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Abstract

We study pseudoholomorphic curves in symplectic quotients as adia-
batic limits of solutions to the symplectic vortex equations. Our main the-
orem asserts that the genus zero invariants of Hamiltonian group actions
defined by these equations are related to the genus zero Gromov-Witten
invariants of the symplectic quotient (in the monotone case) via a natu-
ral ring homomorphism from the equivariant cohomology of the ambient
space to the quantum cohomology of the quotient.
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1 Introduction

The main theorem of this paper asserts that under certain hypotheses there is a
ring homomorphism from the equivariant cohomology of a symplectic manifold
M with a Hamiltonian G-action to the quantum cohomology of the symplectic
quotient M such that the following diagram commutes

H*(Mg) ——— QH* (M) .
&\ ‘AB
7

Here GW 5 denotes the genus zero Gromov—Witten invariants of M with fixed
marked points associated to a homology class B € Ho(M;Z), and ®p denotes
the genus zero invariants of Hamiltonian group actions associated to the equiv-
ariant homology class B = k(B) € Ha(Mg;Z). The latter invariant was intro-
duced in [CGS, CGMS, M1, M2]. The homomorphism ¢ is defined indirectly as
a consequence of a comparison theorem for the two invariants. A more direct
definition in terms of vortices over the complex plane with values in M will be
given elsewhere. The proof of the comparison theorem is based on an adiabatic
limit analysis which relates the solutions of the symplectic vortex equations to
pseudoholomorphic curves in the symplectic quotient. Our hypotheses are that
the moment map is proper, that M is convex at infinity, and that the quotient
M is smooth; these hypotheses are needed to even state the result. We also
assume that there are no holomorphic spheres in the ambient manifold (and
hence M is necessarily noncompact); Corollary A’ cannot be expected to be
true without it. Finally, we assume that M is monotone; this hypothesis is of a
technical nature and it might be possible to remove it. But this would require
more analysis than is carried out in the present paper. Before stating the main
results more precisely (Theorem A and Corollary A’) we review the invariants
introduced in [CGMS].

Invariants of Hamiltonian group actions

Let (M, w) be a symplectic manifold (not necessarily compact) and G be a com-
pact connected Lie group with Lie algebra g. We fix an invariant inner product



(-,+) on g and identify g with its dual g*. We assume that G acts on M by Hamil-
tonian symplectomorphisms and that the action is generated by an equivariant
moment map g : M — g. This means that, for every n € g, the vector field
X, € Vect(M) that generates the action is determined by «(X;,)w = d(u, n). Let
m: P — ¥ be a principal G-bundle over a compact oriented Riemann surface
(X2, jx,dvols). We fix a smooth family ¥ — Jg(M,w) : z — J, of G-invariant
and w-compatible almost complex structures on M. This determines a family
of metrics (,), := w(+, J;-). The invariants are derived from the equations

Dra(u)=0,  *Fa-+p(u) =0, (1)

for a pair (u, A), where u : P — M is a G-equivariant map and A is a connection
on P. Here F4 is the curvature of A and 9 7,4 is the nonlinear Cauchy-Riemann
operator twisted by A (see [CGS, CGMS] for a detailed explanation). Both
terms in the second identity in (1) are sections of the Lie algebra bundle gp :=
P xaq 9. In contrast to the theory of pseudoholomorphic curves, equations (1)
involve the volume form dvoly; (via the Hodge x-operator in the second equation)
and not just the complex structure jx. Equations (1) are invariant under the
action of the gauge group G = G(P) (of equivariant maps from P to G) by

9% (u, A) = (9" "u, g7 'dg + g~ Ag).

From a geometric point of view, the solutions of (1) correspond to the absolute
minima of the energy functional

1
Bl A) = 5 [ (ldauf? + [Pl + [n(w)) dvols

in a given homotopy class. The solutions of (1) have energy

B 4) = [ (u = du(u), 4) = (o = 4, )
and this number is an invariant of the equivariant homology class represented

by the map u. We impose the following hypothesis throughout this paper.

(H1) The moment map p is proper, zero is a regular value of p, and G acts
freely on p=1(0).

Under this hypothesis the quotient
M := M)/G = pu~1(0)/G

is a compact symplectic manifold. The induced symplectic form will be denoted
by @. The equivariant homology class [u] € Ha(Mg;Z) is defined by the fol-
lowing diagram, which also shows how it is related to the characteristic class
[P] € H2(BG;Z) and to the class [u] € Ho(M;Z) in the case pou = 0. Note



that, since G is connected, the class [u] determines the isomorphism class of the
bundle P. We denote Mqg := M xg EG.

[£] € Hy(SZ) ——=H,(M;Z) > |[a]

NT l

Hy(Pg; Z) ——> Hy(Mg;Z) > [u]

L

[P] € Hy(BG;Z)

Fix a homology class B € Hs(M;Z), let B := k(B) € Hx(Mg;Z), and
denote the space of solutions of (1) that represent this homology class by

./\A/l/B,g ={(u,A) € CF(P,M) x A(P) | [u] = B, u and A satisfy (1)}.

Here P — ¥ denotes a principal G-bundle whose characteristic class [P] €
H5(BG;Z) is determined by B as above. The quotient by the action of the
gauge group will be denoted by

Mps :=Mps/G.
We impose another hypothesis which guarantees compactness [CGMS].

(H2) There is a G-invariant almost complez structure J € Jo(M,w), a proper
G-invariant function f: M — [0,00), and a constant ¢ > 0 such that

f@)ze = (V%Vf(2),§ +(VieVf(z),J§) >0
for every nonzero vector € € T, M and
f@) e = ()T X (@) > 0.
Moreover, fSZ v*w =0 for every smooth map v : S2 — M.

This hypothesis implies that supp(fou) < ¢ for every solution (u, A) of (1) over
any Riemann surface and in any homology class (see [CGMS]). In [CGMS] it is
shown that the moduli space M p 5 is a smooth compact manifold of dimension

dim Mp s = <% dim M — dim G) X(2) + 2(c$(TM), B)

for a generic J, provided that (H1—2) are satisfied, B is a nontorsion homology
class, and the area of ¥ is sufficiently large. The latter condition, together
with the energy identity, guarantees that every solution of (1) is somewhere
close to the zero set of the moment map. The class ¢§(TM) € H?(Mg;Z) in
the dimension formula denotes the equivariant first Chern class of the complex
vector bundle (T'M, J).



Examples. (i) In [CGS] it is shown that (H2) follows from (H1) in the case of
linear actions on C™.

(ii) The completion of a symplectically aspherical G-manifold M with contact
boundary satisfies (H2) whenever it admits a Liouville vector field X near OM
satisfying w(X,,(z), X (x)) > 0 for every x € OM (see [CGMS, Example 2.9]).
A special case is an action of G on a cotangent bundle T*S that arises from
an action on S. Namely, if g — Vect(S) : £ — v is the infinitesimal action
on S then a moment map of the action on T%S is (u(z,y),&) = (y,ve(z))
for y € T}S and hence the Liouville vector field X (z,y) = (0,y) satisfies
W(Xu(m,y)a X(:L', y)) = <ya vu(m,y)(x» = |[L(:C,y>|2 > 0.

(iii) Let M = E be the total space of a complex vector bundle 7 : E — S
over a compact symplectically aspherical Kéhler manifold S, equipped with a
Hermitian structure, a unitary G-action, and a Hermitian connection V that
preserves the G-action. Suppose that the endomorphism iFY (v, Jv) is nega-
tive semidefinite for every v € T'S. Then M admits a G-invariant symplectic
structure satisfying (H2) (see [CGMS, Example 2.10]).

Consider the evaluation map evg : Mp s — Mg, defined by
eva([u, A]) == [u(po), Oo(u, A)],
where py € P is fixed and Oy : ./\A/l/B,g — EG is a smooth map such that
©0(9™ " u, 9" A) = g(po) ™ O0(u, A).

This means that ©g is a classifying map for the principal G-bundle Pg sy —
Mp 5 obtained as the quotient of Mp s, by the based gauge group

Go:={9 € Glglpo) = 1}.
Let o € H*(Mg;Z) be a class of degree deg(a)) = dim Mp . and define

Opx(a) = / evi .
Mp s

In [CGMS] it is shown that this integer is independent of the almost complex
structure J, the metric on 3, and the point py used to define it.

Now let D := {z € C||z|] < 1} and consider the space of maps v : D — M
that map the boundary 9D to a G-orbit in x~1(0):

Vi={v:D— M|3g:R/27Z — G Iz € p~'(0) V0 € R v(e®) =g(0)z}.

Let m : V — Z denote the function which assigns to each element v € V
the Maslov index of the loop of symplectic matrices obtained from the linear
maps g(0) : ToM — Ty, M in a trivialization along v. Every smooth map
v : 5% — M lifts to a map v € V and in this case the Maslov index m(v) is equal
to the first Chern number (c1(T'M), v.[S?]). The minimal Maslov number will
be denoted by

N = inf m(v).
veV, m(v)>0



This is a lower bound for the minimal Chern number of M. We impose a third
hypothesis.

(H3) There exists a constant 7 > 0 such that

/D v*w = Tm(v)

for every v € V.

This hypothesis implies that the quotient M is a monotone symplectic manifold
and that the energy of every holomorphic sphere in M is an integer multiple of
h:= 7N. The main result of this paper asserts that under hypotheses (H1-3)
the invariant ®p g» agrees with the corresponding genus zero Gromov-Witten
invariant of M, provided that the cohomology classes a; have degrees less than
2N.

Theorem A. Assume (H1-3) and let B € Ho(M;Z) and o; € HE(M;Z) be
given such that deg(a;) < 2N fori=1,...,k and

~ 1
Z deg(a;) = (5 dim M — dim G) X(2) +2(c§(TM), B),

where B := k(B) € HS(M;Z). Then

(I)B752(a1 ~ ak) = GWB,SQ(dla . '7ak)a

where &; = k(o) € H*(M;Z). If [w— p] = 7c§(TM) then the assertion
continues to hold for Riemann surfaces ¥ of arbitrary genus.

Remarks. (i) In the definition of ®p 5 the complex structure on ¥ and the
point pg € P at which the map u is evaluated are fixed and the cohomology class
evga € H*(Mp x;7Z) is independent of the choice of complex structure on 3
and the point pg used in the definition of evg. The Gromov—Witten invariants
in Theorem A are also to be understood with a fixed complex structure on X
and with fixed marked points in the definitions of the evaluation maps, and with
almost complex structures that are allowed to depend on the base point z € S2.

(ii) The assertion of Theorem A does not continue to hold in the case deg(c;) >
2N. For example, consider the standard action of S' on C", let P — S? be an
S'-bundle of degree d > 0, and denote by ¢ € H*(BS';Z) = HZ,(C";Z) the
positive generator. Then the minimal Chern number is N = n, the dimension of
M 52 is 2nd+2n—2, and we have ®,4 g2(c™) = 1 whenever m = nd+n—1. The
corresponding Gromov—Witten invariant (for a k-tuple of classes ¢, ..., ™
with mj + -+ + my = m) counts holomorphic spheres of degree d in CP™~!
passing at k given points z1, ..., 2x € S? through generic copies of CP?~1~™: for
i =1,...,k. Thus the Gromov-Witten invariant is zero whenever deg(c™) =
2m; > 2n for some 1.



(iii) The condition deg(c;) < 2N in Theorem A leads to simplified bubbling
phenomena which do not require an analysis of bubble trees. Namely, if we
have a sequence of J-holomorphic curves in M passing through submanifolds
dual to the &; at the marked points z;, and a holomorphic sphere bubbles off
at a marked point z;, then the limit curve (assumed to be in general position)
cannot satisfy the remaining marked point conditions, for dimensional reasons.
A similar phenomenon occurs in the adiabatic limit € — 0 explained below.

Equivariant and quantum cohomology

Assume M is monotone. Additively, the quantum cohomology_QH* (M) is the
cohomology of M with coefficients in the group ring of Hy(M;Z). Write an
element of QH*(M) as a finite sum

a= > age?,

BeH»(M;Z)
where ap € H*(M;R) and
deg(e®) := 2(c1(T M), B).

Choose an integral basis €, ...,eé, of H*(M;R) and let & denote the dual

basis in the sense that [ & — & = d;;. Then the ring structure on QH" (M)
is defined by

n
a1 % Qg 1= Z ZGWB_BI_BQ,SQ(dlgl,QQBZ,é:)éieB.
By,Bs,B =0
The sum is over all quadruples i, By, Bo, B satisfying deg(a;) + deg(az) =
deg(&;) + 2{c1 (T M), B).
The Gromov—Witten invariant associated to a Riemann surface ¥, with a
fixed complex structure jx. and fixed marked points z1, ..., zx, can be extended

to amap GWpy : QH (M) ® - -- © QH* (M) — Z by the formula
GWgs(a,...,ax) = Z GWg_p B, w1, O, )-
B;

With this convention the gluing formula for the Gromov-Witten invariants can
be expressed in the form

GWB;(dl,---,dk):GWB7E(d1*"'*dk) (2)
(see [MS1, Exercise 11.1.14]).

Corollary A’. Assume (H1 — 3) and suppose that H*(Mg;R) is generated by
classes of degrees less than 2N . Then there exists a unique ring homomorphism

¢ : H*(Mag;R) — QH*(M) such that

deg(a) < 2N = ola) = k(a)



for every a € H*(Mg;R). This ring homomorphism satisfies
P,.(p),52 () = GW g g2 (p(a)).

for every o € H*(Mq;R) and every B € Hy(M;7Z).

Proof. Let a € H*(Mg;R) and choose a;; € H*(Mg;R) such that

o= ZO&M e (g, deg(aij) < 2N. (3)

Define .
ola) == Z k(o) * -+ % k(). (4)

i=1

We prove that ¢(«) is independent of the choice of a;;. To see this, note
that, since the cohomology of M is generated by classes of degree less than
2N, so is the quantum cohomology. This means that a quantum cohomology
class @ € QH*(M) is zero if and only if GWp g2 (@, B1,- -+, Bm) = 0 for every
B € Hy(M;Z) and all Bi,...[3n € H*(M;R) such that deg(3;) < 2N for all j.
Now suppose that the expression on the right of (4) is nonzero. Then, by what
we have just observed, there exist cohomology classes 31, ..., B of degrees less
than 2N and a homology class B € Ha(M;Z) such that

k
Z GWB,SZ(K‘(ail)a SRR K(aif)a ﬁla v 76771) 7& 0.
i=1

Since the homomorphism  : H*(Mg;R) — H*(M;R) is surjective (cf. [K]),
there exist classes 3; € H*(Mg;R) (of degrees less than 2IV) such that x(3;) =
B; for every j. Hence, by Theorem A,

k
> D py e — i = B ) £ 0,

i=1

and hence o # 0. This shows that ¢ is well defined. The map ¢ is obviously
a ring homomorphism. The formula ®p g2 (a) = GW g g2(p(a)) follows imme-
diately from Theorem A and the gluing formula (2) for the Gromov—Witten
invariants. O

Remark. Under our assumptions both the Gromov—Witten and the vortex
invariants take integer (not rational) values. Hence the assertion of Corollary A’
continues to hold for (quantum) cohomology groups with coefficients in Z or Zs,
for example.

Remark. Let R denote the group ring of Ha(M;Z). Then QH*(M) is an
R-module and the ring structure is compatible with the R-module structure.



Hence the ring homomorphism of Corollary A’ extends uniquely to a homomor-
phism

v: H (Mg;R) — QH" (M)
of rings and R-modules. This extended homomorphism is surjective. This
follows, by an easy induction argument, from the surjectivity of Kirwan’s ho-
momorphism to the ordinary cohomology of M.

Remark. The homomorphism ¢ : H*(Mg) — QH*(M) can be defined geo-
metrically in terms of the vortex equations over C:

Osu+ Ly ® + J(Opu+ L, ¥) =0, OV — D+ [P, U]+ p(u) =0. (5)

Here u : C - M and ®,¥ : C — g are smooth functions. Equation (5) is a
special case of (102) with ¥ = C and A = ®ds + ¥ dt. For every finite energy
solution of (5) in radial gauge there is a loop g : S — G and a point 2 € p=1(0)
such that

i u(re®) = g} ©)

(See Section 11.) Every map u : C — M that satisfies (6) determines a class
B = [u] € H2(Mg;Z). Now the moduli space Mp(J) of gauge equivalence
classes of solutions of (5) and (6) that represent the class B has two evaluation
maps evy : Mp — Mg and eve, : Mp — M. The map ¢ can be defined by

w(a)=i2(/M

i=0 B

* P _ B
evoo — ev o €; | ee”.
rw(B)

The details of this construction will be carried out elsewhere.

Outline of the proof of Theorem A

The proof of Theorem A is based on an adiabatic limit argument in which the
metric on the Riemann surface is scaled by a large factor e 72, Then equations (1)
have the form

d7.a(u) =0, *Fa + e 2u(u) = 0. (1)

The solutions of (7) minimize the e-dependent energy
1
Ef(u, A) = 5/ (Jdaul® + €*[Fal® + e ?|pu(u)[*) dvols,
b

and the value of this functional at a solution of (7) is independent of € in a given
equivariant homology class. In this paper we examine the limit behaviour of
the solutions of (7) as € tends to zero for Riemann surfaces of any genus. The
limit equations have the form

d5.a(u) =0, wu(u) = 0. (8)

The solutions of (8) can be interpreted as pseudoholomorphic curves in the
symplectic quotient M = 1 ~1(0)/G with respect to the induced family of almost
complex structures .J, (see Section 2). We impose a further hypothesis that is
satisfied for a generic family of G-invariant almost complex structures on M:



(H4) Every nonconstant J-holomorphic curve @ : ¥ — M is regular, i.e. the
linearized Cauchy-Riemann operator along u is surjective.

This hypothesis guarantees that the moduli space of holomorphic curves in M
is smooth.

The proof of Theorem A requires three preliminary theorems which are of
interest in their own rights. Theorem B constructs a G(P)-equivariant map

(UO,AO) = (uE;AE) = TE(UO,AO)

which assigns to every regular solution of (8) a nearby solution of (7) for e
sufficiently small. Theorem C shows that the map T constructed in Theorem B
is locally surjective in the sense that every solution of (7) that is sufficiently close
to a solution (ug, Ag) of (8) must be in the image of 7. The neighbourhood
in which surjectivity holds depends on €: it becomes smaller as ¢ tends to zero.
Theorem D strengthens the local surjectivity result of Theorem C. We remove
the assumption that the solution of (7) is close to some given solution of (8).
However, we consider only solutions of (7) that satisfy a suitable L*°-bound
on the first derivatives and prove that every solution of (7) that satisfies this
bound lies in the image of T¢ for & small. The proof of Theorem A is then
based on a bubbling argument in the small ¢ limit which establishes a one-
to-one correspondence between the solutions of (8) and those of (7) in a zero
dimensional setting, where additional conditions have been imposed.

In Section 2 we review standard results about the moduli space of pseu-
doholomorphic curves in the symplectic quotient M /G and rephrase them in
terms of solutions of (8). Theorems B, C, and D will be stated in Section 3.
The remaining sections are devoted to the proofs of the four main theorems.

The general outline of the proof of Theorem A is analogous to the proof of
the Atiyah—Floer conjecture in [DS1, DS2]; there are several new ingredients.

In Sections 4 and 5 we establish the linear and quadratic estimates needed
for the construction of the map 7°¢; this construction is carried out in Section 6
where Theorem B is proved. In contrast to [DS2] (where the relevant moduli
space is a finite set) care must be taken to establish that the constants in the
estimates depend continuously on the point in M° and we must control the
second instead of just the first derivatives.

In Section 7 we establish an e-local slice theorem and in Section 8 we con-
struct a tubular neighbourhood of M*® and carry out the proof of Theorem C.
The e-local slice theorem is analogous to [DS2, Proposition 6.2]. The tubu-
lar neighbourhood theorem for M?¢ involves an estimate for the derivative of
the map given by the e-local slice theorem; this is where the estimates for the
(2,p, e)-norms are needed. As a result the entire adiabatic limit argument has
to be carried out for these higher norms. By contrast, the analogous result
in [DS2, Proposition 6.3] can be disposed of with a simple time shift argument.

In Section 9 we prove an apriori estimate which asserts that every solution
of (7) that satisfies a certain L> bound must be e2-close to the zero set of
the moment map. As a consequence we obtain in Theorem D a strong local
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surjectivity result for the map 7°¢, which is proved in Section 10.!

In Section 11 we establish the asymptotic behaviour and the quantization of
the energy for solutions of the nonlinear vortex equations on the complex plane.
In Section 12 we construct a classifying map on an open set in C* (P, M) x A(P),
which contains the moduli spaces M¢ for all ¢ € [0, &¢], with values in a finite
dimensional approximation of EG; we also establish C''-convergence for the
evaluation map and prove Theorem A.

2 Pseudoholomorphic curves

For z € ¥ let J, denote the almost complex structure on M induced by J,, let
P — M denote the principal G-bundle P := p~!(0) C M, and let A denote
the connection on P determined by w and J. If (u, A) is a solution of (8) then
u descends to a J-holomorphic curve @ : ¥ — M and A is the pullback of A
under . Two gauge equivalent solutions descend to the same map @ and every
J-holomorphic curve @ : ¥ — M lifts to a solution of (8) for some principal
G-bundle P (isomorphic to the pullback of P under ).

Fix a homology class B € Ho(M;Z), let B := x(B) € HS(M;Z), and
consider the space

MY s = {(u, A) € CF (P, M) x A(P)|[u] = B and (8) holds} .

This space is invariant under the action of the gauge group G(P). Under our
standing hypothesis (H4) the quotient

MY 5 = MY 5 /G(P)

is a smooth manifold of dimension
1
dim MY 5 = (5 dim M — dim G) X(2) + 2(c$(TM), B)

(see [MS1, Theorem 3.3.4]). Note that Mp s and MY 5, have the same dimen-
sion. 7

For later reference we now introduce explicit notation for a local parame-
trization of M%,z: by the kernel of the linearized operator. Linearizing equa-
tions (8) at a solution (u, A) gives rise to the Cauchy—Riemann operator

D% =D, 4y : Q(E, Hy) — QV(, Hy)
given by
D& := Tu Dy, a)60,
where D, 4y : QU(E,w*TM/G) — Q%' (v*TM/G) is the operator (110) in

Appendix B. The bundle H, — ¥ and the projection 7, : v*T'M — H, are
defined as follows. Consider the bundle H — ¥ x p~1(0) with fibres

H, ;= ker dp(x) Nker du(z)J,.

!Compare this with [DS2, Theorem 8.1]; the strenghtened form of [DS2, Theorem 8.1] is
needed to close a gap in the bubbling argument in the proof of [DS2, Theorem 9.1].

11



There is an orthogonal decomposition
TM=imL, ®H,, ®imJ,L,
for every (z,2) € ¥ x p=1(0), where L, : g — T, M the infinitesimal action, i.e.
Ln = X, ().
Its dual operator with respect to the metric determined by J, is given by
L = Ly = du(@) . (a).

Now let u : P — p~1(0) be an equivariant map and consider the pullback of H
under the map @ : P — ¥ x u~1(0), given by @(p) := (m(p), u(p)). This pullback
is a G-equivariant vector bundle over P and its quotient

H,=u"H/G—X

is naturally isomorphic to the pullback of the tangent bundle TM under the
induced map @ : ¥ — M. Let 7, : w*TM/G — H, denote the orthogonal pro-
jection onto the harmonic part. Thus 7, [¢] := [m,&] where the lifted projection
uw*TM — w*H (also denoted by m,) is given by

Tul =& — Ly (LEL,) ' LE¢ + JL,(LEL,) LEJE (9)
for a G-equivariant section & : P — u*T'M.

Theorem 2.1. Assume (H1) and (H4) and fix a constant p > 2. For every

(g, Ag) € M%,Z there exist a sequence of positive constants 6, ¢, c1,ca,... and
a map

FO . f&mgo) : By — MY, BY := {& € ker D?MO) | 1ol o < 0},

such that the following holds.

i) If & € BY then there exists a unique pair of sections &1 € Q%(E, Hy,) and
6 0
& € Q%(3,im J Ly, /G) such that

feim®@y 1) 6l + Il < cléollyen
and the pair (ug, Ap), given by
up = expli, (6o +€1) = expg, (€0 + &1 + &) Ao i= —(Li, Luy) " L, duo,
satisfies (8). The pair (ug, Ao) is the image of & under FO.

(ii) For every integer k > 1 and every & € By we have

lExllwer + €lwrs < cxlléoliyrs s [[A0 = Aollypa, < cr Gollyrs -

where &1, &2, and Ag are as in (i).

(iii) The map F° is smooth and dF°(0)& = (&, ), where ag € Q1 (X, gp) is
uniquely determined by the equation

DOy 4, (T0)€0 + Xay ()™ = 0.

12



Theorem 2.1 is a standard result in the theory of holomorphic curves (see for
example [MS1, Theorem 3.5.2]). It follows from Fredholm theory and an infinite
dimensional version of the implicit function theorem. In most applications the
moduli space M%ﬁz is not compact. However, it can be exhausted by the
compact subsets

MY, (co) = MY 51(c0) /G(P),

where ¢g > 0 and
M seo) = { (1w, 4) € M, | daull o + [ Fall e < o

Note that ./\A/l/%ﬁz(co) is invariant under the action of G(P). For later reference
we prove the following lemma.

Lemma 2.2. Fiz a reference connection A e A(P). Then, for every cg > 0
and every integer £ € N, there exists a constant ¢ = ¢(cg,£) > 0 such that, for

every (uo, Ao) € /\7%12(60), we have

'f(—1 gt Ay — A )<.
jout g™ ullce + g7 Ao — Allce ) < c

Proof. Suppose, by contradiction, that there is a sequence (u,, 4,) € MY 5(co)

such that |lg= u,||ce + [|lg* Ay — Allce > v for every v and every g € G(P).
By [MS1, Theorem B.4.2] there exists a subsequence, still denoted by (u,, 4,),
such that the induced maps @, : ¥ — M//G converge in the C*°-topology to
a smooth J-holomorphic curve. The limit curve represents the same homo-
topy class as the approximating curves and hence can be represented by a pair
(u, A) € M% 5 (co). Since the sequence @, converges to @ : ¥ — M /G in the
C*1_topology, there exists a constant 1y > 0 such that, for every v > vy, there
exist a gauge transformation g, and a section &, € Q°(%, H,,) such that

g;luy = eXpu(gl/)v Vlingo ||§U||Cf+1 =0.
The formulae

g A, = 7(L*

-1
gv Uy

-1 -1 _ w7 -1
ngluy) ngluyd(gy Uy), A=—(L}L,)” " L,du,

show that g (u,, A,) converges to (u, A) in the C* topology. This contradicts
the choice of the sequence (u,, A4,) and hence proves the lemma. O

Theorem 2.3. Assume (H1) and (H4), let B € Ho(M;Z) be a nontorsion
homology class, and let (3, dvoly, js) be a compact Riemann surface. Then, for
every co > 0 and every p > 2, there exist positive constants ¢ and § such that
the following holds. If 4 : ¥ — M is a smooth map such that [u] = B and

ld]| L < co,  05(@)l|Lr <

then there exists a section & € QO(X,a*TM) such that

Oj(expg(€)) =0, [€llwrr <cl0s(@)]Le-
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Proof. This is again a standard result for pseudoholomorphic curves and the
proof is almost word by word the same as that of [DS2, Theorem 2.5]. Here is
a sketch. One argues by contradiction. If the result were false, there would be
a sequence of smooth maps @; : ¥ — M that satisfies

sup ||di; || < oo, lim ||5j(ﬁz)|\Lp =0,
i 71— 00

but which does not satisfy the conclusion of the theorem for any constant c.
This means that the WP-distance of @; to the space of J-holomorphic curves is
not controlled uniformly by the LP-norm of d5(4;). Now, by the Arzéla—Ascoli
and Banach—Alaoglu theorems, a suitable subsequence of u; converges, strongly
with respect to the sup-norm and weakly in WP, to a .J-holomorphic curve
@. It follows from standard elliptic regularity for J-holomorphic curves that
@; then converges strongly with respect to the W1 P-norm. To see this, write
; = exp,(&;) and observe that

I€illwre < ex (IDaillze + 1&illzr)
< 2 (105(@) e + I€llwrell&lle) + exlléill Lo

Here the first inequality is the elliptic estimate for the Cauchy—Riemann oper-
ator Dy and the second is the quadratic estimate for 9;. With this established
it follows from hypothesis (H4) and the implicit function theorem for the oper-
ator 5_; that there exists a sequence of J-holomorphic curves iig; whose W1P-
distance to @; is bounded above by a fixed constant times the LP-norm of 9 (;)
(see [DS2, Theorem 2.1]). This shows that the sequence @; does after all satisfy
the conclusion of the theorem, in contradiction to our assumption. O

3 Adiabatic limits

Before stating our main results we introduce some notation. Fix an equivariant
homology class B € Hy(M;Z), let B := k(B), and denote

B:={(u,A) e C¥(P,M) x A(P)|[u] = B}.
This space is an infinite dimensional Fréchet manifold with tangent space
Tiu, 0B = Q%S u*TM/G) x Q' (2, gp).

It carries an action of the gauge group G = G(P) by g*(u, A) = (g~ u, g*A).
Consider the vector bundle & — B with fibres

Eu,n) = Q0 (S, u*"TM/G) & Q°(Z, gp)
and the G-equivariant section F¢ : B — &£ given by

Fe(u, A) == (0s,4(u),*Fa + e 2p(u)).
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The zero set of this section is the space
M%,z = {(u, A) € B|u and A satisfy (7)}.
Its quotient by the action of the gauge group will be denoted by

Sy = M5 /G(P).

The following theorem asserts the existence of solutions of (7) for sufficiently
small € near every regular solution of (8). The result is quantitative and the
estimates are expressed in terms of suitable e-dependent norms. Moreover, an
operator D : Ty 4B — Ea) @ 0°(%, gp) appears. This operator is the
augmented vertical differential of F¢. The operator and the norms will be
defined in Section 4.

Theorem B. Assume (H1) and (H4) and let B € Hy(M;Z) be a nontorsion ho-
mology class. Then, for every co > 0 and every p > 2, there exist positive cons-
tants €9, ¢, and § such that for every e € (0,¢9] there exists a G(P)-equivariant
map o -

T°: M%,E(CO) - M%,z

that satisfies the following conditions.

(a) If (uo, Ao) € MOByz(CO) then %a(uO,AO) = (exp,, (&), Ao + ac), where (. =
(€ey ) € Tluy,40)B satisfies

||C&‘||2,p,s;(ug,Ao) S 062’
—dhy, 0 +e L5 & =0, G eim (DY, a)" (10)

(b) If (up, Ag) € //\\/14%12(00) and (u, A) = (exp,,,(§), Ao + @) € /T/l/‘ERE where
¢ = (& a) € Tiyy,a,)B satisfies (10) and

HCHl,p,g;(uon) < (562/p+1/2,

then (u, A) = T¢(ugp, Ao).

The map T°¢ of Theorem B descends to a map between the quotient spaces
which we denote by
T° . /\/1%12(00) — M% 5.

Assertion (a) is proved by a Newton type iteration (see Section 6). It requires
linear and quadratic estimates for the e-dependent norms with constants that
are independent of €. These estimates are proved in Sections 4 and 5. As-
sertion (b) is a strengthened form of the corresponding uniqueness statement.
Here the neighbourhood in which uniqueness holds is larger than in the exis-
tence result (namely it is of radius 6e2/P*1/2 instead of ce?). The uniqueness
statement shows that the maps 7°¢ are independent of ¢y in the sense that two
such maps corresponding to different values of ¢y (but the same value of €) agree
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on the intersection of their domains. The next theorem shows that 7°¢ is locally
surjective.

Theorem C. Assume (H1) and (H4) and let B € Ho(M;7Z) be a nontorsion
homology class. Then, for every co > 0 and every p > 2, there exist positive
constants o and § such that the following holds for every e € (0,e0]. If

(w0, A0) € Mo 1), (1, A) = (expg, (). Ao + @) € My s,
where { = (€,a) € Tay, 4,)B satisfies

||§|| 1,p,¢;(Go0,Ao) < 552/p+1/2’

then (u, A) € %E(M%,Z(co)).

This result is restated more precisely in Theorem 8.1 in Section 8. There it
is proved that g*(u, A) = 7*(ug, Ap) for some gauge transformation g and some
pair (ug, Ag) in the image of the map F° of Theorem 2.1. Moreover, it is shown
that the distances of g to 1 (in the (2, p, €)-norm) and of (ug, Ag) to (7o, Ag) (in
any norm) are controlled by the (1, p, £)-norm of (.

Theorem C strengthens the local uniqueness result of Theorem B (b) in that
condition (10) is no longer required. The proof relies on an e-dependent local
slice theorem (Section 7) and on the construction of a tubular neighbourhood of
the moduli space M$ s (co) in which the normal bundle is the intersection of the
e-dependent local slice with the image of the adjoint operator D°* (Section 8).

The next theorem strengthens the local surjectivity result of Theorem C. It
does not require the solution (u, A) of (7) to be close to any solution of (8).
However, it only applies to solutions that satisfy a uniform L°°-bound on dsu
and for which u takes values in the compact set

M€ = {z € M||u(z)| <C, |n| < C|Lyn| ¥ 1 e g}

Theorem D. Assume (H1) and (H4) and let B € Ho(M;Z) be a nontorsion
homology class. Then, for every C > 0, there exist positive constants eq and cy
such that the following holds for every e € (0,&0]. If (u, A) € M3 5, such that

daullL~ <C,  u(P)c M¢ (11)

then (u, A) € ’Zts(./\A/l/%,Z(cl)).
Under hypotheses (H1 — 2) the moduli space M5 5, is compact [CGMS].

In this case all solutions of (7) satisfy ||daul|pe~ + ||u(u)||p~ < C- for some e-
dependent constant C.. However, this does not guarantee surjectivity because,
on the one hand, the constant C; may diverge to infinity as € tends to zero and,
on the other hand, the solutions of (7) may not all satisfy the second condition
in the definiton of M ¢, namely that the image of u belongs to the set of regular
points of . There may be sequences (&;, u;, A;) of solutions of (7) with ¢, — 0
such that either u;(P) intersects the set of singular points of p or da,u; does
not stay bounded, and then bubbling occurs in the small € limit. Under the
hypotheses of Theorem A we shall prove that such bubbling cannot occur and
establish a bijection between suitable zero dimensional moduli spaces.
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4 Linear estimates

The estimates in this section follow the ones in [DS2, Section 4]. In adapting
the proofs to the present context we encounter additional zeroth order terms.
These arise from the Levi-Civita connection and the almost complex structure
on M; they are not present in [DS2] where M is replaced by the space of
connections over a Riemann surface and the almost complex structure by the
Hodge #-operator. We extend the results of [DS2] by including estimates for the
second derivatives. Moreover, in the present case it is crucial that the constants
depend continuously on the pair (u, A). In [DS2] the moduli space is a finite set
and so the question of continuous dependence does not arise.
For u € C& (P, M) we introduce the spaces

X, = QU u*TM/G)x Q 2, gp),
X = QUNZ,urTM/G) x Q%2 gp) x Q°(Z, gp).
Thus X, = T(,,4)B and X, = &, a) x Q°(X,gp) for every A € A(P). If the

map u is understood from the context then we shall omit the subscript u. It is
convenient to introduce the norms

€ peuny = el +2 ][],
I€llciny 3= Nelln 2 [Vag]], +* 9" Vag]]
lollypes = Nl + ¢ ldaall, + < dhall .
lellypen = lallpe +elldaall, +elldiall, + & ldidaa + dadiall

for £ € QOF(S,w*TM/G), a € Q¥(Z,gp), k = 0,1, and 1 < p < co. Here V4
denotes the Hermitian connection on «*TM/G defined by (109). For ¢ = 0,1,2,
1<p<oo,and (= ({,a) € Xy, (' =(¢,¢',9") € X! we consider the norms

<] ep.si(uA)
||€IH€,p,E;(u,A) = H€/||€7p75;(u,A) +e ||SDI|

tpes(u,A) T H§||€,p,8;(u7z4)+€”a|

l,p,e;(u,A) +e ||w/|‘l,p,s;(u,A) )

where [€]lo , o,y = €]z - These norms are gauge invariant. If the pair
(u, A) is understood from the context we shall drop it to simplify the notation.
In particular, we abbreviate [|C[l.. . = [[Cllo,00,c:(u, 4) -

The augmented vertical differential of F¢ at a zero (u, A) € B is the operator
D° =Dg, A X, — X! given by

(

¢ D¢+ (Lya)2t

D* ( o ) = e 2L — dha (12)
e 2du(u)é + *daa

where D = D, 4y : QUE,w*TM/G) — Q"Y(S,u*TM/G) is the Cauchy—

Riemann operator defined by (110). The second coordinate in the definition of
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D= corresponds to the local slice condition for the G-action. For the definition
of the adjoint operator it is convenient to use the e-dependent inner products
associated to the (0,2, ¢)-norms. In addition we use twice the standard inner
product on the space Q%1 (%, u*TM/G). Then the adjoint of D is given by

/!
Do i, _ 2D*¢" + Lyg' + J Ly
iy 26205 —day —xda)’ )

Remark 4.1 (Local coordinates). Let v : U — X be a holomorphic coordi-
nate chart defined on an open set U C C and let v : U — P be a lift of v. In
this trivialization the map u, the connection A, the vector field ¢ along u, and
the 1-form « are represented by

ulec = wo0, Alee = §*A=®ds+ Udt,
goc = o7, = 0*a = pds+Pdt,

where @, U, ¢, 1) are Lie algebra valued functions on U. The volume form on
U is given by A?ds A dt := v*dvoly, for some function A : U — (0, 00) and the
metric has the form A\?(ds? + dt?). From now on we shall drop the superscript
“loc” and introduce the notation

vs = Osu+ Xo(u), v = Opu+ Xy (u),
Vasl = Vil + VeXo(u), Vai€ = Vi€ + VeXy(u),
Vas€ = Vas&— 32TV, J 4+ 050)8, Vau == Va — 1INV, J + 0 J)E,

Va,sn = 0sn+ [@,7)], Vam == O+ [¥, 1],

for n: U — g and a vector field £ : U — «w*T'M along u. Then

dav = vgds+ v dt, Vil = Va&ds+ Va £dt,
sFy = A2(0,0 — 0B+ [@,0]), #daa = A2 (Vast— Varg),
dha = —X"2(Vaso+ Vat).

In local coordinates a (0,1)-form on ¥ with values in «*T'M/G has the form
$(€'ds — J€'dt), where &'(s,t) € Tyy(s,0)M. In particular,

= 1 1
Osalu) = §(vs+Jvt)ds+§(vthvs)dt,
1 1
(Vag)"t = 3 (Va,s&+ JVa &) ds + 3 (Va,t& — JVa &) dt,

We represent a (0, 1)-form by twice the coefficient of ds. Then
- - 1 1
D¢ = Va 5§+ JVa € + ZN(favs —Jut) + §(J(’)SJ — O J)E,

where N (&1,&2) = 2J((Ve, J)&1 — (Ve J)&2) denotes the Nijenhuis tensor, and

1 ~ ~ 1 1
2D*§/ = E <VA75§/ + JVA7t§/ — §J(V§/J)(’US — J’Ut) + §(J85J — 8t<])§> .
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The Weitzenbéck formula has the form D*D¢ = 1V, Va€ + Lo.t. In the Kiihler
case we have V4 = @A, VJ =0, and 0,J = 9;J = 0. Hence in this case

. 1
D*D¢ = v (Va,sVa s€ + VaVa€)
1 1
o s, )€ — 555 IVeXo, w—0,0+ (2,9 (u)-
In local coordinates the operators D¢ and D" have the form
D¢+ Lyp+ JLyy
D¢ = A3 (Vasp + Va ) + e 2L ;

A"2(Va,s¥ — Vap) + e 2du(u)é
2D* 4+ Ly’ + JLy'
DE*C/ _ 7VA,S<)0/ + VA,ﬂ/}/ + 572LZ§/
—Va,s¥ — Va4 e 2dp(u)’

Proposition 4.2. For every p > 2 and every co > 0 there exist positive cons-
tants €g and ¢ such that

c(ellD*Cllop.e + [ImutllLr) ,
ce (ID*Cllo.p.e + [ImutllLr) ,
1€ M1, pe5 0, ) c(ElDop.e + lImugllLr)
¢ = 7Tu§l||1,p7€;(u1A) ce (ID**CNlop,e + lImu’ll2r)
for all (u, A) € MY o(co), ¢ = (.a) € Xy, (' = (€,¢',¢) € X}, and ¢ €
(0,e0]. Here we abbreviate D¢ := Dy, A) and m,¢ = (m,£,0) and w, (" =
(&', 0,0), where 7, is defined by (9).

1€ 111,p,63u,4)

1€ = Tulll1,p,es(u,4)

(VAN VAN VAN VAN

In this paper we prove Proposition 4.2 only in the case p = 2. The proof for
p > 2 is similar to the proof of an analogous result in [S].

Lemma 4.3. (i) If 954(u) = 0 then
2DD*¢" + 267 2(L, L5 + (DJ — JD) L'

DD = A’ + [#Fa +e2p(u), 9]
Act)! — [+Fa+ e ?pu(u), ¢'] + 26 2Ly (DJ — JD)*¢’

for ¢ = (&, ¢/, W) € X, where A := d*yda + e 2L% Ly,
(ii) If 05.4(u) = 0 and p(u) =0 then

2D*DE 4 e 2L LA+ e 2L, LT ¢ + Q*a >

& * & —
DU = < dydac+ dadia +e 2L Lya +e72Q¢

for ¢ = (&,a) € Xy, where Q : Q°(X,u*TM/G) — QY(X, gp) denotes the zeroth
order operator

Q¢ = 2L;DE —daL) ¢ — xdadu(u)
= Dl daw) — 0l JE, daw) + #LLJE + SLAN(E,D(w).
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Proof. We shall repeatedly use the identities

dhya = —xda*a, xdadap = [¥Fa, ¢,
L, = du(u)J, dp(u)Lup = —[u(u), ]

for o € Q'(X,gp) and ¢ € Q°,gp). To prove (i) note that the triple
(&, @ ") :=DD=" (¢, ¢',¢') is given by

¢ = DED*¢ 4 Ly¢ +JL') + (Ly(262L5E — day’ — xday)’))"!
= 2DD*¢ +2e (L, L)t
+ DLy — (Lyda@)®' + DIL — (Ly % day’)!,

¢ = e PLi(2D*¢ + Lup + JL,) — d5(2e 2 L5 — dap — *d a))
= dida' +e PLiL, +2e (DL, — Lyda)*€ + [%Fa 4 2 pu(u), '],
P = e 2dp(u)(2D*E + Ly’ + JLy') + xda (26 2L5E — dag’ — xdat’)

= dszwl + E_QLZLuwI - [*FA + €_2M(u’>ﬂ 50/]
+ 26" LT D +diy x LEE).

The assertion now follows from the fact that
J(Lya)"' = (L, x )™, LEJ*¢ = —x L3¢, (13)
for a € QY(3, gp) and ¢ € Q¥ w*TM/G), and
dya(u) =0 = DL,y = (Lydap)™! (14)

for ¢ € Q°(3,gp). The first equation in (13) follows from the fact that xa =
—ao Jy, for every 1-form « on ¥ (with values in any vector bundle). The second
equation in (13) follows from the first by duality. Equation (14) follows from the
fact that the section (u, A) — 97 .(u) of the vector bundle over B with fibres
QOY(S,u*TM/G) is G(P)-equivariant.

To prove (ii) note that the pair

(€,6) = DD (¢, )

is given by

£ = 2D%(DE+ (Lya)™?)
+ Ly(e72L5E — dhya) + J Ly (e 2dp(u)é + *d acr)
= 2D*D¢+2e (L, LiE)" + (2D (Lua)®' — Lydfia + J Ly * dac)
& = 2e72L5(DE+ (L,a)™h)
—da(e 2L E — dhy) — xda(e 2 dpu(u)é + xdac)
= dydaa+dadia+e 2L Lya+e 2 (2LEDE — daLl€ — +dadu(u)f).
Here we have used the fact that p(u) = 0 and hence 2L% (L, )%t = L¥ L,a. The

formula for the operator @ := 2L D — da L, — *dadu(u) follows by computing
in local coordinates. O
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Proof of Proposition 4.2 for p =2. Let
(= ¢,¢) =D
Then, by Lemma 4.3, the formula
DE*DEC — DE*CI

is equivalent to

2D*DE + e 2L Lié+e 2 JL, LT ¢+ Q*a 2D*¢ + Ly’ + JL,3,
dydaa +dadia+e 2L Lya+e72Q¢ = 2205 —day — xday).

Take the L-inner product of the first equation with & and of the second equation
with e?a. The sum of the resulting identities gives

e |LREl® + e L TEN + 2| DEI* + 1 Lual)? + €2 |daal® + &% [|d5 el
= 2(¢/, DE) + 2(€, Lua) — 2, QF)
+ (‘pla LZé-) - <w/a LZJ§> - 52 (‘pla d2a> + €2<1/Jla *dAOé>
2 _ _
<BIEN + I1DE)* + 27 | Lual® + 6 |odf* + 67 [|Q¢1*
2 2 -1 _— * -1 _— *
+ |l|° + &% [ F + 27 e | Lugl® + 27 e R || L JE
+2712 @0l + 271 daal .
Here all norms are L?-norms and all inner products are L2-inner products.
Choose § > 0 so small that 8 [|o]|* < 47! ||L,a|” for all . Then
e Ligll* + 2 LTI + IDEN + | Luall* + &2 [|dacd|* + & [|di o
2 2 2 _
< 120I¢|1° + 42 @117 + 4% ' [|” + 467 1QIIZ - €]
2 - 2 2
<12 HDE(faQ)Ho,Q,E +4071 QN7 lI€ll72 -

Now the required estimates follow from the inequalities

IN

IVamatllee < e (IVallee + l€ll2)

1€ = mugllp. < ¢ (1Ll e + 1L T 2) s
IVagl| 2 " (I1D€] L2 + 1€l z2) -

The first inequality follows from (15) below. In the second inequality the cons-
tant ¢’ can be chosen as an upper bound for the norms of the linear maps
Ly(L:L,)~ ! over all x € p~'(0). The third inequality is the L2-estimate
for the Cauchy—Riemann operator and it follows from the Weitzenbock for-
mula. The constant ¢” is gauge invariant and depends continuously on the pair
(u, A) with respect to the C'-norm and hence can be chosen independent of

IA A

(u,A) € .//\/lv%j(co). This proves the proposition in the case p = 2. O

The next lemma expresses the Sobolev inequalities in terms of the e-depen-
dent norms.
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Lemma 4.4. For every p > 2 and every cog > 0 there exists a constant ¢ > 0
such that

HCHOO@ < CE_Q/pHCHLp,E;(u,A)a HC'

for all (u, A) € ./T/l/%j(co), € Xy, ande € (0,1).

1,006 < 05_2/p|‘<||2,p,€;(u714)

Proof. Multiply the metric on ¥ by e~2. Then the W*P?-norm of (£, ) with
respect to the rescaled metric is equal to e~2/? times the (k,p,e)-norm of ¢,
and the L°-norm with respect to the rescaled metric is equal to the (oo, é€)-
norm. Hence the estimates follows from the Sobolev embedding theorem for the
rescaled metric. The constant is gauge invariant and it depends continuously
on u (with respect to the C'-norm) and A (with respect to the C%-norm). By
Lemma 2.2, the estimate holds with a uniform constant c. O

Lemma 4.5. For every p > 2 and every co > 0 there exist positive constants
€o and c such that

H7TuDE< - Doﬂ'ud kpe S CHf - 7Tu§| k,p,es

[7uD°¢ = D mulllkpe < clléllkpes
17D = Dl llkpe < ellg = Tulllkpres
|7 D¢ = Dl kpe <l lkpee

for every (u, A) € /T/l/%yz(co), (= a)e X, =, Y)e X, e (0,1],
and k = 0,1. Here we abbreviate D¢ := Dfu A) fore > 0.

Proof. We prove first that, for every vector field v € Vect(X), there exists a
constant ¢ = ¢(p, ¢p,v) > 0 such that

HTuﬁA,vg - ?A,vﬂugnwkvp,A < C||§||W’“’,Aa (15)
||7TuvA,v€ - WuVA,vT"ugHW’“P,A < C||§ - 7"'u§||W’w’,Aa

for (u,4) € M% y(co), € € Q(S,u"TM/G) and k = 0,1. Here the W'
norm labelled by A is understood as the (gauge invariant) (1,p,e)-norm for
e = 1. To prove (15) we choose local holomorphic coordinates s+ it on X. Thus
£(s,t) € Tus,pyM, and vg, vy, Va €, and Vj ;€ are as in Remark 4.1. Write

5 = 7Tu€ + Lunl + JLun27
where 7;(s,t) € g. Define By(s,t) : g — Tys,)M and By(s,t) : g — Tyy(s,)M by
Bsn =V, X, (u), Bin =V, Xy (u).

Then
Va,sLun — LyVa,sn = Bsn, Va,tLun — LuNan = Bin

and hence

VA,ST‘-ug - 7TuVA,sg = 7"-u(Bsnl + JBSWQ + (V’USJ + 85J)Lu772)-
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Since ny = (L} Ly) " 1LE (€ — mu€) and o = —(LEL,) " LEJ (€ — m,€), we have
||VA,s7Tu€ - WuvA,ngLP < C||€ - 7'rugHLP-

This proves (15) for the local vector field 9/0s. For 9/0t the proof is analo-
gous. Hence the result follows for any linear combination of these vector fields
supported in the given coordinate chart, and hence for every vector field on X.
For ¢ € QYL(Z,u*TM/G) there are similar inequalities.

By (15), there exists a constant ¢’ = ¢/(p, cg) > 0 such that

Hﬂ'y(@Ag)O’l - (?A,vﬂ'ug)o’w
170 (Va&) " — 70 (Va,omu€) |

wioa < Cl€llwrra,
wioa < ClE—Tulllwrs a,

for (u, A) € M% s (co), € € Q°(S,u*TM/G), and k = 0,1. Since

DE = Dy )€ = (Va&)™' = J(VeJ)3g,a(u)

we have
HTruDngTrugHW’“’P,A C”HfHW"’P,Av (16)
7D (€ = Tul)llwrp a "|€ = mulllwrp A

for (u, A) € M% s (co), € € Q°(S,u*TM/G), and k = 0,1. Since

<
<

mu D¢ = m,DE, D7, ¢ = mu D€, D, ¢ = (D7,u€,0,0),

the required estimates for the operator D¢ follow from (16). The proof for the
adjoint operator is analogous. O

In the following we use the notation
Vi€ = (Vané, Va,a), Vaol = (Vaul', Vauy', Va,uth)

for v € Vect(2), ¢ = (§,a) € Xy, and (' = (¢, ¢, ¢') € X, where V4 is the
connection on u*T'M /G defined by (109) and V4 ,a € QY(3, gp) is the covariant
derivative induced by the connection A and the Levi-Civita connection on X.

Lemma 4.6. For every p > 2, every co > 0, and every equivariant vector field
v € Vect(X) there exists a constant ¢ > 0 such that

ID°¥0C — VawDCllpe < e Cllistpes (17)
1D VAol = VauDT ¢ llkpe < e M k1, (18)
for all (u, A) € MY o (co), ¢ € Xy, ' € Xy, £ € (0,1], and k =0, 1.
Proof. We compute in local coordinates. Let ¢! = (&', ¢’,¢’) := D=¢. Then

. ~ 1 1
€ = Vask+ IVask+ TN vs = o) + 5 (T0u] = 0)E + Lusp + T L,

"= AT (Vase + Vauy) +e 2L, (19)
Y= ANTE(Vas — Varp) + e 2du(u)é.

A
|
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Here

A = &ds + Vdt, a = pds + Pdt,
and vs, vy, Va s, @A,SQ Va1, and @Aﬂf{ are as in Remark 4.1. It suffices to
prove the estimate for the local operators V4 s and Va ;. Let ¢, = (&L, ¢, %) be

defined by (19) with (&, ¢, ) replaced by (Va <&, Va.s0, Va,st)). Since VaJ =0
we obtain

Vasl =& = J(VasVasé — VaiVa ) + Vi, Xo(u) + IV, Xy (u)
+ E@A,S(N(g, vy — Juy)) — EN(@A,S& v — Juy)
+ %@A,s((JasJ — 0 J)E) — %(Jasj — 04 )V €
(VT D7) (L — L),
Vase — ¢ = XN 2(VasVah — VaVash) + (0sA72) (Vasp + Vart))
Fe2p(00,8) — e () (Vi T + 0,T)E,
Va st =l = —X"2(VasVare + VaiVasp) + (0sA72) (Vasth — Va 1)

1
— e ?p(vs, JE) — 55*2L;(vv5 J 4 05 J)E.

Here we have used Lemma C.2. For the vector field 9/ds, multiplied by any
cutoff function, the estimates (17) and (18) follow from these three identities.
The proof for /0t is similar, and so is the proof for the adjoint operator. O
Lemma 4.7. Letp > 2 and co > 0. Suppose that D° := D?%A) is onto for every
(u, A) € MY 51(co). Then there exist positive constants o and ¢ such that the

operator D° :=Df, 4, is onto for every (u, A) € ./\A/l/%ﬁz(co) and every € € (0, ]
and

IN

1 ls1pe < (1Dl +1mD*C Ny )s (20)
1" =l g1 pe < €Dy s (21)
for¢' e X! and k=0,1.
Proof. By elliptic regularity, there exists a constant Cy > 0 such that
I€ollzr < Col D &oll1r (22)

for every (u, A) € /,\\/IJ%’E(CO) and every & € Q%1(%, H,). Hence

Col| D" 7| Lo

Col|maD*¢' || r + Col|ma D¢ — D 10l || Lo
Collmu D= N 2e + CocrlIC" = Tul'llo,p,e

Collmu D" || e + Cocieae (D" lo,p.e + [I7ul [ L0) -

(e o

VAN VAN VARVAN
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Here c; is the constant of Lemma 4.5 and c5 is the constant of Proposition 4.2.
With Cyeieee < 1/2 we obtain

7l e < s (el D¢ op.e + 1mD"¢ N 1) (23)

where c¢g := 2Cycice. The inequality (20) for & = 0 now follows from (23) and
Proposition 4.2. To prove (21) for k = 0 we use Proposition 4.2 and (23) again
to obtain

1€ = mull1pe < e (1D Mlope + 17l l|r)
S 026(1 =+ CgE)H,DE*CIHQRE + 0263€||WuD8*<I||Lp
< el D |o,pes
where ¢4 := co(1 4 2¢3).
Now let v € Vect(X). By definition of the (1,p,e)-norm and (15), there
exists a constant ¢5 = ¢5(v, p, cg) such that

IVawlllope < ese M Clpes  ITuVawl = Vaumulllze < esliClop.e,

for (u,A) € /T/l/%yz(co), ¢ € X, and € € (0,1]. Let ¢g = c6(v,p,co) be the
constant of Lemma 4.6. Then, by (20) with £ = 0 and Lemma 4.6, we have

elVaulllipe < ce (EHDE*@AWC'HO,p,E + ||WuDS*@A,vC'||Lp)
< D Vaul = Vau DT Nogpe + | Vau Do,
+ ce|| (D Vaul' — Va D) || 1o
+ c€||7ru@A7vD€*C’ - @AJJWUDE*C’HL;» + C€||@A7v7ruDE*C'||Lp
< 2¢e5 (€| D Npe + 17D l1,p,e) + 2¢c6[IC 1.,
< 2¢(es + ces) (EIDT e + 1T DT l1p,e) -

The last inequality follows again from (20) with & = 0. The estimate (20) for
k = 1 now follows by taking the sum over finitely many suitably chosen vector
fields v.

To prove (21) for k = 1 we observe that 7, D**m,¢’ = D°*1,(’ and choose
c7 such that ||muCll1,p,e < c7]|C]l1,p,c for every ¢ € X,,. Let cg be the constant of

Lemma 4.5. Then, by (20) with k£ = 1 and Lemma 4.5, we have

¢ = mulll2pe < cEIDT(C = 7l l1pe + 17D (¢ = Tul)l1,p,e)
< e (HDE*C/HLp,e + ||7TuD€*</||17p76)
+ e[| D mul’ = D |1,
+e| D¢ = DVl 1,
< (L +en)el D lpe

+ cesel|¢|1p.e + ccsll¢ = mul 1 p.e
< el D e

The last inequality follows from (20) and (21) with k = 0. O
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Lemma 4.8. Let p > 2 and cg > 0. Suppose that D° := D? A) is onto for
every (u, A) € /\7%12(00). Then there exist positive constants ¢ and ey such that

S k+1l,p,e — D k.p,e wD*D ' k.p,e
D¢l e e DD g pe + [T DD (24)
D¢ = 7D g1 pe < e IDDC e (25)

A

for every (u, A) € ./\/lB s(co), ¢' € X, e €(0,e0], and k =0, 1.
Proof. The proof has nine steps.

Step 1. Let ¢ > 1 such that 1/p+1/q = 1. Then there exists a constant co > 0
such that

I€0ll e + IS0l e < colléollzs  €ollLe < co

D¢,
L

for every (u, A) € MOB,Z(C()), every & € ker D°, and every &, € Q%Y(3, H,).

These are standard estimates for elliptic pdes. The first estimate uses L? regu-
larity for the operator DY, the Sobolev embedding W2 «— LP, and the Holder
inequality. The second estimate uses L? regularity for D" and the fact that
DO is injective.

Step 2. There exists a constant ¢c1 > 0 such that

" Do*gl DO* //>
Do f’ < c1 sup —< 0 0
H 0 Yendo  ||DO e

for every (u, A) € ./\A/l/%,z(co) and every & € QOY(Z, Hy,).

Let &,...,&y be an L%-orthonormal basis of ker D?. Given &) choose & €
L4(X%, H,) such that

€Dy =||pq| o el =1

Let & € Wh4(S, A1 T*Y ® H,,) be the unique section such that

E=DE + ) (6.6)4
j=1
Then

HDO*&/J = (D¢, D7)

DO* ”,DO* /
] HE 2iesis| Sarg,.
La 0llLa

m po* ",DO* /
1 3 s el | it

j=1 0||Lq

IN

<D0* 11 DO*§6>

A
La
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Step 3. There exists a constant co > 0 such that

ﬂ_ups*cl o DO*WuCI

Mﬂwmms@Q LJHWmWWMJ

for every (u, A) € //\\/IJ%’E(CO), every ¢! € X!, and every e € (0,1].
For every & € Q%(%, H,) we have

(D&, D"mu() (DY, DV mul — D) (&, DO D)
1P &] . P&l P& .

0* ’_ g% -t 0 g% -1 M
< HD Ty C . D¢ . + HD . D¢ HLP HDO*Eéqu
< P = w4 eo [PmDC -

Lp

Here the last inequality follows from Step 1. Now, by Step 2,

HWUDE*C/HLD < HDO*WuC/ . WuDE*C/

e
Lp

Lp

<DO*7ru</7 DO*§6>

¢ [praconc], vagn
ﬂ'uc T C e C1 5’[&% HDO €6||Lq
< (1+a) HDo*ﬂuC’—ﬁuDE*C’ . + cpc1 ||DO7TUDE*C'||LP.

Step 4. There exist positive constants €9 and c3 such that
1Dl < ea( 1Dl e + € 1D D7 . + MDD )

for every (u, A) € MOB,Z(C()), every ¢! € X!, and every e € (0,2¢].
We apply Lemma 4.5 to both operators D¢ and D¢*. Then, by Step 3,

17Dl < e ||maD* ¢ =Dl
+ [P 7 D¢ = m DD, + IR DDT )
< afelld = mulllg e + D7 = DT g
+ MDD )
< (1D Cllo e + € ID Dl + MDDl )

The last inequality follows from Lemma 4.7 and Proposition 4.2.

Step 5. We prove (24) for k = 0.
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By Proposition 4.2 and Step 4,
1D Clhye < (1D Dy + I D¢l

0(635 ||D€*</|‘O,p,8 + (1 —+ Cg)E ||DEDE*C/H0,Z),5

IN

IN

tes HﬂuDEDE*CIHLP)
for all (u,A) € .//\/lv%j(co) and ¢’ € X and € € (0,g0]. With ccze < 1/2 we
obtain (24) for k = 0.
Step 6. We prove (25) for k = 0.
By Proposition 4.2 and Step 4,

PE

D¢ — 7, D4 < CE(HDEDE*C/”LIJ,E + HWHDE*C/HLP)

IN

ce (e 1Dl e + (1 + o) IDDC .

+ s | DD )
cxe |\’Z)‘EDE*C’|\01P18 )

IN

Here the last inequality follows from Step 5.
Step 7. There exist positive constants €9 and cg such that
DD, Vanlllr < collCll2pes
ellmuD D, Vanldlle < 6 (DD Nlop,e + 7DD o + [ ]1,p.)

for every (u, A) € ./\A/l/%,z(co), every ¢! € X!, and every e € (0,¢&¢].

The first estimate follows immediately from Lemma 4.6. To prove the second
estimate, recall from Lemma 4.3 that

T DD (" = 1, 2DD*¢' + 1y (DJ — JD) Lot

where D : Q°(X,w*TM/G) — Q%Y(X,u*TM/G) is the Cauchy-Riemann op-
erator defined by (110) and R := (DJ — JD)L, is a zeroth order operator
(Lemma B.5). Hence

9DD* 1,8 = —2[my, DD*|€’ + 1, DD — m R’
By (16) in the proof of Lemma 4.5, the commutator [m,, DD*] is a first order
operator in ¢’. Hence there exists a constant ¢; = c7(p, ¢p) such that

VA" Vamu€lleo < e7 (Im DD 1w + ¢ lpie)

Moreover, by Lemma 4.7,

IVA" VA (€ = 7)o el = mu€ll2p.e
cse DT 1pee

co (ID°D°"('llo.p.c + &~ ImuD* D" llo.p.e) -

IAINCIA
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The last inequality follows from Step 5. Now the commutator
Va0, T DD = 2[Va o, T DD¥IE + [V, Ty R]Y

is a second order operator in & and a zeroth order operator in v¢’. Hence the

assertion follows from the last two inequalities.

Step 8. We prove (24) for k = 1.

Let ¢19 be the constant in (24) for k = 0 and ¢11 be the constant of Lemma 4.6
Then, for every v € Vect(X), we have

e Va DT 1 pe
< el D Va ' ||1pe + VA, DT = D Va o' |1, pe
< 01052HDEDE*@AJJCIHO,IJ,E + C10€||7TuD€DE*@A,vC/||LP + c11[[¢|2,p,
< 1082V DD Jo.pe + €106]|Va,omu DD || Lo
+¢108°|[[D*D*, Va,o]¢ [0,p. + c108]|[TuD* D7, Va )¢ 1r + c11[[¢[l2,p.c
< ¢106%|Va,o DD o pre + €106]|Va v DEDTC || 1o
+cgc10 (e[| DD Mlo,p,e + 7DD 10) + (2¢6¢10 + c11) [ [|2,p,
< a2 (EHDEDE*CIHLP,E + HﬂuDEDE*CIHLp,e) .

The penultimate inequality follows from Step 7, and the last step from (20)
and (24) and the definition of the (1,p,e)-norm. Now (24) for k = 1 follows by
taking the sum over finitely many vector fields v € Vect(X).

Step 9. We prove (25) for k = 1.

By Step 8, suppose that (24) holds with ¥ = 1 and ¢ = ¢;3, choose ¢14 such
that ||muCll1,pe < c14]|C|l1,p,e for every ¢ € X, and let ¢15 be the constant of
Lemma 4.5. Then
D¢ = 1D 2pe < c13el| DD = 1D )1,p,e
+ 13| T D (D" — mu D) |1,
c13e (DD [1p,e + 7D D"
+ c13¢|| D D — T, DD
+ el (7D = DOma) D 1 e
< (14 ca)ese| DD 1 pe
+eses (€D l1pe + 1D77C = m DTl p,e)
< DD 1 pee-

IN

1,17,8)

1,p,e

The last inequality follows from Steps 5 and 6. O

5 Quadratic estimates

Fix p > 2, ¢o >0 and (u, A) € /T/l/%yz(co), and consider the map

fE:f(EuﬁA)Xu—?Xé‘

29



given by -
P(€) (01,4 1a(exp,(£)))
Fe(& o) = 2L — dya : (26)
e pu(expy,(§)) + *Fata

Here p(€) : Texp,(ey)M — TuM denotes parallel transport along the geodesic
r +— exp, (r€) with respect to the Hermitian connection

~ 1

V:i=V- §JVJ
on T'M. The differential of F*¢ at zero is given by

dfe(()) = E:’IJ,,A)'

Let F; denote the ith component of F*. Since F3 is a linear map, the following
proposition only deals with the first and third components of F¢.

Proposition 5.1. For every p > 2 and every co > 0 _there ewists a constant
¢ > 0 such that the following holds for every (u, A) € M%ﬁz(co), any two pairs

¢=(&),¢=(£,a) € Xy, and every ¢ € (0,1].
() If [|€) L~ + ||é||L°° <1 then

IFF(¢ + Q) = F (¢) = dFF ()] o
< cléllz (1€ +1Vaéllo + llal 20 )

+cll€3 (IVallLe + lollo + [VallLs + lld]s )
If, in addition, | Na&llre + |Vaéllze + [lellze + |@llre < e2/P~1 then

IFE(¢ + Q) = FT(¢) = dFT ()] o
< clléllzee (=7 EN Lo + [Vl + allzs ).

(i) IF €]l o= + €]l <1 then
175 + ) = F5Q) = dF5 Q8N < e(lalllial e + 2] < |10 ).
(iif) If €]}~ <1 then

1475(0)¢ = dFs e < clléll (€llze + IVallzr + a1 )

+clléllzee (I€lo + 1Vaéllzs + ).
(iv) If |€llL>~ < 1 then

14750 = aF5O)lr < e(=20€l o €l e + lallzslalle).
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The estimates in Proposition 5.1 differ from the ones in [DS2] in that the first
derivatives of £ appear on the right hand sides of the inequalities. This is because
the nonlinearities in the Cauchy-Riemann equations appear in the first order
terms whereas the nonlinearities in the anti-self-duality equations only appear
in the zeroth order terms. In our equations the nonlinear terms involving a are
of zeroth order. Hence no derivatives of a appear in the quadratic estimates.
This is crucial for our adiabatic limit argument.

Proof of Proposition 5.1. In local holomorphic coordinates s + it on ¥ the map
JF¢ is given by

p(§) (3su§ + Xy (ug) + J (Spue + X\I/er(uf)))
F(C) = e2LEE+ N2 (Vasp + Vav) ’
e p(ug) + A7 (0s(V + 1) — (P + @) + [ + ¢, ¥ +¢])

where

ug :=exp,(§),  C=({p¢),  a=edst+idt.

Suppose that
€]l o < 1.

The second derivatives of F{ and F§ satisfy the following pointwise estimates for
suitable constants ¢; = ¢1(u, A, vs,v¢) and co = co(u) (i.e. c¢a does not depend
on the derivatives of w):

EFEQOCQ) < e+ ]al+Vag)) lal &l
+ & (IVa&e] + |oz]) + |&| (|@A§1|+|041|)) (27)
PFQC ) < eallanllaz] + =7 l6lleal). (28)

The estimate (28) is obvious and (27) follows from the fact that 75 (() is linear
and of zeroth order in ¢ and ¢ and that the first order terms in £ are independent
of ¢ and 1. Now consider the identities

FCH ) — F(Q) — dF (O = /O (1= PF(C +rO)CE Oy dr (20)

1
aF Q- a0 = [ EF OO (30)
0
To prove assertions (i) and (ii) replace (¢, (1, (2) by (§+r§, Z, f) in (27) and (28),
insert the resulting inequalities in (29), and integrate over ¥. Moreover, to derive
the second assertion in (i) from the first we use the inequality £2/7~1||€|| = <
c(e™ €|l r + | Vaé|L») of Lemma 4.4. To prove assertions (iii) and (iv) replace
(¢,¢1,G) by (¢, ¢, ¢) in (27) and (28), insert the resulting inequalities in (30),
and integrate over . O
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Proposition 5.2. For every p > 2 and every co > 0 _there erists a constants
¢ > 0 such that the following holds for every (u,A) € M%,Z(Co), any two pairs

¢=(&a),¢=(£,a) € X, and every e € (0,1].
() If 1€l + 1€z <1 and [|¢]1p,e + I€]|1,pe < /P then

IF2(¢ + Q) = F=(C) = dF= () llope < e 7PICI17 e
(i) If €l + €]l < 1 and [[Cll2pe + [ICll2,p,c < €2/P then
1F=(¢ + €)= FE(C) = dFF ()l pe < e 2PICI3,
(iii) If [[¢]l o= <1 then
1dF=(¢)¢ — dF=(0)Cllop.e < e 2P| Cll1pellCl1,p,e-
(V) If |l <1 and [[¢]|1p.c < €2/P then

147 () = dF*(0)CNhpe < =™ 2P ¢ N2 pellCl2 pee-

Proof. Assertions (i) and (iii) follow immediately from Proposition 5.1. To
prove (ii) we observe that in estimating the quadratic terms in dF§ we encounter
products of the following forms

o 03¢ éé and Jp - é . é Here the LP-norms of 62;5 and Jp can be estimated
by €2/P=2 and the L>-norm of & - £ by e=%/?||C||3 , ..

o £-OE-0E,€-€-9%E, €0, and £-0¢- €. The LP-norms of these products
can be estimated by e 272/P||C||1 . [[C||2.p.c-

® O¢- 85 . é, - 85 : é, and € - ¢ - é In these cases the LP-norm of d¢ is
bounded by 52/1’?1 and the L>°-norms of 9¢ - £ and ¢ - £ are bounded by
e Y PYICN 1 peellClzpee-

Similarly, in estimating the quadratic terms in 0F5 we encounter products of
the following forms

o 5_25 . 85 and 0 - ’L/AJ The LP-norms of these products can be estimated by
e PYIC) e

o c20¢ Aég Here the LP-norm of 0¢ bounded by £2/P=1 and the L>-norm
of e72¢ - £ is bounded by e=2=4/7||||?

Pe

This proves (ii). The proof of (iv) is similar. O
Assertions (i) and (iii) in Proposition 5.2 are weaker than Proposition 5.1;

in the former the first derivatives of a appear on the right hand sides of the

estimates. The full strength of Proposition 5.1 will be required in the proof of
Theorem 6.2 below.
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6 Proof of Theorem B

From now on we assume (H1) and (H4). In this section we establish the ex-
istence of a G(P)-equivariant map 7° : M y(co) — M5 5 that satisfies the
requirements of Theorem B.

Theorem 6.1. For every co > 0 and every p > 2 there exist positive cons-
tants ey and ¢ such that for every e € (0,e9] the following holds. For every
(ug, Ap) € M%ﬁz(co) there exists a unique pair (; = (§, ) € Xy, such that

(e, Ac) 1= (expy, (&), Ao + ac) € M 5, (31)
_dzoaa + E_QLZ[)&E =0, Ce € 1m (D‘(Eu,A))*a (32)
||C&‘||2,p,s;(ug,Ao) < CEQ‘ (33)

The map (uo, Ag) — (ue, Az) is G(P)-equivariant and will be denoted by T¢.

The next theorem shows that uniqueness holds under a slightly weaker hy-
pothesis, namely in a larger neighbourhood of (u, A).

Theorem 6.2. For every ¢y > 0 and every p > 2 there exist positive cons-
tants § and eg such that for every e € (0,&¢] the following holds. Suppose that

(ug, Ao) € ./\A/l/%ﬁz(co) and (§, ) € Xy, satisfy (31), (32), and
1111 p.c + & lledll o + 2P N1(€ Q)| o o < 0/PH2, (34)

Then (exp,, (&), Ao + ) = T (u, A).

Corollary 6.3. For every ¢y > 0 and every p > 2 there exist positive cons-
tants § and eg such that for every e € (0,&¢] the following holds. Suppose that

(uo, Ap) € /,\\/lJ%’E(cO) and ¢ = (§, @) € Xy, satisfy (31), (32), and
HCHl,p,s;(ug,Ag) < 662/1)-"_1/2' (35)

Then (exp,, (&), Ao + a) = T (u, A).
Proof. Theorem 6.2 and Lemma 4.4. O

Proof of Theorem 6.1. The proof is similar to that of Theorem 5.1 in [DS2].
However, in the present case the nonlinearities (in the quadratic estimates)
appear in the highest order terms, and we establish estimates for the (2, p,e)-
norms and not just the (1,p,e)-norms (as in [DS2]). We assume throughout
that the exponential map at each point in g~=1(0) is defined in a ball of radius
one

Abbreviate D¢ := D¢

(o, Ag) 20d let F 0 Xy — X7 be defined by (26). Then

dFE(0) =D°,  F*(0) = (0,0,%Fa,).
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Hence, by Lemma 2.2, there exists a constant Cy > 0, depending only on ¢y and
p, such that

1F=O)1 e = € llFaoll o + €2 lldag * Fag ll o < Coe.

We use Newton iteration to obtain a zero of F¢, and hence a solution of (7).
Let ¢, = (&, ) € Xy, be the sequence defined recursively by (o := 0 and

Cu-i-l =+ él/a 51/ € imDE*a IDEQCV = _]:E(CV)' (36)

We prove by induction over v that there exist positive constants g, c1,C, de-
pending only on ¢y and p, such that

1Ellzpe < el PG 1 pes (37)
G ll2pe < 277Cocie?, (38)
I1F(Cri)llipe < 051—2/;)”&/“2%6 (39)

for e € (0,e0] and v > 0. The constants are chosen such that the linear estimates
of Lemma 4.8 hold for 0 < € < g9 with ¢ = ¢; > 1, the quadratic estimates
of Proposition 5.2 hold for 0 < ¢ < 1 with ¢ = ¢o > 1, the L* estimates of
Lemma 4.4 hold for 0 < ¢ < 1 with ¢ = ¢ > 1, and

C= 3000102, 0016(1)72/p < 1/2, 300010005372/17 < 1.

For v = 0 the estimates (37) and (38) follow from Lemma 4.8. Namely, by (24)
with £ = 1, we have

1oll2.p.e < 18]l F(0)[1,p,c < Cocre”.

The estimate (39) for v = 0 follows from the identity dFe(0)(y = —F<(0) and
Proposition 5.2 (ii). Namely, since Cycycaoe® 2/P < 1 we have

Coll2.pe < Cocre? < e%/P, [€olloo.e < Cocreaee® 2P < 1.

Hence the hypotheses of Proposition 5.2 (ii) are satisfied with ¢ = 0 and ¢=Co,
and hence

IF5 () pe = 1F(Co) — F2(0) — dF=(0)Coll1,p.e
e 722613 e

< Coereae ™7 loll2pe-

IN

Since C' > Cycyco this proves (39) for v = 0. Now assume that the sequences
Coy.--,¢, and fo, ey fu_l have been constructed up to some integer v > 1 and
that the estimates (37-39) have been established for all integers up to v — 1.
Then, by (38),

2,p,e < 20001523 (40)

v—1
2pe = 1G]

Jj=0

v—1
1Cullype < DG+ = G
j=0
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and hence

1G]l o < 2C0c1co0e® 2P < 1.
This shows that &, (p) lies in the domain of the exponential map at wug(p) for
every p € P and so (, lies in the domain of F¢. Let (, and (41 be defined

by (36). Then, by Lemma 4.8, (,, satisfies the estimate (37). To prove (38) we
observe that, by the induction hypothesis,

16ll2pe < el FEG)pe
< Cae P ll2pe
< 27 all2pe
< 271/000152.

To prove (39) we observe that, by (40),
IGll2pe + G llope < 8Coers® < &2,
IGulloce + 1ulloce < BCocrcoce™™™P < 1.

Thus the hypotheses of Proposition 5.2 (ii) and (iv) are satisfied with ¢ = (,
and ¢ = (.. Hence

1 Goalhipe S I +6) — F(G) — dF(G)elpe
+ 1dF=(C) ¢ — dF(0)Cu 1 p.e
O ([ Y [ PP [ P
30001025172/}7”(1/”2@8

= Ce' PGl pee.

IN

IN

This completes the induction.

By (38), the sequence (, is Cauchy in the (2,p,e)-norm, and hence in the
W?2P-norm because ¢ is fixed. Moreover, by examining the second component
of F¢ we find that (, satisfies (32) for every v and hence so does its limit

(e = (557048) = Vh_{go(fuaau)-

By (40), this limit also satisfies (33) with ¢ := 2Cyc;. Moreover, by (38)
and (39), the sequence F¢((,) converges to zero in the (1, p,e)-norm and hence
Fe(¢.) = 0. Hence (. satisfies (31) and it follows from elliptic regularity that (.
is smooth. This proves existence.

We prove uniqueness. Suppose ¢ = (§,a) € X, satisfies (31), (32), and
I¢ll1,p,e < ce?. Then, by Lemma 4.8 and Proposition 5.2 (i) and (iii),

1€ = Cllipe = allD(¢C—C)lop.e
< allFC) = FCE) = dFE ()€ = C)lope
+ar|[dF(0)(C — ¢) — dF(C)(C = C)llop,e
< e P10 = Cellipe + e llipe) 1€ = Cellipee
< Beeree T PYC = Cllape-
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If 3ceicae’ ~2/P < 1 then ¢ = (.. This proves uniqueness.
Since the conditions (31), (32), and (33) are gauge invariant, it follows that
the map (u, A) — (u., A.) is G(P)-equivariant. O

Proof of Theorem 6.2. In this proof we drop the subscript 0. Fix two pairs
(u, A) € M% 5,(co) and ¢ = (£, ) € X, that satisfy (32), (34), and

(expy(€), A+ a) € M5 5.

We prove that ¢ satisfies (33), provided that § and ¢ are sufficiently small. By
ellipticity of the operator DP° := D?U,A), there exists a constant ¢; = ¢1(p, co) > 0
such that R

IVamuéllre < er (ID°muéllLe + [I7uéllLe) -

Now let ¢a = ¢a(p, ¢p) be the constant of Lemma 4.5 and ¢3 = ¢3(p, ¢g) be the
constant of Proposition 4.2. Then

IVa€llr < e Y16 = mulllipe + [ Vamudl Lo
< 7M€ = mublhipe + e (1D muéllne + [17uéllLr)
< e e mulllipe
+e ([(D°7y — T D)E o + D¢ 1o + [Tl 20)
< (et eae)E = mulllipe + e ([7uDC e + [|7ué] 20)
< ca(ID°Cllop.e + lI€llLr)

where ¢4 := ¢3(1 + ¢1¢2) + ¢1. Hence

C4||DECHO,p,€ + calléllLe + 571HC - ”uCHLp,e
(ca +¢5)[ID*Cllo,p,e + calléllLe,

IVallLe + lledlze <
<

where ¢; = ¢5(p, ¢o) is the constant of Lemma 4.8. Since
FO) =0,  F(0)=(0,0,«Fa),  D°=dF=(0)
we obtain

IVAE e + llellr < c6l|FE(C) — F=(0) — dF=(0)(]

0,p,e
+ coel| Fallze + call€l| e, (41)

where cg := c4+c5. Now we use the refined quadratic estimate of Proposition 5.1
with ¢ = ¢7. By (34), we have

IVAE|| Lo + lledlze < 8%/P71/2 < /77

(provided that 6 < 1). Thus the hypotheses of Proposition 5.1 (i) and (ii) are
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satisfied with ¢ = 0 and ¢ replaced by ¢. Hence, by (41),

VA€l + ol < cocrligll (7M€l L + VA€l Lo + llal 2 )

+ cgere (|l pellell e + e[l Lo 1] 2r)
+ coel| FallLr + calléll Lo

< 3eoerllClloo.e (=7l Lo + VAl 2r + 2o )
+ceel|Fallze + call€lle

< 3egerde/ (7l + | Vagllo + allze)
+ cocee + cal|€]| e

< Begeroe/? (| Vagleo + lallzs )

+ cocee + 402/ P2 4 3ege8%£2/P.
Here the last two inequalities follow from (34). With 3cgcrde'/? < 1/2 we have
VA€l e + lallLe < es(6 +e'2/P)eP, (42)

where cg := 2¢ocg + 2¢4 4 6¢gcr. Since ( satisfies (32) we can apply Lemma 4.8
(with ¢ = ¢5) to obtain

1€11,p, ¢s (el D°Cllze + [|m D¢l zr)

<
< o5 (2dFEO)C e + A5 O)C 1r) (43)
By Proposition 5.1 (i) with ¢ = ¢7 and (42), we now have
JAFF Ol = I () = F£(0) = dFF (0
< crlléllzs (€l + 1Vaglo + llal 2o )

+erllél e (I1Va€ler + oo )

< 2eqliéllze (Igllr + 1¥agll + lallzr)
< 20rClloe (83/7FY/2 4 eg(5 + £17P)2P)
< 0+ R)IClp.e

Here we have used the fact that ||£]| L~ < dc'/? < 1. Moreover, the penultimate
inequality follows from (34) and (42) and the last inequality, with a suitable
constant cg = ¢9(p, ¢p), follows from Lemma 4.4. By Proposition 5.1 (ii) with
¢ = c¢7, we have

[dF5(0)Cl[r < [[F5(0) = F5(¢) — dF5(0)¢| e + [[Fallze
< cr (lallz=llalle + e 2(|€] e €l e ) + | Falle
< 2¢7 (e M|elle +e72€ ) 1C]looe + | Fallze
< 20706*Pe732||¢ ooy + || Fall o
< 01056_3/2||C||1,p,a + | Fallo-
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Here the penultimate inequality follows from (34) and the last follows from
Lemma 4.4. Combining these two estimates with (43) we obtain

1Clhe < 5 (2008 +52/7) 4 €1066/2) Gl pe + 5% | Fal o

If § and ¢ are sufficiently small, we obtain

€]

Hence the result follows from the uniqueness argument at the end of the proof
of Theorem 6.1. O

1pe < 205€2||FAHLp < 2¢oc5e’.

Corollary 6.3 has a slightly stronger hypothesis than Theorem 6.2, how-
ever, it does not seem to have a simpler proof. In order to significantly sim-
plify the proof we would have to further strengthen the hypothesis and assume
€]l . < 6e2/PF! with a small constant § (instead of ||(]|; , . < 62/PF/2 as in
Corollary 6.3). Under this hypothesis uniqueness can be established with the
same straight forward argument that is used at the end of the proof of The-
orem 6.1. However, such a weaker result just fails to suffice for the proof of
Theorem D. Namely, in Section 10 we shall establish an inequality of the form

Il p e < /P4

under the hypotheses of Theorem D. In this inequality the constant ¢ is not
small and so the argument in the proof of Theorem 6.1 does not suffice to give
uniqueness. However, if ¢ is chosen so small that cel/?2 < § then we can use
Corollary 6.3 to obtain uniqueness.

7 Relative Coulomb gauge

This section is of preparatory nature. We prove a local slice theorem for the
action of the gauge group G = G(P) on B = CZ (P, M) x A(P). The infinitesimal
action is the operator d(, a) : Q°(X, gp) — T(y,4)B given by

du,a)n = (= Lun, dan).

Denote by dz‘z A) its formal adjoint with respect to the e-inner product, i.e.

di; (& Q) = dha — Lig

for (£, ) € T(y a)B. The next proposition restates the local slice theorem for
the G-action on B with e-dependent norms for elements (ug, Ag) of the moduli
space ]\Z% s;- The result continues to hold for every element (ug, Ag) € B with
wlug) = 0. However, in this generality, more care must be taken in determining
the norm on B with respect to which the constants ¢ and § depend continuously
on (ug, Ag). In the case of J-holomorphic curves the W!P-norm controls all
higher derivatives and therefore the choice of the norm is immaterial.
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Proposition 7.1. Assume (H1). For every p > 2 and every cy > 0 there exist
positive constants § and ¢ such that the following holds for every e € (0,1]. Let

(ug, Aog) € ./\A/l/%,z(co) and ¢ = (§, @) € Ty, 0B such that

HCHl,p,E;(uO,AU) < 662/1)‘ (44)

Denote (u,A) := (exp,, (&), Ao + a). Then there exist a unique pair (o =
(€0, @0) € T(uy,40)B and a unique section ny € 092, gp) such that

dz(;(),Ao)CO =0, g*(ua A) = (expuO (£O)a Ag + Oé()), g = 6770,

||TIO||27P75§AU + HCOHLp,s;(uU,AO) <c HCHl,p,E;(uo,Ao) : (45)

Lemma 7.2 (Linear estimate). For every p > 2 and every co > 0 there is a
constant ¢ > 0 such that the following holds for every (ug, Ag) € M%7E(co) and
every ¢ € (0,1]. If ( = (&,a) € WHP(X ufTM/G) © T*Y @ gp) then there is a
unique n € W2P(X, gp) such that

dzZO,AO)d(uo,Ao)n = d?ZO,AO)C' (46)
Moreover, n satisfies the estimates
1l e < lcllopes Illape < ¢ |tz ang],,- (47)

Lemma 7.3 (Quadratic estimate). For every p > 2 and every ¢y > 0 there
exist positive constants & and ¢ such that the following holds for every (ug, Ag) €
./T/l/%yz(co) and every € € (0,1]. Assume that (o = (0, 0) € T(uy,a,)B and
n € Q% gp) satisfy

17ll5,p c + lIC0lly . < 86%7 (48)

Then there exists a unique pair 1 = (&1, 1) € T(yy,4,)B such that
(eXpuo (51)5 AO + al) = g*(expuo (50)7 AO + 050)7 g ‘= 677, (49)
HCl - COH01p15 S c ||77H1,p,g ) ||C1 - Colllﬁp,g S c ||n||2,p,g . (50)

Moreover,

Lemma 7.4. For every p > 2 and every co > 0 there exist positive constant
0 and ¢ such that the following holds for every (ug, Ag) € M%yz(co) and every

€ (0,1]. If ni,m2 € QOX, gp) satisfy [m]l e <8 and ||n2]|; e < & then there

exists a unique element n € Q°(X, gp) such that

Qi ) (6= 0 = duganm) | < =7 (G0l e + 1l ) I

1,p,e -

(51)

eh=eme™ 27 [l < lm+m2llpe < 20l -

Moreover, i satisfies the estimate

C_l ||n||2,p,s;A0 < ||771 + 772H21p,g;A0 < CHnHQ,p,s;AU :
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Proof. For a fixed connection Ay and ¢ = 1 the result is obvious. Choose
1, Ca, cg such that

¢ nllwes < i +n2llwen < e lnllyes

for k = 1,2,3, whenever n1,72,n are sufficiently small in the C°-norm and
satisfy e = e™e". Here the WP norms are understood with respect to the
connection Ag. It follows that

elldag (m +m2)ll o < ecr ([dagnll Lo + 10ll o) < crlinllypc.a,

and hence

I +m2lly peca, < (cot+ca)lnlly,ca,
for 0 < e < 1. The other three inequalities follow by similar arguments. This
proves the lemma for a fixed connection Ag. The constant ¢ depends continu-

ously on Ay with respect to the C'-norm, and is gauge invariant (with respect
to the action of G on Q°(3, gp) by conjugation). Hence, by Lemma 2.2, it can

be chosen independent of Ag as long as (ug, Ag) € .//\/lv%j(co) for some ug. O

Proof of Lemma 7.2. The operator dz’zo,Ao)d(anAo) : W2P(X,gp) — LP(X, gp)
is given by
d?ZO,Ao)dwoon)?? = *d,dagn + Ly Lugn.

By our standing hypotheses, 4 =1(0) is compact and L, : g — T, M is injective
for every x € u=1(0). Hence there exists a constant ¢; > 0 such that

et Inl < [Lanl, < e nl (52)

for every z € u=1(0), every n € g, and every z € 3. (Here |-|, denotes the metric
on M induced by J, and w.) Hence the operator dzZO,Ao)d(Uon) is injective and
hence, by elliptic regularity, it is bijective.

Next we prove that there exists a constant ca = ca(p, cg) > 0 such that, for
every pair (ug, Ag) € MOB,Z(C()), every n € Q°(3,gp), and every € € (0,1], we
have

* —1
HdAOUHLP SEHdAgdAonHLp + o€ ||77||Lp' (53)
For a fixed connection Ag € A(P) this follows directly from the interpolation
inequality in [GT, Theorem 7.27] and the LP-estimate for the operator % da,.
Now the identity

dadan —dy,dayn = [A— Ao Adagn] + +[x(A— Ao) N daym]
— # [da, * (A — Ag), n] + #[+(A — Ag) N [A — A, n]]

shows that the constant in (53) depends continuously on A with respect to the
Cl-norm. Moreover, the inequality (53) is gauge invariant. Hence it follows
from Lemma 2.2 (with ¢ = 2) and the Arzéla-Ascoli theorem that (53) holds

with a uniform constant ¢y for all (ug, Ag) € ./\A/l/%,z(co).
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Using the identity

AP~ = (p—2) In"~* (n,da,n) € QD)

for n € Q°(3, gp) and integration by parts we obtain

-2 2 -2 * —4 2
[P sl = [ 1P on o) = -2 [ 1l o da)
) ) )
The last term on the right is negative. Now (46) is equivalent to
edy, o — L & = 2y dagn+ L Lugn.

Hence, by the previous identity and (52), we have
/ (2l + 22 "~ ldaynl*)
>

< [ (1Lagnl® + 2 dagnl?)
>

S/ I[P~ (n, e%d%y, dagn + Ly, Lugn)
>

= [ e - L0 (54)
>

= / P2 (e2(dagm, @) + €% (p = 2)[nl~>((n, dagn), (0, @)) = (Lugn, £))
>

= Cl/ P~ [¢] + 52(17 - 1)/ 0"~ [daon] |

2
1 2 —2 2
<01/ nl”~ |§|+ /| 77 ol + /E|77|p |dagnl”-

Therefore, by Holder’s inequality,

2 2
-1 e*(p—1) -2 2
Al < e linli e gl e + ———— 72" llellLs ,
2 nlls < Inllss Wil 7= &2di,dagn + Ly Lugn-
The last inequality follows from the third line in (54). Hence

2 2
_ 2 € (p - 1)
i 2 nllze < e linllpe €l s + — 5 lladlz,
and hence, using ¢ |7l €]l 0 < 3 1112, + 3§ ]2, we obtain

2 2 2
Il < Sl +cie®(p = 1)* lladlg, -

Thus we have proved the inequalities

Il < crmax{p = 1,1} [Clloper 0l < i llill - (55)
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By (52), (53), and (55),

1Ml peng = M0llie +elldaonll e + €2 ||diydagn| .,
< (U +c) Il + 26 ||di,dagn| .,
< (T+ca+26) Il + 2117l 1
< 24E0+cea+26D) 1l -

This proves the second estimate in (47).

To prove the first estimate in (47) we use a rescaling argument in local
holomorphic coordinates on Y. Cover X by finitely many open sets, each of
which is holomorphically diffeomorphic to the unit square in C, suppose that
the coordinate charts extend to a closed square of side length two, and choose
trivializations of the bundle P over each of these (extended) open sets. In
these coordinates we write the metric in the form \?(ds? + dt?), and we write
A= Ay = ®ds + Vdt, a« = pds + 1 dt. Moreover, u := ug : [0,2]> — M,
€:0,2]> — TM is a vector field along u, and 7 : [0,2]2> — g. In this notation
equation (46) has the form

VeVisn) + VeV = Ve + Vitp + (A /€)2 Ly (Lun + €), (56)

where Vn = Vﬁﬁsn = Jyn + [®,n] and Vin = Vgtn = 0 + [¥,n]. Now we
introduce new functions, defined on the square [0,2/¢]?, by

ii(s,t) = mnles,et), A(s,t) = Aes,et),
E(s,t) = E&(es,et), a(s,t) = u(es,et),
P(s,t) = eples,et), P(s,t) = eP(es,et),
P(s,t) = eles,et), U(s,t) eVU(es,et).

Then (56) is equivalent to
VeVaii + ViV = Ve + Vi + N L3 (Lad + £),
where V,7j := 8,7 + [i),ﬁ] and Vi := 047 + [\il,ﬁ]. With A := 0,95 + 0;0; this

equation can be written in the form
ANij=0.f+og+h,  f=¢-2@4q,  g:=1v-2¥,7,
hi=NLy(Lai) + &) + [®, 6 — [@,4]] + [T, ¢ — [, ] + [0:® + 0, T, 7).

Hence there exists a constant c3 > 0 such that, for all real numbers a, b such
that 1/2<a <b<2/e—1/2, we have

[ (S Sar) <ea [ (1F1+ lgl? + e+ 1l
[a,b]? [a—1/2,b+1/2]2

Here the constant cg is independent of @ and b. It follows that

[ (e map)er <o f (16l + 1) 327
[a,b]2 [a—1/2,b41/2]2

v | (1€ + 1) 32,
[a—1/2,b+1/2]2
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where the constant ¢; depends on the metric and on the C'-norms of ® and V.
With a = 1/2e, b= 3/2¢, and 0 < ¢ < 1 we obtain

[ o (TG < et [ (o) ¢
1/2,3/2

[0,2]?

e [ (P + )22
(0,2

)

Hence, by taking the sum over the coordinate charts,

elldagnllpe < NYPeq (e lladl o + €L + 10l ) -

Here N is the number of open sets in the cover and the constant ¢4 depends
continuously on Ay with respect to the Cl—1r10rnr1,.vHe1rlce7 by Lemma 2.2, ¢4 can
be chosen independent of the pair (ug, Ag) € M% (o). Combining the last
inequality with (55) we obtain the first estimate in (47) as claimed. O

In the following proof we use the identity

(U)*A_A_d _i (_1)k
€ f“”‘kzl (k+1)!

ad(n)den (57)

for A € A(P) and n € Q°(Z, gp), where ad(n)a := [, o] for a € (T, gp).

Proof of Lemma 7.53. We denote by c1,cg,c3,... positive constants depending
only on p and ¢p. Fix a pair (ug, Ag) € M%,Z(Co) and choose a positive constant
dp that is smaller than the injectivity radius of M on the compact set ug(P).
Suppose that 7 € Q°(3, gp) and (o = (£, a0) € Ty, ,)B satisfy the hypotheses
of Lemma 7.3 with a sufficiently small constant § > 0. Let ¢; be the constant
of Lemma 4.4. Then, by (48),

Ioll o + 1l < 12727 (ol e + 1lls e ) < 26

If § is sufficiently small, it follows that the C°-distance between e~"" exp,, (o)
and wug is smaller than g for every r € [0, 1]. Hence there exists a unique smooth
path [0,1] — T(ye,40)B : 7 — G = (&, o) starting at (o such that

(expuo (€T)a AO + aT) = g*(ua A)a

where
(u, A) := (exp,, (o), Ao + ao), g:=e'. (58)
The endpoint (; of this path obviously satisfies (49). We prove the inequalities

||6TCT||O,p,g S c ||77||1,p,s ) ||6TCT||1,p,€ S c ||77||2,p,s ) (59)

Qi) (06 = diugaan)| < e (ol e + llac) Ul (60)

43



for 0 < r < 1, where the constant ¢ depends only on ¢y and p. Then the
inequalities (50) and (51) follow by integrating the function r — 9,¢, over the
interval 0 < r < 1.

For every u € C& (P, M) whose C-distance to uy is less than &y we define
the linear operator Z(u) : Q°(3, gp) — Q°(X, uiTM/G) by

Z(u)n = dexp;(’1 (u)Ly7
for ) € Q°(3, gp). Then

a"‘C’!‘ = (_Z(g_lu)na dg*ATIO)a (61)

where (u, A) and g are as in (58). We prove the first inequality in (59). Since
A = Ay + ag we have

dg-an = da,n+ [g" Ao — Ao, n] + [g”  ang, 1] (62)

and we must estimate the three terms on the right with g := €. Since ||7]| ;s <
19 it follows from (57), with n replaced by r, that

—-1-2/p

* 2
g™ Ao — Ao, nlll o < c2 lldaonll e Lo < 32 117 p.c -

Moreover,
g™ a0gnlll o < e 2P 1 Collg e 1l e -

Hence, by (48) and (62), ||dgan||;, < cae™! [l . and hence the first inequal-
ity in (59) follows from (61).

Next we prove the second inequality in (59) and (60). Using the identity
da,[g™ a0g,n] = 97" (daya0)g, 1] +[[(Ao— g" Ao) Ag ™ awog], n] — [97 " aog Ada, ]

and (57) we obtain
H[g_laogan]HLpﬁg = H[g_laogan]HLP

+e HdAo [gilaoga 77]HLP +e HdAo [*gilaoga 77]HLP

cse 1 T2/P ||CO||1,p,8 ||77||1,p,s .

IN

Similarly, using the identity
dao[(Ao — g% Ao), n] = [da, (Ao — g™ Ao), 1] — [(Ao — 9" Ao) A da,]

and (57) we obtain

(Ao — g™ Ao), nllly e < coc™ 2P Il e Il e

Hence, by (62),

ldg-an = dagnll . < ere™ 22 (1ol e + 17l ) Il e
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Moreover, since Z(ug) = Ly,, we have
1Z(g™ w)n = Lugnl],, .
< 126~ uyn - ZGupn], , . + 12 ()0 — Z(uo)nl,..

< s (I N P P T

< coe ™27 (11Goll e + Wl ) 1l -

Here we have used the inequality [|7]|,« < ¢16 from (48) and Lemma 4.4.

1pee 1l Lo + (10l

The constants ¢7 and cg in the last two estimates depend continuously on the
pair (ug, Ag) with respect to the C'-norm and are gauge invariant. Hence, by

Lemma 2.2, they can be chosen independent of (ug, Ag) € ./K/lv%,z(co). Hence
the second inequality in (59) follows from (61). To prove (60) we observe that

d?ig,Ao)aTgT - dzZmAU)d(ug,Ao)n

= %d}y, (dg-an — da,n) + Ly, (Z(9™ ' w)n — Lugn) .
where (u, A) and g := €™ are as in (58). The terms on the right have been
estimated above and this proves (60). Thus we have proved the existence of (;.
The inequality (50) with & sufficiently small guarantees that the C° distance

between ug and exp,, (£1) is smaller than the injectivity radius. This proves
uniqueness. O

Proof of Proposition 7.1. The proof is based on a Newton type iteration. Let

(ula Al) = (ua A) = (expug (5)7 AO + O[), Cl = C
For v > 2 we define ¢, = (§,, ) € T(uo,Ao)B inductively by

(eXPuo (€vt1)s Ao + avi1) = (Upt1, Avg1) = g, (U, Ay),
where (u,, A,) = (exp,, (&), Ao + ), g := €™, and 7, € Q°(X,gp) is the
unique solution of the equation
dzZO,AO)d(uo,Ao)ﬁV + dzZO,AO)CV =0.
To construct these sequences we must ensure that in each step ¢, and 7, satisfy
the hypotheses of Lemma 7.3 so that (,4+1 can be chosen as in the assertion
of Lemma 7.3. We shall prove this below. And we shall also prove that these
sequences satisfy the following estimates.

1Gollipe < Clcllipes (63)

’ erUvAO)CV Lp S 0672/}7 ||<V*1||1,p,6 dzZon)C”fll Lp7 (64)
*e 1—v * o

\d(uO,Ao)g <2 d(um)g\ . (65)

1ullype < C277ICl e (66)

The constants C' and § are chosen as follows. Suppose that the constants
c1, o, C3,C4,¢5 > 1 and &g, 03,04 € (0, 1] satisfy the following conditions.
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e The injectivity radius of M on ug(P) is bigger than dy.
e The inequality (52) holds with ¢; for every z € u=1(0).
e The assertion of Lemma 7.2 holds for 0 < € < 1 with ¢ replaced by co.

e The assertion of Lemma 7.3 holds for 0 < € < 1 with ¢ replaced by c3 and
0 replaced by Js.

e The assertion of Lemma 7.4 holds for 0 < € < 1 with ¢ replaced by ¢4 and
0 replaced by 4.

e The assertion of Lemma 4.4 holds for 0 < € < 1 with ¢ replaced by cs.

Now choose positive constants C' and § such that
0102(1 + 262)63 S C, 202(1 + 02)0305 S 1, 205 S 53, 4040505 S 54.

We prove that the estimates (63-66) hold for v = 1. Since C/2 > cyca, the
inequality (66) with v = 1 follows from Lemma 7.2. Since C' > 1, the inequal-
ity (63) holds for v = 1. The inequality (64) is vacuous for ¥ = 1 and (65) is
obvious.

Now suppose that the sequences have been constructed and the inequali-
ties (63-66) have been established up to some integer v > 1. Then

1Nz pe + IGully p e < CA+27)[CN 0 < 206657 < 532,

Hence the hypotheses of Lemma 7.3 are satisfied with (y replaced by (, and n
replaced by 7),. Choose (,+1 = (§41,0041) as in the assertion of Lemma 7.3.
By Lemma 7.2, we have

||ﬁy||17p75 <Gl 0,p,e” ”771/”2,;),5 < dz("iOqAO)CV I
Moreover, dE‘ZmAO)(Q, + d(ug,A0)1v) = 0, and hence, by (51),
|t anGon| = e (16l e + M lla e ) Ny e

< 02(1 + 02)03572/10 HCV”l,p,E

d(ZmAO)C”

e’
Since ca(1 + ¢3)es < C, this proves (64) with v replaced by v + 1. Moreover,
by (63),

|

IN

e (1+ e2)esCe27 |l .

d(Zon)C”Jrl HL;D d(ZmAO)C”

Lp

IN

02(1 + 02)0305 ‘ d?ZO,Ao)CV

e’

Since 2c2(1 + ¢2)e3Cé < 1, this proves (65) with v replaced by v + 1. Now let
My+1 be the unique solution of dzuo Ao)d(uoﬁAo)ﬁqul + dzuo A0)<V+1 = 0. Then, by
Lemma 7.2 and (65),

dz’zo,Ao)CHL:ﬂ <1227 Kl e -

1l e < 2 Az ag G|, < 227

46



Since 2¢ica < C this implies (66) with v replaced by v 4+ 1. It remains to
prove (63) with v replaced by v 4+ 1. By (50) and (65), we have

Bzt < 2l
1)

1641 = Gilly e < sl < 26027 |

for j=1,...,v. Hence

v
||<V+1||1,p,g S ||<||1,p,g + Z ||CJ+1 - Cj||17p75 S (1 + 2010203) ||<||1,p,g :
j=1

Since 1+ 2c¢ieac3 < C this proves (63) with v replaced by v + 1. This completes
the induction.
By (67), ¢, is a Cauchy sequence in the WP-norm. Moreover,

(uy, 4p) = (eXpuO (€v), Ao + al/) = hy(u, A),

where h, := g192---g,—1. We prove by induction that there exists a sequence
n, € Q°(2, gp) such that

hy =€, e = Mully e < eaC277 ¢y, .- (68)

For v = 1 we set hy := 1 and 7; := 0. Suppose that the sequence has been
constructed for all integers up to v > 1. Then

v—1

17 llg e < D lmjr = illy e < aC lC - (69)

j=1

Hence, by Lemma 4.4, (44), and (66),

7]l e < €587 2/P Imully e < cacsCe™P ¢y, . < cacsCS < 6a/4,

19 e < €587 ully e < esCe™>P ¢l 0 < €5C8 < 6a/4.

By Lemma 7.4, there exists a section 1,41 € QO(Z, gp) such that

ettt =eme” = hyg, = hyyr,  msillpe <2000 il < 04
Applying Lemma 7.4 to —n,, and 7,411 we find

141 = mwllape < calliivllype < eaC277 (Kl -

The last inequality follows from (66). This completes the induction. Thus we
have proved that h, satisfies (68) and hence is a Cauchy sequence in G2P7(P).
Denote

¢:= Vlingo C, h = Vlingo hy, n:i= VILH;O Ny.

Then

el = h’a h* (’U,, A) = (expuo (5)5 AO + Oé), dz507A0)§ = 0.
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The last equation follows from (65). Moreover, by (63) and (69), we have
19llyp.e + €N pe <O+ ca)liClly . - Hence (45) holds with ¢ := C(1 + ca).

To complete the existence proof we must show that n and ¢ are smooth.
We shall prove that the sequence ¢, is bounded on W*? for every k. Here
it suffices to obtain rather crude estimates with constants which depend on
¢ and are allowed to diverge as € tends to zero. We fix a constant € > 0
and prove by induction that for every integer £k > 1 there exists a constant
¢k = ci(p, e, uo, Ao, u, A) such that, for every v,

G llwrr < ks Mwllwrss, <27 (70)

For k = 1 this follows from (63) and (66). Now let £ > 2 and assume that these
estimates have been established with k replaced by & — 1. Observe that there
exists a constant Cy > 1 such that, for every v,

C41 = Collwrr < Ckllwllwesrn s

Vilhwees < Cu|di, a6

)

Wk—1.p

IN

‘ d

The first two inequalities are obvious, and the last follows by inspecting the
formula (61) in the proof of Lemma 7.3. Combining these inequalities with the
induction hypothesis, we obtain

oGt Ci (Gl + 0l s.0) 1 g -

Wk—1,p

[Cillwrs < NGllwes + Cr 1w llwnsrn
Irillwese < Ciee—1 (16 llwes + 19 lyrsan) 277
Abbreviate
Ay = HCVJrVoHWk,p + Ck HﬁVJrVo”WHLp
and choose v so large that C,fck,ﬂ_”” < 1. Then

av+1 < [ Cutwollwre + Ckllivtvo lwrsro + Ck [[vtvot1llwrsrs
ay, + Ck ||ﬁu+u0+1|‘wk+1,p
< a4+ Cier— (1Gllwrw + i llyrrrs) 27777
< (1+2a,

for all v and hence the sequence a, is bounded. It follows that the sequences
lCollyyer and 27 ||, || k41, are bounded. Thus we have proved that 7, and
¢, satisfy (70). This completes the induction. It follows that ¢ is smooth and
hence, so is 7. This proves existence.

We prove uniqueness. Choose § > 0 so small that

c5cd < dy, 2¢c4cd < 63, c5¢0 < Oy, 2coczeqcd < 1.

Assume that (o, (1 € Ty, 4,)B and 1o, m € 09(%, gp) satisfy the requirements
of the proposition. Then

dziio,Ao)Ci = 05 g: (ua A) = (expug (51)7 AO + ai)a
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for ¢ = 0,1, where g; := €". By Lemma 4.4, we have
Inill e < ese™2/ 0ill e < esce™PCN .0 < 508 < 64

for i = 0,1. Hence, by Lemma 7.4, there exists a unique element n € Q°(3, gp)
such that

g=e"=g5'91. i lm—mollyye <Illyype < callm —molly,.
The gauge transformation g satisfies
g (exp,,, (§0), Ao + o) = (exp,, (£1), Ao + a1).

Moreover,

16011y e A I1lla e < 2€aclIClly e < 2eaede®P < 83627

2,p,e

Hence {y and 7 satisfy the hypotheses of Lemma 7.3. We use Lemma 7.2 and
the estimate (51) of Lemma 7.3 to obtain

e < €2 5 apduoao]

< e (16— Golly g + Illae) Il

< eacsens™7 (1 = Gollype + I = ol ) Wl e
< 202630405_2/p ||C||1,p,5 ||77| 1,p,e

<

2coc304C0 ||77||17p76 )
Since 2coczcqcd < 1 we have n = 0 and hence 11 = 9. Hence ay = a3 and
exp,, (o) = exp,, (&1). By (44), (45), and Lemma 4.4, we have

1€l oo < €627 1Gilly e < esce™2/P Iy p e < 560 < o

for i = 0,1. Hence & = &;. O

8 Proof of Theorem C

In this section we prove that the map 7° : .//\/lv%j(co) — .//\/lvf,iE introduced
in Theorem 6.1 is locally surjective. This is the content of Theorem C and is
restated more precisely as follows.

Theorem 8.1. Assume (H1) and (H4) and let B € Ho(M;Z) be a nontor-
sion homology class. Then, for every co > 0 and every p > 2, there exist
positive constants g and § such that the following holds for every e € (0,&0].

If (0, Ao) € MY y(co — 1) and (u, A) = (expy, (€), Ao + @) € M5, 5, where
(= (§,a) € Ty, 4,)B satisfies

HEHLP,E;(%AO) < §e2/PH1/2,
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then there exist &y € ker D(()u and ny € Q°(2, gp) such that

0540)

9" (u, A) = T%(uo, Ao), g:=e", (uo, Ao) := 7:?@0,,40)(5_0)7

ollwro + Mlm0llz,p.c00 < €ISl 5 250, 20)

0

Here f(ﬂo,Ao)

on Corollary 6.3 and on the construction of a tubular neighbourhood of the
moduli space M 5(co) in the quotient B/G.

is the map of Theorem 2.1. The proof of Theorem 8.1 is based

Proposition 8.2. Assume (H1) and (H4) and let B € Hy(M;7Z) be a non-
torsion homology class. For every p > 2 and every cog > 0 there exist positive
constants 6, €9, and ¢ such that, for every ¢ € (0,g¢], the following holds.

Let (1o, Ag) € //\\/14%12(00 — 1) and (u, A) = (expy, (§), Ao + @), where the pair
(:=(£a)e Tay,4,)B satisfies
< §e?/P, (71)

,p,€3(tio, Ag) —

<y

Then there erist & € kerD?ﬂmAU), no € Q°E,gp), (uo, Ao) € M%,Z(co), and

Co = (80, a0) € T(uy,a0)B, such that

g* (u7 A) = (eXpuo (50)3 AO + aO)a (an AO) = *7:(07101,@0)(50)’ (72)

where g := e, and

oS0 =0 G €im(Dfy, 4,))" (73)
1ollypr + 1002 3,0 + 16001 pcscu0,0) < €N p ooty (74
* A
\// A §:uA
U AQ
/ G (Ug,Ap
imF°

Figure 1: A tubular neighbourhood of MP.
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The proof of Proposition 8.2 is based on Proposition 7.1. The latter can be
restated as follows. Let H® C T'B denote the horizontal subbundle with fibres

H{y,a) = ker d;

(’IJ,,A) C T(’U,,A)B'
Given a pair (u, A) € B and constants p, cg, §, ¢ denote by U° = U°(5,¢) C

M 5:(co) the set

3= 6.0) € T3 [y p <0 )

U = {(un, 40) € M (eol| 7,00 oo o) Ae o

If § and ¢ are sufficiently small then Proposition 7.1 defines two maps
S U’ — HE, Ne:U — Q%% gp)

such that 8¢ is a section of H® over U° and, for every (ug, Ag) € U, the
pair (£o, ag) = S8°(ug, Ag) and the gauge transformation g := €", where 7 :=
N*(ug, Ag), satisfy g*(u, A) = (exp,, (o), Ao + ap) and (45). In particular,

IS¢ (uo, A0)||17P75§(U07A0) < C||§||1,p,8;(uo7Ao)’

where (u, A) = (exp,, (£), Ao + a) and [|C]]; , .. (o, 40) < 62/P. In this notation
Proposition 8.2 asserts that for every (u, A) € B, whose distance to /,\\/lJ%’E in the
(1,p,€)-norm is less than 62/? for a sufficiently small constant &, there exists a
pair (ug, Ag) € U such that S%(ug, Ag) lies in the image of (Dfuy, 20))"

Lemma 8.3. For every p > 2 and every co > 0 there exist positive constants
0, €0, and ¢ such that the following holds for every e € (0,e9]. Let (u,A) € B
and I C R be an interval. Suppose that I — U°(8,¢) : r — (ug(r), Ao(r)) is a
smooth path, and let ((r) = (§(r), (1)) € Tiug(r),A0(r))B be the corresponding
vector field along this path that satisfies

(u, A) = (exp,, (), Ao+ @), |[Clly,. < 67,

Denote (. (r) := 8% (ug(r), Ao(r)) and \VAGRES (Vrfg—%J(VaTuOJ)«Eg,aTaE). Then

[ @00 40) + T

- (||g||1,,,,8 +||e2d5, 0r Ao — LZOGTuOHLP) . (75)

Proof. Let g(r) := e"("), where n.(r) := N¢(uo(r), Ao(r)) € Q°(Z,gp), and
denote g := Odyug, Ag := 9.4, ¢ := Org. Let §; and ¢y be the constants of
Proposition 7.1. Then

19 ()l e + 1) e < €t 1K) e < 161677, (76)

g_lu = €XPyy (E&)a g"A= Ay + ., E2d:k40a8 - LZUQ =0.

Differentiating these identities we obtain

~Ly14(9719) = Eviig + E2Nibe,  dgea(g7'g) = Ao+,  (77)
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where Ey := E1(uo, &) and Ey := Es(ugp, &) (see Appendix C), and
e2dy e — &% % [Ag A xae] — L7 Viée — pliig, &) = 0, (78)

where p € Q%(M, g) is given by (1, p(&1,&2)) = (Ve, Xy, &2) (see Lemma C.2).
Inserting the expressions for V,.&. and . in (77) into (78) gives
)

EQdi‘qodg*A(g‘lg) + Ly, Ey
= EQdZOAO +e2 % [AO A *ag] — LZOE2 Eqd + p(to, & ).

1

Since g~ 'u = exp,,, ({:) and g*A = Ay + a. we have, by Lemma C.1,

By 'Ly-14(97'9) = Lug(97'9) + (B3 ' Er — 1) Lug(97"9) + Ve. Xg-14(uo),
Ay dg-a(9719) = diyyda, (97'9) + [y e, g7 9] + #[xae Ada,(9719)].
Hence
€2dj<40d140 (gilg) + LZOLUO (gilg)
= —&?[dy, 0z, 97 g) — €% x [rae Nday (97" 9)]
— Ly (B3 'Er — 1) Lug(979) — Ly, Ve X145 (uo)
+e% % [Ag Axae] + Ly (1= Ey " Eq)iio + pli, &)
+e%dy, Ao — L, .
By Lemma 7.2 and Lemma 4.4, there exists a constant co > 0 such that
—1. ) 1.
Hg gHQ,p,s S €28 v HC&HLP,E Hg gHQ,p,E
3 (Il e + He‘?diiof'lo - Lzouon)
cre261 [lg™ g, .

2 (¢ pe +

IN

‘EdeoAO _ L;;OuOHLp) .
The last inequality follows from (76). With ¢1¢261 < 1/2 it follows that
lg™ 011, < 202 (Iloe + ||, Ao — Ligia]| )

Hence (75) follows from (77) and (45). O

Consider the vector bundle
Vo — M%,Z

whose fibre over (ug, Ag) € MY By 1s the finite dimensional vector space V (0, A0)
of all pairs (&, ) € QU(E, Hyy) X Q1(X, gp) that satisfy the equation

DOy 4 (w0)&0 + Xag (1) = 0. (79)
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This space can be identified with the kernel of the operator D(()u(h Ao)’ Namely,
the kernel of D?uo,Ao) consists of all sections &y € Q9(%, H,,) that satisfy (79) for
some 1-form ag € Q'(X, gp), and the 1-form ag is uniquely determined by &.
Thus V° — /,\\/lJ%’E is a vector bundle of rank m := dim MY, 5.
Lemma 8.4. For every p > 2 and every co > 0 there exist positive constants
go and ¢ such that the following holds for every e € (0,e9]. Let I C R be an
interval and I — ./\/lB s(co) 17— (uo(r), Ao(r)) be a smooth path such that, for
everyr € I,

10ruo(r)l| o (my + 10r Ao ()l o1 () < (80)

Then every smooth vector field r — ((r) = (&(r), a(r)) € T(uo (r),Ao(r)) B satisfies
the inequality

for k=0,1, where D¢ := ’D‘(EUU(T%AU(T)) and V.¢ := (Vi-€ — %J(V@TUOJ)Q Ora).
Proof. We denote
(€ a) =, (= (¢ W) =D, ¢ = (& L) = DV,(.

Moreover, we drop the subscript 0 and write (u, A) := (ug, Ag). Then, in local
holomorphic coordinates on ¥ and a local frame of P, (' is given by

<7D€~r

< 571
o S Kl e

- ~ 1 1
& = Vas&+JIVac+ ZN(faUs — Ju) + §(JasJ — 0 J)§ + Lup + J L),
(p' = )72 (VA,s‘P + VA,tw) + E_QLZE’
W = A2 (Vash — Varp) + e 2dp(u)e.

Here we use the notation of Remark 4.1. Differentiating these formulae with
respect to r we obtain

@rfl - 6:‘ = 6 @A s€ - 614 5@7‘6 + J(@T@A,tf - 6A,t@’l‘€)

_|_
w|~%

1 ~
v N(g,Us JUt) - ZN(VTé-)’US - J’Ut)

<]z

1 ((JOsJ — B:J)E) — %(JGSJ — O )V

+ Vo X (1) + TV, Xu(0) = 5 (V,ud) (Lup = TLut),
Org’ — ) = A7 (0,2, ] + [0, T, )

#6001, - Juu)(%o.0 ) )
o — 4y = A2 ([0:2,9] — [0, 7, ¢])

—e7? (p(aru, JE) + %LZ(%MJ)g) .

Here p = pss € Q*(M,g) is defined by Lemma C.2. The required estimates
follow from these three identities via a term by term inspection. O
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Lemma 8.5. For every p > 2 and every co > 0 there exist positive constants g
and ¢ such that the following holds for every e € (0,e0]. Let r — (uo(r), Ao(r))
be as in Lemma 8.4 and suppose that v — (o(r) is a smooth section of V° along
this path. Abbreviate DF := D((suo(r),Ao(r)) and let (. (r) € ker D be given by

Co(r) := Co(r) = DT (DD*) " DG (r).

Then

A

¢ = Colloz.e < ce?[|€oll L, (81)
196 = Vidolloze < ¢ (léollzz + I¥héollzz ) - (52)
Proof. Let (&, ) := (. for e > 0 and ¢ := (£, ) := (. — (p. Then
0
CeimD,  DC=| dia0
—xda,qp

Hence, by Lemma 4.8, there exist constants ¢1,ce > 0 (depending only on ¢g)
such that

I¢h 2.0 < 1€ IDCllg e = c16” (ldagaoll e + [[d, 0] 12) < c2e® [1€oll e -

The last inequality follows from (79) and the basic elliptic estimates for the
operator D°. Thus we have proved (81). To prove (82) let

¢ = (r) = —(D°D*) Do (r) € Xy ()
so that ¢ = De*(’. Then, by Lemma 4.7 with p = 2,
16 ll2,2, < esID="Clly e = c3llClly2.c < c2cse® €0l 2 s
and hence, by Lemma 8.4 (with ¢ = ¢4 and D? replaced by D),
1DV = VD 1,26 < cag™ I g0 < eaeseas [€oll e

Now it follows from Lemmata 4.8 (with ¢ = ¢5) and 8.4 (with ¢ = ¢4) that

DVl 12 < e5ID"D* Vil |lo,2,
< | DDV = VDT fo,2.6
+¢5| DV = VD lo,2.c + €5V DCfo,2,
< e DTV — DT e
+es (04671”(”1,2,5 + ||@TDEC||O,2,E)
< er (Il + 1%oll22) -
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Hence

A

IViClloze < D¢ = DTNl llo2. + D77Vl [lo,2,c
(7 + cacacae) (|Igolle + Vol 12 ) -

This proves (82). O

IN

The estimate (82) is fairly crude. More careful considerations give an addi-
tional factor e. However, we shall not use this fact.

Lemma 8.6. For every p > 2 and every cq > 0 there exist positive constants ¢,
€0, and ¢ such that the following holds for every € € (0,¢e0]. Let (u, A) € B and
I C R be an interval. Suppose that the path I — U°(d,€) : v — (ug(r), Ao(r))
and the vector field r — ((r) € Tluo(r),Ae(r))B are as in Lemma 8.5. Moreover,
assume (80) and let r — (o(r) and r— ((r) be as in Lemma 8.5. Then

d
2 "0 A0, + {60

< c (lléollzz + I%&ollz2) (2 + licllnpe + 1 L5, Bruollzr)

Proof. Abbreviate 8¢ := §¢(ug, Ag). Consider the identity

d - -
(6 8) (60, 0uo). = (ViGerST) 4 (G (D0, 0, A0) + V17
+ (Co — ¢, (Oruo, 0, Ao)). — €%{cw, 9y Ao).

By Lemma 8.5, the (0,2, €)-norm of V,(. is bounded above by a constant times
€0l 2+ Vo || 2. By Proposition 7.1, the (0,2, €)-norm of S¢ is bounded above
by a constant times ||(]|1,p,.. Hence the first term satisfies the required bound.
For the second term the estimate follows from Lemma 8.3 and the fact that the
(0,2, e)-norm of (. is bounded above by a constant times ||&o||z2. For the third
term we use (80) and (81) and for the last the estimate follows from (80). O

Proof of Proposition 8.2. Let U C R™ be an open set containing zero and
U — M s(co) : @ = (uo(x), Ao ()

defined in Theorem 2.1 with a Hilbert
Then

be the composition of the map }“(Oﬂo o)
space isomorphism R™ — ker D(Oﬁo, Ao
(10(0), A0(0)) = (7o, Ao), (95u0(0), 9;40(0)) € V(i 4y
for i =1,...,m; in particular,
L;O&-UO(O) = O, (ai’uO(O), 6ju0(0)>L2(E) = (Slj

Now choose m smooth sections Cig, ..., Cmo : U — V° so that

Go(@) = (&0(2), 2j0(2)) € Vo (@), 40(2))
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and
Gjo(0) = —(95u0(0),0;A0(0)), (Sio(@), &G0 (2)) 25y = 0ij

forx e U and j =1,...,m. Given x € U we abbreviate D¢ := Dqu(l) Ao(2))" If
¢ is sufficiently small then, by Lemma 4.8, this operator is surjective for every
x € U. In this case we define (jc(z) € ker D¢ by

Cje(@) = Gjo(x) — DT (DD*) ™ Do (x)

for j = 1,...,m. By Lemma 8.5, these vectors form a basis of ker D* for
¢ sufficiently small. Now let ; and ¢; be the constants of Proposition 7.1.
Choose g > 0 so small that

|z| < Joe/P = (uo(), Ao(z)) € U (01, ¢)

forx € U and 0 < ¢ < 1. Let 8¢ : UY — H* be the map of Proposition 7.1 as
introduced above. Define 6 = (61, ...,6,,) : U — R™ by

0 (@) == ((je (), S (uo(@), Ao (2))). ,
where (-,-)_ denotes the (0,2, ¢)-inner product on T(y(z),4,(2))B- Then
6(z)=0 — S (uo(z), Ap(z)) € im D",

We shall establish the existence of a zero of § with the inverse function theorem.
We must prove that |df(z) — 1| < 1/2 on a ball of radius r and that 6(0) is less
than r/2.

To see this, we first observe that

10,001 < 150 (. (150, Ao) o . < €2 [l . < cade?
Here we have used the fact that the (0,2, ¢)-norm of (;(0) is less than or equal to
the (0, 2, E)—IlOI‘Hl of CjO (0) = 7(8{&0 (0), 8JA0(0)), that the L2—HOI‘I11 9f 8J—A0 (0)
is controlled by ||d;uo(0)||r2 = 1, that the (0,2, e)-norm of (g, Ao) is con-

trolled by its (1,p,e)-norm, and that, by Proposition 7.1 and (71), the latter is
bounded above by ¢1||{|[1pe < c166?/P. Thus we have proved that

|6(0)] < v/mea ||§THLP7E < /megde?/?, (83)

Now let ((z) = (£(z), () € T(uy(x),A0(x))B be the unique smooth section
defined by

(u, A) = (exPyy (2) (§(2)), Ao () + alx)),  ¢(0) =,

for x sufficiently small. Then there exists a constant cs > 0 such that

6@y pe < [E] . + colal
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for z sufficiently small and 0 < ¢ < 1. Hence, by Proposition 7.1, we have that,
for |z| < §pe?/P and 0 < ¢ <1,

IV (o (), Ao())ll .- + 1% (uo (), Ao ()],
< et @) pe < e (€], +eslal). (84)

Moreover, there exists a constant ¢4 > 0 such that
1635 + (§jo(@), Oiuo(2)) 2 | + || Ly (1) Oitio (@) || L < calzl,

1€j0(2) |22 + [Vi&jo(@)|| 2 < 4

for x sufficiently small. Now suppose that §; and 9 have been chosen so small
that the assertion of Lemma 8.6 holds, with ¢ replaced by cs5, for the paths

z; = (uo(x), Ao(z)), i — ((z), 2; — Cjo(x), and z; — (je(z). Then

10:6;(z) — 6] < 1055 + (§o(®), Diuo(@))| + 1036 () + (§o(), Diuo(2))|
< calz] + es([1§o(@) |2 + IVigjo (@)l 2) -
(€% + 1K@ 11 pye + 1 L3y () Ditio ()| 20
< cala| + cacs (2 + [[Cll1pe + (c3+ ca)lz)
< o (5 + ||<||17p76 + |z|)

for || < §0e?/P and 0 < ¢ < . Thus the Jacobian df(x) € R™*™ satisfies
|do(x) — 1] < cr (52 Ny |x|) .

Choose dp and &¢ so small that c7(e2 + 25053/17) < 1/2. Then
2| < 6e?/P, 0<e<ey, 0<d<d = |[dO(x) — 1| <1/2.

Hence the inverse function theorem asserts that 6(53,.(0)) O B, /2(0(0)) whenever
r < 8oe2/P. Now suppose that y/mcad < y/2. Then, by (83), we have 2(0(0)| <
80e%/P and hence we can apply the inverse function theorem with r = 2(6(0)].
Then B, /5(0(0)) contains zero and, by the inverse function theorem, there exists
a point zg € R™ such that

0(z0) =0, |zl <2(0(0)] < 2vmez[|C]], .
The last inequality follows from (83). Now define
(w0, Ao) = (uo(z0), Ao(20)), Co = 8(uo, 4o), 10 = N*(uo, Ao).

Then (72) and (73) are satisfied by definition. The estimate (74) follows from
Proposition 7.1:

100l + 160011 < €1 11y < 1 (€], + eslool) < s [1€] .-
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Moreover, the vector & in the assertion of Proposition 8.2 is the image of xg

under our Hilbert space isomorphism R™ — ker D?ﬂo Ao)’ Hence, by elliptic
regularity for the Cauchy—Riemann operator, its WhP_norm is bounded by |zo|
and hence by the (1, p, e)-norm of (. O

Proof of Theorem 8.1. Let p > 2 and ¢y > 0 be given. Choose positive constants
€0, 01, 02, and ¢ such that Proposition 8.2 holds with § replaced by d; and ¢
replaced by ¢, Corollary 6.3 holds with § replaced by d2, and both results hold
for 0 < e <¢&g. Now choose § > 0 so small that

5501/2 S 51, 015 S 52.

Let ¢ € (0,&0] and suppose that (u, A) and (g, Ag) satisfy the hypotheses of
Theorem B, namely

(’ﬁo, AO) € M%,E(CO - 1)’ (u7 A) = (eXpﬂg(g)’ AO + 6‘) € MEB,E)
where ¢ := (£,a) € T ay,4,)B satisfies

"5"1,[),8;(710,1&0) S 652/17"1‘1/2 S 6152/1).

By Proposition 8.2, there exist
5_0 € kerD?ﬁo,Ao)v Mo € QO(Evgp)v

and
(uo, Ag) € M 5 (co), Co = (60, @0) € T(uy,40)B,
satisfying (72), (73), and (74), with ¢ replaced by ¢;. Hence

1ol

< ¢ 6e2/PH2 < 5,2/ 112

1,p,e;(uo0,40) <a Hng,p,s;(ﬁg,Ao)

This estimate together with (73) shows that (ug, Ag) and ¢y satisfy the hypothe-
ses of Corollary 6.3. Hence, by (72),

9" (u, A) = (expy, (§0), Ao + ao) = T%(uo, Ao),  g:=e™.
Moreover, again by (72), (ug, Ag) = ‘7:(0110 AO)(EO) and, by (74),
<c

HEOHWLP + HTIOHQ,}?,E;AO =1 Hng,p,s;(ﬁg,Ao) '

This proves the theorem. O

9 A priori estimates

In this section we assume that J € Jq(M,w) is independent of z € ¥ (or in local
coordinates is independent of s and ¢). Let  C C be an open set, K C Q be
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a compact subset and A : 2 — (0, 00) be a smooth function. Given u : Q — M
and ®, ¥ : Q) — g we define vs, vy : Q@ — w*TM and k : Q) — g by

vs = 0su+ Xo(u), v :=0u+ Xeg(u), k:=0s¥—0d+[P,7T].
Moreover, as in Remark 4.1, we use the notation

Vas€ = V€ + VeXo(u), Vai§ = Vil + ViXu(u),
Vasn = 0sn+[®,1], Vaun = 0m+[¥,n)],

for £: Q — w*TM and n: Q — g. Then
Va,sp(u) = dp(u)vs = =L Js, Vap(u) = du(u)vy = =L Juy.

Moreover,
vA,svt - vA,tvs = LuHa

by Lemma C.3,
Va,sLun — LyNa,sn =V, Xy (u),  VaiLyn — LyVam = Vi, X, (u),
and, by Lemma B.4,
Va,sVai§ = VaVa,s€ = R(vs, v0)§ + Ve X (u).
In local coordinates equations (7) have the form
vs + Jug =0, A2k + e 2pu(u) = 0. (85)
If (85) holds then
(Mo, Nve = (M, J)vss, VA ,svs + Va0 = —J Ly k.

Given a constant C' > 0 we denote by M¢ C M the compact subset of all z € M
that satisfy |u(z)| < C and |n| < C|Lyn| for every n € g.

Lemma 9.1. Let C >0, p > 2, Q C C be an open set, and K C ) be a compact
subset. Then there are positive constants g and c such that the following holds.
If0 < e <eg, A: Q — R is a smooth function satisfying A > 1/C, and (u, ®, V)
is a solution of (85) satisfying

lvsl| oo (@) < C, u(Q) ¢ M,
then

/ ()P < ce?P, sup |p(u)| < ce?=2/P,
K K

Proof. Let A = 0%/0s* + 9?/0t* denote the standard Laplacian. For r > 0
denote B, (z9) := {2z € C||z — 20| < r} and B, := B,(0). By (85), we have

du(w)vs = =L Jus = =Ll vy, dp(u)vy = =L Juy = L v,
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and hence

Va,sVasp(u) + VaVap(u) = Vasdp(u)vs + Va,dp(u)vy
= VA,tLZ’Us - VA,SLZ/Ut
= L} (Vavs — Va sv) — 2p(vs, vp)
= —L}Lyk— 2p(vs,vy)
= (M) L: Lyp(u) — 2p(vs, vt).

Here p € Q?(M, g) is as in Lemma C.2. Thus

Alp(w)]* = 2|VA st(w)[? 4 2[Va e (w)[?
+2(u(u), Va,sVa,spu(w) + Va,: Va, ()

= 2[Vasp(u)]® +2|Va,ep(u)®
+2(Me)? | Lup(w) * = 4{pu(w), p(vs, v)).-

Now choose positive constants § and ¢ such that

2min\* 2 0C%, dlp(61.&)| < 5 lal &l

for all z € M© and &;,& € T, M. Then
20 2
Alp()l” 2 Z lp()l” - clu(u)].

Since 2A |p(uw)|” > p |p(w)|P"> Alp(w)|? for p > 2, this implies

ce? _ 2¢2
l(u)[” < 5 ()P~ + EA ()"

Using the inequality ab < aP/p+ b?/q with 1/p+1/q = 1, a := ce?/§ and
b= |p(u)P~" we obtain b7 = |u(u)|”, and hence

cPe?r 2¢2
()" < ==+ == Alp@)]” (86)

By Lemma 9.2 below, this implies that
7(R+71)%cPe?  8e2
()]’ < —————+ = |(u)]”
/BR(Z) op 20 Brir(2)

for all z € C and R,r > 0 such that Bry,(z) C Q. Use the last inequality
repeatedly, with R replaced by R+ r, R+ 2r,..., R+ (p — 1)r, to obtain the

estimate
/ ()P < e
Br(z)
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for every z € C such that Brypr(z) C Q. Now choose R and r such that
Bpripr(z) C Q for every z € K. Cover K by finitely many balls of radius R to
obtain the inequality

/ ()] < e
K
By (86), the function

cPe?P—2
il |z — zo|2

z e | p(u(2)) P + -1

is subharmonic in €2 for every zy € C. Hence, by the mean value inequality, we
have

P < G [ o [ e < e

u(z —_— z — u e

. - 81R? g, TR g, (2 : B

for z € C such that Brypr(2) C Q. This proves the lemma. O

Lemma 9.2. Let u : Bryr — R be a C?-function and f,g : Brir — R be
continuous such that

f < g+ Au, u >0, [ =0, g=>0.
Then
4
/ f S/ g+ ) U.
Br Bpryr, " JBr4r\Br

Moreover, if g = cu then

s 4
_supug(c—l——Q)/ U.
2 Br r BRryr

Proof. For 0 < s < r we have

ou
[r-] o< G-o<[ su=[ 2
Br BRryr BRrys BRrys dBpr4+s 9V

and hence

d / ou N 1 / S / f /
— u = — u > — qg.
ds OBR4s OBR+s v R+s OBR+s Br BRryr

Integrate this inequality over the interval 0 < s <t to obtain

1 2
= 9= 7 u< - u
Br BRryr t OBR4t T JOBRr1t

for r/2 < t < r. The first inequality follows by integrating this inequality
over the interval r/2 < t < r. The second inequality was proved in [DS2,
Lemma 7.3]. O
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Lemma 9.3. Let Cy > 0, 2 C C be a bounded open set, K C §2 be a compact

subset, and A : Q — (0,00) be a smooth function. Then there are positive
constants 9 and ¢ such that the following holds. If 0 < e < e&¢ and (u, P, V) is
a solution of (85) satisfying

[vs] Loy + € Hlp(u) || o) < Co,
then

e () Loy + ILivall Loy + L5 vsll o iy
+elVa,svsl Lo (xc) + €llVa,tvsl Lo (k) (87)
< ce?/P (losll 2y + e Hlp(w)ll 2 ()

for 2 < p < oo.

Proof. Consider the functions ug, vg : 2 — R given by

wi= g (10 + 5 b))

1 2 2 )\4 2 )\2 % 2 )\2 * 2
Vo = 5 |VA,SU5| + |VA,t'Us| + €_4|Lu:u’(u)| + 5_2 |Luvs| + 5_2 |LuJUé| :

We prove that there exists a constant ¢y > 0 such that
AUO > Vo — CoUug- (88)

To see this, recall from the proof of Lemma 9.1 that

1 . . A2
SARWIE = Lo + L3 v + S [ Lup(@)]” = 2(u(w), p(vs, v0)),

and hence
53 A ())
= Dl + 25 + E o) + 23w
= Ot + 22 ), i)~ 22w, 22w

A2 A2 M N2
+ S lLgu o ST+ S = S (alw), plos, v0)-

Moreover, by Lemma B.4 and Lemma C.3,

(Va,sVa,s + VaVar) vs
= (Va,tVa,s — Va,sVa1)ve + Va, o (Va,svs + Varvr) — Va(Va,svr — Va 1vs)

= — R(vs,v1)vy — Vi, X s (1) — Va s(JLyK) — Va1 (Lyk)
A2 A2 2)\2
= — R(vs,v)v + E—QJVUSXM(U) (u) + E—2(VUSJ)Luu(u) + ?Vthu(u) (u)

A2 A2 D2 N2
+ S LuLivs = S I Lol v, + J Lo pu(u) + ;—QLuu(u). (89)

2
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Hence
1
§A|'Us|2 = |VA,SU5|2 + |v14,zfvs|2 + (Us; (VA,SVA,S + vA,tVA,t) Us)

A2 A2
= |VA75U5|2 + |VA,1€US|2 + _|LZUS|2 + _|LZJUS|2
g2 g2
32 A2

), vy ) + 25 (0 (Vo ) L)
~ (s Bloe, 0} — 25 (LT, ) + 5 (L, ()

Combining this with the formula for A(A?|u(u)|?)/2e? we obtain

2X2 2X2 A4
Aug = [Vasvs® + [Vaos]? + €_2|LuUS|2 + €_2|LuJUS|2 + gu’uﬂ(“)lQ

52 30,:)\2 . 30,2
- _<M(U),P(’U5,’Ut)> + e2 <:U’(u)’LuUs> - c2
AN? A2
+ 5oz Ir)® + S5 (0, (Ve ) Lup(u)) = (v, R(vs, ve)vr). (90)
The first row on the right is bounded below by 2vy. Moreover, by assumption,
the image of u is contained in the compact set {|u(x)| < eCo}. Hence the last six
terms can be estimated from below by vy — coug for some constant cg whenever
¢ is sufficiently small. Thus we have proved the inequality (88). Hence, by
Lemma 9.2, there exist constants eg > 0 and ¢ > 0 such that

supu0+/ vogcg/uo
K K Q

for every e € (0,e0]. Since |u(u)| < Coeo and zero is a regular value of u there
is an inequality |L,n| > 6|n| whenever € is sufficiently small. Thus we have
proved (87) for p = 2 as well as

{u(w), Ly, Jvs)

sl ey + ™ I e ey < b (sl gy + 7 s@)lagey) - (OD)

Now let us define u; : 2 — R by
Uy 1= % |VA751)S|2.
We shall prove that there exist positive constants d1, ¢1, and €¢ such that
Alug + %uy) > —crup (92)
for 0 < € < gg. We consider the equation
Auy = |Va sV, s0s|* + |VatVa svs|? + (Va.sVas + VaiVar) Vasvs, Va svs)

and use the formula

(Va,sVa,s + VatVae) Vasvs = I + 11 + 111,
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I = (VatVa,s — VasVazr) Vavs
)\2
= 7R(’US, Ut)VA,t’US —+ E_2VVA,t’USX,U‘(u)7

I = VA,t (VAytVA,s - VA,SVA,t) Vs
)\2 8t)\2
= —VaR(vs,vi)vs + E—QVA,t(VvsXM(“)) + o2 Vo, Xu(w),
IIT = Vas(VasVas+ VaiVar)ovs

A2 A2 A2
= Vas|—R(vs,v)ve + E_QLUL’IJ,US - E—2JLuLquS + E_Q(VUS X, (u)

A2 2)? s \2 O \?
+5—2vaqu(1£) + ETVth#(U) + E—QJX#(U) + ;—2X#(u)>
Here we abbreviate X, (u) = X,)(u) = Lyu(u). The last equality for 117
follows from (89). Now consider the tensors V2.J and V2X,, defined by

V2I(X,Y,Z) = VYx(WJ)Z) = (Vv J)Z — (WJ)Vx Z,
VX, (Y, Z) = W(VzX,) — Ve 2X,

for n € g and X,Y, Z € Vect(M). Then

VA,S((Vvs J)Luﬂ(u)) = V2J(vs, Vs, Lu,u(u)) =+ (VVA,S'US J)Luﬂ(u)
+ (W, J)VUSX#(U) (u) — (M, J) Lo LY Jug,
Vat (Yo, Xy (@) = VX0 (06, 05) + N, 0, Xy (0) Vo, X5, (w),
VA,S(R(US;vt)vt) - VR('US,'US,’Ut,’Ut) + R(VA,S’USvUt)’Ut

+R(vs, Va s(Jvs))ve) + R(vs, v4)Va,s(Jvs).
Hence, by a term by term inspection, we obtain an inequality
e2(Va,svs, [ + IT + IIT) > —cug — vo

for € > 0 sufficiently small. Note, in particular, that the term (V4 svs, I11)
contains the two positive summands \?|L} V4 svs|? and N\2|L%JV4 svs|?. Since
Aug > vg—coug the last inequality implies (92) with ¢; := ¢+ c¢o. Now it follows
from (92), (91), Lemma 9.2, and the formula

Vi tts = —IVa00 — (Yo, JYvs + (V&) Lupa(u)

that (87) holds for p = co. For 2 < p < oo the result follows by interpolation. O

10 Proof of Theorem D

Theorem 10.1. Assume (H1) and (H4), let B € Hy(M;Z) be a nontorsion
homology class, and denote B := k(B) € Ha(Mg;Z). Then, for every C >0,
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there exist positive constants €g and co such that for every e € (0,&q] the follow-
ing holds. If (u, A) € M3 5, satisfies

ldaull e <C, u(P)C M€

then (u, A) € %(ﬂ%,z(co)).

Proof. Suppose the assertion is false. Then there exist a constant C' > 0 and
sequences ¢; — 0 and (u;, 4;) € M% 5, such that

ldauillp <C. wi(P)C M, (ui, Ay) ¢ T7 (M 5(0))-

Here ¢; is chosen smaller than the number e¢(¢) required for the definition of
the map 7°¢. We prove in four steps that there exist an integer ig € N, positive
constants ¢ and ¢y, and sequences

(w0, Aio) € /\7?3,2(00 - 1), Gio = (&ios @io) € T(u,9,4,0)B
such that

(uia AZ) = (eXpuio (51'0); AiO + Oéio)’ HCZ'OHLp,si S CE?/erl (93)

for every i > ig. For i sufficiently large it then follows from Theorem 8.1 that
(ui, Ai) € T (M 5(co)), in contradiction to our assumption.

Step 1. There exist constants ¢ > 0 and ig € N such that, for i > iy and
2 < p < o0, we have,

5;1 ”M(uimLP + ||indAiuiHLp + HLZIJdAfU‘ZHLp + & HVAi*dAiuiHLp < CE?/p'

By the graph construction in Appendix A, it suffices to establish the estimate
under the hypothesis that J is independent of z € ¥. Namely,

indAiai = L;_dAiui, L;klinAiai = LZinAiui,

@Ai*dAiﬂi = (Ve"id, V4, " d a,u;),

where 4; = (m,u;) : P — M =% x M, Vy is the connection induced by A on
@TM/G, and id € Q'(%, T%). Hence we can use the results of Section 9. Since
da,ui]l o < C and u;(Q) € MY, the pair (ii;, A;) satisfies the hypotheses of
Lemma 9.1 and so the sequence ;~%/2fi(i;) is uniformly bounded. Hence there

exists a constant ¢y > 0 such that

—3/2

[da;uill oo + &7 lu(ui)ll oo < co (94)

for every ¢. This implies that, in local holomorphic coordinates on ¥, the pair
(U, A;) satisfies the hypotheses of Lemma 9.3 for i sufficiently large. Hence the
estimate holds in local holomorphic coordinates on ¥ with wu; replaced by ;.
Hence, by a partition of unity argument, it holds globally.
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Step 2. There exists an integer ig € N and a constant ¢ > 0 such that, for
every i > i, there exists a unique n; € Q°(3, gp) such that

plexpy, (JLui)) = 0, mill oo < € fla(ua)]l oo -
Define v} : P — M and A}, € A(P) by
U{L 1= CXDPy, (JLulnl)a LZ’ dA'Zu; = Oa

so that daruj € QN (3, Hy), and let ¢ := (JLu,mi, A} — Ai). Then there exists
a constant ¢’ > 0 such that, for i > ig,

142 A 142
Gl e, <SP, (B )y, < e gl <
The existence of n; for large ¢ follows from the implicit function theorem for the
map 7 — ju(exp,, ») (JLy, ). This sequence satisfies an estimate of the form

Inll e < er )l < 2™/

for every i > ig and every p € [2,00]. Here the constants ¢; and ¢y are indepen-
dent of ¢ and p, and the second inequality follows from Step 1. For p = co there
is actually a better estimate (by £3/2 instead of ¢), but we shall not use this here.
In the following we suppress the subscript ¢ and write u,u’, A, A’, ¢ instead of
ug, ul, Ag, Al €4, respectively. We establish the required estimates in local holo-
morphic coordinates on ¥. As in Remark 4.1, we write A’ = ® ds + ¥’ dt for
some Lie algebra valued functiona ® and ¥’, and denote

vg = Osu’ + X (u'), vy = Oy + X (u).

Then L¥,v, = L¥,v; = 0. We assume that the functions u, v, ®, ¥, &' U are
defined on an open set 2 C C and fix any compact subset K C 2. We must
prove the estimates

1€ )l e < ™22, oy + Joglloe < ', lolll e + [l0f]l e <
on the subset K, where
&= JLyn, =0 -, =0 — U,
Abbreviate E; := E;(u, JL,n), ¢ = 1,2. Then
Va & = JL,NVam + (Vy, J + 0cJ)Lun + IV, X5 (w). (95)

Hence, by Lemma C.3,

vy — Eivy = Lyt + EaNa & = L) + EaJ L, NVa i + Ry, (96)
where

R = Ey(Ny,J + 04J)Lun + B2V, X, (u).
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Hence
dp(u')(vy — Ervg) = du(u')Ea JL,NVa m + du(u’) Ren.
Since L} = du(u)J we have
LiLuVam = (dpw) — du(u)E2) T Lu¥an
+dpu(u') (v — Erve) — dp(u') Ren,
and, since du(u')v; =0,
LiLoVam = (du(u) — du(e)E2) T L,V m
+ (dp(u) — du(u")Er)ve + L Jvg — dp(u’) Ren.
It follows that

A

IVaenll e < ca(Inllpee IVaenll Lo + 1 L5T el o + 01l 10)
< c3 (51”/7” IVa,nll» + 52/p) )

If € is sufficiently small this gives
VAl e < eae®?, [ Vagmll e < ca

Here the second inequality follows from a similar argument as the first. Com-
bining these inequalities with (95) we obtain

IVae€ll o < ese™?, [ Vasll o < 5.

In order to estimate ¢ we apply the operator L, to (96) and use the formula
L}, v; = 0 to obtain

LY Ly = (L), — L, E1)vy — Livy — L, Ea JL, N ym — L, Rym.
Combining this with Step 1 and the estimate for V4 7 we obtain

90 < cee®?y 9l < co.

Hence, by (96),

v, = Brvtllps < eze®P, lup = Bvvgll e < cr.
Similarly,
Va0l Lo + 2l o + 15 = Ervg]l o < c7e/?,
IVa,snll oo + 1€l oo + (106 — Ervs||pee < c7.
Now use (96) again to obtain
ve+ J(u)vp = Lulp = Vaum) + JLu (¥ + Vasn)
+ (E2JLy — JLy)Va sn+ J(E2JLy — JLy)Van
+ Eyvs + JE v + (Rs + JRy)n
T (B2 Ly — J Ly )NVa,sn + J(EaJ Ly — J Ly )Vaem)
+ T ((JE1 — E1J)ve + (Rs + JRt)n).
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The second equality uses the fact that vs+ Jv; = 0 and that the 1-form 5.]1 ar(u)
takes values in H,/. It follows that

[0 + T ()0} || o < cse T3P,
It remains to show that

HVA,SWHL;? + HVA,HPHLP + ||VA751/}HLP + HVA,H/)”LP < 052/}771-

To estimate the term Vj 41 differentiate (96) with respect to t. Then apply the
operator du(u’) to the resulting expression to eliminate V4 ;1) and obtain an

estimate of the form

VAt Van|l L, < coe?/P72

Then apply the operator LY, to the equation obtained from differentiating (96),
and estimate Vj (% using the upper bound found for V4 ;:Va 1. The estimate
for V4 st is obtained in a similar manner. To estimate Va s and V4 o, we
begin with the identity

’U; — El'Us = Lu/@ + EQJLuVA,sn + Rsﬁ

instead of (96) and then follow the same procedure.

Step 3. There exist an integer ip € N, a constant ¢ > 0, and a sequence
(uf, A) € M%,Z such that, for i > iy, we have

!

ui/ = €XPy ('f;)a 61/ € QO(Ea Hu;)a

1€y + IAY = Afll, < cel™2P0 |ldavul||, < e

By Step 2,
sup [|dajui]|, . < oc.
3

Hence the induced maps @, : ¥ — M form a sequence of approximate J-
holomorphic curves which satisfy a uniform L>*-bound on their first derivatives.
Hence, by (H4) and Theorem 2.3, there is nearby a true J-holomorphic curve

) : 3 — M whose W'P-distance to @} is controlled by the LP-norm of o5(a)).
Now this J-holomorphic curve has a unique lift «/ : P — p=1(0) of the form

ul = exp,/ (&), & e0(x, Hy).
Let Af € A(P) be the connection determined by u} via L7, daru; = 0. Then

||§z/'||W1,p <a }’5J7A£(u;)||LP < 025i1+2/p.

Here the last inequality follows from Step 2. Since L}, daru; = Ly, darui =0
we obtain
142
147 = Al < esef
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In particular, these inequalities together give a uniform W'P-bound on the
J-holomorphic curves % : ¥ — M. Hence, by the elliptic bootstrapping tech-
niques for J-holomorphic curves, the sequence @/ satisfies a uniform L> bound
on the first derivatives. This proves Step 3.

Unfortunately, the estimate on A7 — A’ in Step 3 is only in the LP-norm and
not in the WlP-norm. A further modification of the pair (u/, A) is required
to improve this estimate.

Step 4. There exist an integer ig € N, a constant ¢ > 0, and a sequence of
gauge transformations g; € G(P) such that the sequence

(wio, Aio) := g; (uj, A]) € M%,z:

satisfies the following. For i > iy the original sequence (u;, A;) has the form
(ui, As) = (expy,, (&), Aio + o)

where G 1= (&, ) € Ty, 4,0)B satisfies (93).

The idea is to choose g; for large ¢ such that
U; = €XP,., (fi)a inggi =0, U0 = gi*l'u/i/.
This can be done by using pointwise, for every p € P, the implicit function
theorem to obtain the local slice condition. This suffices to obtain the missing
estimates for the first derivatives of gf A} — A;.
By (94) and Step 2, the distance between w; and w} is unformly bounded

3/

by a constant times € ? while the distance in the W1P-norm is bounded by a

constant times 5?/ P. By Step 3, the distance between u and v/ is bounded in

. 142 .
the W'P-norm by a constant times ¢; /P Hence there exists a sequence of

smooth sections & € Q°(3,u;*TM/G) and a constant ¢ > 0 such that

uf =expy (&), |Glle <crgi, VAl <™. (97)

Moreover, the sequence d4»u is uniformly bounded in the L>°-norm and

HA;I — AiHLP < 0152/;0, HdAé’u/il - El(ui,fi)dAiuiHLp < 0162/p. (98)

Here the last inequality follows from the identity
dapui = Ei(ui,&)daui + Ba(ui, &) Va, &
+ B (i, &) Xar—a, (ui) + B2 (wi, &) Ve, Xay —a, (i),

which in turn follows from Lemma C.1. Now, by the inverse function theorem
for the map
G xker LY — M : (g,&) — g texp,(¢),

there exists a constant co > 0 and (unique) sequences g; € G(P) and & €
QO u/*"TM/G) such that

wi = g; texpyr (&), Lip€l =0, & llp~ < coeiy lgi = Ul < coes
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Define

—1_n * Al —1en
Uio 1= g; U, Ay = gi" A7, &o=yg; & Qo i= A; — Ajo.

We shall prove that the pair (&0, ;o) satisfies (93). To see this note first that
u; = exp,,, (&), A = Aio + ao.

The endomorphism Ej (u;, &)g; " Ey(ul, €/ of u/*T M is ;-close to the identity,
da,,uio = gi_ldAiru’i’, and

E1(ui, &) (da,ui — B (0, &o)d Ao io)
= E1(us, &)da,ui — daruf + (1= By (wi, &g~ By (uf, &) daruy.

Hence, by (98), there is an estimate

lda,ui — E1(tio, &io)d A, tioll L » < CsE?/p, lda,owioll oo < c3

for all <. Hence, by Corollary C.4, there exists a constant ¢4 > 0 such that
/p

2
llovioll Lo < cag; ol o < ca.

Next observe that, by Lemma C.1,

daui = Ei(uio, io0)da,,uio + E2(wio; o) Vaseio
+ E1 (10, §i0) Xaso (wio) + B2 (wio; &io) Veio Xaso (wio)
Hence there exists a constant c5 > 0 such that
IVanéioll e < cse3’”, [ Vawéioll = < s
for all . Thus we have proved that
[Sollsr + 2ol & [ antioll < o™ o

l€ioll poe + i llcvioll oo + €0 [[Vasoioll oo C6Ei-

It remains to estimate the LP-norm of the first derivatives of a;g. We drop
the Subscript i and write u, ug, A, Ao, &0, (67} instead of Uiy Ui0, Ai, Ai07 &0, a50-
Moreover, we use local coordinates on ¥ as in Step 2 and write

AO = (I)O dS—i—‘I’O dt, A = ®ds +‘I’dt,
Vos = Ostg+ Lyy®o, vs = 0Osu+ L,P,
vor = Owuog+ Ly, Vo, v = Owu+ LY,

and g := P — &y and ¥y := ¥V — ¥, . Consider the formula

/\2
VA,svs + JvA,t'Us = *(vvt J)Us + E—2JLuu(u)
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By Step 1, we have
HVA,SUS + JvA,tvs”Lp S 0’752/1771
and hence, by elliptic regularity for the Cauchy-Riemann operator,

Va3l o + [ Vaevsll o < cseP72 (100)

Moreover, since Ly, & = 0, it follows from Lemma C.2 that
L0V tVag,s60 = Vag,t(Ly,Va,,s0) — p(vor; Vag,so)
= —Vao,tn(v0s; &0) — p(vot, Vag,s&0)-

and hence

| L3, Vot Vao,séo|| < 106/, (101)
Here we use the fact that, by elliptic bootstrapping for .J-holomorphic curves,
there is a uniform LP-bound on Vjy, +vgs. Now consider the inequality
11| Ly LuVa ol
enl(Ly = Ly By ) LuNaspol + enn|Lyy By ' LuVa o

Va0 <
<

Since the operator (L} — L% E; )L, is small, we obtain

Va0l < ci2 HLZUE'ElLuVA,MOHLP .
Now use Lemma C.5 and the estimates (99), (100), and (101) to obtain
Va0l < c13e?/P7L

The terms [|Va s@ollres [|Vartbollzr, and ||Va spollzr are estimated similarly.
This proves Step 4. o

It follows from Step 4 and Theorem 8.1 that (u;, 4;) € 7,7 (MY 5(co)) for
some constant ¢y and 4 sufficiently large. This contradicts our assumption and
hence proves the theorem. O

11 Vortices

In this section we examine the finite energy solutions of (1) over the complex
plane ¥ = C. The equations have the form

Osu+ Xo(u) + J(Ou+ Xg(u)) = 0,

00— 0,0 +[®, 0] + p(u) = 0, (102)

where v : C — M and &,V : C — g. The energy of the triple (u, ®, ¥) is given
by

E(u, ,0) = /C (1900 + Xa ()] + ) dsdt.
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The vortex equations (102) and the energy are invariant under the action of the
gauge group G := C*(C, G) by

9" (u, @, ) := (g7 u, g7 0sg + g7 g, g Org + g~ Uy).
A solution of (102) is said to be in radial gauge if
cos O ®(re?) 4 sin§ ¥ (re??) = 0

for every 6 € R and every sufficiently large » > 0. It is said to be bounded if
supe pu(u)] < oo.

Proposition 11.1. Assume (H1) and (H2). Suppose that (u, ®, ¥) is a smooth
bounded finite energy solution of (102) in radial gauge. Then there exists a
W2 function x : R/27Z — M and an L?-function 1 : R/27Z — g such that

) 2
lim sup d(u(re?), z(9)) = 0, lim In(0) —n.(0)]> do =0,  (104)
T—00 GGR T— 00 0

where 1, (0) := rcos(0)¥(re’?) — rsin 0@ (re'?). Moreover,

E(u,®,7) :/u*w,

C

there is a constant 6 > 0 such that

tim sup 2+ (10 + Xa ()] + [u(w)*) = 0,
r—00 OER

where s + it =: re?, and supc(f ou) < ¢, where c is as in hypothesis (H2) and
p=1(0) € f71([0,¢]). If (H3) holds then E(u,®,V) is an integer multiple of
h=71N.

Note that the removable singularity theorem for J-holomorphic curves is a
corollary of Proposition 11.1 (consider the special case G = {1} and M = M).
Before entering into the proof we introduce the notion of the local equivariant
symplectic action. The definition of this local action functional relies on the
following lemma. We identify S = R/2rZ.

Lemma 11.2. Assume (H1). Then there are positive constants § and ¢ such
that the following holds. If x : S' — M and n : S* — g are smooth loops
such that supg: |pu(x)| < 8, then there is a point xog € p=1(0) and a smooth loop
go : S' — G such that

¢ tsup ’77 + 9-09071‘ </l(x,n):= / i |z + X5 (x)] do,
St 0
d(x(0), go(0)xo) < c(|u(x(0))] + £(z,n)) -
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Proof. Fix an almost complex structure J € Jg(M,w) and choose 7 > 0 so
small that the map f: p=1(0) x {no € g||no| <} — M, defined by

f(z()a 770) = eszo(‘]LibonO)v

is an embedding. Choose > 0 so small that the set {|u| < ¢} is contained in
the image of f. Since JL,, = du(xg)* there is a constant ¢y > 0 such that

0| < colp(f(z0,m0))]

for 29 € p=1(0) and ny € g with |no| < 7. Let ¢; > 0 be an upper bound for the
differential of f~' and denote

co = sup |Lg|.
1=1(0)

Given a loop z such that |u(z)| < & define (zo(0),10(0)) := f~(x(0)). Then
d(2(0), 20(0)) < d(x(6), 20(0)) + (o) < coco|pu(x(0))] + erf(),

where ¢(x) := £(x,0). This proves the lemma in the case n = 0.
Now consider the general case. Suppose ¢ has been chosen so small that G
acts freely on the set {|u| < d}. Then there is a constant cs > 0 such that

d(ga ]1) S C3d(g.’L',.T)

for g € G and z € M with |u(z)| < §. Suppose (z,n) : St — M x g satisfies the
assumptions of the lemma. Define g : R — G by

g+mng=0, g(0) =1

Then the length of the path [0,27] — M : 0 — g(0)~'x(0) is equal to £(x,n).
Hence
d(g(2m), 1) < czd(g(2m) " w(2m), 2(0)) < esl(z,n).

Choose 11 € g such that g(27) = exp(27m1) and |n1| < c3l(x,n)/2xw. Since
g9(0 + 2m) = g(0)g(27), the formula

90(0) = g(6) exp(—0m)

defines a loop in G. Tt satisfies | + gogy '] = |m| < esl(x,n)/2r. Hence the
length of the loop

y(0) == go(0) ' x(0)
is bounded by a constant times £(z,7n). By the first part of the proof, there is

an xo € u~1(0) such that d(y(0),z0) < c(|u(y(0))| + £(y)). Since d(y(0),z¢) =
d(x(0), go(0)xo) and |u(y(8))] = |u(x(8))|, this proves the lemma. O
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Fix an almost complex structure J € Jg(M,w), let § and ¢ be as in
Lemma 11.2, and suppose that 2c¢d is smaller than the injectivity radius of
M (with respect to the metric determined by J). Let (z,1) : S — M x g be a
loop such that supg: |u(x)| < ¢ and £(x,n) < 6. Then the local equivariant
symplectic action of the pair (x,7) is defined by

Alwn)i= = [ / " (2 (0)).m(6)) do,

where z € ~1(0) and go : ST — G are as in Lemma 11.2, £(0) € Ty, ()2, M is
the unique small tangent vector such that

‘T(G) = expgo(Q)mo (&0(9))5
and v : [0,1] x S — M is defined by
u(r,0) := €XDygo (0)z0 (1&0(0)).
The local action is independent of the choice of xy and go.

Lemma 11.3. Assume (H1). There exist positive constants 6 and ¢ such that
the following holds. If (x,n) : S* — M is a smooth loop such that supg: |p(z)| <
0 and l(z,n) < & then

\A(z,m)| < c/:w (|:b+X,7(:E)|2 + |u(x)|2) do.

Proof. Let & € C*°(SY, 2T M) and u : [0,1] x S — M be as above. Then the
local equivariant symplectic action can be expressed in the form

A(z,n) = /01 /O%w(&u,@@u + X, (u)) dodr.
By Lemma 11.2, we have the pointwise inequality
|07u| = |€o| = d(z, gozo) < c1 (|u(2)] + £(z,m)) -
Moreover, by Lemma C.1,
Bou + Xy(u) = E1 Lgysy (0 + Gogo 1) + 7E2 (Vo + Ve X (900)) ,
where E; := F;(goxo,7¢0) for i = 1,2. With 7 = 1 we obtain, by Lemma 11.2,
V€ + Veo X (gow0)| < 2 (& + Xy ()| + £, 7)) -
This implies [Opu + X, (u)| < ¢3 (|& + X, (x)| + £(z,n)) and hence

2
Al < ac [ (u@)]+ dem) (@ + X, @) + ) do
0
27 . 2 2
< e (o4 Xo(@) + @) ) do.
0
This proves the lemma. O
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Proof of Proposition 11.1. Let (f,J) be as in (H2) and let (u, ®, ¥) be a finite
energy solution of (102) in radial gauge. We prove in seven steps that (u, ®, ¥)
has the properties asserted in the proposition.

Step 1. lim, r2(|88u + Xo(u)]* + |u(u)|2) = 0 uniformly in 0.

Abbreviate v, := 0su + L, ® and v; := d;u + L,V as in Section 9. Let

1
e = 5 (Jus” + [u(w)[*).
Then the formula (90) with A = ¢ = 1 has the form

Ae = |VA,SU5|2 + |VA,t'Us|2 + 2|LZ'US|2 + 2|L2J'Us|2 + |LuM(U)|2
- 5(”(“); p(Usa Ut)> + <Usa (Vvs J)Lu:u’(u» - <’US’ R(US’ Ut)vt>'

Since u(C) is contained in a compact subset of M this gives an inequality
Ae > —cqe?.

Namely, choose § > 0 such that L, is injective whenever |u(z)|?> < J. Then the
first term in the second row can be estimated from below by —|L,u(u)|?/2 —
clvs|* whenever e < 6. In case e > § we can use the inequalities Ae > —c(e+€2)
and e < €?/6. Now it follows from [MS1, Lemma 4.3.2] that there is a constant
co > 0 such that

|z| =7 > c2 = e(z)ﬁ%/ €.
™ BT(z)

With r := |z[/2 this implies lim,,|_ |z|%e(z) = 0.
Step 2. For R > 0 sufficiently large, we have
E(U, (I)a \117 C \ BR) = A(:ERa 77R);
where xr(0) := u(Re') and nr(0) := Rcosd ¥(Re?) — Rsind ®(Re™).
The energy identity on Br = {|z| < R} has the form

B ®,0555) = [ - / (e r(0)).1(6)) do.

Br

For R sufficiently large denote by up : [0,1] x St — M the function used in the
definition of the local symplectic action of (zg,ngr). Then ur(1l,0) = zx(0) and
ur(0,0) = gr(0)zro for some point xrg € u~*(0) and some loop gg : St — G.
The homotopy class of the connected sum vg := u|p,#(—ug) (the orientation
of up is reversed) is independent of R. Hence the number

/vg*w = E(u, P, \I/;BR) + -A(-TR,UR)

(0]



is independent of R. Since A(zg,nr) tends to zero as R — oo it follows that
E(U, (I)a lI/7 BR) + A(:ERa 77R) = E(U, (I)a \I])
for every sufficiently large number R. This proves Step 2.

Step 3. supe(fou) <e.

Suppose, by contradiction, that sups(f o u) > ¢. Then there exists a regular
value a of f ou such that

¢ < a<sup(fou).
o

Hence the set

U:={z€C|f(uz)) = a}

is a smooth submanifold of C with boundary. Since p=1(0) C f~*([0,]) it
follows from Step 1 that there exists a number R > 0 such that

sup (fou) < a < sup(fou).
C\Br C

Hence U is compact and has a nonempty boundary. By (H2), A(fou) > 0 in
U (see [CGMS]). Hence

Og/UA(fou):/aUa(J;zu) <0.

This contradiction proves Step 3.

Step 4. Consider equation (102) in polar coordinates s + it = e™t . Define
4:RxS'— M and ®,¥:R x St — g by

a(r,0) = u(e™t?),
B(1,0) = e cosO D) 4 e sinh (™),
U(7,0) = e cosW (™) — e sinh (e ).

Then ds A dt = e*dr Adf, ®ds + Udt = ®dr + U db, and (102) is equivalent
to

Oy + Jig = 0, R+e* (i) =0,

where
0y = 0,0+ Lg®, Tp = Opti + L0, = 0.0 — 9y® + [®,T].

The radial gauge condition has the form <i>(7', 0) =0 for large 7. The energy of
the triple (u, ®, W) is given by

[e%s} 2
B, &, ¥) = / / (15:% + 7 lu(@)[?) dor
—oo0 JO
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Step 5. There exist positive constants ¢ and § such that, for every 79 > 0,
00 2m
(7o) = / / (|177|2 + €27 |u(ﬂ)|2) dfdr < ce=™,
T0 0

By Step 2 and Lemma 11.3, we have
e(r) = Alwer,ner)
27
< o [ (n 0P + & lutar o)) do
0
= 5t ()

for some constant 4 > 0 and every sufficiently large real number 7. In other
words, the function 7+ e%7¢(7) is nonincreasing for 7 sufficiently large. Hence
there exists a real number 7y such that

T>1T9 = (1) < e 9 0)¢g(ry).

Step 6. There exist positive constants ¢ and § such that, for every 79 > 0,

sup ([ (70, 0)|* + €% (ii(ro, ) ) < ce ™7,
S

o] 2m
/ / e |u(a(r, 0)* didr < ce 0.
T0 0

By Step 1, the function |5,]° + €27 |u(@)]* is bounded. Hence we can apply
Lemma 9.3 to the open set Q := (—1,2) x (—2m,4w), the compact subset K :=
[0,1] x [0,27], the function A(7,60) := €7, the constant ¢ := e~ ™, and the

shifted functions (7, 6) — (@(r+70,0), (7 +70,0), V(7 + 70, 0)). It follows from
Lemma 9.3 with p = 2 that there is a constant ¢ > 0 such that

To+1 27 To+2 4
6470/ / (@) dodr < c/ / (16 + 7 |u(@)?) dodr
To 0 To—1 —27

for every 19 € R. This implies

To+1 2 T0+2 21
/ / A7 (@) ? dodr < 3066/ / (162 + & (@) doar.
T0 0 T 0

0—1

Replace 7y by 79 + k and take the sum over all integers k > 0 to obtain

o) 27 [e%s) 27
/ / M (@) dodr < 9066/ / (|177|2 + €27 |u(a)|2) dodr.
To 0 T0—1J0

Hence the L?-estimate follows from Step 5. To prove the L>°-estimate use
Lemma 9.3 again with p = oo.
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Step 7. There exists a W12-function z : S — p=(0) and an L?-function
n: St — g such that

2m 2
lim supd(a(r,8),z(0)) =0, lim U(r,0) —n(0)| do =0,

T—0 gcR T—0o0 fo

and & + X, (z) = 0. Moreover, E(u,®,V) = [w*w, and if (H3) holds then
E(u, ®, V) € Zh.

By Holder’s inequality and the radial gauge assumption, we have, for 7, > 79,

‘i’<ﬁa9)—@<fo,9)}2 < (/ 2" (i, 0))| dT)2

0

< (n-— To>/ﬂ ' u(a(r, 0))) dr.

0

Hence the existence of the L2-limit of ¥ follows from Step 6. That a(r,6)
converges uniformly as 7 tends to infinity follows from the exponential decay of
0, = 0,4 in Step 6. That the limit is a W2-function and satisfies + X, (z) = 0
follows from the fact that 99 = dpu+ X (%) converges (exponentially) to zero as
7 tends to infinity. That E(u, ®, ¥) = [ u*w follows from the energy identity in
the proof of Step 2 and the L2-convergence of U. That E(u,®,7) is an integer
multiple of /& (when (H3) holds) follows from the proof of Step 2. O

Remark 11.4. Every map u : C — M that satisfies (104) and (103) determines
an equivariant homology class B = [u] € Ha(Mg;Z) as follows. Homotop u to
amap v : D — M such that

v(e?) = g(e)ao.
Now define a principal bundle P — S? 2 (Zy x D)/ ~ by
P:=(Zax D xG)/ ~, (0,e,h) ~ (1,€, g(e®)h).

Then v determines a G-equivariant map w : P — M by w(0, 2, h) := h~ 'z and
w(1, z,h) := h~'v(z). The equivariant homology class of u is defined to be the
equivariant homology class of w.

12 Proof of Theorem A

We begin by constructing a G-equivariant smooth function from a suitable open
subset of B x P = C&(P,M) x A(P) x P into a suitable finite dimensional
approximation of EG. For positive constants ¢ and r denote

M = {a € M| |u(x)| <5},

BT = {(U,A) e CX(P,M)x A(P)|3z€X sup |pou| < 6}.
B, (z)
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Throughout we assume that G is a Lie subgroup of U(k). Then, for every integer
n > k, a finite dimensional approximation of the classifying space of G is the
quotient

BG" :=EG"/G, EG":=F(k,n):={0ecC"" |00 =1}.

There is an obvious embedding of the space EG" = F(k,n) (of unitary k-frames
in C") into F(k,n + 1) for every n > k and the direct limit is a model for EG.
The homotopy groups of the approximations EG" stabilize. Let 6 > 0 be so
small that G acts freely on M and choose a smooth G-equivariant classifying
map 6 : M? — EG™ for some integer m > k. Such a map exists for abstract
homotopy theoretic reasons but can also be constructed explicitly from local
trivializations of the principal G-bundle M? — M?/G.

Proposition 12.1. Let 6 : M? — EG™ be as above. Then, for every r > 0,
there exist an integer n > m and a map © : B> x P — EG" with the following
properties.

(i) Forge G, he G, and (u,A,p) € B x P,
(g~ u, g" A, pg(p)~Y) = O(u, A, p) = hO(u, A, ph). (105)

(ii) © is smooth with respect to the C° Banach manifold structure on (the com-
pletion of) B>" x P.

(iii) Let ¢ : EG™ — EG" be the obvious inclusion. Then

w(u@) <o = O(u,A,p) =rob(u(p)).

Proof. Cover ¥ by finitely many distinct balls B,(z;), ¢ = 1,...,¢, and choose
points pi,...,pe € P such that 7(p;) = z;. Then, for every (u, A) € B>", there
exists an i € {1,...,¢} such that u(p;) € M°. Thus the open set B>" x P
is contained in the finite union of the following open sets U;;, 4,5 = 1,...,L.
Choose € > 0 so small that § extends to an equivariant function (still denoted
by 0) from M°+¢ to EG™ and define

Uy = {(u, A, p)||p(ulp))] <6 +e},
Ui {(u, A,p) | m(p) € Br(2i), |u(u(p;))| < d+¢e}.

For every smooth path v : [0,1] — ¥ and any two points py € 7~ 1(7(0)) and
p1 € 71 (y(1)) the holonomy pa(p1,7,p0) € G of the connection A € A(P) is
defined by p1pa(p1,7,po) := F(1), where 4 : [0,1] — P is the unique horizontal
lift of v with 4(0) = po. It satisfies

pa(Pr91,7,P0g0) = g1~ pa(p1,7.p0)go,
pga(P1,7:00) = g(p1) " pa(p1,7,p0)g(po)

for go,g1 € G and g € G. Hence the map

Bxm H(v(0)) = M : (u, A, po) — pa(p1,v,p0)  ulpr)
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is G-invariant and G-equivariant. Choose a finite sequence of smooth functions
vij : [0,1] x Bp(z;) — X such that
7:5(0,2) = z, Yij (1, 2) = 2.

Then the functions Qg : Uy — EG™ and ©;; : U;; — EG™, defined by

Oo(u, A, p) == O(u(p)), Oij(u, A, p) = 9(pA (pj,%j(wﬂ(p)),p)_IU(pﬂ)

for 4,5 = 1,...,¢, satisfy (105). Now choose a G-invariant smooth function
B : M — [0,1] such that 3(z) = 1 for x € M® and B(z) = 0 for x € M\ M+</2,
Define p; : Ule U;; — [0,1] and po : Uy — [0,1] by
ol Ap) = Bu(p)) ’
VB(u(p))? + (1= Blu(p)))?
Blulp;))( — B(u(p)))
—B(

(
VB@®)? + (1 - Bu)?) Sr_, Bulpr))®

pi(u, A,p) =

for j = 1,...,£. Then p; is smooth with respect to the C° Banach manifold
structure on (the completion of) B x P. Moreover,

4

> pilu,Ap)P =1

Jj=0

and po(u, A,p) = 1 whenever |u(u(p))] < §. Now choose a finite sequence of
smooth functions ¢; : ¥ — [0,1], 4 = 1,...,¢, such that suppo; C B,(z;) and
Zf:l ;2 = 1. Then the function © : B x P — EGE D™ defined by

pO(ua A7p>@0(ua A7p>

@(U,A;p) = O-l(ﬂ-(p))pj(u,A,p)(_)z](uzAap) 7

is the required classifying map. O

The integer n = (¢2 + 1)m in the proof of Proposition 12.1 diverges to
infinity as r tends to zero. In general, there is no G-equivariant map from
B := {(u,A) € B| min|uou| < 6} to any finite dimensional approximation
of EG.

Lemma 12.2. Assume (H1—3). Let B € Hy(Mg;Z), (%, ju,dvols) be a com-
pact Riemann surface, m : P — X be the principal G-bundle determined by B,
and ¥ — Ja(M,w) be a smooth family of G invariant w-compatible almost com-
plex structures on M such that each J, agrees with the almost complex structure
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of (H2) outside of a sufficiently large compact subset of M. Then for every
& > 0 there exist positive constants r and g such that

N 5,
M%,z c B>
for 0 < e <ep.

Proof. Suppose the result is false. Then there exist a constant 6 > 0 and
sequernces N
ri — 0, g — 0, (ui, Ai) € M 5,

such that (u;, A;) ¢ B%" for every i. This means that, for every p € P, there
exists a sequence p; € P such that

Jim p; = p, l(ui(pi))| = 6.

This contradicts the bubbling argument in Step 5 of the proof of Theorem A
below. (]

Let g9 > 0 be as in Lemma 12.2. For 0 < € < g9 we consider the evaluation
map
evg i Mp e XX — M xg EG",
given by
evg([u, A, pl) := [u(p), ©(u, A, p)]
where § > 0 is chosen such that G, = {1} for every z € M?, r > 0 is as in

Lemma 12.2, and © : B%" x P — EG™ is the map of Proposition 12.1. Recall
that M%  and M3 5, have the same dimension.

Proposition 12.3. For every cg > 0 there exist positive constants ¢ and €g
such that the following holds.

(i) For0 < e <o the map T° : M 5(co) — M3 5 is an orientation preserving
embedding.

(i) For 0 < e <ey,
dei (evd, eve o (T x id)) < ce'~2/P,

where the C'-distance is understood on the space of continuously differentiable
maps from MY s(co) X X to M xg EG™.

Lemma 12.4. Assume (H1) and (H4) and let B € Ho(M;7Z) be a nontorsion
homology class. For every p > 2 and every co > 0 there exist positive constants
go and ¢ such that the following holds for every e € (0,e0]. Let I C R be an
interval and

I — My s(eo) =1 = (un(r), Ao(r))
be a smooth path that satisfies (80). Then every smooth vector field

7= ((r) € im (Dfuo<r>,Ao<r>>)
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satisfies the inequality

< -1
[%c],,,. << (¢ e )
for r € I, where D := Dqu(T),AU(T)) and Ty, is defined by (9).

Vil V, D¢ Vi True D¢

|

‘0%6

Proof. Let r+— ('(r) € X;U(T) be the smooth path defined by ¢ = D¢*(’. Then,
by Lemmata 4.7, 4.8, and 8.4, we have

‘ @TC ’ S H'DE*ﬁrcl + ‘ @TDE*CI o DE*@TC/
1,p,e 1,p,e 1,pe
< o (g HD@E*@T(’ + ‘ Tuo DD V(! )
0,p,e Ly
+ v - D
1,p,e
< o (e HDE@C ’ + ’ Tuo DD V(! )
0,p,e Le
+ ||V De ¢ = D
1,p,e
< co (E ‘ ﬁrpgc + ‘ WuUDEDE*ﬁTC/ )
0,p,e Lr
+eoe [PV = UDE||  +eas I
0.p.c D,
< o (s [wpee| +||[VmnD| )
0,p,e Lr
+ 2| DD G|+ s el
S C2 (E ’ 6»,\,D€< ’ + ’ ﬁrﬂuopgc >
0,p,e Lr

+ 6 (ID°Cll e + & T D€l s+ € ) -
The last inequality follows as in Step 7 in the proof of Lemma 4.8. Since

ID°Cllo e + € 1T D¢l o < cze™ M ICN e
the lemma is proved. O

Proof of Proposition 12.3. Let r +— (uo(r), Ao(r)) be as in Lemma 12.4 and

r— G (r) = (&(r),as(r)) € im (D‘(SUO(T%AU(T)))* be as in Theorem 6.1 so that

T (uo(r), Ao(r)) = (ue(r), Ae(r)) == (€xDy, () (€ (1)), Ao (r) + ae(r)).
Let F7 : Xyy(r) — &, be defined by (26). Then F;(¢.(r)) = 0 and hence

wo (1)

0
D= | 0|+ (F) - F0) - dFE0)G().
*FA()(T)
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Differentiating this identity with respect to r we find

[epc], <e(er e 1eml,. (16O, +[Fe0], )
0,p,e 7 o Lpe
(See Proposition 5.2.) Hence, by Lemma 12.4,
’ e < de. (106)
1,p,e

Since
(Orue, 0rAc) = (E1(uo, &) 0ruo + E2(uo, &) Ve, 0r- Ao + Orac)

this shows that 7° : MY 5,(co) — M5 5 is an orientation preserving embedding.
Indeed, it follows that the restriction of 7¢ to every ball of radius ¢ is an
embedding for § and e sufficiently small and hence, by Theorem 6.1, 7¢ is an
embedding for ¢ sufficiently small. For € > 0 denote

Ph.s(co) 1= M s(co) Xg P
and consider the map ev® : Pj (o) — M defined by
ev® ([ue, Ae, pl) := ue(p).

Then it follows from (106) and the inequality ||(. < /€2 of Theorem 6.1

that

||2,p,s
der (ev?,eve o (T x id)) < et 2/P,

For ¢ sufficiently small we have evg, = 09 o ev®, where 8% : M® — M xg EG™ is
given by €°(x) := [x,0(z)]. This proves the proposition. O

Proof of Theorem A. The result is obvious when B = 0. Moreover, both mod-
uli spaces are empty when B is a nonzero torsion class. Hence assume that
B € Hy(M;Z) is a nontorsion homology class, denote by B € Ha(Mg;7Z)
the corresponding equivariant homology class, fix a compact Riemann surface
(2, jx,dvoly), and let 7 : P — ¥ be a principal G-bundle whose characteristic
class b € Ho(BG;2Z) is the pushforward of B. In the course of the proof it will
be necessary to also consider other bundles 7’ : P’ — ¥ with corresponding
equivariant homology clsses B’ € Hy(Mg;Z). By (H2), there exists a constant
¢ > 0 such that u(P) C M° := {z € M||u(z)| < ¢} for every solution (u, A)
of (7) over any Riemann surface. Note that ¢ can be chosen to be a regular
value of the function M — R : x — |u(z)].

Let 6 > 0 such that G, = {1} for every z € M° and let r and ¢ be as in
Lemma 12.2. Fix k points p1,...,pr € P such that the points z; := 7(p;) €
> are pairwise distinct. Choose an integer n, a G-equivariant smooth map
6 : M? — EG", and k smooth classifying maps ©; : B®" — EG", defined by
O;(u, A) := O(u, A, p;), where O is as in Proposition 12.1. Then

0;(g7 'u, g*A) = g(p;) "' O;(u, A)
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and
lw(u(ps))| <6 = Oi(u, A) =0(u(pi))

fori=1,...,k. For 0 <e < egq consider the evaluation maps
evp,: Mp s — MG := M® xg EG"

given by evg ; ([u, A]) := [u(p;), ©i(u, A)]. Let evg : MG 5, — (M§)* denote the
product map defined by
evi([u, A]) = (evi([u, A]), ... evi i ((u, A])) -

For any subset I = {i1,...,4;} C {1,...,k} such that iy < --- < i; and any
class B' € Hy(Mg;Z) that descends to Ho(M;Z) we consider the evaluation
map evl, ;1 MY, o — (M) given by

vy 1 ([u, A]) := ([u(pi, ), 0(u(pi,))], - - - [u(ps,), O(u(pi,))]) -

Now fix equivariant cohomology classes aq,...,ar € H*(Mg;Z) such that
k
m; = deg(a;) < 2N, Zdeg(ai) = dim M} 5.
i=1

There is a natural embedding M§& — Mg and we denote by of € H™ (M§;Z)
the pullback of o; under this embedding. Note that M¢ is a compact manifold
with boundary. Replacing a; by some integer multiple of «;, if necessary, we
may assume without loss of generality that, for every i, there exists a compact
oriented manifold with boundary Y; of dimension

dim Y; = dim M§& —m;

and a smooth map
fi: (Vi 0Y;) — (M&, OME)

such that the homology class in H,(M§&,0M§) represented by f; is Poincaré
dual to af. For I = {i1,...,4;} C {1,...,k} such that iy < --- < i; we denote
the corresponding product map by

Y=Y, x---xY, fro=fo x oo x fiy 2 Ve — (M)

For I = {1,...,k} we abbreviate Y := Yy, ;y and f := f{1,.. ). The functions
f1,---, fr can be chosen such that the following holds.

(H5) f; is transverse to u=1(0) xg EG™ for every i and f; is transverse to
ev%,J for every subset I C {1,...,¢} and every equivariant homology
class B' € Hy(Mg; Z).
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Now the notation has been set up and we shall prove Theorem A in five steps.
For 0 < e <e¢gg and B € Hyo(Mg;Z) consider the set

MEB,E;f = {([uaA]ayla s ’yk) € MEB,E XY | eVEB,i([uvA]) = fl(yl)} :

Step 1. The map evly : MY 5 — (1(0) xa EG™)* is a pseudo-cycle.

The map ev is the composition ev), = * o @vp, where the evaluation map
&vp 1 MY — MF is given by evp([u, A]) := ([u(p1)], ..., [u(pk)]) and the

embedding ¢ : M — pu~1(0) xg EG™ is given by «([z]) := [x,0(z)]. That &vp is
a pseudo-cycle was proven in [MS1]. Hence ev% is a pseudo-cycle. (see [MS1]
for the definitions).

Step 2. MY, 5. is a finite set and the number of elements of MY, 5. ;, counted
with appropriate signs, is the Gromov—Witten invariant:

GWps(@,...,a;) =evy - f = > v ([uo, Ao), y)-
([uo,A0ly) € MY 5 ¢

0

Here the function v° : M%&f — {=£1} denotes the intersection index of the

maps ev and f.

Consider the functions ¢; : X; — u~(0) xg EG™ given by

Xi = f7 (n""(0) xg EG™) C V5, i = fi

3

X

Since f; is transverse to u~1(0) xg EG", X; is a smooth submanifold of ¥; and
¢; is dual to the cohomology class af € H*(u=1(0) xg EG™;Z) obtained from
af by pullback under the obvious inclusion x~1(0) xg EG™ — M§. The class
a? agrees with the image of the class a; € H*(M;Z) under the homomorphism
H*(M;Z) = H*(p=1(0) xg EG;Z) — H*(u=1(0) xg EG™ Z) :

af €  H*(M®xgEGMZ)~——H*(Mg:;Z) 2 a

| | :

ol € H*(/L_I(O) XgEGn;Z)<—H*(M;Z) ERNeY;

K2

Hence another representative of the class af can be obtained as follows. Let

W; + Z; — M be a smooth function, defined on a compact manifold Z; that is
dual to &; (replace &; by an integer multiple of &;, if necessary). Lift ; to a
G-equivariant map ¢; : Q; — ©~1(0), defined on the total space of a principal
G-bundle Q; — Z;, and consider the induced map

¥i 1 Qi xg EG™ — p71(0) xg EG™.
It is homologous to ;. Let ¢ := @1 X -+ X ¢ and ¥ := 1P X -+ X Y. Then

vy f=evh-p=evy ¥ =ovp -1 =GWpyx(a,..., o).
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The first equality follows from the definition of ¢, the second from the fact
that ev}, is a pseudo-cycle (Step 1) and ¢ is homologous to 9, and the last
equality follows from the definition of the Gromov—Witten invariants (see [MS1]
for example).

Step 3. The invariant ®p x can be expressed as the intersection number
Ppnlar — - —ag) =evp - f

for e > 0 sufficiently small.

The map f : Y — (M&)* is dual to the class mja; — -+ — miay, where
m; 0 (ME)* — M denotes the projection onto the ith factor. Moreover, evg,; =
m; 0 evy. Hence

v f = [ (ev) (riaf e miag)
B,=

= [ evha)at o evha
B,=

= / ) (toevi ) s — - — (Loevy ) ax
B,

- / vl (an — -+ — ).
M

€
B,%

Here 1° : M§& — Mg denotes the obvious inclusion. The last equality follows
from the fact that (“ocevy ; : M% 5, — Mg is homotopic to the evaluation map
evg in the definition of ®p 5.

Step 4. For e > 0 sufficiently small there is an injective map

Thsip i Mbny = Mb.sy

such that
T5 5.4 ([uo, Aol yo,15 - -+, Yo.k) = ([Ues Acl Ye 15+ -+ Ye k)
satisfies
(ue, Ae) = (eXpuo (&), Ao + ae), ||(§saas)”2,p,a < 05272/]0,
VE([Uf? AE]) Y1y -0y yE,k) = VO([UOa A0]7y0,17 oo 7y0,k>-
Here v° : MG 5., — {£1} denotes the intersection index of the maps evy and

f (in the transverse case).

Choose cg > 0 such that M% 5., € MY (o) and consider the map

(evgoT®) X f: M%j(co) XY — ME x M§.
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By Proposition 12.3 (ii), this map converges to evy x f in the C'-topology
as € tends to zero. By (H5) the map evy x f is transverse to the diagonal
A C M§ x M§. Hence (evy o T°) x f is transverse to A for e sufficiently
small. Moreover, by Theorem 6.1, the image of M%yz;f under (evg 0 7%) x f

is £272/P_close to A. Hence, by the implicit function theorem, there is, for e
sufficiently small, a unique injective map

M sip = (evp o T%) x f)7H(A) € M s(co) x Y

such that the distance between each point and its image is bounded above by a
constant times e2-2/P. Composing this map with

Texid: My 5 xY = My 5 xY

we obtain the required map 75y, ;. By Proposition 12.3 (i), the map TG
identifies the two intersection indices.

Step 5. Assume ¥ = S2. Then there exists a constant g > 0 such that the
map T 5. = MYy 51.; = M 5.5 of Step 4 is surjective for 0 < e < eo.

Suppose, by contradiction, that there exist sequences €, — 0 and
([ul/ﬂ Av]a Yiv, - 7ykv) S M%,SZ;f

such that
([uua Al/]aylua T ayku) ¢ imT]?jSZ;f'

Consider the sequence

Cy = sup (|da, uy| + e, p(w,)]) -

We prove that C, diverges to co. Assume otherwise that C), is bounded. Then,
by Theorem D, there exists a constant ¢; > 0 such that [u,, A,] belongs to the
image of the map 7", : MY g2(c1) = M 4o for v sufficiently large. Write

(t, Ay) = T% (uow, Aov),  (uow, Aow) € MY ga(er).

Since MY g2 (c1) is compact (it is a moduli space of holomorphic spheres satis-
fying a uniform bound on their first derivatives) we may assume that the limit

(UQ,AQ) = lim (UOV;AOV) S MOB7S2 (Cl)

V—00

exists. Moreover, since Y is compact, we may assume, by passing to a further
subsequence if necessary, that the limit

(Y1, yk) = lim (Y10, .-, Yko)
V—0Q
e

exists. Since evyy o T converges to ev}; in the C'-topology, and

evEBV o Tau([UOW AOV]) = f(ylua T ayku)
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we deduce that ([ug, Ao, v1,...,yx) € MY 52, and, for v sufficiently large,

(T° ([uow, Aov])s Y1vs - s Yrw) = 75:152;]0([“05 Aol, Y1, k)

The last assertion follows from the uniqueness part of the implicit function theo-
rem used in the definition of the maps TL;USZ; 5 This contradicts our assumption.
Thus we have proved that C, diverges to co as claimed.

Now choose a sequence p,, € P such that

¢y 1= [da,uy(py)| + 6;1|u(uy(p,,))| — 0.
Passing to a subsequence, if necessary, we may assume that p, converges. Denote

w:= lim m(p,).

V—00

Moreover, by applying Hofer’s trick (see [MS1, Lemma 4.5.3] for example) we
may assume that

sup (|dAUuV| + 5;1|u(uu)|) < 2c¢,, 7,y — O0.
By, (7(pv))

We distinguish three cases.

Case 1: ¢ &, — 0.

Case 2: There exists a § > 0 such that § < ¢,e, <571 for all v.
Case 3: ¢ e, — 0.

We shall prove that in Case 1 a nonconstant J-holomorphic sphere in M bubbles
off at the point w, in Case 2 a nontrivial solution of the vortex equations (102)
bubbles off, and in Case 3 a nonconstant .J-holomorphic sphere in M bubbles
off. To see this, we choose a local holomorphic coordinate chart s + it on X
that maps w to zero, identifies a neighbourhood of w with the ball Bs,, and
identifies the volume form dvoly; with the form A2ds A dt, where A0) = 1.
Moreover, we choose a local frame of the bundle P along this coordinate chart.
We use the notation of Remark 4.1. Then the sequences u, : Bs, — M and
®,, U, : By, — g satisfy

Vys + Juy = 0, A2k, + e, 2 u(u,) =0,
Ups = asuu + X<I>,, (ul/)) Upt = atull + X\Il,, (uu)a
Ky =05V, — 0P, + [D,,T,].

Moreover, there is a sequence w,, := (s,,t,) — 0 such that

e = Awo) 7! ous (W) + 5" [p(u(wo)) = 5 sup (A7 foss| + &5 [u(un)]) -

By, (wy)

N~
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Let us define 4, : By ., — M and CID,,, \fll, : By, — g by
Uy (2) == u(w, + ¢, '2),
D, (2) = c; P, (w, + ¢, 12), U, (2) i= ¢ 0, (w, + ¢ 12),
and A\, : B,,., — (0,00) and J,, : B, ., — Ja(M,w) by

)‘V(Z) = )‘(WV + c;lz), JV(Z) = qu+c;1z‘
Then A, converges to 1 in the C°°-topology and J, converges to Jy in the
C*°-topology. Moreover,

Bys + Jy Oyt = 0, A 2Ry + (cpen) " 2pu(i,) = 0,

v

sop (1001 — @))) <2 (i 194000+ @ 0)]) =2

CvEy A (0) Cv€y

Ty Cy

Case 1: Suppose that c,e, diverges to infinity. Then, by hypothesis (H2),
the curvature kK, converges uniformly to zero. Hence, by Uhlenbeck’s weak
compactness theorem [U, W], we may assume that ®, and ¥, converge in the
sup-norm and weakly in WP, This implies that the sequence , is bounded
in WbP. Hence, by the usual elliptic bootstrapping argument for pseudoholo-
morphic curves, it is bounded in W?? (the lower order terms in the equation
have the form Xg (@,) and hence are bounded in W'P). Hence there exists
a subsequence, still denoted by ,, that converges strongly in W'? to a Jo-
holomorphic curve @ : C — M with finite energy. Since the sequence u(i;(0))
is bounded it follows that |05%(0)] = lim, 0 |0,5(0)] = 1, and hence @ extends
to a nonconstant holomorphic sphere in M. This contradicts (H2).

Case 2: Suppose that the sequence c e, is bounded and does not converge to
zero. Let us assume, without loss of generality, that lim,_ . ¢, e, = 1. Then
we can use the compactness result of [CGMS] to deduce that, after a suitable
gauge transformation and after passing to a further subsequence, the triple
(i1, ®,,¥,) converges to a solution (i, ®, ¥) of the vortex equations (102) with
finite energy. Moreover,

04(0) + X0y (#(0))] + 1(a(0))] = 1

and hence the energy is nonzero. Hence, by Proposition 11.1, we have
E(u,®,0) > h.

Case 3: Suppose that lim,_, ¢ e, = 0. Then, by Lemma 9.1,

sup(evey) Pl | o= ) + sup(even) 2@ | o) < o0

for every compact set K C C and every p > 2. Fix a constant p > 2. Then the
sequence £; is uniformly bounded in L?. Hence, by Uhlenbeck’s weak compact-
ness theorem, we may assume that ®, and ¥, converge, weakly in WLP and
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strongly in L°°, on every compact subset of C. Hence it follows from the elliptic
bootstrapping analysis for pseudoholomorphic curves (see [MS1, Appendix B])
that @, is bounded in W?2P. Hence, by the Arzéla—Ascoli theorem, @, has a sub-
sequence that converges in the C''-norm on every compact subset of C. The limit
(i1, ®, ) is a finite energy solution of (8) on C. This solution represents a .J-
holomorphic sphere in the quotient M. Moreover, since (c,&, )~ u(i,(0))] — 0
it follows that

04i1(0) + X (@(0))] = lim_ [478,(0) + X, (i1 (0))] = 1

and hence the resulting holomorphic sphere in M is nonconstant. Hence
E(t,®,0) > h.
Thus we have proved in all three cases that

lim EBT(W)(’LLU,AU> Z h
V—00
for every r > 0.

This shows that, after passing to a suitable subsequence, bubbling can only
take place at finitely many points wq,...,wy € 3. On every compact subset of
Y\ {wi,...,we} the sequence |da,u,| + e, u(u,)| is uniformly bounded. (As
an aside: this is used in the proof of Lemma 12.2.) Hence it follows as in Case 3,
that a suitable subsequence in a suitable gauge converges on this complement
to a finite energy solution of (8). The limit (u, A) descends to a holomorphic
curve

N\ {w,...,we} = M

with finite energy. Hence, by the removable singularity theorem for .J-holomor-
phic curves, it extends to a holomorphic curve on all of ¥, still denoted by .
The energy of this J-holomorphic curve satisfies

E(u) < ([], B) — ¢h.

By hypothesis (H3), the dimension of the moduli space reduces by at least 2N
at each bubble. Thus the limit [u, A] belongs to a moduli space ./\/l%,y g2 of
dimension

dim M, g < dim MY, g — 2N

If {w1,...,we} N{z1,...,2,} = O then the limit curve (u, A) still satisfies
evy i([u, A]) € fi(Yi) for every i and hence cannot exist, by the transversal-
ity condition (H5). In general, denote

I={ie{l,...;k} |z & {w1,...,we}}.
Then the limit [u, A] satisfies

iel = el (uA) € fi(Y)).
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Since the points z; € ¥ are pairwise distinct we have
0>k —|I

and so
dim M, g2 < dim MY g2 — 2N (k — |I]) < deg(as;).
icl
Here we have used the fact that deg(a;) < 2N for each ¢ € {1,...,k} \ I.
It follows again from (H5) that such a limit curve cannot exist. Hence our
assumption that the map Téfs?; 7 Were not surjective for every i must have been
wrong. This proves the theorem. O

Remark 12.5. A more subtle argument, as in Gromov compactness for pseu-
doholomorphic spheres, shows that in the higher genus case the limit curve u
also satisfies

(1 (TM),[a]) < {c1(TM),B) — N¢,

where ¢ denotes the number of points near which bubbling occurs. Here one
needs to prove that no energy gets lost and one obtains convergence to a bub-
ble tree that represents the homology class B. With this refined compactness
argument one can extend Theorem A to the higher genus case.

Remark 12.6. The more subtle compactness argument of Remark 12.5 is not
needed if we impose the condition [w — u] = 7¢$ (T M) instead of (H3). Hence,
in this case, Theorem A continues to hold for Riemann surfaces ¥ of arbitrary
genus.

Remark 12.7. Assume (H1), (H2), and (H4), but not the monotonicity hy-
pothesis (H3). Suppose that the number & > 0 is a lower bound for the energy
of the nonconstant .J-holomorphic spheres in M as well as for the energy of the
nontrivial (that is positive energy) solutions of the vortex equations (102). Let
(3, dvols, jx) be a compact Riemann surface of genus g > 0 and suppose that
B € Hy(M;Z) satisfies

0 < ([«], B) < h.

Then the moduli space /\/1%1E is compact and the bubbling argument in the
proof of Theorem A together with Proposition 12.3 shows that the map 7° :
MY 5, — M5 5, of Theorem 6.1 is a diffeomorphism for & > 0 sufficiently small.
Hence in this case the invariants ® B,x agree with the Gromov-Witten invariants
GWp s

A The graph construction
Let G be a compact Lie group whose Lie algebra g = Lie(G) is equipped with an
invariant inner product and (M, w) be a symplectic manifold with a Hamiltonian

G-action generated by a moment map p : M — g. We denote by g — Vect(M) :
n +— X, the infinitesimal action, by C& (M) the space of G-invariant smooth
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functions on M, and by Jg(M,w) the space of G-invariant and w-compatible
almost complex structures on M. We fix a Riemann surface (3, dvoly, js) and
a principal G-bundle P — . Given a family of almost complex structures
Y — Jo(M,w): z+— J, and a 1-form TY — C& (M) : 2 — H; we consider the
perturbed equations

dsm.a(u) =0, *Fy + e 2pu(u) =0, (107)

where
Oyma(u) =07 a(u) + Xg(u)'.

Here the (0, 1)-form 97 a(u) € Q0 (S, w*TM/G) is understood with respect to
the family of almost complex structures J,, parametrized by z € ¥. More-
over, the Hamiltonian perturbation is defined as follows. Associated to H €
QYE,C&(M)) is the 1-form Xy € QY(X, Vectg(M,w)) which assigns to ev-
ery 2 € T,% the Hamiltonian vector field Xy ; associated to the Hamilto-
nian function H; : M — R. Thus «(Xp:)w = dH;. The 1-form Xpgy(u) €
QYZ,u*TM/G) lifts to an equivariant and horizontal 1-form on P with values
in u*T'M, also denoted by Xy (u) and defined by

(Xar ()p(v) := Xa1,dr(p)yo (u(p))-

The complex anti-linear part of this 1-form is the Hamiltonian term in the
definition of d7 7 a(u). In this section we show how to reduce the perturbed
equations (107) to (7) via Gromov’s graph construction [Gr].

Let us denote by ay € Q'(X x M) the 1-form associated to H. Thus ay
assigns to every pair of tangent vectors (2,2) € T,X x T, M the real number
H:(z). Denote

M:=Y x M.
The 2-form

@ = w — dayg + cdvols

is a symplectic form on M whenever the constant ¢ is sufficiently large. Here
we have abused notation and denoted by w the pullback of the 2-form w on M
under the obvious projection ¥ x M — M and likewise for dvolsy. To see that
w is symplectic for large ¢, note first that @ is a connection form: it is closed
and its restriction to each fibre {z} x M is symplectic. The curvature of this
connection form is the 2-form

Qy dvoly, := dH + %{H AH} € QX(S, CE(M)).

This identity defines the function Qg : ¥ x M — R. Now the top exterior power
of @ is given by
J)nJrl wn
m = (C — QH)F AN dVOlE7
where dim M = 2n. Hence @ is nondegenerate whenever ¢ > maxQy. Now
consider the almost complex structure J on M given by

( jn(2) 0 >
J(z,x) o Xp(z,2) — Xy (z,2) 0 ju(2) J(z,2) )~

J(z,z) =
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Here J(z, ) := J.(x) and we denote by Xp(2,z) : T.X — T M the linear map
2+ Xp;(x). Lemma A.2 below shows that J is compatible with &.

Lemma A.l. Let (u,A) € CF(P,M) x A(P) and define @ : P — M by
a(p) := (w(p),u(p)). Then u and A satisfy (107) if and only if & and A satisfy

95 (@) =0, *Fq + e (@) = 0.

Here [i - M — g is defined by fi(z, x) := p(z).

Proof. By definition of J we have 95 4(w) = (0,071 4(u)). Alternatively, we
can compute in local holomorphic coordinates s + it on ¥. In such coordinates
the Hamiltonian perturbation, the connection A, and the volume form on X
have the form

H = Fds+ Gdt, A=dds+ Vdt, dvoly, = A2 ds A dt
and the equations (107) have the form
Osu+ Ly® + Xp(u) + J(Osu + L,V 4+ Xg(u)) = 0,
05U — 0, ® + [®, W] + (N /e)*pu(u)
Moreover, the almost complex structure J is given by

_ 0 -1 0
J = 1 0 0
JXr—Xo JXg+Xp J

This proves the lemma. O
Lemma A.2. Let 2, € T.,X and &; € T, M fori=1,2. Then

O((21,21), (22,22)) = (Z1 + Xm 2, (%), 22 + Xu 2, (), + (¢ — Q) (21, 22),
where (-, ) = w(, J.").

Proof. Continue the notation of the proof of Lemma A.1. Then the curvature
Qg is given by

z

NQy = 0sG — O, F + {F,G},
where {F, G} := w(XF, Xg) denotes the Poisson bracket on M, and
O =w—dF Nds —dG A dt + (O F — 0sG + cA?)ds A dt

where dF' and dG (}enote the differential on M. Abbreviate (; := (;, ti Z;) and
& =2+ 8 Xp+t; Xg for i =1,2. Then
(¢, jCz) = (¢, (—ta, 89, JEo + 12 Xp — 32X3))
= w(d, JE& + 12 Xr — 52X()
+t2dF (1) + $1dF (J& + 12 X — $2X¢)
— 52dG(#1) + t1dG(J& + 12 XF — 52X()
+ (OpF — 0sG 4 cA?) (5159 + t112)
= w(&,JE) + (cA? — 0,G + O F — {F,G})(3159 + t1t2).
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The last identity follows from the fact that {F, G} = dF(X¢g) = —dG(XF) and
dF(Jgg):w(XF,J§2) O

B Cauchy—Riemann operators

Fix a compact Lie group G, an invariant inner product on the Lie algebra g =
Lie(G), a symplectic manifold (M, w), a Hamiltonian G-action on M generated
by a moment map pu : M — g, a compact Riemann surface (3, js, dvoly),
a principal G-bundle P — X, and a family of G-invariant and w-compatible
almost complex structures ¥ — Jg(M,w) : z — J,. Each almost complex
structure determines a Riemannian metric (-,-), := w(-, J;-) on M and hence a
Levi-Civita connection V = V,. The value of z will usually be clear from the
context and we shall omit the subscript z. Let v : P — M be an equivariant
smooth map and A be a connection on P. Then A and V determine a connection
V4 on w*TM/G given by

Vi = VE + Ve Xa(u)

for £ € Q°(X, u*TM/G). More precisely, we think of A as an equivariant 1-form
on P with values in the Lie algebra g which identifies the vertical tangent bundle
with g. A section & of «*T'M/G lifts to an equivariant section of the bundle
u*TM — P (also denoted by £) and a 1-form § € QY(X,u*TM/G) lifts to an
equivariant and horizontal 1-form on P with values in «*TM (also denoted by
). In this notation the 1-form V4& is given by

(Va&)p(v) := Vil(p) + Vep) X a, ) (u(p))

for v € T,P. In general, V4 preserves neither the inner product nor the com-
plex structure on u*TM/G. More precisely, let J, € Q°(P,End(u*TM)) be
given by Ju(p) = Jrp(u(p)) € End(TypyM). This section is equivariant
and hence descend to a complex structure, also denoted by J,, of the bundle
End(u*TM/G) — X.

Lemma B.1. The covariant derivative of J,, is given by
Vadu = Viud () + J(w).
where J(u) € QY(E, End(u*TM/G)) is defined by

d

Jne) = |

Syt (u(p))

for v € T,P and a smooth path v : R — P such that v(0) = p and ¥(0) = v.

Proof. Since J is G-invariant we have Lx, J = 0 for n € g or, equivalently,

(Vx, ) = Ve X,y — JVeX,,. (108)
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Using this formula we obtain
(Vadu)§ = Va(Ju§) — Ju(Vaf)
= V(Ju&) = JuVE+ Ve Xa(u) — Ju Ve Xa(u)
= (Vaud (u) + J(w) €+ (Vx, I (1)) €
= (Vaaud () + J(u)§
as claimed. O

It follows from Lemma B.1 that the complex linear part of the connection
V4 is the connection V4 on w*T'M/G given by

Vb = Vab— S u(Vad)E (109)
= VE+VeXa(u)— %Ju (VdAuJ(u) + j(u)) .

Lemma B.2. V, is a Hermitian connection on u*TM/G.

Proof. We shall use the identity ((Vg, J)&2, &) + cyclic = 0. By (108), we have

<§1a V&Xn> + <V£1X777§2>

= (J&, Ve, Xy) + (I Ve, Xy, S o)

= (J&1, Ve, (T Xy) = (Ve ) Xop) + (Ve Xy — (Vx, J)&1, J&2)

= (J&1, Ve, (J X)) + (Vg Xy, J&2) — (J&1, (Ve, ) Xyp) — (€2 (Vi ) &)
= <J§17VE2(‘]X77>> <VJ51X77’J§2> + <X777(VJ51J)§2>

(Vie, (JXy), &2) = (J(Vig, Xn), §2) — ((Vig, J) Xy, €2)

0

+
+

for £€1,& € T, M and n € g. Here the penultimate equality follows from the fact
that JX,, is a gradient vector field and that Vj¢, J is skew-adjoint. This shows
that VX4 (u) is a 1-form on ¥ with values in the bundle of skew-Hermitian
endomorphisms of v*TM/G, and so is J(Vy,.J). Moreover, since

A1, &) = (VE1, &) + (&1, VE) — (&1, T &),

the operator £ — VE&— %JJE is a Riemannian connection. Hence, by (109), Vy is
a Riemannian connection. By definition, it preserves the complex structure. 0

Lemma B.3. For every gauge transformation g € G(P) and every section
€€ QNS u*TM/G) we have

Vgralg™'€) = g7 Vg, V- alg™h€) = g7 Vak.
Proof. Since the metric (-, -), is G-invariant for every z € ¥ we have
V(g™'€) = 97'VE = Ve Xg1a0(9 ).

Hence the first identity follows from the fact that ¢*A4 = ¢~ 'dg + g~ *Ag and
that Vy-1X,-1,0(97'2) = g7'Ve X, (2). The second identity follows from the
first and the fact that J, is G-invariant for every z. O
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Lemma B.4. Suppose that J is independent of z € . Then the curva-
ture of the connection V4 is the equivariant and horizontal 2-form F¥4 ¢
Q%(P,End(u*TM)) given by

FY (01,02)€ = R(dau(p)vr, dau(p)va)é + Ve X, oy 00) (u(p))

for vi,v2 € TyP and § € Ty,yM, where R € 02%(M,End(TM)) is the Riemann
curvature tensor of the metric (-,-) = w(-, J+). This 2-form descends to a 2-form
on ¥ with values in End(u*TM/G), also denoted by FYA.

Proof. Given a map R? — M : (s,t) — u(s,t), a vector field £(s,t) € Tuis,py M
along u, and a G-connection A = ®ds 4+ ¥ dt, where ®, U : R2 — g, we denote

vy = Osu+ Xo(u), vy = O+ Xg(u),
VA75§ = VS§+VEX<1>(U), VA,tf = Vt§+VEX\Ij(U)

Then the assertion can be restated in the form

Va,sVat§ — Va1V & = R(vs,v1)€ + Ve Xo,w—0,0+[0,9] (1)

To prove this we use the identities

Va,sVail = Va,iVa & = VsVi — ViVl + Vi Ve Xy (u) — Ve e X (u)
= ViVeXo(u) + Vg eXo(u)
+Ver xy Xo (u) — Vx4 X (u),
R(0su, 0mu) = ViVi€ — Vi Vi,
R(0su, Xw(u))§ Vi Ve Xu (u) — Vee X (u) — Ve Xo, w(u),
R(Xo(u), Xo(u)§ = —VeXu)(u) + Ve x, Xo(u) — Vi x, Xw(u).

The first and second identities are the definition of the connection V4 and the
curvature tensor R. The other identities use the equations

Vx,Z — Ve Xy =[2, X)) =0,  Vz[Xy, Xno] = [V2 X, X,

for every G-invariant vector field Z € Vectg (M) and all n, 71,72 € g. O

Now consider the Cauchy—Riemann operator
D =Dy ay: Q(Z,u*TM/G) — Q"1 (S, u*TM/G)
given by
1

D := (Va&)"" = 5T (V)0 a(u). (110)
In the case d7.4(u) = 0 this operator is the vertical differential of the section
u — 0 .a(u) of the infinite dimensional vector bundle over the space C& (P, M)
with fibre Q®Y(Z, u*TM/G) over u.

In the following we denote the Nijenhuis tensor of J by N € Q?(TM,TM).
It is given by

N(&1,8) = [&,&] +J[J&, &) + J[6, J&] — [J&1, J&)
2J(v52 J)§1 - QJ(V& J)EQ
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Lemma B.5. The complex linear part of D is the operator & +— (@Aé)o’l.
Moreover,

- 1 1.
D¢ = (Va)"! + 1V (E dra(u)) + §(JJ§)O’1~
Proof. By definition of V4, we have

DE = (V&)™ + %J (Vo (@) + J(w)1) € - %J(vgj)a,],A(u).

Hence the formula for D¢ follows from the relation between the Nijenhuis tensor
and VJ. Now this equation shows that the operator & +— D¢ — (Va€)%! is
complex anti-linear. O

C Invariant metrics

Let M be a (complete) Riemannian m-manifold. For v € T, M and 4, j € {1,2}
there exist linear maps

Ei(SC,'U) M — TeXPm(U)Mv Eij(xvv) M eTyM — TeXPm(U)M
characterized by the following conditions. If z : R — M is a smooth curve and
v,w: R — x*T'M are vector fields along = then

d
7 exp, (v) = Fi(z,v)E + E2(x,v) Vv,

Vi(F1 (z,v)w) = Er1(z,v)(w, &) + Er2(x,v)(w, V;v) + E1(z,v) Viw,
Vi(Es(x,v)w) = Ea(z,v)(w, &) + Eaa(z,v)(w, Vzv) + E2(x,v)Vw.

Here all the expressions are understood pointwise for every t € R. Note that
the map F11(x,v)(w,w') is not symmetric in w and w’. It satisfies

Eqi(z,v)(w,w") — 11 (z,v)(w',w) = Ea(z,v) R(w,w)v,
where R € Q%(M,End(TM)) denotes the curvature tensor. However,
Eis(z,v)(w,w") = Eay(z,v)(w',w),

and Fa(z,v)(w,w') is symmetric in w and w’. (See [Ga] for more details.) Now
let Gx M — M : (g,x2) — gx be a smooth action of a compact Lie group G
with infinitesimal action g — Vect(M) : n — X,. Assume that M is equipped
with a G-invariant Riemannian metric.

Lemma C.1.

Xy(exp, (v)) = Bz, 0) Xy (2) + Ea(,0) Vo Xy (),
Vi (2.0)wXn (exP; (v)) = Ein (2, v)(w, Xy (x)) + Eio(, 0) (w, Vo Xy (2))
+ Ei(z,v) Vi Xy (2).
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Proof. Since the group action preserves geodesics, gexp,(v) = expy,(gv). Dif-
ferentiate this identity with respect to g to obtain the first identity. To prove
the second differentiate the first identity covariantly and use the definition of
E; and E;;. For more details see [Ga). O

For each x € M denote by L, : g — T,M the infinitesimal action, i.e.
L,n = X,(x). Given a map u : R* — M, a vector field £ : R? — w*TM
along u, a function 1 : R? — g, and a G-connection A = ®ds + ¥ dt, where
®, U :R? — g, we denote

vy = Osu+ Xo(u), ve = O+ Xo(u),
Vas€ = Vel +VeXo(u), Vail = &+ VeXu(u),
VA,SU = 8577 + [q)v 77]7 VA,tn = atﬁ + [\Ijv 77]

Define p € Q2(M, G) by
(n,p(&,€) = (VeXy(2), &) = —(Ver Xy (2), €)
for £,¢' € T,M and 7 € g.

Lemma C.2. With the above notation we have

VA,sLun - LuVA,sn = vvan(u)a vA,tLun - LuVA,tn = vth’r](u)’
VasLp€ — LiVas&§ = p(vs,§), Vaulp€ — LiVa& = p(vr,§)
Proof. See [Ga]. O

Now let M* denote the subset of all points x € M with finite isotropy
subgroup G, := {g € G|gx = z}. Thus z € M* if and only if the linear map
L, : g — T,M is injective. Hence, for every map ug : R? — M* there exists a
unique G-connection Ay = ®gds + Vg dt such that

* *
LuO’UOS = LuO’UOt = 0,

where
Vos = 85u0 + Luoq)O; Vot ‘= atuo + Luo\Po.

Let & : R? — ufTM be a vector field along ug, consider the map
U(S, t) = eXpuo(s,t) (50 (Sa t))

and abbreviate
o := @ — Dy, o =¥ — Wy

Lemma C.3.

Lywo = vs — E1(uo, &)vos — E2(uo, &) Vag,s€o,
Lytpo = ve — Ey(uo, &o)vor — Ea2(uo, o) Va,,téo-

98



Proof. We compute

Ly(® — ®g) = Xo(u) — E1(uo, §0) Xa, (uo) — E2(uo, §o) Ve, Xa, (uo)
= Osu — E1(uo,&0)0suo — E2(uo, &0) Vséo
+ Xo(u) — E1(uo, §0) Xa, (wo) — E2(uo, §0) Ve, Xa, (o)
= vs — E1(uo,&0)vos — Ea(uo,&0)Va,,s&o-

Here the first equation follows from Lemma C.1, the second from the definition
of E;, and the last from the definitions of vs and vgs. O

In the proof we did not use the fact that L;, vos = Ly vor = 0. Now suppose
L7 & = 0. Then, by Lemma C.2,

L3y Vag,s€0 = —p(vos, o), L, Vag,t€o = —p(vor, &o)-
Abbreviating F1 = E1(ug, &) and E2 = Ea(ug,&p) we obtain the following.
Corollary C.4. If L}, & = 0 then

Ly B2~ Lu(® — ®0) = Ly By ™" (vs — Ervos) + p(vos, o),

Ly By~ " Ly(V — W) = LY Ex~ ' (vy — Evvor) + p(vor, &o)-
Proof. Lemma C.3. O

Lemma C.5. Assume L & = 0 and abbreviate E; := E;(uo, &) and E;j :=
Eij(uo,éo). Then
LUVA,t‘PO = vA,t'Us + VX% Xwo (u) - vUtX<P0 (u) - vvstJo (u)
— E11(vos, vor) — E12(vos, Vag,t0)

— E51(Vag,560,v0t) — E22(Va,,s€0, Va,,:&0)
— E1Va,,tv0s — B2V, ¢V, 580,

LuNVa spo = Va svs + Vx, Xg, (1) = 2V, Xy, (u)
— E11(vos,v0s) — E12(vos, Va,,s€0)
— F21(Va,,s60, vos) — E22(Va,,s€0, Vao,s60)
— E1Va,,sV0s — E2Va,,sVa,,s€0-

Proof. We only prove the first identity. The proof of the second is similar. By
Lemmata C.2 and C.3,

LuVA,tSQO = VA,tLuSQO - Vthch (u)
= V105 — Va1 (E1vos) — Va, (E2Vay,s80) — Vi, X (1).
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Hence, by the definition of F;; and Lemma C.1,
Va.t(E1vos) = Vi (E1v0s) + Vi v, Xw (1)
= E11(vos, Oruo) + E12(vos, Viéo)
+ E11(vos, Xw, (w0)) + Er2(vos, Ve, Xw, (w0))
+ E1Vvos 4 VE ve, Xy (1) + E1 Vi, X, (uo)
= V10, Xvo () + E11(v0s, vor) + E12(vos, Vag,t€o) + E1Vag,tvos

and

Vat(E2Va,,s60) = Vi(E2Va, s§0) + Vi, v, .0 Xw (1)
= E21(Va,,s60, 0uo) + E22(Va, €0, Vo) + E2ViVa, 560
+ Vi,V 060 Xvo (u) + E21(Vag,sé0, Xw, (uo))
+ E22(Vag,s80, Ve X, (u0)) + B2V, o Xw, (o)
= VE, Wi, 60 Xwo (1) + E21(Va, 560, vor)
+ E22(Vag,s80, Vag,t0) + E2Va,,t Vag,so-

Inserting these two identities into the previous formula we obtain

L,NVatp0 = Va,vs — Vi, Xopo (1)
- VElvoszo (u) - VE2VAU,550X¢0 (u)
— E11(vos, vor) — E12(vos, Va,,t€0)
— E21(Vay,s60,v0t) — E22(Vag,s&0, Vay, o)
— E1Va,,4v0s — B2V, .+ Va4, s&0-

Now the result follows from Lemma C.3. O
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