the subscript z. Let u : P → M be an equivariant
smooth map and A be a connection on P . Then A and ∇ determine a connection
∇A on u∗TM/G given by

∇Aξ := ∇ξ + ∇ξXA(u)

for ξ ∈ Ω0(Σ, u∗TM/G). More precisely, we think of A as an equivariant 1-form
on P with values in the Lie algebra g which identifies the vertical tangent bundle
with g. A section ξ of u∗TM/G lifts to an equivariant section of the bundle
u∗TM → P (also denoted by ξ) and a 1-form θ ∈ Ω1(Σ, u∗TM/G) lifts to an
equivariant and horizontal 1-form on P with values in u∗TM (also denoted by
θ). In this notation the 1-form ∇Aξ is given by

(∇Aξ)p(v) := ∇vξ(p) + ∇ξ(p)XAp(v)(u(p))

for v ∈ TpP . In general, ∇A preserves neither the inner product nor the com-
plex structure on u∗TM/G. More precisely, let Ju ∈ Ω0(P,End(u∗TM)) be
given by Ju(p) := Jπ(p)(u(p)) ∈ End(Tu(p)M). This section is equivariant
and hence descend to a complex structure, also denoted by Ju, of the bundle
End(u∗TM/G) → Σ.

Lemma B.1. The covariant derivative of Ju is given by

∇AJu = ∇dAuJ(u) + J̇(u).

where J̇(u) ∈ Ω1(Σ,End(u∗TM/G)) is defined by

J̇(u)p(v) :=
d

dt

∣∣∣∣
t=0

Jγ(t)(u(p))

for v ∈ TpP and a smooth path γ : R → P such that γ(0) = p and γ̇(0) = v.

Proof. Since J is G-invariant we have LXη
J = 0 for η ∈ g or, equivalently,

(∇Xη
J)ξ = ∇JξXη − J∇ξXη. (108)
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Using this formula we obtain

(∇AJu)ξ = ∇A(Juξ) − Ju(∇Aξ)
= ∇(Juξ) − Ju∇ξ + ∇JuξXA(u) − Ju∇ξXA(u)

=
(
∇duJ(u) + J̇(u)

)
ξ +

(
∇XA(u)J(u)

)
ξ

=
(
∇dAuJ(u) + J̇(u)

)
ξ

as claimed.

It follows from Lemma B.1 that the complex linear part of the connection
∇A is the connection ∇̃A on u∗TM/G given by

∇̃Aξ := ∇Aξ −
1

2
Ju(∇AJu)ξ (109)

= ∇ξ + ∇ξXA(u) − 1

2
Ju

(
∇dAuJ(u) + J̇(u)

)
ξ.

Lemma B.2. ∇̃A is a Hermitian connection on u∗TM/G.

Proof. We shall use the identity 〈(∇ξ1J)ξ2, ξ3〉 + cyclic = 0. By (108), we have

〈ξ1,∇ξ2Xη〉 + 〈∇ξ1Xη, ξ2〉
= 〈Jξ1, J∇ξ2Xη〉 + 〈J∇ξ1Xη, Jξ2〉
= 〈Jξ1,∇ξ2(JXη) − (∇ξ2J)Xη〉 + 〈∇Jξ1Xη − (∇Xη

J)ξ1, Jξ2〉
= 〈Jξ1,∇ξ2(JXη)〉 + 〈∇Jξ1Xη, Jξ2〉 − 〈Jξ1, (∇ξ2J)Xη〉 − 〈ξ2, (∇Xη

J)Jξ1〉
= 〈Jξ1,∇ξ2(JXη)〉 + 〈∇Jξ1Xη, Jξ2〉 + 〈Xη, (∇Jξ1J)ξ2〉
= 〈∇Jξ1 (JXη), ξ2〉 − 〈J(∇Jξ1Xη), ξ2〉 − 〈(∇Jξ1J)Xη, ξ2〉
= 0

for ξ1, ξ2 ∈ TxM and η ∈ g. Here the penultimate equality follows from the fact
that JXη is a gradient vector field and that ∇Jξ1J is skew-adjoint. This shows
that ∇XA(u) is a 1-form on Σ with values in the bundle of skew-Hermitian
endomorphisms of u∗TM/G, and so is J(∇dAuJ). Moreover, since

d〈ξ1, ξ2〉 = 〈∇ξ1, ξ2〉 + 〈ξ1,∇ξ2〉 − 〈ξ1, JJ̇ξ2〉,
the operator ξ 7→ ∇ξ− 1

2JJ̇ξ is a Riemannian connection. Hence, by (109), ∇̃A is
a Riemannian connection. By definition, it preserves the complex structure.

Lemma B.3. For every gauge transformation g ∈ G(P ) and every section
ξ ∈ Ω0(Σ, u∗TM/G) we have

∇g∗A(g−1ξ) = g−1∇Aξ, ∇̃g∗A(g−1ξ) = g−1∇̃Aξ.
Proof. Since the metric 〈·, ·〉z is G-invariant for every z ∈ Σ we have

∇(g−1ξ) = g−1∇ξ −∇g−1ξXg−1dg(g
−1u).

Hence the first identity follows from the fact that g∗A = g−1dg + g−1Ag and
that ∇g−1ξXg−1ηg(g

−1x) = g−1∇ξXη(x). The second identity follows from the
first and the fact that Jz is G-invariant for every z.
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Lemma B.4. Suppose that J is independent of z ∈ Σ. Then the curva-
ture of the connection ∇A is the equivariant and horizontal 2-form F∇A ∈
Ω2(P,End(u∗TM)) given by

F∇A(v1, v2)ξ = R(dAu(p)v1, dAu(p)v2)ξ + ∇ξXFA(v1,v2)(u(p))

for v1, v2 ∈ TpP and ξ ∈ Tu(p)M , where R ∈ Ω2(M,End(TM)) is the Riemann
curvature tensor of the metric 〈·, ·〉 = ω(·, J ·). This 2-form descends to a 2-form
on Σ with values in End(u∗TM/G), also denoted by F∇A .

Proof. Given a map R2 → M : (s, t) 7→ u(s, t), a vector field ξ(s, t) ∈ Tu(s,t)M
along u, and a G-connection A = Φ ds+ Ψ dt, where Φ,Ψ : R2 → g, we denote

vs := ∂su+XΦ(u), vt := ∂tu+XΨ(u),
∇A,sξ := ∇sξ + ∇ξXΦ(u), ∇A,tξ := ∇tξ + ∇ξXΨ(u).

Then the assertion can be restated in the form

∇A,s∇A,tξ −∇A,t∇A,sξ = R(vs, vt)ξ + ∇ξX∂sΨ−∂tΦ+[Φ,Ψ](u).

To prove this we use the identities

∇A,s∇A,tξ −∇A,t∇A,sξ = ∇s∇tξ −∇t∇sξ + ∇s∇ξXΨ(u) −∇∇sξXΨ(u)

−∇t∇ξXΦ(u) + ∇∇tξXΦ(u)

+∇∇ξXΨXΦ(u) −∇∇ξXΦXΨ(u),

R(∂su, ∂tu)ξ = ∇s∇tξ −∇t∇sξ,
R(∂su,XΨ(u))ξ = ∇s∇ξXΨ(u) −∇∇sξXΨ(u) −∇ξX∂sΨ(u),

R(XΦ(u), XΨ(u))ξ = −∇ξX[Φ,Ψ](u) + ∇∇ξXΨXΦ(u) −∇∇ξXΦXΨ(u).

The first and second identities are the definition of the connection ∇A and the
curvature tensor R. The other identities use the equations

∇Xη
Z −∇ZXη = [Z,Xη] = 0, ∇Z [Xη1 , Xη2 ] = [∇ZXη1 , Xη2 ],

for every G-invariant vector field Z ∈ VectG(M) and all η, η1, η2 ∈ g.

Now consider the Cauchy–Riemann operator

D := D(u,A) : Ω0(Σ, u∗TM/G) → Ω0,1(Σ, u∗TM/G)

given by

Dξ := (∇Aξ)0,1 −
1

2
J(∇ξJ)∂J,A(u). (110)

In the case ∂̄J,A(u) = 0 this operator is the vertical differential of the section
u 7→ ∂̄J,A(u) of the infinite dimensional vector bundle over the space C∞

G (P,M)
with fibre Ω0,1(Σ, u∗TM/G) over u.

In the following we denote the Nijenhuis tensor of J by N ∈ Ω2(TM, TM).
It is given by

N(ξ1, ξ2) = [ξ1, ξ2] + J [Jξ1, ξ2] + J [ξ1, Jξ2] − [Jξ1, Jξ2]

= 2J(∇ξ2J)ξ1 − 2J(∇ξ1J)ξ2.
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Lemma B.5. The complex linear part of D is the operator ξ 7→ (∇̃Aξ)0,1.
Moreover,

Dξ = (∇̃Aξ)0,1 +
1

4
N(ξ, ∂J,A(u)) +

1

2
(JJ̇ξ)0,1.

Proof. By definition of ∇̃A, we have

Dξ = (∇̃Aξ)0,1 +
1

2
J
(
∇∂J,A(u)J(u) + J̇(u)0,1

)
ξ − 1

2
J(∇ξJ)∂J,A(u).

Hence the formula for Dξ follows from the relation between the Nijenhuis tensor
and ∇J . Now this equation shows that the operator ξ 7→ Dξ − (∇̃Aξ)0,1 is
complex anti-linear.

C Invariant metrics

Let M be a (complete) Riemannian m-manifold. For v ∈ TxM and i, j ∈ {1, 2}
there exist linear maps

Ei(x, v) : TxM → Texpx(v)M, Eij(x, v) : TxM ⊕ TxM → Texpx(v)M

characterized by the following conditions. If x : R → M is a smooth curve and
v, w : R → x∗TM are vector fields along x then

d

dt
expx(v) = E1(x, v)ẋ + E2(x, v)∇tv,

∇t(E1(x, v)w) = E11(x, v)(w, ẋ) + E12(x, v)(w,∇tv) + E1(x, v)∇tw,
∇t(E2(x, v)w) = E21(x, v)(w, ẋ) + E22(x, v)(w,∇tv) + E2(x, v)∇tw.

Here all the expressions are understood pointwise for every t ∈ R. Note that
the map E11(x, v)(w,w

′) is not symmetric in w and w′. It satisfies

E11(x, v)(w,w
′) − E11(x, v)(w

′, w) = E2(x, v)R(w,w′)v,

where R ∈ Ω2(M,End(TM)) denotes the curvature tensor. However,

E12(x, v)(w,w
′) = E21(x, v)(w

′, w),

and E22(x, v)(w,w
′) is symmetric in w and w′. (See [Ga] for more details.) Now

let G ×M → M : (g, x) 7→ gx be a smooth action of a compact Lie group G
with infinitesimal action g → Vect(M) : η 7→ Xη. Assume that M is equipped
with a G-invariant Riemannian metric.

Lemma C.1.

Xη(expx(v)) = E1(x, v)Xη(x) + E2(x, v)∇vXη(x),

∇Ei(x,v)wXη(expx(v)) = Ei1(x, v)(w,Xη(x)) + Ei2(x, v)(w,∇vXη(x))

+ Ei(x, v)∇wXη(x).
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Proof. Since the group action preserves geodesics, g expx(v) = expgx(gv). Dif-
ferentiate this identity with respect to g to obtain the first identity. To prove
the second differentiate the first identity covariantly and use the definition of
Ei and Eij . For more details see [Ga].

For each x ∈ M denote by Lx : g → TxM the infinitesimal action, i.e.
Lxη = Xη(x). Given a map u : R

2 → M , a vector field ξ : R
2 → u∗TM

along u, a function η : R2 → g, and a G-connection A = Φ ds + Ψ dt, where
Φ,Ψ : R2 → g, we denote

vs = ∂su+XΦ(u), vt = ∂tu+XΨ(u),
∇A,sξ = ∇sξ + ∇ξXΦ(u), ∇A,tξ = ∇tξ + ∇ξXΨ(u),
∇A,sη = ∂sη + [Φ, η], ∇A,tη = ∂tη + [Ψ, η].

Define ρ ∈ Ω2(M,G) by

〈η, ρ(ξ, ξ′)〉 := 〈∇ξXη(x), ξ
′〉 = −〈∇ξ′Xη(x), ξ〉

for ξ, ξ′ ∈ TxM and η ∈ g.

Lemma C.2. With the above notation we have

∇A,sLuη − Lu∇A,sη = ∇vs
Xη(u), ∇A,tLuη − Lu∇A,tη = ∇vt

Xη(u),
∇A,sL∗

uξ − L∗
u∇A,sξ = ρ(vs, ξ), ∇A,tL∗

uξ − L∗
u∇A,tξ = ρ(vt, ξ)

Proof. See [Ga].

Now let M∗ denote the subset of all points x ∈ M with finite isotropy
subgroup Gx := {g ∈ G | gx = x}. Thus x ∈ M∗ if and only if the linear map
Lx : g → TxM is injective. Hence, for every map u0 : R2 → M∗ there exists a
unique G-connection A0 = Φ0 ds+ Ψ0 dt such that

L∗
u0
v0s = L∗

u0
v0t = 0,

where
v0s := ∂su0 + Lu0Φ0, v0t := ∂tu0 + Lu0Ψ0.

Let ξ0 : R2 → u∗0TM be a vector field along u0, consider the map

u(s, t) := expu0(s,t)(ξ0(s, t)).

and abbreviate
ϕ0 := Φ − Φ0, ψ0 := Ψ − Ψ0.

Lemma C.3.

Luϕ0 = vs − E1(u0, ξ0)v0s − E2(u0, ξ0)∇A0,sξ0,

Luψ0 = vt − E1(u0, ξ0)v0t − E2(u0, ξ0)∇A0,tξ0.
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Proof. We compute

Lu(Φ − Φ0) = XΦ(u) − E1(u0, ξ0)XΦ0(u0) − E2(u0, ξ0)∇ξ0XΦ0(u0)

= ∂su− E1(u0, ξ0)∂su0 − E2(u0, ξ0)∇sξ0
+XΦ(u) − E1(u0, ξ0)XΦ0(u0) − E2(u0, ξ0)∇ξ0XΦ0(u0)

= vs − E1(u0, ξ0)v0s − E2(u0, ξ0)∇A0,sξ0.

Here the first equation follows from Lemma C.1, the second from the definition
of Ei, and the last from the definitions of vs and v0s.

In the proof we did not use the fact that L∗
u0
v0s = L∗

u0
v0t = 0. Now suppose

L∗
u0
ξ0 = 0. Then, by Lemma C.2,

L∗
u0
∇A0,sξ0 = −ρ(v0s, ξ0), L∗

u0
∇A0,tξ0 = −ρ(v0t, ξ0).

Abbreviating E1 = E1(u0, ξ0) and E2 = E2(u0, ξ0) we obtain the following.

Corollary C.4. If L∗
u0
ξ0 = 0 then

L∗
u0
E2

−1Lu(Φ − Φ0) = L∗
u0
E2

−1(vs − E1v0s) + ρ(v0s, ξ0),

L∗
u0
E2

−1Lu(Ψ − Ψ0) = L∗
u0
E2

−1(vt − E1v0t) + ρ(v0t, ξ0).

Proof. Lemma C.3.

Lemma C.5. Assume L∗
u0
ξ0 = 0 and abbreviate Ei := Ei(u0, ξ0) and Eij :=

Eij(u0, ξ0). Then

Lu∇A,tϕ0 = ∇A,tvs + ∇Xϕ0
Xψ0(u) −∇vt

Xϕ0(u) −∇vs
Xψ0(u)

− E11(v0s, v0t) − E12(v0s,∇A0,tξ0)

− E21(∇A0,sξ0, v0t) − E22(∇A0,sξ0,∇A0,tξ0)

− E1∇A0,tv0s − E2∇A0,t∇A0,sξ0,

Lu∇A,sϕ0 = ∇A,svs + ∇Xϕ0
Xϕ0(u) − 2∇vs

Xϕ0(u)

− E11(v0s, v0s) − E12(v0s,∇A0,sξ0)

− E21(∇A0,sξ0, v0s) − E22(∇A0,sξ0,∇A0,sξ0)

− E1∇A0,sv0s − E2∇A0,s∇A0,sξ0.

Proof. We only prove the first identity. The proof of the second is similar. By
Lemmata C.2 and C.3,

Lu∇A,tϕ0 = ∇A,tLuϕ0 −∇vt
Xϕ0(u)

= ∇A,tvs −∇A,t(E1v0s) −∇A,t(E2∇A0,sξ0) −∇vt
Xϕ0(u).
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Hence, by the definition of Eij and Lemma C.1,

∇A,t(E1v0s) = ∇t(E1v0s) + ∇E1v0s
XΨ(u)

= E11(v0s, ∂tu0) + E12(v0s,∇tξ0)
+ E11(v0s, XΨ0(u0)) + E12(v0s,∇ξ0XΨ0(u0))

+ E1∇tv0s + ∇E1v0s
Xψ0(u) + E1∇v0s

XΨ0(u0)

= ∇E1v0s
Xψ0(u) + E11(v0s, v0t) + E12(v0s,∇A0,tξ0) + E1∇A0,tv0s

and

∇A,t(E2∇A0,sξ0) = ∇t(E2∇A0,sξ0) + ∇E2∇A0,sξ0XΨ(u)

= E21(∇A0,sξ0, ∂tu0) + E22(∇A0,sξ0,∇tξ0) + E2∇t∇A0,sξ0

+ ∇E2∇A0,sξ0Xψ0(u) + E21(∇A0,sξ0, XΨ0(u0))

+ E22(∇A0,sξ0,∇ξ0XΨ0(u0)) + E2∇∇A0,sξ0XΨ0(u0)

= ∇E2∇A0,sξ0Xψ0(u) + E21(∇A0,sξ0, v0t)

+ E22(∇A0,sξ0,∇A0,tξ0) + E2∇A0,t∇A0,sξ0.

Inserting these two identities into the previous formula we obtain

Lu∇A,tϕ0 = ∇A,tvs −∇vt
Xϕ0(u)

−∇E1v0s
Xψ0(u) −∇E2∇A0,sξ0Xψ0(u)

− E11(v0s, v0t) − E12(v0s,∇A0,tξ0)

− E21(∇A0,sξ0, v0t) − E22(∇A0,sξ0,∇A0,tξ0)

− E1∇A0,tv0s − E2∇A0,t∇A0,sξ0.

Now the result follows from Lemma C.3.
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