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Abstract

We introduce a new Floer theory associated to a pair consisting of
a Cartan hypercontact 3-manifold M and a hyperkahler manifold X.
The theory is a based on the gradient flow of the hypersymplectic
action functional on the space of maps from M to X. The gradient
flow lines satisfy a nonlinear analogue of the Dirac equation. We work
out the details of the analysis and compute the Floer homology groups
in the case where X is flat. As a corollary we derive an existence
theorem for the 3-dimensional perturbed nonlinear Dirac equation.

1 Introduction

In this paper we examine a hyperkahler analogue of symplectic Floer homo-
logy. We assume throughout that X is a hyperkahler manifold with complex
structures I, J, K and symplectic forms wi,ws,ws. We also assume that M
is a compact oriented 3-manifold equipped with a volume form o € Q3(M)
and a positive frame vy, vy, v3 € Vect(M) of the tangent bundle. Associated
to these data is a natural 1-form on the space . := C*°(M, X) of smooth
functions f : M — X defined by

Fro | (0@t P+ a0t f) + a0 f. ) o 1)

for f € Ty.F = Q°(M, f*TX). This 1-form is closed if and only if the vector
fields v; are volume preserving, i.e.

Ly, 0= Ly,0=Ly,0=0.

Since every closed oriented 3-manifold is parallelizable it admits a volume
preserving frame (Gromov [18, Section 2.4.3]). Our main examples are the
3-torus with the coordinate vector fields and the 3-sphere with the standard
hypercontact structure.



Hypercontact structures

A hypercontact structure on a 3-manifold M is a triple of contact forms
a = (a1, a9, a3) € Q1 (M, R3) such that

a1 ANdop = ag Ndag = az Ndag =: o

and a; A daj + o Ada; = 0 for @ # j. The Reeb vector fields vy, v2,v3
are pointwise linearly independent and preserve the volume form o. The
hypercontact structure is called positive if they form a positive frame of the
tangent bundle. In this setting the 1-form (1) is the differential of the action
functional & : # — R defined by

A(f):= —/M<a1 Affwi+as A ffws + ag /\f*w3>. (2)

A positive hypercontact structure is called a Cartan structure if the a; form
a dual frame of the cotangent bundle, i.e. o;(vj) = d;;. In the Cartan case
Kk = doq (v2,v3) = daa(vs,v1) = dag(vi,v2) is constant and da; = ko A oy,
and [v;,v;] = Ky, for every cyclic permutation ¢, j, k of 1,2,3. (We use the
sign convention of [24] for the Lie bracket.)

The archetypal example is the 3-sphere M = S3, understood as the
unit quaternions, with v1(y) = iy, v2(y) = jy, vs(y) = ky. Hypercontact
structures were introduced by Geiges—Gonzalo [14, 15]. They use the term
taut contact sphere for what we call a hypercontact structure. They proved
that every Cartan hypercontact 3-manifold is diffeomorphic to a quotient of
the 3-sphere by the right action of a finite subgroup of Sp(1).

Tori

Let M = T3 = R3/Z3 be the standard 3-torus equipped with the standard
volume form o = dt; A dty A dts and v; = 2?21 a;j0; where A = (aij)ij:l
is a nonsingular real 3 x 3 matrix. In this case the lift of the 1-form (1) to

the universal cover f of .# is the differential of the function

3
&%:Zaijsafij:ﬁ—»]l% (3)
ij=1

where 7;(f) denotes the w;-symplectic action of the loop t; — f(t), av-
eraged over the remaining two variables tj,t, with k,¢ # j. If X is flat
and %y C .Z denotes the space of contractible maps f : T3 — X then .o
descends to %y. Explicitly, we have #7;(f) := —fol fol Jp ui, ¢ wi dty. dty
for f € Fo, where uy, ¢, : D — X is a smooth family of maps satisfying
Uy 1, (€27) = f(t1,t2,t3).



Hyperbolic spaces

A third class of examples arises from unit tangent bundles of higher genus
surfaces or equivalently from quotients of the group G := PSL(2;R). Let
H C C denote the upper half plane and P := {(z,¢) € C?|Im(z) = [¢|} the
unit tangent bundle of H. The group G acts freely and transitively on P by

b b
9+(2,¢) = <Zj——i—|—d’ (czj—d)2>’ g =: < ch d ) € SL(2;R)..

Now let I' € PSL(2;R) be a discrete subgroup acting freely on H such that
the quotient 3 := I'\'H is a closed Riemann surface. Then the 3-manifold

M :=T\G

is diffeomorphic to the unit tangent bundle 71 = I'\P via [g] — [g«(i, 1)].
The group G carries a natural bi-invariant volume form o € Q3(G) given by

7(96, 9n.96) += gtrace([&,71C)

for £,n,¢ € g := Lie(G) = s[(2; R). This volume form descends to M and is
invariant under the right action of G. Now consider the traceless matrices

1 0 0 1 0 —1
51::<0_1>5 52::<1 0>a 53::<1 0>

The resulting vector fields v;(g) := ¢g& on G are I'-equivarient and preserve
the volume form o. Hence they descend to volume preserving vector fields
on M (still denoted by v;) and so the 1-form (1) is closed in this setting.

Note that o(vi,ve,v3) = 2 and dm(vs) = 0, dn(v1) = idm(v2). The Lie
brackets of the vector fields v; are given by

[v2, v3] = —2v1, [vg,v1] = —2v9, [v1, V] = 2v3

(because the & act on G on the right). Hence, if a; € Q'(M) denote the
1-forms dual to the vector fields v;, we have

dop = —2a9 A s, dag = —2a3 N aq, das = 200 A as.

This implies that the 1-form (1) is the differential of the action functional

A(f) = /M (a1 A ffw1 +ag A ffws —as A ffws) .

However, in this setting the energy identity (7) discussed below does not
help in the compactness proof. This is the reason why we do not include
the higher genus case in our discussion in the main part of this paper.



Floer theory

The zeros of the 1-form (1) are the solutions f : M — X of the nonlinear
elliptic first order partial differential equation

ﬁ(f) = Iavlf+Jav2f+KaU3f:0' (4)

This is a nonlinear analogue of the Dirac equation that was first introduced
by Taubes [30]. Obviously, the constant functions are solutions of (4). When
M = 83 other solutions arise from the composition of rational curves with
suitable Hopf fibrations (see below). When M = T3 solutions can be ob-
tained from elliptic curves. In the case M = I'\G solutions arise from the
composition of K-holomorphic curves ¥ — X with 7 : M — Y. These ex-
amples are all homologically trivial, even though Hopf-fibrations over holo-
morphic spheres in the K3-surface do represent nontrivial homotopy classes
in 73. A homologically nontrivial example with target manifold X := H/Z4
with its standard hyperkihler structure and domain M := T3 = R3/Z3 with
vector fields v; = 0/0t; is given by f(t) := t1 + it + (1 + j)ts.

In this paper we prove an existence result for the solutions of the per-
turbed nonlinear Dirac equation

Dy (f) =10y, f+ JOp f + KOy f —VH(f) = 0. (5)

Here H : X x M — R is a smooth function and we denote by VH(f)
the gradient with respect to the first argument. The linearized operator
for this equation is self adjoint and we call a solution f : M — X of (5)
nondegenerate if the linearized operator is bijective. In the nondegenerate
case, and when X is flat, one can count the solutions with signs, however, it
turns out that this count gives zero. Nevertheless we shall prove the following
hyperkéhler analogue of the Conley-Zehnder theorem confirming the Arnold
conjecture for the torus [4]. In fact, in the torus case with vy = 9/0t; the
solutions of (4) can be interpreted as the periodic orbits of a suitable infinite
dimensional Hamiltonian system.

Theorem A. Let M be either a compact Cartan hypercontact 3-manifold
(with Reeb vector fields v;) or the 3-torus (with a constant frame v;). Let X
be a compact flat hyperkdhler manifold. Then the space of solutions of (5) is
compact. Moreover, if the contractible solutions are all nondegenerate, then
their number is bounded below by the sum of the Zo-Betti numbers of X. In
particular, equation (5) has a contractible solution for every H.

The proof of Theorem A is based on the observation that the solutions of (5)
are the critical points of the perturbed hypersymplectic action functional



Ay (f) = (f)— [, H(f)o. As in symplectic Floer theory, this functional
is unbounded above and below, and the Hessian has infinitely many positive
and negative eigenvalues. Thus the standard techniques of Morse theory are
not available for the study of the critical points. However, with appropriate
modifications, the familiar techniques of Floer homology carry over to the
present case, at least when X is flat, and thus give rise to natural Floer
homology groups for a pair (M, X).

The Floer groups are determined by a chain complex that is generated
by the solutions of (5). The boundary operator is determined by the finite
energy solutions u : R x M — X of the negative gradient flow equation

Ost + 10y, u + JOy,u + KOyu = VH(u). (6)

One of the key ingredients in the compactness proof is the energy identity

3
1 1 .
3 [P =3 [10uf +00uf + KouiP - [ Sanrw @
M M,

for f : M — X, where the ¢; € Q!(M) are dual to the vector fields v;.
In the torus case these forms are closed and thus the last term in (7) is
a topological invariant. In the Cartan hypercontact case this term is the
hypersymplectic action <7 (f).

To compute the Floer homology groups we choose a Morse-Smale func-
tion H : X — R and study the equation

st + €1 (I0y, 1 + JOpyt + KOyyu) = VH (u) (8)

for small values of €. The gradient lines of H are solutions of this equation
and we shall prove that, for € > 0 sufficiently small, there are no other con-
tractible solutions. This implies that our Floer homology groups HF (M, X)
are isomorphic to the singular homology H.(X;Zs).

Theorem B. Let M be either a compact Cartan hypercontact 3-manifold
(with Reeb vector fields v;) or the 3-torus (with a constant frame v;). Let X
be a compact flat hyperkihler manifold and fix a class 7 € wo(F). Then, for
a generic perturbation H : X x M — R, there is a natural Floer homology
group HE (M, X, T; H) associated to a chain complex generated by the solu-
tions of (5) where the boundary operator is defined by counting the solutions
of (6). The Floer homology groups associated to different choices of H are
naturally isomorphic. Moreover, for the component 1y of the constant maps
there is a natural isomorphism HF (M, X, 19; H) = H,.(X;Zs).



Remark. The precise condition we need for extending the standard tech-
niques of Floer theory to our setting is that X has nonpositive sectional cur-
vature. As every hyperkédhler manifold has vanishing Ricci tensor, nonposi-
tive sectional curvature implies that X is flat and hence is a quotient of a hy-
perkéhler torus by a finite group. An example is the quotient of the standard
12-torus H3/Z!'? by the Zs-action determined by (z,y, 2) — (y,z, 2z + 1/2).

A more general setting

There is conjecturally a much richer theory which provides Floer homological
invariants for all triples (M, X, 7), consisting of a Cartan hypercontact 3-
manifold M, a compact hyperkéhler manifold X, and a homotopy class 7
of maps from M to X. One basic observation is that every holomorphic
sphere in a hyperkiihler manifold gives rise to a solution of (4) on M = S3.
Another point is that m3(X) can be a very rich group. For example, the third
homotopy group of the K3-surface has 253 generators (see [3, Appendix]).

Example. Think of the 3-sphere as the unit sphere in the quaternions
H = R* and of the 2-sphere as the unit sphere in the imaginary quaternions
Im(H) = R3. For A = A1i + A2j + Ask € S? denote Jy := AT + \oJ + 3K
and wy = A\jw1 + Aaws + Azws. Define hy : S3 — S? by hy(y) = —yly. If
w:S? — X is a Jy-holomorphic sphere then

fi=uohy:8 =X

is a critical point of o/ and

1 . 1
E(u) = 5/52 |du|* = /SQU wr = (wohy).

To see this, assume A =1i and write hi(y) := —giy, ha(y) := —yjy, and
hs(y) := —yky. These functions satisfy 9,,h; = 0 and Op;hi = =0y, hj = 2Ry,
for every cyclic permutation 4,7,k of 1,2,3. Hence hy A Oph1 = Oy, h1. If
w: 8% — X is an I-holomorphic sphere it follows that the function f := wohy
satisfies 0y, f = 0 and 10,, f = O,, f and hence is a solution of (4). More-
over, 2m [, 0 = — [gsa1 A hijo for o € Q*(S%). (When o is exact both
sides are zero. Since —aj A hjdvolgz = 4dvolgs the value of the factor fol-
lows from Vol(S?) = 47 and Vol(S?) = 272.) With o = u*w; this implies
27 f52 uwrw) = — f52 a1 Ahju*w; = o (uohy). Here the last equation follows
from the fact that u*ws = u*ws = 0 for every I-holomorphic curve w.

The main technical difficulty in setting up the Floer theory for general hy-

perkéahler manifolds is to establish a suitable compactness theorem. In con-
trast to the familiar theory the derivatives for a sequence of solutions of (5)



or (6) will not just blow up at isolated points but along codimension-2 sub-
sets. For example, if u, : S> — X is a sequence of I-holomorphic curves
and h : S — S? is a suitable Hopf fibration, then f, := u, o h is a se-
quence of solutions of (4) and its derivatives blow up along the Hopf circle
h~'(z0) whenever the derivatives of u, blow up near zg. This phenomenon is
analogous to the codimension 4 bubbling in Donaldson-Thomas theory [7].

Floer—Donaldson theory

Let 3 be a hyperkahler 4-manifold with complex structures i, j, k and sym-
plectic forms o1, 09, 03. Consider the elliptic partial differential equation

du — Idui — Jduj — Kduk =0 9)

for smooth maps v : ¥ — X. This is sometimes called the Cauchy—
Riemann—Fueter equation and it has been widely studied (see [30], [19,
Chapter 3], [20] and references). For ¥ = R x M with its standard hy-
perkahler structure (see below) equation (9) is equivalent to (6) with H = 0.
The solutions of (9) satisfy the energy identity

3
1
E(u) = 3 /z |du — Idui — Jduj — Kduk|2 dvoly, — /E Zdi A u*wi, (10)
i=1

where E(u) == % [§ |du|* dvols.. The linearized operator
Dy - (2,0 TX) — Qy(Z, u*TX)

takes values in the space of 1-forms on ¥ with values in v*TX that are
complex linear with respect to I, J, and K. When ¥ is closed this operator
is Fredholm between appropriate Sobolev completions and its index is

. _ xX(X) ..
ind(2,) = —{(c2(TX), u.[]) + “or dim®™ X, (11)

where x(X) is the Euler characteristic. Equation (11) continues to hold in
the case ¥ = S' x M with its natural quaternionic structure. We sketch a
proof below. Conjecturally, there should be Gromov—Witten type invariants
obtained from intersection theory on the moduli space of solutions of (9).
One can also consider hyperkéhler 4-manifolds ¥ with cylindrical ends
1t : RT x M* — ¥. Here we assume that M* is either a Cartan hy-
percontact 3-manifold or a 3-torus. Then R* x M®* has a natural flat hy-
perkéahler structure [5, 15]. In the hypercontact case the symplectic forms



are w; = kK td(e " ay) = e"“(—ds Ao+ aj A ozk) and in the torus case
they are w; = —ds A a; + o A ag, for every cyclic permutation 4, j,k of
1,2,3. In both cases the complex structure i is given by 05 — —v1, v1 — Os,
v9 — w3, v3 — —v9 and similarly for j and k. We assume that the em-
beddings ¢* are hyperkihler isomorphisms onto their images and that the
complement ¥ \ (im:™ U im:~) has a compact closure. Alternatively, it
might also be interesting to consider hyperkahler 4-manifolds with asymp-
totically cylindrical ends as in [21, 22]. One can then (conjecturally) use the
solutions of equation (9) with Hamiltonian perturbations on the cylindrical
ends to obtain a homomorphism HF,(M~, X) — HF,(M™, X) respectively
HF*(M™*,X) — HF* (M, X).

Proof of the index formula. We relate &, to a Dirac operator on X
associated to a spin® structure. On X we have a Hermitian vector bundle

W =W+*&W~ where
Wt =uTX ®u*TX, W~ :=Homyg(TY,u*TX)® Hom/ (T, u*TX).

Here Homp (73, u*T X)) denotes the bundle of quaternionic homomorphisms
and Hom (7Y, u*T X)) denotes the bundle of homomorphisms that are com-
plex linear with respect to I and complex anti-linear with respect to J and K.
The complex structures on W+ and W~ are given by (£1,&) — (1€, I&).
The spin® structure I' : 7% — End (W) has the form

T(v) = ( V(OU) —7(()0)* )

for v € T,% where v(v) : W} — W is given by
7(”)(61752) = (WH(<U7 '>§1)7 7[-1(<Uv >§2))

Here 7y, 77 : Homg (T3, v*TX) — Homg (T2.u*T X ) denote the projections
WH(A) = A —TAi — JAj — K Ak, W[(A) =A—-TAi+ JAj+ K Ak.

The Dirac operator D : Q°(X, W) — Q%(, W) is the direct sum of 2,
and 2, : Q°(X,w*TX) — QHZ,u*TX) given by 2,£ :=n;(VE). These

operators have the same index and hence

rank® (W)

R _ Ry
2ind™(2,) = ind™ (D) = 54

X(Z) + 5 (W) = 26 (W), [3]).

The last equation follows from the Atiyah—Singer index theorem (see [23]).
Alternatively, one can identify Q°(X, W) with Q%0(2, w*TX) 00?0 (u*T X)



via (&1,&2) — (§14&, J(&2— &1 )wj+ K (€2 — &1 )wi) and the space QO(X, W)
with QY9(S,w*TX) via (a1,a2) — a3 + as. Under these identifications
the Dirac operator D corresponds to the twisted Cauchy—Riemann operator
0+ 0" : QS TX) — Q40(8 4*TX). Since I is homotopic to —1,
the complex Fredholm index of D is the holomorphic Euler characteristic of
the bundle v*T'X — ¥ and, by the Hirzebruch—Riemann—Roch formula,

ind®(2,) = index®(D) = / ch(uw*TX)td(TY).
%

With ch = rank® + ¢; + 2(c? —2¢9) and td = 14 3c1 + 15(cf + c2) this gives
again the above formula, and (11) follows because ¢1(TX) = ¢1(TX) = 0.

Ring structure

As an example of this construction we obtain (conjecturally) a ring structure
on HF*(S3, X). Take ¥ := H\ {—3, 3} and define ¢~ : (—00,0] x S3 — H
by

L (s,y) i =e %y.
The image of this map is the complement of the open unit ball in H. The
embedding ¢ T : [0, 00)x (§311S3) — H is the disjoint union of the embeddings
(s,9) e 15y £ % The resulting quaternionic pair of pants product

HF*(S®, X) ® HF*(S%, X) — HF*(S3, X)

should be independent of the choice of the embeddings and the Hamiltonian
perturbations used to define it. Moreover, counting the solutions of (9) on
the punctured cylinder R x M \ {pt}, will lead to a module structure of
HF*(M, X) over HF*(S3, X) for every M.

The compactness and transversality results in the present paper show
that this construction is perfectly rigorous and gives rise to an associative
product on HF*(S3, X) whenever X is flat. Moreover, in this case it agrees
with the cup product under our isomorphism HF*(S3, X) = H*(X;Zs).

Relations with Donaldson—Thomas theory

In [7] Donaldson and Thomas outline the construction of Donaldson type
invariants of 8-dimensional Spin(7)-manifolds Z and Floer homological in-
variants of 7-dimensional Go-manifolds Y. In the case Z = X x S, where 3
and S are hyperkéhler surfaces, they explain that solutions of their equation



on % x S correspond, in the adiabatic limit where the metric on S degen-
erates to zero, to solutions u : ¥ — .Z(S) of (9) with values in a suitable
moduli space X = .Z(S) of bundles over S. In a similar vein there is a
conjectural correspondence between the Donaldson-Thomas-Floer theory of

Y=MxS

with the Floer homology groups HF, (M, .#(S)) discussed above whenever
M is either a Cartan hypercontact 3-manifold or a flat 3-torus. Namely, the
solutions of the Floer equation in Donaldson—Thomas theory on R x Y with
Y = M x S correspond, in the adiabatic limit, formally to the solutions
of (6) on R x M with values in .Z(S).

Boundary value problems

If M is Cartan hypercontact 3-manifold with boundary M and Reeb vector
fields vy, v9, v3 then there is a unique map A : OM — S? such that

y::ZAivi:BMHTM

)

is the outward pointing unit normal vector field. In this case the 1-form (1)
is not closed. Its differential is given by the formula

Ty F x Ty F — R (fi, f2) — w(f1, f2)dvolaar.
oM
This is a symplectic form on the space of maps OM — X. Thus it seems
natural to impose the Lagrangian boundary condition

f(y)GLy, y € 0OM,

where |—|y68M L, is a smooth submanifold of M x X such that L, is La-
grangian with respect to wy(,) for every y € OM. In this paper we do not
carry out the analysis for this boundary value problem.

In the technical parts of this paper we shall restrict the discussion to the
case where M is a (Cartan) hypercontact 3-manifold. The analysis for the
case M = T3 is almost verbatim the same and in some places easier because
the metric is flat. In Section 2 we introduce the hypersymplectic action
functional and its critical points, discuss the Floer equation, and restate
Theorem A. In Section 3 we prove the main compactness and exponential
decay theorems for the solutions of (5) and (6). These results are only

10



valid for flat target manifolds X. The details of the transversality theory
are worked out in Section 4 (for general target manifolds X). With com-
pactness and transversality established, the construction of Floer homology
is completely standard and we restrict ourselves to restating the result in
Section 5. However, the computation of Floer homology still requires some
serious analysis which is carried out in Section 5. Three appendices discuss
basic properties of hypercontact 3-manifolds, the relevant a priori estimates,
and a removable singularity theorem.

Acknowledgement. Thanks to Ron Stern for pointing out to us the discus-
sion of m3(X) for a simply connected 4-manifold X in Cochran-Habegger [3].
Thanks to Oliver Baues, Kenji Fukaya, Hansjoerg Geiges, and Katrin Wehr-
heim for helpful comments. Sonja Hohloch and Gregor Noetzel would like
to thank the Forschungsinstitut fiir Mathematik at ETH Ziirich for its hos-
pitality. We thank the referee for helpful suggestions.

2 The hypersymplectic action functional

Let X be a hyperkahler manifold with complex structures I, J, K and as-
sociated symplectic forms wy,wq,ws. Let (M, aq, a9, a3) be a positive hy-
percontact 3-manifold with Reeb vector fields vy, vs,v3 (see Appendix A).
Then the space % := Map(M, X) of smooth maps f : M — X carries a
natural hypersymplectic action functional &7 : % — R given by

A (f) ::—/M<a1/\f*wl—l—agAf*wg—l—ag/\f*wg). (12)

The next lemma shows that the critical points of o7 are the solutions of the
partial differential equation

A(f) := Ldf (v1) + Jdf (v2) + Kdf (v3) = 0. (13)

This is a Dirac type elliptic equation because the vector fields v; are ev-
erywhere linearly independent (see Lemma A.1) and the complex structures
I, J, K satisfy the quaternionic relations. (The square of @ in local coordi-
nates is a standard second order elliptic operator.)

Lemma 2.1. The differential of &7 along a path R — F : ¢t — fy is

d

Eﬂ(ft) - /M<8tft,ﬁ(ft)>n dvolyy,

where k and the metric on M are as in Remark A.2.

11



Proof. By Cartan’s formula, we have

d
Eft*wi =dp;, Bi = wi(Ocf, dfr-),

for i = 1,2,3. Hence

Loty [ ot~ [ Saons

— —/ <Z do; /\ﬁl> (Ul,vg,vg)dVOIM
M\
= — /M K ; ﬁl (’UZ) dVOlM
= /M :‘<L<atft, [dft(vl) + det(vg) + det(U3)> dVOlM.

Here the second equation follows from integration by parts, the third equa-
tion follows from the fact that wvi,v9,v3 form an orthonormal basis, the
fourth follows from the definition of x in Remark A.2, and the last equation
uses the definition of §; and the hyperkéahler structure of X. This proves
the lemma. O

The energy identity
The energy of a smooth function f: M — X is defined by

1 1 [ <
E(f) = 3 /M |df|2 dvoly; = 3 /Mlzl |df(vi)|2 dvolyy. (14)

Lemma 2.2. The energy of a smooth function f: M — X is related to the
hypersymplectic action via

S =/ (1) + 5 [ PO dvolys— [ @), drw)ydvolr, (13

where
vp 1= ap(v3)v1 + az(v1)ve + a1(va)vs. (16)

In particular &(f) = </ (f) for every solution of (13).

12



Remark 2.3. The vector field vy vanishes if and only if «;(v;) = 6;;. If this
holds then, for every f € %, we have

E(1) = (D) + [ 1P dvolu.

Hence the energy of f is controlled by the L? norm of @(f) = grad./(f) and
the action.

Proof of Lemma 2.2. By direct calculation (dropping the term dvols) we
obtain

3 | WO =50)
1

=3 /M <|Idf(v1) + Jdf (vg) + Kdf (v3)|* = |df(vl-)|2>

(2

= /M ((de(m), df (v2)) + (Idf (v2), df (v3)) + (Jdf (v3), df(m)})
= /M (f*wl(’UQ, v3) + [fwa(vs,v1) + ffws(vy, ’02)> -
On the other hand

(P(f),df (vo)) — (f)

=

_ / (D(f), ca(vs)df (v1) + az(v1)df (v2) + a1 (v2)df (v3)) — o (f)
-/ as(v3) (f*wg(vg, v1) + [rws(vs, v1)>

+ [ asten (f*w1<v1, va) + frws(vs, vz>)

+ [ e (f*w1<v1, vs) + fwalva, v3>>
_ /M (f*wl(vz, vs) + Frwa(vs, v1) + frws(vr, vz))-

The last equation follows by inserting the vector fields vq,vo, v into the
3-forms a; A f*w;. This proves the lemma. O

13



The Hessian
The tangent space of % at f is the space of vector fields along f:
Ty F = Vect(f) = Q°(M, f*TX).

It is convenient to use the inner product

<£’ 77>L2 = /M<£’ 7l> kdvolyy. (17)
on this space. One reason for this choice is the formula in Lemma 2.1.
Another is the following observation.

Lemma 2.4. For every smooth function f : M — R we have

/ df (vi)r dvolpr = 0. (18)
M
Thus the covariant divergence of the vector field v; is given by

div(v;) = —k Ldk(v;)

and the operator N, : Q°(M,E) — Q°%(M, E) is skew adjoint with respect
to the L? inner product (17) (for every Riemannian vector bundle E — M
with any Riemannian connection).

Proof. The covariant divergence of a vector field v € Vect(M) is the function
div(v) : M — R defined by div(v) := Zj<Vejv,ej> for any orthonormal
frame e; of T'M. It is characterized by the property

/ df (v)dvol s +/ fdiv(v)dvolyr =0
M M

for every function f : M — R. Now, for every 1-form g € QY(M), we
have (8 A da;)(v1,v2,v3) = B(v;)k and hence 8 A da; = B(v;)kdvoly,. With
(B = df this gives (18). The formula for the covariant divergence of v; follows
by replacing f with £~ f. This proves the lemma. U

Lemma 2.5. The covariant Hessian of </ at f € F is the operator
P="P;: M, f*TX)— Q"(M, f*'TX)
given by
PE = IV, € + IV& + KV, € (19)

for & € QOM, f*TX). Here V is the Levi-Civita connection of the hy-
perkéihler metric on X. The operator P : WY2(M, f*TX) — L?*(M, f*TX)
is self-adjoint with respect to the L? inner product (17).

14



Proof. The covariant Hessian of & at f € % is defined by the formula
& Vi(dfi)lt=o where t — f; is a smooth curve in .# with fy = f and
O ftlt=0 = &. Hence (19) follows from the fact that the complex structures
I, J, K are covariant constant and V is torsion free. That P is symmetric
with respect to the L? inner product (17) follows from Lemma 2.4. To prove
that P is self-adjoint we observe that its square is given by

@@5 == Vi Vi & = Vi, Vi€ = Vi Vi€

+ I(R(df (v2), df (v3))€ = Vi us)6)

+ J(R(df(vfi)’ df(vl))é - v[vg,vl}g)

+ K (R(df (v1), df (v2))6 = Vo, a)€) -
Here R denotes the Riemann curvature tensor on X. Since wvy,vs,v3 are
linearly independent ZDZ is a standard second order elliptic operator in local
coordinates (with leading term in diagonal form) and hence has the usual
elliptic regularity properties. In particular, if ¢ € L? and P¢ € L?, then
@25 € W12 and elliptic regularity gives & € W12, This implies that P is
self-adjoint as an operator on L? with domain W12, as claimed. U

(20)

As in symplectic and instanton Floer theories it is a fundamental obser-
vation that the action functional is unbounded above and below and that
the operator P has infinitely positive and negative eigenvalues.

Remark 2.6. If the symplectic forms w; = d\; on X are exact then the
hypersymplectic action functional can be written in the form

3
o (f) = /M > " XDy, f) K dvolay.
i=1

The archetypal example is the space X = H of quaternions with the standard
hyperkéhler structure. In this case the operator f — @(f) = Pf is linear
and the hypersymplectic action is the associated quadratic form

A(f) = %/M<f,ﬁf>ndvolM.

Since &7 (f) = 0 for every real valued function f : M — R C H it follows that
the negative and positive eigenspaces of P are both infinite dimensional. In
the case M = S? with the standard hypercontact structure, specific eigen-
functions are f(y) = y with eigenvalue —3, f(y) = y + 2y with eigenvalue 1,
and f(y) = ¢ o h(y) where h : S® — S? is a suitable Hopf fibration and
¢ : S? — H is the inclusion of the 2-sphere into the imaginary quaternions;
in the last example the eigenvalue is —4.
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Perturbations

Let H: X x M — R be a smooth function and define the perturbed hyper-
symplectic action functional &7 : F — R by

3
A (f) = — /MZai A frw; — /M H(f)rdvolyy.
i=1

Here we write H(f) for the function M — R : y — H(f(y),y). Fory e M
let H, := H(-,y) and denote by VH(-,y) := VH, the gradient of H with
respect to the first argument. Then, by Lemma 2.1, the critical points of
/g7 are the solutions of the perturbed equation

Ldf (v1) + Jdf (v2) + Kdf (v3) = VH(f). (21)

Here we denote by VH(f) the vector field y — VH,(f(y)) along f. By
Lemma 2.2, every solution of (21) satisfies the inequality

WH(f)Z—/

1
; </<;H(f) +5 \VH(f)P) dvoly,.

Gradient flow lines

By Lemma 2.1, the gradient of .27 with respect to the L? inner product (17)
is given by

gradep (f) = Ldf (v1) + Jdf (va) + Kdf (v3) = VH(f) = @ (f)-

Hence the negative gradient flow lines of &/f; are the solutions u : Rx M — X
of the partial differential equation

Ogts + 10y, + JOyyti + Kyyu = V H(u). (22)

The energy of a smooth map u : R x M — X is defined by

1

Ep(u) = 3 /RXM <\85u\2 + \ﬁH(u)\2) kdvolyy ds.

As in finite dimensional Morse theory and Floer homology, the finite energy
solutions of (22) are the ones that converge to critical points of the perturbed
hypersymplectic action functional as s tends to +co (see Theorem 3.13 be-
low). Thus, in the case &y(u) < oo, there are solutions f* : M — X of
equation (21) such that limgs_, 4. dsu(s,y) = 0, uniformly in y, and

Jim u(s,y) = fFy), lim dg(u(s,) = ou(f5).(23)

Moreover the solutions of (22) minimize the energy & (u) subject to (23)
and their energy is & (u) = g (f~) — A (fT).
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Moduli spaces

A solution f of @, (f) = 0is called nondegenerate if the perturbed Hessian
Py us =1V & + JVp€ + KVp& — VeVH,(f) (24)

is bijective. We shall prove that nondegeneracy can be achieved by a generic
choice of the Hamiltonian H : X x M — R (see Theorem 4.1 below). As-
suming this we fix two critical points f* of the perturbed hypersymplectic
action functional @/;; and denote the space of Floer trajectories by

M T H) = {u :R x M — X |u satisfies (22), (23), [gu][\)d |du| < oo}
X

We shall prove, again for a generic choice of the perturbation, that these
spaces are smooth finite dimensional manifolds. The proof will involve the
linearized operator

Duii€ = Vi + TN & + TV + KV, € — Ve VH(u). (25)

As in all other versions of Floer homology the Fredholm index of this oper-
ator is the spectral flow of the Hessians along u. We shall prove that, when
M is a Cartan hypercontact 3-manifold and X is flat all the known analysis
of symplectic Floer theory carries over to the present setting and gives rise
to Floer homology groups that are isomorphic to the singular homology of
X. This leads to the following existence theorem for solutions of @, (f) = 0.
We emphasize that the algebraic count of the solutions gives zero and thus
does not provide an existence result.

Theorem 2.7. Let M be a compact Cartan hypercontact 3-manifold and X
be a compact flat hyperkdhler manifold. If every solution f of @y (f) =0 is
nondegenerate then their number is bounded below by the sum of the Betti
numbers of X (with coefficient ring Zg). In particular, @;(f) = 0 has a
solution for every smooth function H : X x M — R.

Proof. See Section 5. O

3 Regularity and compactness

We assume throughout that X is a compact hyperkdhler manifold and M
is a compact 3-manifold equipped with a positive hypercontact structure a.
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Then the Reeb vector fields v1,v9,v3 form a (positive) orthonormal frame
of TM and hence determine a second order elliptic operator

3
L .= Zﬁviﬁvi = —d'd - Zdiv(vi)ﬁvi- (26)
; i=1

If o is a Cartan structure then div(v;) = d*«; = 0 (by Lemma 2.4) and so L
is the LaplaceBeltrami operator on M. In local coordinates y!, 42, 4% on
M the operator L has the form

L= Z Wayuay VZ av’ (27)

p,r=1
where
3 12
g ol b= g oui ol
7 Z’ : (2
Oyt
i,u=1

Since the vector fields v; form an orthonormal frame of TM, the coefhi-
cients o define the Riemannian metric on the cotangent bundle in our
local coordinates. The operators L on M and

L :=0s0s+ L (28)
on R x M will play a central role in our study of the solutions of equa-
tions (21) and (22).

Theorem 3.1 (Regularity). If p > 3 then every WP solution f of
@y (f) = 0 is smooth. If p > 4 then every WP solution u of (22) is
smooth.

Proof. For every vector field v € Vect(M) we write 0,f = L,f = df (v).
Then, for every smooth map f : M — X and any two vector fields v, w
on M, we have V,0y f — ViyOy f = =0}y, 1) f- Hence

3
@5@) - - Z vviavif - Ia[vg,v:ﬂf - Ja[vg,vﬂf - Ka[m,vg}f' (29)

i=1
In local coordinates (z!,...,2™) on X and (y!,%%,y%) on M we have
3
02 fk ofF ow” aft ofi
k _ W, v w k W, v
o d) _y%; ooy T oy oy +”Zf”6 oyt
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With L as in (27) this gives
,Of Of7
DA =L~ 3 > thaw LA g
oyt Oy”
p,rv=11475=1
where
3
oft
gjlﬁ = ZZ (Ie vy, v3)” + JF[vs, v1]” —|—Ké€[’01,’02]y> 65”'

/=1v=1

Moreover, the function hk (PI))F = (PVH(f))* is given by

O(VH fafﬂ AVHY N, ;0f7

jA=1v=1

where
cf” = Iy + Jfvg + Kfof.
Hence every solution of (21) (of class W1P) satisfies the elliptic pde

Z Z rk. Waf or — gk —nf. (30)

2,
pv=1i,5=1 Oyt Oy

If f € WLP for some p > 3 then the right hand side is in LP/? and hence, by
elliptic regularity, f is of class W2P/2. By the Sobolev embedding theorem,
we then obtain f € W4 where ¢ := 3p/(6—p) > p. Continuing by induction,
we obtain eventually that f € W14 for some ¢ > 6, hence f € W?P and,
again by induction, f € W*P for every integer k.

To prove regularity for the solutions of (22) we introduce the operators

D =N+ Iy, + IV, + KNy, % =N+ IV, + IV, + KV,
Then
3
P*(0su+ P(u)) = — ViOsu — Z Vi, Op;

=1
— 18[ u — Ja[vwl]u — Ka[vwg]u.

Here we have used (29) and the fact that Vi0,,u = V,,0su for i = 1,2,3.
If u is a solution of (22) then dsu + @(u) = VH(u). Hence in this case we
obtain the equation

ou® ou’ ou® ouw’
_ k. il pv k1K
> Stk (GG ) k- @)

pr=1ij=1

(31)

v2,v3]
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where

2
‘Z'_@J“;::l 8“0y VZ:: av’
and
U out
g=>> (15[02,03]” + Ji[og, 01]” + Kf[”h”ﬂ”) o
{=1v=1
m 3 i m i
O(VH) 0w/ O(VH)* - Ou?
k. _ kv sl TV H)
hu ];1;% < Ord Gy” + 3yu + ZZ:; 2] (V ) 8yy (33)
L OVHE ol & L Ou’
N AVE) 9 NPk H
; ozl  0Os Z,]Z:l i(VH) Bs

If u € WP with p > 4 then the right hand side in (31) is in LP/? and so
uw € W2P/2. Thus the Sobolev embedding theorem gives u € W with
q := 4p/(8 — p) > p. Continuing by induction we obtain that wu is smooth.
This proves the theorem. ]

The bootstrapping argument in the proof of Theorem 3.1 gives rise
to uniform estimates for sequences that are bounded in W1P. Hence the
Arzéla—Ascoli theorem gives the following compactness result.

Theorem 3.2. Assume X is compact.

(1) Let p > 3 and Q2 C M be an open set. Then every sequence of solutions
Y Q — X of equation (21) that satisfies sup,, ||df”HLp(C) < oo for every
compact set C C € has a subsequence that converges in the C*° topology on
every compact subset of §2.

(ii) Let p > 4 and Q C R x M be an open set. Then every sequence of
solutions u” : Q@ — X of equation (22) that satisfies sup,, ||du”|| sy < 00
for every compact set C' C Q has a subsequence that converges in the c>
topology on every compact subset of Q.

A priori estimates

To remove the bounded derivative assumption in Theorem 3.2, at least in
the case where X is flat, we establish mean value inequalities for the energy
density of the solutions of (22). The solutions of (21) then correspond to
the special case dsu = 0. The mean value inequalities will be based on
Theorem B.1 in Appendix B.

20



Throughout we denote by L and .£ the operators (26) and (28) on M
and R x M, respectively, and by R the Riemann curvature tensor on X. For
amap u: R x M — X we define the energy density e, : R x M — R by

3

1 1
eu =3 \Bsu\z + 3 Zl laviu]2,
1=

and we denote by 7, : R x M — R the sum of the sectional curvatures of
suitable coordinate planes tangent to u:

3 3
Ty = 22<R(88u,8vju)8vju,8su> -+ Z <R(8Uiu, Oy, u) Oy, 8viu>.
= ij=1

Throughout we fix a Hamiltonian perturbation H : X x M — R. We
explicitly do not assume that the hypercontact structure on M is a Cartan
structure (unless otherwise mentioned).

Lemma 3.3. There are positive constants A and B, depending only on the
vector fields v;, the metric on X, and the Hamiltonian perturbation H, such
that every solution u : R x M — X of (22) satisfies the estimate

Ley +1y > —A— Bley)*?. (34)

If H =0 we obtain an estimate of the form Le, + r, > —Ce,.

Proof. Tt is convenient to denote the vector field 95 on R x M by vy. Then
the Lie brackets [vg,v;] vanish for all j, but we shall not use this fact.
Abbreviate

wy = [v2, V3], wy = [v3,v1], ws = [v1, V2]

and define the operators

Thus £% acts on maps u: R x M — X and £V acts on vector fields along
such maps. With this notation every solution u of (22) satisfies the equation

LXu = —D*VH(u) — I8y, u — JOuytt — KDy, u, (35)
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where % = -V, + IV, + JV,, + KV,,. Moreover,
3

3
Lew =3 (L0 um0uu) tpu pu= Y [Vl

j=0 2,7=0

We compute

LY 0yu = Z Vo, Vi, O, 1t — Z Vi Otos,0,]
= Z R(0y,u, Oy u) Oy, u + ij.,?Xu
_ Z (VUZ 8[vi,vj}u + V[ij]&,iu>
= Z R(Oy,u, Op;u) Oy, u + hj(u) + &5(u),

where the sums are over ¢ = 0,1,2,3 and

hy(u) = (vvjvs — IV, Yy — IV, Yy — KV, VUS)VH(U),

§i(u) i= =1V, Oyt — IV, Oyt — KV, Oy

= 3 (VoD V10t

(36)

Since the vector fields v1, v9,v3 form an orthonormal frame of T'M there is
a constant ¢ > 1 such that, for every smooth map u : R x M — X and every

smooth perturbation H : X x M — R, we have

w

ZKJ <C (eu + Pu) ,

Here p,, is as in (36). This gives

3 3
> 6500001 < e 6+ 53 ol
— j=0

0 7=0
P 1
= % + <C+ 5) Cus

3
Z<hj(u),avju> < c|Hllgs vV2eu (1 + ew + /Pu)

p

< gu +c ”HH%'?) €y + V2e [H|[os veu(l + ey).

22
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Hence it follows from (36) that

3
geu + 1y =Py + Z<h](u) + éj(u),aij>
=0

1
~ (G + e+ @I ) e - VB Al (020 + )

Y

Y

~EHIZs — (14 o+ EIHIZs ) e = V2e | Hlls (e0)
and thus
Lew+ru>=C ([HE + (14 [HZs ) ew+ | Hllos (ea)*?) . (37)

where C' := 1 + ¢?. Using the inequality ab < %ag + %b?’/Z for a,b > 0 we
obtain (34) with

1 3 2
A=C (HHH?CS +3 (1 + HHH%g) > , B:=C <§ + HHHcs> :

This proves the lemma. O

Remark 3.4. For general hyperkahler manifolds Lemma 3.3 gives an esti-
mate of the form
ZLe> —c(1+¢€?)

for the energy density of solutions of (21) and (22). In dimensions n = 3,4
the exponent 2 is larger than the critical exponent (n+2)/n in Theorem B.1.
For the critical points f : M — X of @y this means that the energy

607 =5 [ W avoluy

does not control the sup norm of |df| even if we assume that there is no en-
ergy concentration near points. This is related to noncompactness phenom-
ena that can be easily observed in examples. Namely, composing a holomor-
phic sphere in X (for one of the complex structures Jy = A\ I+ AoJ + A3K)
with a suitable Hopf fibration gives rise to a solution of @(f) = 0. Now the
bubbling phenomenon for holomorphic spheres leads to sequences f* : $3 —
X of solutions of (21) where the derivative df” blows up along a Hopf circle,
while the energy remains bounded.
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Lemma 3.5. There is a constant C > 0, depending only on the vector fields
v;, the metric on X, and the Hamiltonian perturbation H, such that every
solution u : R x M — X of (22) satisfies the estimate

Z0sul? > —C (1 v |du|2) 19sul. (38)

Proof. Abbreviate vy := 05 and wy := [ve,v3], we := [v3,v1], w3 := [v1, V9]
as in the proof of Lemma 3.3. Define the functions eg, 79 : R x M — R by

3

1
€0 = 3 Osul®, o= 2<R(83u, By ) Dy, Dsr)
Then 5
Leo=Y Vb + (£70.,0,0), (39

i=0
As in the proof of Lemma 3.3 we have

LV0u =" R(Dy,u,05u)dp,u + ho(u) + o (u), (40)

(2

where the sum is over ¢ = 1,2,3 and

ho(u) == (vsvs IV, — VY, — KVSVU3>VH(u),
Eo(u) := —IVsO0p,u — JVs0up,u — K V0.

[ho(w)| + léo(u)] < e | 1+ |dul +  [> " Vidsul® | |05yl

and hence it follows from (39) and (40) that

Leog+ro = |V Osul* + (ho(u) + &o(u), D)

> ) |V Oaul? = 2¢ [ 1+ |dul + DIV 05ul® | eo
i i
1
> 3 Z |V, Osul* — 20(1 + |du| + ceo>eo.
1
Since ey < |du|? and ro < ¢|du|* eq this proves (38). O
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Compactness for critical points

Theorem 3.6. Let M be a Cartan hypercontact 3-manifold and X be a com-
pact flat hyperkdahler manifold. Let H : X x M — R be any smooth function.
Then the set of solutions of (21) is compact in the C* topology.

Lemma 3.7. Let M be a Cartan hypercontact 3-manifold and X be a com-
pact flat hyperkdhler manifold. Then there is a constant ¢ > 0 such that

A(f) < e /M B(F) 2 dvol

for every f € F. In particular, every solution of (13) is constant.

Proof. Throughout we abbreviate

1£l= /M Sldvoly,  [ldf] = o/ /M dF 2 dvoly.

The Poincaré inequality asserts that there is a constant C' > 0 such that
every smooth function f: M — H" satisfies

[ faoli=o = is<cla. (a1)
M
Since « is a Cartan structure equation (29) takes the form

PPf =ddf —xPf (42)

for f: M — H". Here we write @(f) = Pf because X = H" is equipped
with the standard flat metric and f +— @(f) is a linear operator. Taking the
inner product with f we obtain

lafP? = / (J,PPf + kDS dvolyy
M
< DA + 5 IF1 1S
< PP + wC |ldf | 1P
2 1 2 Ii202 2
< IPAP+ 5 I + - 1

whenever f has mean value zero. By Lemma 2.2, this implies
1
(5) = 5 (11 = IPAIF) < (L+6C%) [ Ps2dvola

25



for every smooth map f: M — H". (We can drop the mean value zero con-
dition by adding a constant to f.) Now the theorem of Geiges—Gonzalo [14]
shows that M is a quotient of the 3-sphere by a finite subgroup of SU(2).
If M = S3 every smooth map f : M — X factors through a map to the
universal cover H™ of X and the assertion follows. The general case follows
from the special case for the induced map on the universal cover of M. [

Proof of Theorem 3.6. By Lemma 3.7 the critical points of .o/ satisfy a uni-
form action bound. The action bound and the energy identity of Lemma 2.2
give a uniform L' bound on the functions e, := |df,,|2. Since the exponent
% in the estimate (34) of Lemma 3.3 is less than the critical exponent g
we obtain from the Heinz trick (Theorem B.1) a uniform L° bound on the

sequence e,. Hence the result follows from Theorem 3.2. ]

Remark 3.8. If M is the 3-torus then the assertion of Lemma 3.7 continues
to hold for the contractible maps f : M — X. In the noncontractible case
we may have nonconstant solutions of (21) and the estimate of Lemma 3.7
only holds with an additional constant on the right.

Remark 3.9. Let X be a K3 surface. Then compactness fails for the critical
points of <77 even in the case H = 0 and for sequences with bounded energy

(see Remark 3.4).
Compactness and exponential decay for Floer trajectories

Lemma 3.10. Let M be a Cartan hypercontact 3-manifold and X be a
compact hyperkdhler manifold. Let H : X x M — R be any smooth function
and u: R x M — X be a solution of (22). Then the following holds.

(i) For every s € R we have

1/ (dul? < 7 (u(s,-)) + Vol(M) sup ]VH]2+§/ O, (43)
2 /M XxM 2 Jm

(ii) If u has finite energy

Er(u) = / / |05u|? K dvolys ds < oo
—oo J M

and sup |du| < oo then all the derivatives of u are bounded on R x M and
Odsu converges to zero in the C° topology as s tends to +oo.

(iii) If X s flat then

Er(u) < 0o = sup |du| < oo.

26



Proof. We prove (i). By Lemma 2.2, every solution u of (22) satisfies

8 (uls, ) = o (uls, ) + 5 /M IV H () — Oyul?

and hence

1 1
3 [ lau =i+ 5 [ jol
2 Jm 2Jm

< o (uls,)) + Vol(M) sup [VH|? + > / Ogul?
XxM 2 Jm
Here we have used the fact that the hypercontact structure on M is a Cartan
structure. This proves (i).

We prove (ii). Since u satisfies (35) and |du| is bounded the standard
elliptic bootstrapping arguments as in the proof of Theorem 3.1 give uniform
bounds on the higher derivatives of u. Since |du| is bounded it follows from
Lemma 3.5 that the function |d,u|? satisfies an estimate of the form

Z0su)? > —C'|dsul .

This in turn implies that u satisfies the mean value inequality

so+1

|0su(s0,y)|* < C/

so—1

/ |85ul? dvoly ds
M

for a suitable constant ¢ > 0 (see Theorem B.1 with A =0 and = a =1).
Using the finite energy condition again we find that Osu converges to zero
uniformly as |s| tends to infinity. Convergence of the higher derivatives of
Osu follows from an elliptic bootstrapping argument using equation (40).
This proves (ii).

We prove (iii). Assume X is flat. Then it follows from Lemma 3.3 that
there are positive constants A and B such that

ZLldu* > —A - B|du?®

for every solution u : R x M — X of (22). Hence, by Theorem B.1, there
are positive constants i and ¢ such that every solution of (22) satisfies

32/ > <h = |du(z) <c Ar2+i4/ duf? ] (aa)
B,(2) e
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for z€ Rx M and 0 < r < 1. Now suppose u : R x M — X is a solution
of (22) with finite energy & (u) < co. Then the formula

/S1 /M \QSUIQ kdvolys ds = o (u(so, ) — A (u(sy,-))

shows that there is a constant C' > 0 such that @7 (u(s,-)) < C for all s.
Explicitly we can choose C' := &7 (u(0,-)) + &r (u). Combining this with (43)
we obtain an inequality

[ lauf <evs [ o (45)
M M
for every s € R, where ¢ := 2C 4 2Vol(M ) sup |VH|. Next we choose T' > 0

so large that
o h
2
/T /M |Osu|” dvolpr < 5

_h_
8cB2”

so+r
/ dul® < / / |du|® dvoly ds
By (z0) so—r M
so+r
< / <c+3/ |Dul? dv01M> ds
so—T M

o
< 207“—&—3/ / |8sul? dvolys ds
T JM

< 2 +3h<h
S 24 < g

Then, for zg = (s0,40) € [T+ 1,00) x M and r < we have

Here the second inequality follows from (45) and the third from the fact
that sg —r > T. The same estimate holds for so < —T" — 1. Hence it follows
from (44) that |du| is bounded. This proves the lemma. O

Remark 3.11. It is an open question if part (iii) of Lemma 3.10 continues
to hold without the hypothesis that X is flat.

Lemma 3.12. Let M be a Cartan hypercontact 3-manifold and X be a
compact flat hyperkdhler manifold. Let H : X x M — R be any smooth
function. Then there is a constant ¢ > 0 such that

—c< dp(u(s, ) <c

for every finite energy solution u : R x M — X of (22) and every s € R.
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Proof. By Theorem 3.6, there is a constant ¢ > 0 such that
—c<dy(f)<c

for every critical point of «7f;. Now let u : R x M — X be a finite energy
solution of (22) and choose a sequence of real numbers s¥ — —oo. Passing
to a subsequence we may assume that u(s” + -, -) converges, uniformly with
all derivatives, to a solution of (22) on the domain [—1,1] x M. By (i), this
solution is a critical point of o7f;. Hence

lim o/ (u(s”,-)) <ec.

V—00
Since the action is nonincreasing along negative gradient flow lines this shows
that o7 (u(s,-)) < c for all s € R. The lower bound is obtained by the same
argument for a sequence s¥ — +oo. This proves the lemma. U

Theorem 3.13 (Exponential decay). Let M be a Cartan hypercontact
3-manifold and X be a compact hyperkdhler manifold. Let H : X x M — R
be a smooth function such that every solution of (21) is nondegenerate. Let
u:R x M — X be a solution of (22). Then the following are equivalent.
(a) The energy & (u) is finite and |du| is bounded.

(b) There are solutions f*: M — X of equation (21) such that

lim u(s,y) = f*(y), lim oy (u(s, ) = i (f5), (46)
s—=+oo s—=Fo00
and limg_, 1o Osu(s,y) = 0, Moreover, the convergence is uniform in y
and |dul| is bounded.
(c) There are positive constants p and c1,ca,c3,... such that
—pT
10sull ey j—m17) xary < Cee™” (47)

for every T > 0 and every integer £ > 0. Moreover, |du| is bounded.

Proof. That (c) implies (a) is obvious. We prove that (a) implies (b). By
Lemma 3.10 it follows from (a) that |0su| converges to zero uniformly as |s|
tends to infinity and that du is uniformly bounded with all its derivatives.
Hence every sequence s, — +oo has a subsequence, still denoted by s,
such that u(s,,-) converges in the C*° topology to a solution of (21). Now
it follows from the nondegeneracy of the critical points of &/; that they are
isolated. Hence the limit is independent of the sequence s,,. This proves (b).
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We prove that (b) implies (c). Consider the function ¢ : R — [0, 00)

defined by

1

o(s) = —/ K |Osul? dvolyy.
2 )m

By assumption, this function converges to zero as s tends to +oo. Moreover,
its second derivative is given by

¢ (s) = /M K |Vs(93u|2 + /M K <V3Vs(93u, 85u>

Denote by
Py =1V + IV, + KN, — VVH (u)

the covariant Hessian as in (24). Since the vector fields v; are independent
of s we have

VsOsu = =Ny (u) = =P 0su = PPy (u)..

Differentiating this equation covariantly with respect to s we obtain

Vs VsOsu = @HvsﬁH(U) + [vsva]aH(u) = pHpHaSu - [VSva]aSu'

Since P is self-adjoint with respect to the L? inner product with weight &
this gives

&' (s) = /Mﬂ V,0sul? + /Mn P, 0,uf - /Mﬂqu,zp,{]asu,asuy

Since |du| is bounded we have an inequality

[ 9P 00) < ol mqan [ 10
M M

Moreover, by Lemma 3.10, the bound on |du| guarantees that u(s,-) con-
verges in the C> topology to f* as s tends to o00. Since f* are nonde-
generate critical points of &/ we deduce that there is a constant p > 0 such
that, for |s| sufficiently large, we have

| xpyoa =20 [ Jol
M M

Choosing |[s| so large that c|[0sul| foo(p) < p? we then obtain
¢"(s) > p*e(s).
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Hence
e (¢ (5) + po(s)) = e P (5) — 1%6(s)) 2 0.

Since ¢(s) — 0 as s — oo we must have

po(s) +¢'(s) <0

for all sufficiently large s and hence e”®¢(s) is nonincreasing. This proves
the exponential decay for ¢. To establish exponential decay for the higher
derivatives one can use an elliptic bootstrapping argument based on equa-
tion (40) to show that the L norm of dsu controls the higher derivatives.
This proves the theorem. O

Remark 3.14. If X is flat then the condition sup |du| < oo in (a—c) in
Theorem 3.13 can be dropped. This follows from Lemma 3.10 (iii) and the
fact that each of the conditions (46) and (47) guarantees finite energy. Sim-
ilarly, the next theorem continues to hold for general compact hyperkéahler
manifolds if we impose the additional condition sup, supg, s |du”| < oc.

Theorem 3.15 (Compactness). Let M be a Cartan hypercontact 3-man-
ifold and X be a compact flat hyperkdhler manifold. Let H : X x M — R
be a smooth function such that every solution f of @, (f) = 0 is nondegen-
erate. Let f* be two distinct critical points of @y and u” be a sequence in
AM(f~, fTH). Then there is a subsequence (still denoted by u” ), a catena-
tion

uy € A (fo, fri H),uz € A (f1, fo: H),...,un € M (fn-1,fn: H)

of Floer trajectories, and there are sequences s| < sy < --- < s%; such that

fo=1f", fn=1r", Ay (fi-1) > du(f;),

and, for 7 = 1,...,N, the shifted sequence u”(s;’ + -,-) converges to u,;

uniformly with all derivatives on every compact subset of R x M.

Proof. By Lemma 3.10 the functions u” satisfy (44) for suitable constants
A, B, ¢, h. This implies the following.

Energy quantization I. Let xg € R x M and suppose that there is a
sequence ¥ — xg such that |du”(z")| diverges to infinity. Then

h
liminf/ |du”|? > —5
v=% JB.(x0) B
for every e > 0.
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The proof uses the Wehrheim trick. Suppose, by contradiction, that there
is a constant € > 0 and a sequence v; — oo such that B2 fBg(m) ]du’“]Q <h

for every i. Then we can use (44) with x € B, /3(z0) and r = /2 to obtain

Ae* 16 a2 Ace®  16ch
BE :Do)

|du”i(x)|2§c< TR <=t g

for all z € B, 5(wo) and v > vg. With x = 2% it follows that the sequence
|du”i(x")| is bounded, a contradiction.

Energy quantization II. Let o = (so,%0) € R x M and suppose that
there is a sequence x¥ = (s¥,y”) — (s0,x0) such that |du”(x")| diverges to

infinity. Then
. sote V12 h
hgr_l)ggf /SO€ /M |0su”|” > 352

By Lemma 3.10 (i) we have

1
/M o > /M du’|? — (48)

for some constant ¢ > 0 independent of v and s. The assertion follows by
integrating this inequality from sg — € to sg + ¢ and taking the limit ¢ — 0.

for every e > 0.

With this understood it follows that, after passing to a subsequence, we
obtain divergence of the energy density at most near finitely many points.
On the complement of these finitely many points, a further subsequence
converges to a solution u® of 9su® + @, (u*°) = 0 in the C*° topology,
by Theorem 3.2. Now it follows from the inequality (48) that the L? norm
of du® is finite on every compact subset of R x M and in particular in
a neighborhood of each bubbling point. Hence we can use the removable
singularity theorem C.1 to deduce that the limit solution can be extended
into the finitely many missing points. The upshot is that, by standard
arguments, we obtain a convergent subsequence as in the statement of the
theorem, except that u” (s;’ +-,-) need only converge to u; in the complement
of finitely many points. If these bubbling points do exist we have

s]”.+T A
Dy (fj-1) — Gu(fj) = Ep(u;) < lim / Osu’|” = —
7 Ju B

T—oo Jev
J
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for some j. However, this would imply that the sum of the energies &g (u;)
is strictly smaller than &y (u”) = p(f~) — u(fT) which is clearly im-
possible. Thus bubbling cannot occur and the sequence |du”| must remain
uniformly bounded. This proves the theorem. U

Remark 3.16. A key issue in developing the Floer theory of the action
functional o/ for general (compact) hyperkédhler manifolds is to extend
Theorems 3.6 and 3.15 to the nonflat case. One then has to address the
codimension-2 bubbling phenomenon for finite energy sequences of solutions
fof@y(f)=0and u of Osu+ @5 (u) = 0.

4 Moduli spaces and transversality

Transversality for critical points

Let 7 := C*>°(X x M) and, for H € J#, denote by
C(H):={f: M — X| f satisfies @, (f) = 0}

the set of critical points of 7. Recall that a critical point f € € (H) is
called nondegenerate if the Hessian

Py = IV, + IV + KV, — VVH(f)

is bijective as an operator from Tp.# = QO(M, f*TX) to itself (respectively
as an operator from W*+LP(M, f*TX) to W*kP(M, f*TX)). Denote by

A0 .= {H € A |every critical point f € € (H) is nondegenerate}
of all H € /% such that & : % — R is a Morse function.

Theorem 4.1. For every compact 3-manifold M with a positive hypercon-
tact structure and every hyperkdhler manifold X the set ™€ is of the
second category in FC.

Proof. Fix an integer £ > 2 and abbreviate #* := C*(X x M). Then
the regularity argument in the proof of Theorem 3.1 shows that f with
@ (f) = 0 is of class WP for any p < co. Fix a constant p > 3 and denote
by

@ = {(f,H) € WIP(M, X) x " | f satisfies @, (f) = o}
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the universal moduli space of critical points. We prove that € is a C*1
Banach manifold. It is the zero set of a C*~! section of a Banach space
bundle

& — WP (M, X) x #*

with fibers & i := LP(M, f*T'x). The section is given by

(f, H) = @ (f)

and we must prove that it is transverse to the zero section. Equivalently,
the operator

WYP(M, f*TX) x H#° — LP(M, f*TX), (£,h) — P u€—Vh(f) (49)

is surjective for every H € #* and every f € €(H).

Let 1/p+1/q = 1 and choose an element n € LY(M, f*TX) that anni-
hilates the image of (49) in the sense that

/M<77’pf,H£ — Vh(f))Kkdvolps =0

for all h € 2 and & € WYP(M, f*TX). Then, by elliptic regularity, we
have n € WHP(M, f*TX) and

Prun=0, /M<77’Vh(f)>ndvolM =0 Vhext

In particular 7 is continuous. If n # 0 then it is easy to find a smooth
function h : X x M — R such that (n, Vh(f)) > 0 everywhere on M and
(n, Vh(f)) > 0 somewhere. Namely, choose a point yo € M with n(yo) # 0
and a function hg : X — R such that

ho(f(yo)) =0, Vho(f(yo)) = n(yo)-

Then there is a neighborhood Uy C M of yg such that

(n(y), Vho(f())) >0

for all y € Up. Now choose a smooth cutoff function g : M — [0,1] with
support in Uy such that 3(yp) = 1. Then the function h(y,x) := B(y)ho(x)
has the required properties. Thus we have proved that the operator (49) is
always surjective and hence € is a C*~! Banach manifold as claimed.
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Now the obvious projection
at ¢t — At

is a C*~! Fredholm map of index zero. Since £ > 2, it follows from the Sard-
Smale theorem that the set #7™°e¢  #* of regular values of ¢ is dense
in s#¢. Now the result follows by the usual Taubes trick as explained, for
example, in [24, Chapter 3]. Namely, for a constant ¢ > 0 we may introduce
the set 2™ of all H € ' such that the critical points f € €(H)
with sup |df| < ¢ are nondegenerate. By Theorem 3.2, this set is open
in #*. (In fact Theorem 3.2 can be extended to obtain a W*~1P convergent
subsequence whenever H is of class C* respectively converges in C*.) Since
gmorset — N o Ao morse’e, we obtain with £ = oo that each corresponding

c>0 “~C
set 2™ is open and dense in . and so JMOC = () (SO s
a countable intersection of open and dense sets in . This proves the
theorem. 0

Fredholm theory

The study of the spaces of solutions of (22) is based on the linearized oper-
ators Dy : WHP(R x M,u*TX) — LP(R x M,u*TX) defined by

Dy = Vs + IN,, + IV, + KV, — VVH(u).

It follows from the familiar arguments in Floer homology that Z, y is a
Fredholm operator whenever f* are nondegenerate critical points of @7y
and wu satisfies the exponential decay conditions of Theorem 3.13. It is also
a standard result that the Fredholm index of Z,  is given by the spectral
flow of Atiyah—Patodi—Singer [2]. More precisely, given a contractible critical
point f € ¥ (H) choose a smooth path [0,1] — .% : ¢ — f; such that

fo = constant, fi=f

and choose ¢ > 0 such that the negative eigenvalues of P f, are all less
than —e. Now define the integer i (f) by the formula

wr(f) := —specflow <{pft,tH +e(1— t)]l}ogtg) . (50)

It follows from equation (11) (with ¥ = S! x M) that this integer is in-
dependent of homotopy ¢t — f; whenever X is flat. If f : M — X is not
contractible then the definition of the index p g (f) depends on the choice of
a fixed reference map fy.
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Proposition 4.2. Assume H € ™ and f* € €(H).
(1) For every smooth map u: R x M — X satisfying (23) the operator

Dt : WH(R x M, u*TM) — LP(R x M,u*TM)
1s Fredholm and its Fredholm index is
index(Zu,m) = pu(f~) — pa(f).

(ii) If H : X — R is a Morse function with sufficiently small C? norm
and f(y) = xo is a critical point of H then pug(f) = dim X — indy(xg) is
equal to the Morse index of o as a critical point of —H (i.e. the number of
positive eigenvalues of the Hessian of H at xg).

Proof. The Fredholm property in (i) follows from standard arguments in
Floer theory as in [6, 9] in the instanton setting and in [11, 28] in the
symplectic setting. The index identity is a well known result about the
correspondence between the spectral flow and the Fredholm index (see [2,
26]). The second assertion follows immediately from the definition of . O

Transversality for Floer trajectories

For f* € € (H) we denote by . (f~, f+; H) the moduli space of all solutions
u:Rx M — X of (22) and (23) for which |dul is bounded. To prove that
these spaces are smooth manifolds we must show that the linearized operator
Pu.1 is surjective for every solution u of equation (22) and (23). Let

T C A

denote the set of all Hamiltonian perturbations H € ¢ such that P ; is
bijective for every critical point f € €(H) of &y and 2, g is surjective for
every u € A (f~,fT;H) and all f*c ¢(H).

Theorem 4.3. For every compact 3-manifold M with a positive hypercon-
tact structure and every hyperkdihler manifold X the set S8 is of the sec-

ond category in F. If H € ™8 then the moduli space A (f~,f1;H) is a
smooth manifold of dimension

dim A (f~, f 5 H) = pu(f7) — pu(f)
for every pair f+ € €(H).

To prove this result we follow essentially the discussion in [13]. The first
step is a unique continuation result.
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Proposition 4.4. Let £ > 3, H € #*, and ug,u; : R x M — X be two
C'=1 solution of (22). If ug and uy agree to infinite order at a point
(s0,y0) € R x M then they agree everywhere.

Proof. In local coordinates z!,...,2™ on X and y!,y?, v on M both func-

tions satisfy equation (32). For the difference

ok = (ug — uo)k

in local coordinates this gives an estimate

W(gci( 1

This is precisely the hypothesis of Aronszajn’s theorem [1]. Hence, if 4 van-
ishes to infinite order at a point it must vanish identically in a neighborhood
of that point. This implies that the set of all points (s,y) where ug and uy
agree to infinite order is open and closed. This proves the proposition. [

au]

Proposition 4.5. Let H € 7 and u : R x M — X be a smooth map. Let
€€ QR x M,u*TX) be a vector field along u such that

-@u,Hg = vs£ + Ivv1£ + Jvmg + vasg - VEVH(U) =0.
If £ £ 0 then the set
Z ={(s,y) e Rx M |{(s,y) =0}

can be covered by countably many codimension 2 submanifolds of R x M. In
particular, the set (R x M)\ & is open, connected, and dense in R x M.

Proof. The proof has three steps.

Step 1. If £ vanishes to infinite order at a point (sg,y0) € R x M then &
vanishes identically.

We use the identity
7D+ 2VE = —I(R(Os11, 00, 0)§ — R(Outt, Oy + Vo, 116
(R (05, Opy )€ — R(Opyut, Opy )€ + Vi, v1]5>

K (R(Dst, By )€ = R(Dyy1t, 00y 0)€ + Vi, ).
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If 2¢ = VeV H(u) we obtain an inequality of the form

3
|$V§| <c| &+ V€ + Z Vi€

j=1

In local coordinates the leading term of .V has diagonal form. Hence the
assertion of Step 1 follows from Aronszajn’s theorem [1].

Step 2. Let 25, C & denote the set where & and its derivatives vanish up
to order k. Then, for every zo = (s0,y0) € 2% \ Zk+1, there is an open
neighborhood Uy C R x M and a codimension 2 submanifold V- C R x M
such that

(Zk\ Ze1)NU CV

Fix an element zy € 25 \ Z541. For v = (v, 1,12, v3) € N* denote
vyf = Vvo e Vvovm U VUIVU2 o vmvva U VU3§7

where vg := 05 and each term V, ocurs v; times. Since all derivatives of £
vanish up to order k£ at the point zy we have

Vi, VP€(20) = V"V, € (20).

for v| = vg+v1 +1v2+v3 =Fkand i =0,1,2,3. Since z9 ¢ 2441 there
is a multi index v € N* with |[v| = k and an i € {0,1,2,3} such that
Vi, V¥&(z0) # 0. Consider the vector field

1= V¢

along u. Again using the fact that all derivatives of & up to order k vanish
at zg we obtain

Voo (20) + IV 1(20) + JVa,n(20) + KVy,n(20) = 0.

Since one of the vectors V,,n(zp) is nonzero it follows that the four vec-
tors V,,m(zo) cannot all be linearly dependent. Hence, in local coordinates
xl,...,2™ on X there exist indices 4,57 € {1,...,m} such that the differen-
tials of the functions ¢, (on an open neighborhood of zy in R x M) are
linearly independent. Hence, by the implicit function theorem, there is a
neighborhood Uy C R x M of 2y such that the set

Vi={z€U|n'(z) =n(z) =0}
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is a codimension 2 submanifold of R x M. Since
(Zk\ Ze1))NU CV

this proves Step 2.
Step 3. We prove the proposition.
By Step 1 we have

U 26\ Zitr) -
By Step 2 each of the sets 2% \ Z%.1 can be covered by finitely many

submanifolds of codimension 2. This proves the proposition. O

Let H € 5% and u: R x M — X be a C*~! solution of (22) and (23).
Call a point (s,y) € R x M regular if

OSU(S,y) 7& 07 U(S,y) 7& fi(y)7 U(S,y) ¢ U(R\ {8}7y)
Let Z(u) C R x M denote the set of regular points of .

Proposition 4.6. Fiz an integer £ > 4. Let H € A andu: R x M — X
be a C*~1 solution of (22) and (23) with f~ # f+. Then the set Z(u) of
reqular points of u is open and dense in R x M.

Proof. That the set Z(u) is open follows by the same argument as in the
proof of [13, Theorem 4.3]. We prove in four steps that #(u) is dense.

Step 1. The set
Fo(u) :={(s,y) € R x M[0su(s,y) # 0}

1s open and dense in R x M.

The vector field dsu is in the kernel of the linearized operator 7, i and is
a vector field of class C*~2 and hence of class C2. Now Step 1 in the proof
of Proposition 4.5 continues to hold for C? vector fields and hence the set
Ho(u) is dense in R x M. That it is open is obvious. This proves Step 1.

Step 2. The set

1 (u) = {(s,y) € Zo(u) |u(s,y) # fE(y)}

1s open and dense in R x M.
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That the set is open is obvious. We prove it is dense. By Step 1 it suffices
to prove that every point (s,y) € Zo(u) can be approximated by a sequence
in #1(u). Because Osu(s,y) # 0, every sequence (s,,y) with s, — s and
sy # s belongs to the set Z;(u) for v sufficiently large. This proves Step 2.

Step 3. The set
Dy (u) :=A{(s,9) € Z1(u) |u(s,y) & u(R x{y} \ Zo(u))}

1s open and dense in R x M.

We prove that the set is open. Suppose, by contradiction, that there is an
element (sg,yo) € #2(u) and a sequence (s,,y,) € Z1(u)\ Z2(u) converging
to (s0,Y0). Since (sy,yy) ¢ H2(u) there is an s!, € R such that

dsu(s,,y,) =0, u(sl,yy) = u(su, Yy)-

The sequence s/, must be bounded; for if s/, — +oo then u(s!,,y,) converges
to f*(yo) and this implies u(s0, yo) = f*(y0), a contradiction. Thus, passing
to a subsequence, we may assumne that s!, converges to a point 56 eR. It
then follows that u(sg, o) = u(sy, yo) and dsu(sy, yo) = 0, contradicting the
fact that (so,yo) € Z2(u).

We prove that the set %Z»(u) is dense in R x M. It suffices to prove
that every element (sg,yo) € #1(u) can be approximated by a sequence in
H(u). If this is not the case for some element (sg,yo) € %1(u) then there
is an € > 0 such that the following holds:

|s —so| <& == 3s’ € R such that u(s,yo) = u(s',90), Isu(s’,yo) = 0.
However this contradicts Sard’s theorem. Namely for € small the curve
= {u(s,y0)| |s — so| < e}

is a one dimensional submanifold of X and we can choose a projection
m: U — I on a suitable tubular neighborhood. Consider the open set S :=
{s € R|u(s,yo) € U}. The assertion would then mean that every element of
I is a singular value of the map S — I' : s — m(u(s,yo)). By Sard’s theorem,
this is impossible whenever w is C''. This proves Step 3.

Step 4. The set Z(u) is open and dense in R x M.

We have already observed that the set is open. We prove it is dense. By
Step 3, it suffices to prove that every element of %2 (u) can be approximated
by a sequence in Z(u). Suppose, by contradiction, that this is not the case
for some element (sg,y0) € Z2(u). Then there is an open neighborhood
U C M of yg and two positive real number €, T such that the follwing holds.
We abbreviate I := (sg — &, 89 + €).
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(a) I xU C Za(u) \ Z(u).
(b) u(s,y) ¢ u(I xU) for |s| >T and y € U.
(c) The map I — X : s+ u(s,y) is an embedding for every y € U.

Since I x U C %#1(u), the condition I x U N Z(u) = () means that for
every (s,y) € I x U there is an s’ € R\ {s} such that u(s',y) = u(s,y).
Since (s,y) € Ho(u) we must have dsu(s’,y) # 0 and, by (b), we have
|s'| <T. Hence there can only be finitely many such points s’. For s = sg
let s1 < --- < sy be the points in [T, 7]\ {so} with

u(so,y0) = u(s1,90) = -~ = u(sn,%0)-

Choose r > 0 so small that the map [s; —r,s; + 7] — X : s — u(s,yp) is an
embedding for every j. Shrinking U if necessary, we may assume that this
continues to hold for every y € U.

Next we claim that there is a § > 0 and a compact neighborhood V' C U
of gy such that

N
yev - U([So—(S,SO—F(S],y)C Uu([Sj—T,Sj+T],y).
j=1

If this were not the case, we could find sequences (s,,v,) — (so,y0) and
s, € R\ {s,} such that u(s,,y,) = u(s,,y,) and |s,, —s;| > r for all j
and v. By taking the limit s/, — s’ we would then obtain another element
s' ¢ {so,...,sn} with u(s,yo) = u(so,%0), a contradiction.

Now define the set

Y :={(s,y) € [so— 0,50 + 0] x V'|u(s,y) € u([s; —r,s; +7],y)}

for j = 1,...,N. These sets are closed and their union is the entire set
[so—0, s0+0] x V. Hence, by Baire’s category theorem, at least one of the sets
¥; must have nonempty interior. Assume without loss of generality that ¥
has nonempty interior and that (sg, ) € int(X1). Choose a neighborhood
W C V of yp and a constant p > 0 such that

(so—p,so+p) x W CXy.

Then for every pair (s,y) € (so — p, So + p) x W there is a unique element
s =:0(s,y) € [s1 — 7,81 + 7] such that

u(s,y) = u(o(s,y),y).
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This map o is evidently C*~1 and satisfies o(sg,y9) = s1. Moreover,
0= Osu(s,y) = VH(u(s,y)) + 10u u(s,y) + JOuu(s, y) + Kdyu(s, y)
= (0,0)0su(o,y) = VH(u(0,9)) + 1 (00 ulo,y) + (90,0)0su(0,y)
+ J(6U2u(0'7 y) + (a'UQ O')as’l,L(O', y)) + K<8'U3u(0'7 y) + (av3a)88u(07 y))
= ((850 — 1)1+ 0y,01 + Oy,0J + 8v30K> Osu(o,y).

Since dsu # 0 the four vectors dsu, [0su, JOsu, KOsu are linearly indepen-
dent and thus we obtain d,,0 = 0 for ¢ = 1,2,3 and ds;0 = 1. This means
that

o(s,y) = s+ s1 — So.
In other words, the solution (s,y) — u(s+s1—Sp,y) of (22) agrees with u on
an open set. By Proposition 4.4, this implies u(s,y) = u(s+s1—sg, y) for all
s and y. Hence f+ = f~, a contradiction. This proves the proposition. [

Proof of Theorem 4.3. Fix a constant p > 4. There is a Banach manifold
B =B(f,fT) of all continuous maps u : R x M — X that are locally of
class WP and, near infinity, can be written as

u(s,y) = exp e () (£5(5,9))

with ¢+ € WHP([T,00) x M, (f*)*TX) and similarly for £~. Fix an ele-
ment Hy € ™. Following Floer [11] we choose a separable Banach
space J) C  of smooth functions h : X x M — R satisfying the following
axioms.

(I) If f € ¥(Hy) and h € 4 then h vanishes to infinite order at the point
(f(y),y) for every y € M.

(IT) Let (z,y) € X x M such that y # f(x) for every f € € (Hy). Let
A :T,X — R be a linear map. Then there are smooth functions h : X — R,
oy : X —[0,1], and 8, : M — [0, 1] such that the following holds.

(a) h(xz) =0 and dh(x) = A. Moreover, a and [ are supported in the balls
of radius 1 about = and vy, respectively, and «(x) = B(y) = 1.

(b) For 6, > 0 define o : X — [0,1] and By M — [0,1] by
o (exp, (€)) 1= aulexp,(07€)),  By(expy(n) := By(exp, (e n)).
Then the function A% : M x X — R given by
hoe (2 y') = ag(2') By )h(')

belongs to 7 for §, e positive and sufficiently small.
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To define the space .74 we choose a smooth cutoff function p : [0,00) — [0, 1]
such that p(r) = 1 for r sufficiently small and p(r) = 0 for r > rg, where
T is smaller than the injectivity radii of X and M. For z € X and y € M
define

az(exp,(§)) = p(l€]),  Bylexp,(n)) = p(Inl).

Then define .74 to be the set of all smooth functions h : X x M — R that
vanish to infinite order along the graph of any element f € ¢ (Hy) and such
that

o0
_ Y4
Wl =3 Wl <00, e i= 22 (sup lollge + sup HﬁyHce> .
=0 z Y

This space satisfies (I) and (II).

Consider the universal moduli space
Mo(f, 1) = {(u,Ho +h)EBXIH|he M uc //l(f_,f+;H)}.
This space is the zero set of a smooth section of the Banach space bundle
& — B x (Hy+ 7)

with fibers &, g = LP(R x M, v*TX). The section is (u, H) — dsu+ @ (u)
and the claim below asserts that it is transverse to the zero section. Hence
AMo(f~, fT) is a smooth Banach manifold. Now the obvious projection

mo: Mo(f, fT) — Ho +

is a Fredholm map. Hence, by the Sard—Smale theorem, the set of regular
values of 7 is of the second category in the sense of Baire in Hy+ .57j. Thus
the set "8 is dense in . Now we may introduce sets J#. °® > 7 for
¢ > 0, as in the proof of Theorem 4.1, where the requirement of transversality
is restricted to a compact set of Floer trajectories. These sets are all open
and, by what we have just proved, they are also dense in JZ. It then follows
that #° is the intersection of countably many open and dense sets 7. °®
for c=1,2,3,... and hence is of the second category in the sense of Baire.

Claim. The operator
WHP(R x M,u*TX) x s — LP(R x M,uw*TX), (& h) — P — Vh(u)

is surjective for every H € 2 and every w € A (f~, f*; H).
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Let 1/p+1/q = 1 and suppose n € LI(R x M, u*T M) annihilates the image
of the operator in the sense that

/ / (M, Du,né — Vh(u)) kdvoly ds = 0
—oo J M
for all h € % and € € WYP(R x M,u*TX). Then 7 is smooth and

Dagn =0, / (n, Vh(u)) kdvolps ds = 0 (51)
Rx M

for all h € 4. We prove in three steps that 7 vanishes identically.
Step 1. For every s € R we have fM<77, 85u>/<dvolM = 0.

Since Py, m0su = 0 and .@;Hn = 0 we have

di/ <77785u> HdVOlM == / (<777 VSasu> +/ <V57’], 88’[,L>) /'idVOlM
S Jm M M

- / (<T]7 @u’HaSu> o / <‘@;,H777 83’[,L>) /deOlM
M M

= 0.

Here we have used the formulas 2, g = V; —i—@u,H, i = — Vs +pu,H’ and
the fact that P, ;; is self-adjoint. Since n € L? and dyu € LP, their inner
product over R x M is finite and this proves Step 1.

Step 2. 7n(s,y) and dsu(s,y) are linearly dependent for all (s,y) € R x M.

Suppose otherwise that dsu(sg, yo) and 7(sg, yo) are linearly independent for
some (sg,y0) € R x M. By Proposition 4.6 we may assume (sg,yo) € Z(u).
Choose a compact interval I C R containing sg in its interior such that
I'x{yo} C Z(u) and I — X : s — u(s,yp) is an embedding. Then there are
open neighborhoods U C X of u(sg,y0) and V' C M of yg such that

(%) if y € V and s € R such that u(s,y) € U then s € I.

Otherwise there are sequences s, € R\ I and y, — yo such that u(s,,y,)
converges to u(sg,yo). If s, is unbounded then u(sg,yo) € {f~ (v0), f*(v0)},
which is impossible because (sg,yp) € Z(u). Thus the sequence s, is
bounded and hence has a limit point s € R\ int(I) with u(s,yo) = u(so, yo)-
Since s # sp and (sg,yo) € Z(u) this is a contradiction.

Since Odsu(so,yo) and n(so, yo) are linearly independent, hypothesis (II)
on the space %) asserts that there is a smooth function hg : X — R and
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smooth cutoff functions o : X — [0,1] and § : M — [0,1], centered at
xo = u(so,y0) and yo, respectively, such that

% ho(u(s,y0)) = 0, dho(u(so,y0))n(s0,v0) = 1,

S=50

ho(u(s0,%0)) = 0,

and such that the function h%¢ defined by

W (x,y) = a’(@)ho(x), W (x,y) = B (y)h’(x,y),

is an element of .74} for d, e sufficiently small. If § and ¢ are so small that
Bjs(u(so,y0)) C U and B.(yg) C V then the function (s,y) — h%(u(s,y),y)
is supported in I x V. Namely, if h%¢(u(s,y),y) # 0 then u(s,y) € U and
y € V and hence s € I, by (x).

Next we prove that

/Rdhgo (u(s,90))n(s,y0)ds > 0 (52)

for & > 0 sufficiently small. To see this we observe that there is a constant
¢ > 0, independent of §, such that the following holds. First,

DN | =

s—sol <0 = (s, y0))dhy (uls, )l v0) >

because
a(u(s0,90)) = dhy,(u(s0,y0))n(s0,y0) = 1

and hence the condition |s — so| < §/c with ¢ sufficiently large guarantees
that o’ (u(s,yo)) > 3/4 and dhy,(u(s,y0))n(s,y0) > 2/3. Second,

2
cls — sol

s < s,

hyo (u(s, y0))do® (u(s, yo))n(s, yo)| <

because the function s — hy,(u(s,yo)) vanishes to first order at s = sg
and the first derivative of a® is bounded by a constant times 1/6. The last
inequality follows from the fact that da®(u(s,yo)) = 0 for |s — so| > cd.
Both estimates taken together show that

so+cd 1 1
/ dhiy, (u(s,90))n(s, yo) ds > / <§ - c35> ds = 2¢b <§ - 035> .
R

so—co

Thus (52) holds for § < 1/2¢3.
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Now choose € so small that
1)
[ it (e ds > 0

for every y € M with d(yo,y) < €. Then the integral in (51) is positve for
the function h(z,y) = h%¢(x,y) = B°(y)h°(z,y). This proves Step 2.

Step 3. n vanishes identically.
Assume, by contradiction, that n £ 0. Then, by Proposition 4.5, the set

U = {(Svy) eR x M|asu(57y) 7& 0, 77(5,3/) 7é 0}

is nonempty, open, and connected. By Step 2, there is a continuous function
A % — R\ {0} such that n(s,y) = A(s,y)0su(s,y) for all (s,y) € . Since
% is connected, by Proposition 4.5, the function A cannot change sign.
Suppose A > 0 on % . (Otherwise replace n by —n.) Then

<77, 88u> =\ \88u]2 >0

on % and <77,85u> =0on R x M\ %. This contradicts Step 1 and proves
Step 3, the claim, and the first assertion of the theorem. The second as-
sertion follows from Proposition 4.2 and the infinite dimensional implicit
function theorem. O

The above proof follows essentially the argument in [13, Theorem 5.1].
There are, however, a few subtle but important differences. In the present
setting we cannot remove the Hamiltonian term V H from the equation by a
change of coordinates. Second, in symplectic Floer theory the complement
Z = (Rx M)\ % of the set 7 in Step 3 is discrete. This is replaced in the
present context by the codimenion 2 property of Proposition 4.5. In [13] the
proof argues that dsA = 0 and, because 2 is discrete, that A can therefore
be defined globally on R x M (and not just on %). The condition d;\ = 0
can also be obtained in the present case by the same argument, but we do
not need it to obtain the contradiction.

The idea for the proof of the codimension 2 result was communicated
to the third author, several years ago, by Kim Froyshov (in the context of
Seiberg—Witten theory). This requires smooth perturbations and therefore
we cannot work with the C* argument as in the proof of Theorem 4.1 but
must instead use Floer’s Banach spaces of smooth functions. As a result
the construction of the function h in Step 2 above is somewhat less explicit
than in the proof of [13, Theorem 5.1].

46



5 Floer homology

We assume throughout that M is a compact Cartan hypercontact 3-man-
ifold and X is a compact flat hyperkdhler manifold. For H € 57" we
introduce the chain complex

CFu(M,X;H):= P Zo(f).
fe€(H)
pu(f)=k

This group is finitely generated by Theorem 3.6. It is graded by the index
function in equation (50)
p € (H) — Z.

Since H € "¢, Theorem 4.3 asserts that the moduli space . (f~, f*; H)
is a smooth manifolds of dimension pz(f~) — pr(f*) for every pair f*+ €
¢ (H). The real numbers act on these spaces by time shift and it follows
from Theorem 3.15 that

pa(f7)—pa(ff) =1 — #.M(f, f H)/R < 0.

Thus we can use the numbers
no(f=, f7) == #4(f, fH)/R (modulo 2)
to define a boundary operator 9 : CFy, (M, X; H) — CFy_1(M, X; H) by
o (= D ma(fT U
fe€(H)
pr (fH)=k—1
for f~ € €(H) with ug(f~) = k.
Theorem 5.1. For every H € 57 we have 0 0 01 = 0.

To prove this one just needs to observe that the standard Floer gluing
argument [6, 24, 28] carries over verbatim to the present setting. The Floer
homology groups of (M, X; H) are now defined by

ker 0% : CFx(M, X; H) — CFy_1(M, X; H)
imof : CFp (M, X;H) — CF(M,X;H)

It follows again from the familiar arguments in symplectic Floer theory that
these Floer homology groups are independent of the choice of the Hamilto-
nian perturbation H € 7"8. Here one can follow verbatim the discussion
in [12, 29], using the solutions of (22) with H depending on s, to prove the
following theorem.

HF,(M,X;H) :=
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Theorem 5.2. There is a natural family of isomorphisms
P . HF, (M, X; H*) — HF, (M, X; H?),
one for each pair H* HP € 778, such that
P78 o P = e, P =id.

Theorem 5.3. Let X be a compact flat hyperkdhler manifold. Then there
1 a natural family of isomorphisms

O : H.(X;Z9) — HF (M, X; H),
one for every H® € 778, such that
of = @2 o 92,

The proof of Theorem 5.3 is based on the following result which asserts
that the Floer chain complex agrees with the Morse complex for a special
class of perturbations.

Theorem 5.4. Let M be a compact Cartan hypercontact 3-manifold and X
be a compact flat hyperkahler manifold. Let H : X — R be a Morse function
whose gradient flow is Morse—Smale. Then there is a constant €9 > 0 such
that the following holds for 0 < e < eq. If 2t are critical points of H with
indez difference indg(z") —indg(z7) <1 and u: R x M — X is a finite
energy solution of the Floer equation

dsu + e ' @(u) = VH(u), lim u(s,y) =%, (53)
s—=+oo
then indg (x7)—indg(z7) = 1, the function u(s,y) is independent of y € M,
and the operator Dy, . = Vs +e 1P — VVH (u) is surjective.
Remark 5.5. Equation (53) is equivalent, via rescaling, to the equation
Osti + d(u) = eVH (u), lim u(s,y) =%, (54)
s—=o0

+

for the function u(s,y) := u(es,y). Since the limit points ™ are constant

(as functions of y) the energy is
! cn(u) = &g (u) = / / |0sul® K = KVol(M) <H(m+) — H(af))
€ —oo J M

The solutions of (54), and hence also those of (53), determine the boundary
operator on CF(M, X;eH). Moreover, %, . is surjective if and only if the
operator %5 .y in Proposition 4.2 is surjective.

The proof of Theorem 5.4 needs some preparations.
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Lemma 5.6. Let M be a compact hypercontact 3-manifold and X be a flat
hyperkdahler manifold. If H : M x X — R is any smooth function and
u:Rx M — X is a solution of (22) then

* 2 2 4 ST 2
[ (ot v poat) w< (cv5) [ ks o)
S0 M r sSo—T M

for all so < s1 and r > 0, where
C :=2||Hllgs [|0sull poe + 2|1 H 2 -
Proof. For s € R define

o(s) == %/M 0gul® &, (s) = %/M (]Vsasu\Q + \@&u!z) K.

Then
gb”(s):/ |V583u|2/£—|—/ <stsasu,8su>/<
M M

:/ Nsasu\zﬁ—i—/ <V8VSVH(u),8Su>/<;—/ <V835u,P85u>n.
M M M

Here we have used the fact that 77 commutes with Vs, because X is flat, and
that P is self-adjoint with respect to the L? inner product with weight .
Since Vs0su = Vs VH (u) — PIsu we obtain

¢ (s) = 20(s) + /M<VSVSVH(U),83u>/{— /M<VSVH(U),@GSU>K.

Using the inequalities |ViVsVH ()| < ||H||gs |0sul® + || H| o2 |Vedsu| and
|ViVH(u)| < |[Hl o2 |0su| we obtain

&"(s) > 20(s) - / VYLV H ()] |01 5 — / WV H(u)]| [POsul 5
M M
> 2(s) — || Hlo /M Butf* 5 — | H ] /M(\vs‘o‘sur + [Posu]) |0yl »

> 6(s) = (IHles 0l + 1HI2=) [ 1ol
= 4(s) — Cols).

Now let r, R > 0. Then, for 0 < s < r, we have
S1 s1+r S1+s S1+s
[o-c[ o< [ w-cos< [ o
S0 So—7Tr S0—S So—S
=¢'(s1+5)— ¢ (50— s)

= (801 +9) + 9ls0 ).
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Integrating this inequality from 0 to t we obtain

S1 S1+7r
([ o=c [ ) <ot +oto—n

for 5 <t < r. Integrating this inequality again from 3 to r gives

[os(ei) [ e

This proves the lemma. U

Lemma 5.7. Let M, X, and H be as in Theorem 5.4. Then there are pos-
itive constants 9 and C' such that every solution u of (53) with 0 < e < ¢g
satisfies

sup |Osu| < C, sup |9y, ul < Ce
Rx M Rx M

fori=1,2,3.
Proof. Tt is convenient to work with the solutions
u(s,y) = ules,y)

of equation (54). The function s — g (u(s,-)) is nonincreasing along u
and converges to —exVol(M)H (z7) as s — —oo. Hence

o (uls, ") = Aen(u(s,)) + /M eH(u(s,-))rs < erVol(M) |[HI,  (56)

where
|H|| := max H — min H.

The energy of u can be estimated by
() = / - /M 1051|? & dvolys < exVol(M) ||H]|| . (57)
By equation (43) in Lemma 3.10, we have
%/M |da|? < o (u(s,-)) + e2Vol(M) sup IVH* + g /M |02

for every s € R. Integrating this inequality from sqg — 1 to sg + 1, and
using (56) and (57) we obtain
so+1
/ |dut|)® < ce, ¢:=(3+4r)Vol(M) | H| + 4Vol(M) sup |[VHI|?..
M Rx M

so—1

50



Hence, by Lemma 3.3 and Theorem B.1, there are positive constants ¢’ and
go such that sup |du| < ¢’ for every solution of (54) with 0 < & < &.

To improve this estimate we observe that the constant in Lemma 5.6
with H replaced by €H is

C = 262 | H|[2 + 2¢ | H]l s 105 o < cr,

where ¢; depends only on H and the bound on |du| established above. Hence
it follows from Lemma 5.6 with » = oo that

/ / (yvsasmz + \zpasazy?) K < c166op () < coc?
—oo J M

Here we have used the fact that the energy of du is bounded by a constant
times e. Since [,,0su = ¢ [,, VH(u) we obtain from (59) with £ = 9,u that

[ o < ( [ o+ 1, ) -
M M

Integrating this inequality from sg — 1 to sg + 1 gives

so+1 o)
u|” < cg U]+ 2¢o 187 < c3e”.
dul* < Oul® + 2co || H||20n €2 < c362
so—1 M —oco J M

Now it follows from Lemma 3.5 and Theorem B.1 that every solution of (54)
with 0 < e < g satisfies the pointwise inequality |0su| < cqe for a suitable
constant ¢4 > 0. Using the equation we obtain |@#(u)| < cse. Using again
the fact that @ = P (on functions with values in H") is an elliptic operator
whose kernel consists of the constant functions we obtain [, |d17|2 < cge?
for every s. Integrating this inequality from sqg — 1 to so + 1, and using
Lemma 3.3 and Theorem B.1, we conclude that every solution of (54) with
0 < e < gq satisfies the pointwise inequality |dﬂ]2 < ¢7e? for a suitable
constant ¢y > 0. This proves the lemma. O

Lemma 5.8. Let M, X, and H be as in Theorem 5.4. Then there are
positive constants €y, 0, and ¢ such that the following holds. If f: M — X
s a smooth function such that

sup [~ J(f) = VH(f)| <o
M

then
/ €2 < e / e pe — iVH(f)| (58)
M M

for every £ € Q°(M, f*TX).
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Proof. Suppose, by contradiction, that there are sequences €, — 0 and
fv: M — X such that the sequence

N = 5;1ﬁ(fu) - VH(fV)

converges uniformly to zero and (58) does not hold for f,. It is convenient
to choose lifts of the maps with values in the universal cover H" of X. These
lifts will still be denoted by f, : M — H" and we introduce the sequence of
mean values 1

Iv = S10m) /M fu-

Assume without loss of generality that the sequence f, € H" is bounded and
hence, passing to a subsequence if necessary, that it converges. By elliptic
regularity for the operator 72 whose kernel consists of the constant functions
(Lemma 3.7), there is a constant cg > 0 such that

/ f=0 — / €2 < e / PE, suplel < cosup |PE] (59)
M M M M M

for every smooth map £ : M — H". To prove the second inequality in (59)
one can use the Sobolev estimate ||{[| ;- < ¢||&]|yy1., for p > 3 and then L?

regularity for 2. Applying this inequality to the sequence f, — f, we obtain

sup | f, — fu| < cosup|@(f,)| = coevsup |VH(f,) +m| — 0
M M M
and so f, converges uniformly to the same limit as f,. Since

. 3 . 1 . 1
i, A = Jm, ity J, S = e e =

this limit is a critical point of H. Hence there is a constant ¢; > 0 such
that, for v sufficiently large and £ € H", we have

€] < e [VEVH(f)] . (60)

Now let £ : M — H" be a smooth map (thought of as a vector field along f,)

and denote 1
= v J, ¢
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Then P¢ has mean value zero and hence is L? orthogonal to VeVH( 1)
This implies
& 1Pl + [NeVHL) [ = |le' s = VeVH )|
< 3]l Pe - GH| + 3% V()|
+3|[%VH(L) - VeVH(E)|
<3|y ' Pe = %VHL)| +elle — €l + e e 1~ 2P
< 3|ey ' PE — VeVH(£)||” + ceo | PEN* + et [V H (R | £ — £

Here all norms are L? norms on M, the constant ¢ depends only on H, and
the last inequality follows from (59) and (60). For v sufficiently large the
last two terms one the right are together at most one quarter of the terms
on the left. For these values of v we have

&2 |PEN? + || VeVH (L) < 4|s; ' P — e VH(L)|

Hence if follows from (59) and (60) that f, satisfies (58) for v sufficiently
large, in contradiction to our assumption. This proves the lemma. U

Lemma 5.9. Let M, X, and H be as in Theorem 5.4. Then there are
positive constants €q, &, p, and ¢ such that the following holds. If T > 0 and
u:Rx M — X is a solution of (53) with 0 < e < &g such that

/ /|au| <

T
sup [9su(s, y)|? < ce P / / 1Ot
T JM

yeM
for|s| <T —2.
Proof. The functions

1
- /M 1O5ul? |

s) :/ !Vsasu\2+/ e~ POsu — Yy, VH (u)
M M

then

‘ 2
satisfy

@"(s) = Y(s) + / (V*V H(95u, Osu), Osu)
M
= p(s) = 2[[H|[¢s |0sul| oo (ar) @(5)-
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Hence, by Lemma 5.7, there is a constant B > 0 such that ¢” > —B¢. Now
apply Theorem B.1 to the function ¢ to obtain

s+1 T
|s| <T -1 = ¢(5)§61/ ¢§01/ ¢ < c10.
s—1 =T

Careful inspection of the proof of Theorem B.1 for n = 1 shows that the
constant can be chosen as ¢; = 8(v/B 4 1). This shows that the rescaled
function u(s,y) := u(es, y) satisfies the inequality

Is|<e i (T-1) = / 10521|% < c1€26.
M

Now integrate this inequality from sg — 1 to so + 1. Using Lemma 3.5 (to-
gether with the uniform C'! bound of Lemma 5.7) and Theorem B.1 we then
obtain the pointwise inequality |9sa(s, y)|* < 220 for |s| < e 1(T' —1) — 1.
For the function w this gives

‘2

|s|] <T -2 = sup |671@85u — VH(u)|” = sup |dsul* < e0.
M M

If § is chosen sufficiently small we obtain from Lemma 5.8 with £ = 0su that

/ |0ul? < 03/ ‘8_1@8511, — VaSuVH(u)|2

M M

for |s| < T — 2. Thus ¢(s) < c31(s) and, putting things together, we have
¢"(s) = P(s) = 2| H||cs [|0sull oo (ar) D (5)

> (£ - 21es vsb ) o1

for |s| < T — 2. With ¢ sufficiently small this gives ¢”(s) > p?¢(s) and
hence the function s — e ?5(¢/(s) 4+ pd(s)) is nondecreasing. If ¢'(sp) > 0

we then obtain ¢~#%pi(sg) < e #9(¢/(s0) + pi(s0)) < e~ P*(8(5) + po(s))
for s9 < 5 < T —2. Thus peP5=°0)¢(s0) < ¢/(s) + p¢(s) and integrating this
inequality gives

T-2 T
e/’(T—SO_Q)(ﬁ(SO) < (T —2)+ P/ ¢ <(c1+p) /—T ¢.

S0

If ¢'(s9) < 0 we obtain a similar inequality by reversing time. Thus we have
proved that e?(T=1sDp(s) < ¢4 ffT ¢ for |s| < T — 2, where ¢4 := e*(c1 + p).
The pointwise estimate for |asu|2 follows by the same argument as above
from Lemma 3.5 and Theorem B.1 via rescaling. This proves the lemma. [
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Proof of Theorem 5.4. The proof has four steps. It is modelled on the adi-
abatic limit argument in [8].

Step 1. There exists a constant €9 > 0 with the following significance.
If 0 < e < eg, ¥ are critical points of H with indg(x) — indgy(z7) = 1,
and ug : R — X is a gradient trajectory from x~ to x© for eH, i.e.

uols) = VHuo(s), _lip_uols) = o, (61)

then the function R x M — X : (s,y) — uo(s) is a regular solution of (53),
i.e. the operator Dy, . is surjective.

Let £ € WHP(R x M,u}TX) and define £ € WHP(R,usTX) by

€0) = aiaps /. € dvolu(y)

for s € R. Then
-@uo,sg = 835—1— VEVH(UO) + -@uo,s(g - 5_)

Denote by Wol’p(R x M,ufTX) C WHP(R x M, u$TX) the subspace of all
functions ¢ such that £(s,-) has mean value zero on M for every s and
simliarly for LE(R x M,u$TX) C LP(R x M,ulTX). Then the operator

Druge - Wy P(R x M,uTX) — LB(R x M,uTX)
is equivalent to the operator
@ﬁo,eH =V + p — EVVH(QQ)

associated to the rescaled function ug(s) := ug(es). This operator is bijective
for ¢ = 0 and hence also for € > 0 sufficiently small. Hence Step 1 follows
from the above decomposition of the operator 2, . (and the fact that there
are only finitely many index one gradient trajectories up to time shift).

Step 2. There is a constants eg > 0 with the following significance. If x* are
critical points of H such that indgy(z")—indg(z7) =1, andu: RxM — X
and ug : R — X are solutions of (53) and (61), respectively, such that

0<e<eg, sup d(u,ug) <6
RxM

then there is an sy € R such that u(s + so,y) = uo(s) for all s and y.
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We wish to find a real number s( close to zero such that

1
ATH /M u(s0,) — un(0) LV H(ug(0)). (62)

To prove that sg exists we consider the function

6(s) = vole) /M<u(s,-) g (0), V H(uo(0))) dvola.

It satisfies
6(0) < 0n,  pi= [VH(uo(0))] > 0.

Choose a constant p > 0 so small that

|z —up(0)| < p = (VH(z),VH (uo(0))) > %2

Let C be the constant of Lemma 5.7 so that supg, s |0su| < C. Then we
have |u(s,y) — uo(0)| < |u(s,y) —u(0,y)| +d < C|s| + 4, and hence
Clsl+6<p = |uls,y) - uo0) < p.

Combining the last two inequalities we have, for C'|s| +J < p, that
(Dsu(s,-), VH (uo(0)))

(VH(u(s, ), VH (uo(0)))

To obtain a zero of ¢ we need this inequality on an interval of length 7' (on
either side of zero) where % T > 6, or equivalently T > 2“—5. On the other
hand, the interval at our disposal has length at most (p — d)/C. Thus we
must impose the condition (p — 0)/C > 26/, or equivalently

2C
6<1+—> < p.
1

Under this assumption there is a real number sy with |so| < 2§/ such
that (62) holds. We can still control the distance of u(s+ sg,y) and ug(s) by
a fixed multiple of §. We assume from now on that |u(s + sg,y) — uo(s)| < cd
for all s and y and that (62) holds.
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Consider the functions

£(s,y) == u(s + s50,y) — uo(s),
n(s,y) := VH(u(s + so,y)) — VH(up(s)) — Vg(svy)VH(uo(s)).

Then [n(s,y)| < ||Hl|¢s £(s,y)|* and
Do + &7 PE — VeV H (ug) = 1. (63)

Hence the functions

— _ 1
€)= v [ € 16 = g [ )

& — VeVH(ug) =7, (£(0), VEH (u(0))) = 0.

Since the gradient flow of H is Morse-Smale and ug is an index-1 gradient
trajectory of H the kernel of the operator

Dy, := 05 + VVH (ug) : WHP(R,H") — LF(R,H")

satisfy

is 1-dimensional and is spanned by Jsup. Since O0sup(0) = VH (up(0)) the
restriction of D, to the codimention-1 subspace of all { € W1P(R, H") that
satisfy (¢(0), VH(ug(0))) = 0 is a Banach space isomorphism. This implies
that there is a constant ¢y > 0, depending only on ug, such that

(€(0), VH (ug(0))) = 0 — [Cliwe < collOsC = Ve VH (uo)]| -
Applying this to the elements ¢ = ¢ we have D,,& = 7 and hence

€o COC||H”C3

1€llLr < colliillr < Vol(M)1/r 7l e < Vol(M)1/7

S (1€l Lo -

Here we have used the inequality || < | H| s [€]* < ¢ || H]|ps 0 |€]. Now it
follows from (63) and the discussion in the proof of Step 1 for the rescaled
operator %y, .y that, for a suitable constant (still denoted by cg) and € > 0
sufficiently small, we have

€ =&l < coclln =l

1
< ¢ (1 + W) lm|

coc ||H|| s 1/p
Vol(M)1/7 <e + eVol(M) ) S|l -

If §(1 + ¢ + eVol(M)Y/P) < Vol(M)'/? /coc||H|| 55 then € must vanish and
this proves Step 2.

IN
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Step 3. There are positive constant g and ¢ such that the following holds.
If % are critical points of H and u : R x M — H" is a lift of a solution
of (53) (with 0 < e < ¢gq) to the universal cover H" of X, then the function

_ 1
u(s) := Vol (M) /M u(s, ) dvolps

satisfies the inequalities

/i!&MQPdssﬂhﬁ%—H@)+w¥, /i!%&uwwdsﬁa
and |0su(s) — VH(u(s))| < ce for every s € R.
First note that

0uils) — <VH((s) = it [ (VHu(s,9) ~ VH(a(s)) dvolu
and hence
ou(s) ~ VH() < i &5 [ Juts.) ~a(s)? dvolyg
¢ |H|| oo €2
_1wﬂ0 /\a 2 dvoly
§62€4.

Here the second inequality follows from (59) and the last from Lemma 5.7.
Second, the function u satisfies

sYs d S sUs d 1 d S
/Oo |VsOstu(s)|” ds voian) ) ) |VsOsu|” dvolps ds < c3

Here we have used Lemma 5.7 and Lemma 5.6 for the rescaled function
u(s,y) == u(es,y) with C equal to a constant times £2. Third, we have

|8u(s)|* ds = d wuy—wu—am
. y ’)
o [ [ woar

Here we have used (59) and Lemma 5.6, again for the rescaled function
u(s,y) := u(es,y). This proves Step 3.

< H(z")—H(z~ )+

<H(@")—H(x )+ 0452.

o8



Step 4. We prove the theorem.

Let z* be a pair of critical points of H of index difference less than or
equal to 1. Suppose, by contradiction, that there is a sequence of solutions
uy : Rx M — X of (53) associated to a sequence £, — 0 such that u,(s,y)
is not independent of y. Replace each u, by a lift to the universal cover H"
of X (still denoted by u,) with the same limit point lims_, o uy(s,y).

First it follows from Lemma 5.9 that the functions s — Osu,(s,y) sat-
isfy a uniform L' bound. Namely, if § is the constant of Lemma 5.9 and
N > Vol(M)(H(z*) — H(z™))/d is an integer then, for each v, the real axis
can be divided into NN intervals such that the energy of u, on each of these
intervals is less than ké and hence, by Lemma 5.9, Osu, satisfies uniform
exponential estimates on all these intervals. This shows that the images of
the functions wu, are contained in a fixed compact subset of H".

Now consider the associated functions

1

Uy(s) := Vol(M) /M u(s, ) dvolyy.

Normalize the sequence such that H (i, (0)) = 27 (H(z%) + H(z7)). The
W22 bound of Step 3 guarantees the existence of a subsequence (still de-
noted by 1,) that converges in the C''-norm on every compact subset of R
to a gradient trajectory ., of H. The energy bound of Step 3 shows that
the limit sequence has energy at most H(x ") — H(x~). We claim that @
connects z~ to x . Otherwise, the standard compactness argument would
give a subsequence converging to a catenation of at least two gradient tra-
jectories running from x~ to x", contradicting the Morse-Smale property
of the gradient flow. Now it follows from Step 3 that
o o
/ ]857100]2 =H(z%)— H(z™) = lim ]88211,\2 .

vV—
— 00 o0 —00

This implies that 1, (s,) must converge to 2™ for every sequence s, — Fo0.
Hence @, converges uniformly to i, on all of R. Now it follows from the
Sobolev inequality and the elliptic estimate for the operator P that

l[un (s, ) = U (8)| Loo(ary < c1[Pun(s, ) poary < 280
for p > 3. Here the last inequality follows from Lemma 5.7. Hence

lim sup |u,(s,y) — teo(gns)| = 0.
V—00 S,y

By Step 2 this implies that, for v sufficiently large, wu,(s,y) agrees with
Uoo(S) up to a time shift and hence is independent of y. This contradicts
our assumption and proves the theorem. ]
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Lemma 5.10. Let M, X, and H be as in Theorem 5.4. Then there is a
constant €y > 0 such that every smooth solution f: M — X of the equation

A(f)=eVH(f) (64)

with 0 < & < gy is constant.

Proof. Since X is flat we may replace X by its universal cover H" and use
the fact that @(f) = Pf in this setting. It follows from Lemmas 2.2 and 3.7
that there is a constant ¢; > 0 such that

dfllz < e [P Sllz2

for every smooth map f : M — H". Moreover, equation (42) shows that
the second order differential operator PP : W22(M,H") — L*(M,H") is
Fredholm and has index zero. Its kernel agrees with the kernel of 7. Hence
there is a constant co > 0 such that

1Pflle < c2 [PPFIl 2
for every smooth map f: M — H". If Pf = eVH(f) we obtain

PPf = <IV3U1 FVH(f) + IV, fVH() + KV, Vh( f))

and hence

1PPfl 2 < e||V2H| oo df ] 2 -
This gives

ldf |2 < ecres [|V2H| o df [ 2

for every solution f : M — H" of (64). With ecicy HVQHHLOO < 1 this
implies that every solution is constant as claimed. U

Proof of Theorem 5.3. et H : X — R be as in Theorem 5.4. If ¢ > 0
is sufficiently small then, by Lemma 5.10, all critical points of <. are
constant and, by Theorem 5.4, each Floer trajectory for eH of index 1 is
a Morse gradient line and there are no nontrivial Floer trajectories with
index less than 1. Thus, for H' € s sufficiently C? close to eH, the
Floer chain complex (CF(M,X;H'),d"") coincides with the Morse com-
plex of eH. Hence the Floer homology group HF (M, X; H') is naturally
isomorphic to the Morse homology of (X,eH). This gives rise to an isomor-
phism H,(X;Zs) — HF(M, X; H') and composition with the isomorphisms
HF(M,X;H') — HF(M, X; H*) of Theorem 5.2 gives a family of isomor-
phisms satisfying the requirements of Theorem 5.3. O
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Proof of Theorem 2.7. Assume X is a compact flat hyperkéhler manifold
and let H € 5™°™¢, Then, by Theorem 3.6, the number of critical points
of &/ remains unchanged under any perturbation of H that is sufficiently
small in the C? norm. Hence, by Theorem 4.3, we may assume without loss
of generality that H € J#"°¢. By Theorem 5.3, we then have

#¢(H) =dim CF.(M, X;H) > dimHF,. (M, X; H) = dim H,(X;Zs).
This proves the theorem. O

Remark 5.11. An alternative proof of Theorem 5.3 can be given along
the lines of [25], avoiding the adiabatic limit argument of Theorem 5.4.
This would involve Morse-Bott exponential decay for finite energy solutions
of (22) with H = 0 on a half cylinder [0, 00) x M respectively (—oo,0] x M.
Since X is flat, such solutions converge to a point in X as s — +00, and one
can then study solutions where this limit point lies on a gradient trajectory
of a Morse function on X, as in [25], to obtain the desired isomorphism from
Morse to Floer homology, respectively its inverse.

If M := S3 with the standard hypercontact structure, the Morse-Bott
exponential decay as s — 400 can be reduced to the removable singularity
theorem C.1: If u : R x 3 — X is a solution of (22) with H = 0 and
w:H\ {0} — X is given by w(e™*y) := u(s,y) then

80w — 18110 — J82ZU — K@gw = 0. (65)

Moreover, the energy of w on a ball of radius r = e ™% is given by

r2/ \dw[2:d(u(so,-)):2/ / 10uf?.
T S0 SS

(Here we use k = 2 for M = S3.) We emphasize that no such argument is
available for the limit s — —oo. This reflects a fundamental asymmetry in
equation (22) related to the noncommutativity of the quaternions.

A Hypercontact manifolds

Let M be an oriented 3-manifold. Three contact structures £1,&2,&3 on
M are said to form a hypercontact structure if there exists a 1-form
a = (ai,ag,a3) € QY (M, R3) such that a; A doy; > 0, & = ker oy, and

a; Nda; = oy Ndoyj =: 0, a; ANdaj + a; Ada; =0 (66)
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for ¢ # j. The 1-form « is determined by the contact structures &; up to
multiplication by a positive function on M. We shall sometimes abuse no-
tation and refer to the 1-form o € Q!(M,R?) as the hypercontact structure.
Associated to « is a family of contact forms

) = <)\, a> = Moag + dag + Azas

parametrized by the standard 2-sphere S? C R3. In this formulation equa-
tions (66) hold if and only the volume form a ) Ada is independent of . Hy-
percontact structures were introduced and studied by Geiges—Gonzalo [14,
15]. They used the term taut contact sphere for the map A\ — «,. The term
hypercontact structure was used with a different meaning in [16].

Lemma A.1. Let o € QY(M,R3) be a hypercontact structure. Then the
associated Reeb wvector fields vi,ve,v3 € Vect(M) are everywhere linearly
independent.

Proof. Since ay A day = |)\|2 o for A € R3 the 2-forms do, dao, das are ev-
erywhere linearly independent. Since day; = t(v;)o this shows that vy, va, v
are everywhere linearly independent. O

Remark A.2. If the 1-forms a7, as, ag form a hypercontact structure then,
by Lemma A.1, the Reeb vector fields vy, v2,v3 form a global framing of the
tangent bundle. Call the hypercontact structure positive if this framing is
compatible with the orientation. This can be achieved by reversing the sign
of all three 1-forms, if necessary. In the positive case the function

K := day (ve,v3) = dag(vs, v1) = dag (v, v2) (67)

on M is positive. Moreover, it is convenient to choose a Riemannian metric
on M in which the v; form an orthonormal basis. The associated volume

form is given by

4/\d .
dvoly, = B2y _q 93,
K

Remark A.3. Let a1, as, a3 be a hypercontact structure with Reeb vector
fields vy, v9, v3 and, for A\ € 82, denote vy 1= A\jv1 + Aavs + Agv3. Then vy is
the Reeb vector field of ay. To see this note that

ai(vj) + Oéj(’[)l') =0, dai(vj, ) + daj(vl-, ) =0 (68)

for i # j, by (66) and Lemma A.1. Hence ay(vy) = 1 and day(vy, ) = 0.
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Lemma A.4. Let o be a hypercontact structure on M with Reeb vector
fields vi,ve,v3. Let k: M — R be defined by (67) and p: M — R3 by

pri=as(vs),  pe=oag(vi),  pszi=aoa(va).

Let ey, ea, e3 denote the standard basis of R3. Then the following holds.
(1) The Lie brackets of the Reeb vector fields satisfy

[v2,v3] = Kv1, [vg,v1] = K, [v1,v2] = Kv3 (69)

if and only if
du(v;) = ke; A, i=1,2,3. (70)

(ii) If (69) and (70) hold then k is constant. Conversely, if k and p are
constant then p = 0.

(iii) The function p vanishes if and only if o; A doj = 0 for i # j, or
equivalently do; = kxa; fori=1,2,3. Here x denotes the Hodge x-operator.

Definition A.5. A positive hypercontact structure o with pu =0 is called a
Cartan structure.

Corollary A.6. If a is a Cartan structure then k is constant, the a; form
the dual basis of the v;, the v; satisfy (69), a; A doj = 0 for i # j, and
d*a; =0 fori=1,2,3.

Proof of Lemma A.4. We introduce the 1-form p € Q1(M,R3) and the vec-
tor fields wy, wa, w3 € Vect(M) by

das(vs, -) wy = [v2, V3],
p:=—1 dasg(vi,-) |, we = [vs, v1],
dal(vg, ) wsg ‘= [1)1,1)2].
Then p satisfies
pi(vj) = dij, &) = p(&) + p(&) A . (71)
We also introduce the matrices
ar(wr)  ar(wz) ar(ws) pr(wi) pi(wz)  p1(ws)
A= og(w1) oaz(wz) az(ws) |, S:=| pa(w1) pa(w2) pa(ws) |,
ag(wr) az(wz) az(ws) p3(w1) p3(wz) ps(ws)
O dpi(vi)  dpi(ve)  dpa(vs)
D= —pu3 1 m |, B:=| dua(vi) dpa(va) dpa(v3)
p2  —p 1 dps(vi)  dps(ve)  dps(vs)
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Then the second equation in (71) implies @S = A. Next we observe that
ai([vj, v]) = dai(vj, ) — Lo ai(vr) + Loy i(v;).
Hence «;([vj,vg]) = Kk + dpj(v;) + dpk(vy) whenever i, 7,k is a cyclic per-

mutation of 1,2,3, and «;([vi,vx]) = —Ly;a;(vg). These identities can be
summarized in the form o;(w;) + dpj(vi) = (k + Y dpg(vg)) ;5 or

PSS =A= <m +)° d,uk(vk)> 1- BT (72)

k

Moreover, we have

0 = ddal(vl,vg,vg)
= Evl dal('UQ, U3) + ,CUQdOél(Ug, Ul) + ,CUSdOél(Ul, U2)
—day (v1, [v2,v3]) — day (ve, [v3, v1]) — dag (v3, [v1, v2])

= dr(v1) — daqg(ve, [vs,v1]) — daq (vs, [v1,v2]).

Repeating the argument for as and ag and using equation (68) we obtain

dr(v1) = k(p3(wz2) — p2(ws3)),
dr(v2) = K(p1(ws) — p3(w1)), (73)
dri(vs) = K(p2(w1) — p1(w2)),

Hence & is constant if and only if the matrix S is symmetric.
We prove (i). Equation (69) is equivalent to S = k1 and equation (70)
to B = k(® — 1). If S = k1 then it follows from (72) that

BT = k(11— ®) + Y _ dup(vp)1.
k

Examining the diagonal entries we find that dug(vg) = 0 for & = 1,2,3
and hence BT = k(1 — ®). This in turn implies that BT = —B and thus
B = k(® — 1). Conversely, if B = xk(® — 1) then B is skew symmetric and
dug(vg) = 0 for all k. So it follows from (72) that &S = k1 + B = k® and
hence S = 1.

We prove (ii). If (69) holds then S = k1 is symmetric and so k is
constant, by (73). Conversely, if x and p are constant then, by (72), we
have ®S = 1 and, by (73), S = ST. Hence ® is symmetric and so p = 0.

To prove (iii) we observe that, for every cyclic permutation i, j, k of 1, 2, 3,
we have a; Adaj = kpgdvolyr and K * oy = doy + pdoy — pydayg,. (Take the
product with a 1-form ( and use the identity (8 A da;)(vi,v2,v3) = kB(v;).)
This proves the lemma. U
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Example A.7. The standard hypercontact structure on the unit sphere
S3 c R* with coordinates y = (yo,y1, ¥2,y3) is given by the 1-forms

a1 = yody1 — y1dyo + y2dys — y3dyo,
a = Yodyz — y2dyo + y3dyr — y1dys,
a3 = yodys — yzdyo + y1dy2 — y2dy;.

Identify R* with the quaternions via

Yy = yo + iy1 + jy2 + kys

and R? with the imaginary quaternions via A = i\ 4+ jAs + k)3. Then the
1-form a) := Mg + Aoas + A3a3 and its Reeb vector field vy are given by

ax(y;n) = Re(Ayn), ua(y) = Ay

for A € $? C Im(H) and n € T,5%. We emphasize that in this example
p=0and k = 2.

The standard hypercontact structure on S is preserved by the right
action of the unit quaternions via Sp(1) x S3 — S3 : (a,y) — ya. For the
left action of Sp(1) on S? we have

¢ZO‘)\ = Qg—1)a» ¢ZU)\ = Vg—1xa>
where ¢, € Diff(S3) is given by ¢4(y) := ay for a € Sp(1) and y € S3.

Proposition A.8 (Geiges—Gonzalo [14, 15]). Every Cartan hypercontact
3-manifold (M, ) is diffeomorphic to a quotient of the 3-sphere (with the
standard hypercontact structure up to scaling) by a finite subgroup of Sp(1).

Proof. By rescaling, if necessary, we may assume that x = 2. Then there is a
unique Lie algebra homomorphism Lie(Sp(1)) = Im(H) — Vect(M) : £ — v
such that v;, vj, vk are the Reeb vector fields of a1, ag, a3, respectively. Since
M is compact and Sp(1) is simply connected, this Lie algebra homomor-
phism integrates to a unique Lie group homomorphism

Sp(1) — Diff (M) : z — ¢,.

This group action of Sp(1) on M is transitive, because M is connected,
and it has finite isotropy subgroups. Fix an element yg € M and define
the map v : Sp(1) — M by ¥(x) := ¢.(yo). This map induces a diffeomor-
phismm Sp(1)/Go — M, where G := {z € Sp(1) | ¢ (y0) = yo} denotes the
stabilizer of yg. This diffeomorphism identifies the vector field = +— iz on
Sp(1)/Go with the vector field v; on M and similarly for j and k. O
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B The Heinz trick for subcritical exponents

Let M be a smooth Riemannian n-manifold (not necessarily compact) and
let .Z be a scalar second order elliptic operator. We assume that % differs
from the Laplace Beltrami operator A := —d*d by a first order operator.
We study nonnegative solutions e : M — R of the differential inequality

ZLe>—A— Bel (74)
where 9
1<t
n

In the critical case u = (n+2)/n the Heinz trick gives a mean value inequality
for nonnegative solutions e : B,(pg) — [0,00) of (74) with sufficiently small
L' norm (see for example [27, 31]). For p < (n+2)/n the same proof shows
that the condition on the L' norm can be dropped and one obtains a global
estimate for the sup-norm in terms of the L' norm of e.

Theorem B.1. Let K C M be a compact set and let 1 < p < (n+2)/n.

(1) Assume p < (n+2)/n. Then there is a constant ¢ > 0 with the following
significance. If e : M — R is a nonnegative C? function satisfying (74) then

supe§c<A—|—/ edvolys + <B"/2/ edvolM> >, (75)
K M M

where ac:=2/(2+n —np).

(ii) Assume p = (n +2)/n. Then there are positive constants h,d,c with
the following significance. If e : M — R is a nonnegative C? function
satisfying (74) then, for x € K and 0 <r < §, we have

1
B"/Q/ e<h = e(@x)<cl|Ar?r+— edvolys | . (76)
B, (x) " JB,(x)

Proof. The proof has three steps. For po € M and r > 0 we denote by
B, (po) C M the closed ball of radius r about pg. The first step restates
Theorem 9.20 in [17].

Step 1. There are constants c1 > 0 and § > 0 with the following significance.
Ifpo € K and 0 < r < § then every nonnegative C? function e : B,(pg) — R
satisfies

Ae>0 = e(py) < —n/ edvolyy.
Br(po)
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Step 2. There are constants co > 0 and § > 0 with the following significance.
Ifpo € K, 0 <r <6, and A > 0, then every nonnegative C? function
e: By(po) — R satisfies

Le>—-A = e(p) <c2 Ar? + in edvolys | .
r Br(pO)

Let 0 be smaller than the injectivity radius of M and than the constant in
Step 1. Choose geodesic coordinates y', 32, ..., y™ in B, (yo) with y*(py) = 0.
Then

1%
z= Z“ P uay a v
with a#”(0) = 6*¥. Choose 5 so small that
1
yl<s = ™ (y) = U+ 00" (y)l < ~

for v =1,...,n. Denote by Ag =3 (52

>)? the standard Laplace operator
y

and consider the function

This function satisfies Agu = nA and

(ZLu = Agu)(y) = A (Z(a””(’y) D+ b”(y)y”> > —A.

v

Hence Zu > (n —1)A and
ZLe+u) > Le+(n—1)A>0.

By Step 1, this implies

e(0) = e(0) +u(0) < 7% / (e + u)dvolyy.

Hence the assertion follows from the fact that
r A n+2
/ udvolys < wnA/ P dp = Ynll
- 0 n -+ 2

Here w,, denotes the area of the unit sphere in R™ and § is chosen so small
that dvolp; and the volume form of the flat metric differ by a factor at
most 2. This proves Step 2.
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Step 3. There is a constant c3 > 0 with the following significance. If
e: M — R is a nonnegative C? function satisfying

ZLe>—A— Bel

for some constants A, B > 0 then

2/(24+n—npu)
supe < c3 A—|—/ edvolys + (B"/2/ edv01M> .
K M M

Let 6 be as in Step 2 and assume cp6° < i. Fix a point pg € K. Define

h:[0,0] — R by
§—s\"
h(s) := < 5 > lg’?&)ﬁ) e.

BO) = e(po),  h(8) = 0.
Since h is nonnegative there is an s* € [0,0) and a p* € Bg«(pg) such that

Then

h(s*) = Orgg;céh(s), c:=e(p*) = Brsriz(i;;) e.

Denote

Then

max e < max e= This +€)n < 2" h(sn) =2" max e=2"c.
Be(p) T Boyelo) (0 —s*—¢)" T (6 - ) By (po)

Hence in B.(p*) we have the inequality
ZLe>—A—Bet' > —-A— B(2"c)".

By Step 2 this implies

c=e(p?) < o ((A + B(2Me)" ) + Tin /M edvolM> (77)

for 0 < r < e. Now comes the crucial case distinction.
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Case 1. If ¢ < A then we have
e(po) <ec< A

and so the desired estimate holds with c3 = 1. Thus we may assume A < c.

Case 2. Assume

A<ec, co B2 et 12 >

SN

Then we may choose r < ¢ < § such that co B2 cH 11?2 = i and obtain

co(A + B(2"c)")r? < cpcd? 4 coB(2"c)Hr? <

NN

Hence, by (77), we have

2
c < ﬂ/ edvoly; = 202(402B2n“)"/26(n”n)/2/ edvolyy.
rn M M

Since p < (n + 2)/n we have 2 +n — ny > 0 and hence

)

2/(24+n—npu)
e(po) <c<cs <B”/2/ edvolM>
M

with ¢z := (2 (022W+2)"/2)z/(2+n_w). (For the critical exponent we have

(np—mn)/2 = 1. In this situation Case 2 can be excluded by the assumption
of a sufficiently small upper bound on B™/2 [ edvolys.)

Case 3. Assume

1
A<eg, co B2l < T

Then we may choose 7 = € and obtain cz(A + B(2"¢)")e? < § as before.
Hence, by (77), we have

2
c< ﬂ/ edvol,;.
en M

Since § — s* = 2¢ this gives

§— g* n M T 2n+1
elm) = 0) < ") e (S5 ) =T <2 [ cavonn

Thus in this case the estimate of Step 3 holds with c3 = 2""!cy/6". This
proves the theorem. O
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C A removable singularity theorem

Denote by B C R* the unit ball with coordinates t = (to,t1,t2,t3) and by
Br::{t€R4||t|§r}, Sr::{t€R4||t|:r},

the ball and sphere of radius r. Let X be a hyperkahler manifold with
complex structures I, J, K. Let w: B — Vect(X) and = = (¢/) : B — R**4
be smooth maps such that =(0) = 1 is the identity matrix and Z(¢) is
nonsingular for every t € B. We examine solutions of the equation

3
Z(ﬁé(t)@iu + fi (t)I0;u + 5% (t)JO;u + fg,(f)Kalu) = Vw(t,u). (78)
=0
Associated to equation (78) is the elliptic operator

k 3
L= Z aij(?i@j + ijaja a' = Zglzj Z’ b = Z(algljf)élzf
Jj=0 v

i,j=0 v

Theorem C.1. Assume X is a compact flat hyperkéihler manifold (possibly
with boundary). If u : B\ {0} — X is a solution of (78) on the punctured

disc and 5
du|? = /8iu2<oo
/ la > |, low

then u extends to a smooth function from B to X.

Remark C.2. In Theorem C.1 the condition that X is flat cannot be omit-
ted. For example, let f : S3 — X be a nonconstant critical point of the
hypersymplectic action functional /. Such critical points are described in
the introduction (compositions of rational curves with Hopf fibrations) and
they do not exist in the flat case, by Lemma 3.7. Identify S? with the unit
sphere in H and define v : H\ {0} — X by

u(t) == f(jt[7" D).
Then wu satisfies the equation
Oou — IO u — JOyu — KO3u = 0.
Moreover, we have |du(t)|* = [¢|~2 |df (Jt|~1¢)|? and hence

2_ﬁ 2: 2%
[ e =75 [ =t

for every r > 0. However, the singularity of u at the origin cannot be
removed.
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Lemma C.3. Assume X is a compact flat hyperkdhler manifold. Then there
is a constant C' > 0 with the following significance. If u: B\ {0} — X is a
solution of (78) then the function e = e, : B — [0,00) defined by

1 3
e(t) = 3 Z
=0

satisfies the inequality

2

(2

3 .
&5(t)0suft)
=0

Le > —C(1+¢%?).

Proof. The proof uses word by word the same arguments as in Lemma 3.3
and will be omitted. O

The exponent % = ”T*Q in Lemma C.3 is the critical exponent of Theo-

rem B.1 for n = 4. Hence every solution u : B\ {0} — X of (78) satisfies
an inequality of the form

t| =r = du(t)])? < er? + 764/3 |du)? (79)
2r

for 7 sufficiently small and a suitable constant ¢. Thus |t|* |du(t)|* converges
to zero as t tends to zero.

It is convenient to introduce the 1-forms 61, 62,03 and the vector fields
Vg, V1, V2, V3 on B by

0, := todt; — t1dtg — todts + tadts,

0o = todts — todty — tsdty + t1dts,

03 = todts — tsdtyg — t1dte + tadtq,

vo = to0p + t101 + t202 + t30s,

v1 1= tgO1 — t10) — t203 + t304,

vg 1= tgOy — t20y — t301 + 1103,

vg := toO3 — t300) — t102 + t20;.
Note that the v; are orthogonal and |v;(¢)| = |¢|. In particular, for ¢ € S, the
vectors r~Luy (t), 7 Lvg(t), 7 tvg(t) form an orthonormal basis of the tangent

space T;S, = t+. The energy and the hypersymplectic action of a smooth
map u : .S, — X are defined by

3
£.(u) ::Tiz/s S ldu()?, () ::/S b A uten

™ i=1
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Lemma C.4. The energy and hypersymplectic action satisfy the isoperimet-
ric inequality
p(u) < ré(u) (80)

and the energy identities
2 1
6 () + 2t () = / Tdu(v1) + Jdu(vs) + Kdu(vs)[? dvols,  (81)
Sr
for every smooth map u: S, — X and

/ \du|? = 7, (u) +/ 180w + I81u + JOyu + K dzul? (82)
B, B,

for every smooth map u : B, \ {0} — X satisfying lim;_q |t|* |du(t)|* = 0.

Proof. We have 0;(v;) = r25ij and so the standard volume form on S, is
dvolg, = r~301 A 03 A 03. Hence 6; A u*w; = r_lu*wi(vj, vg)dvolg, for every
cyclic permutation i, j, k of 1,2,3. This implies

1

oy (u) = ;/ (u*wl(vg,vg) + ufwo(vs, v1) + u*wg(vl,vg)> dvolg,

T

and hence the isoperimetric inequality (80). The energy identity (81) is an
adaptation of Lemma 2.2 to the present notation. To prove (82) we assume
that w : B, \ {0} — X satisfies lim, .o [t|* |du(t)]* = 0. Then it follows
from (80) that lim,_.q 27,(u) = 0. Moreover, by direct computation, we have

/ (]du!z — ]80u+181u+J82u+K83u]2> = . (u) — o)(u)
B/ \B,

for 0 < p < r. The assertion follows by taking the limit p — 0. This proves
the lemma. O

Lemma C.5. Assume X is compact and fix any real number 0 < p < 4.
Let u: B\ {0} — X be a solution of (78) satisfying lim, o |t|* |du(t)]* = 0.
Then there are positive constants ro and ¢ such that

0<r<rmy — / |du)? < ert.

Proof. Since Z(0) is the identity matrix, there is a constant C' > 0 such that
every solution of (78) satisfies the estimate

|Bou(t) + I01u(t) + JOu(t) + Kdsu(t)|® < C2(|t)? |du(t)|* +1)  (83)
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Combining this with (82) we obtain

/ ldu|* = M(u)—{—/ |Bou + I1u + Jyu + Kdsul?

IN

oy (u) + C%r? / |du|?* + C?Vol(B)r?. (84)

Since
|du(vo) + Idu(vr) + Jdu(ve) + Kdu(vs)| = 7 |0pu + 101w + JOau + KO3u|
on S, and 2 |du|* + 1 < (r |du| 4+ 1)2, it follows also from (83) that

|du(vo)| > [Tdu(vy) + Jdu(ve) + Kdu(vs)| — Cr? |du| —
|du(vo)* > |Tdu(vy) + Jdu(ve) + Kdu(vs)|* — 6Cr3 |du|* — 6C7? |dul .

This implies

/ST dul” = /Zldu vi)l” =& (u )—i—r—lz/sr|du(v0)|2

Sr = 0
> & (u) / \Idu(vy) + Jdu(vy) + Kdu(vs)|?
—66‘7"/ du? —60/ d|
s 3C
> 26, (u) + —JZZ»(U) —60(7’—1—5)/ |du|"— — [ 1
T Sy 2(5 S,

Here we have dropped the volume form dvolg, in the notation. The last
step follows from (81). Since &,(u) > r~1.o7.(u) and the area of the 3-sphere
is 4Vol(B) this gives
4 6CVol(B)r?
(1+6C(r+0)) | |duf® > Za(u) — 6CVol(B)r”
Sy r 1)
On the other hand, by (84) we have
(1-C%r?) / |du|?® < o (u) + C*Vol(B)r*
By

Combining these two inequalities we obtain

1—1—66’7“—1-6 3C
/ du|* < —————— i /|d B +< 022+25>Vol( )rd
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for r < 1/C. Choose § so small that (1+6Cd)u < 4. Then, for r sufficiently
small and a suitable constant ¢ > 0, we have

/ \du)? < r,ul/ |du)? + er?. (85)
B Sr

Define the function ¢ : (0,1] — R by

_ pe 4
qu:——r“/ du|® + re k.

Then the derivative of ¢ is

d
a0ty = o [l = [ duf? e
dr Br

Sr

= purht <r,u1/ |du? —/ |du|2—i—cr4> > 0.
Sy r

The last inequality follows from (85) and holds for r sufficiently small, say
for 0 < r < rg. Hence

/ dul? < $(r)rt < $lro)rt

T

for 0 < r < rg. This proves the lemma. O

Proof of Theorem C.1. Choose a real number p such that 2 < yu < 4. Com-
bining Lemma C.5 with the the inequality (79) we obtain

du(t)|? < ¢
O <

for a suitable constant ¢ > 0. For 4 < p < 8/(4 — p) this implies

1 1
/ |dul? :/ / |dul? < 4V01(B)cp/ P @RP2 g < oo
B 0 Js, 0

That the integral is finite follows from the fact that 3 — 2(4 — p)p > —1.
By the Sobolev embedding theorem our function w : B\ {0} — X is Holder
continuous and extends to a WP function on B. Now it follows from the
standard elliptic bootstrapping techniques that the extended function u is
smooth. This proves the theorem. O
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