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1 Lie Groups

A Lie Group is a smooth manifold with a group structure such that the
multiplication and the inverse map are smooth (C∞). A Lie subgroup of
a Lie group is a subgroup that is also a submanifold. Assume throughout
this section that G is a Lie group. The tangent space of G at the identity
element 1l ∈ G is called the Lie algebra of G and will be denoted by

g := Lie(G) := T1lG.

For every g ∈ G the right and left multiplication maps Rg, Lg : G → G are
defined by

Rg(h) := hg, Lg(h) := gh

for h ∈ G. We shall denote the derivatives of these maps by

vg := dRg(h)v ∈ ThgG, gv := dLg(h)v ∈ TghG

for v ∈ ThG. In particular, for h = 1l and ξ ∈ T1lG = g, we have ξg, gξ ∈ TgG
and hence ξ determines two vector fields g 7→ gξ and g 7→ ξg on G. These
are called the left-invariant respectively right-invariant vector fields gen-
erated by ξ. We shall prove in Lemma 1.2 below that the integral curves of
both vector fields through g0 = 1l agree.

Exercise 1.1. (i) Prove that

(v0g1)g2 = v0(g1g2)

for v0 ∈ Tg0G and g1, g2 ∈ G. Similarly

(g0v1)g2 = g0(v1g2), (g0g1)v2 = g0(g1v2).

(ii) Prove that with the above notation the Leibniz rule holds, i.e. if α, β :
R → G are smooth curves, then

d

dt
α(t)β(t) = α̇(t)β(t) + α(t)β̇(t).

Hint: Differentiate the map R2 → G : (s, t) 7→ α(s)β(t).

(iii) Deduce that
d

dt
γ(t)−1 = −γ(t)−1γ̇(t)γ(t)−1

for every curve γ : R → G.

(iv) Prove that the vector fields g 7→ gξ and g 7→ ξg are complete for every
ξ ∈ g. Hint: Prove that the length of the existence interval is independent
of the initial condition.
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Lemma 1.2. Let ξ ∈ g and let γ : R → G be a smooth curve. Then the
following conditions are equivalent.

(i) For all s, t ∈ R

γ(t+ s) = γ(s)γ(t), γ(0) = 1l, γ̇(0) = ξ. (1.1)

(ii) For all t ∈ R
γ̇(t) = ξγ(t), γ(0) = 1l. (1.2)

(iii) For all t ∈ R
γ̇(t) = γ(t)ξ, γ(0) = 1l. (1.3)

Moreover, for every ξ ∈ g there exists a unique smooth curve γ : R → G that
satisfies either of these conditions.

Proof. That (i) implies (ii) follows by differentiating the identity (1.1) with
respect to s at s = 0. To prove that (ii) implies (i) note that, by Exer-
cise 1.1 (i), the curves α(t) = γ(t+ s) and β(t) = γ(t)γ(s) are both integral
curves of the vector field g 7→ ξg such that α(0) = β(0) = γ(s). Hence
they are equal. This shows that (i) is equivalent to (ii). That (i) is equiva-
lent to (iii) follows by analogous arguments, interchanging s and t. The last
assertion about the existence of γ follows from Exercise 1.1 (iv).

The exponential map exp : g → G is defined by

exp(ξ) := γξ(1),

where γξ : R → G is the unique solution of (1.1). With this definition the
path γξ is given by

γξ(t) = exp(tξ). (1.4)

To see this, note that by (1.2) the curve α(s) := γξ(ts) satisfies the differential
equation α̇(s) = tξα(s), and so exp(tξ) = α(1) = γξ(t). This proves (1.4).
It follows from (1.4) and Lemma 1.2 that the exponential map satisfies the
equations exp(0) = 1l and

d
dt
exp(tξ) = ξ exp(tξ) = exp(tξ)ξ,

exp((s+ t)ξ) = exp(sξ) exp(tξ)
(1.5)

for all s, t ∈ R and all ξ ∈ g. The adjoint representation of G on its Lie
algebra g is defined by

Ad(g)η := gηg−1 := d
dt

∣∣
t=0

g exp(tη)g−1.
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In other words the linear map Ad(g) : g → g is the derivative of the smooth
map G → G : h 7→ ghg−1 at h = 1l. The map G → GL(g) : g 7→ Ad(g) is a
group homomorphism, i.e.

Ad(gh) = Ad(g)Ad(h), Ad(1l) = id,

for all g, h ∈ G, and is called the adjoint action of G on its Lie algebra. The
derivative of this map at g = 1l in the direction ξ ∈ g is denoted by ad(ξ).
The Lie bracket of two elements ξ, η ∈ g is defined by

[ξ, η] := ad(ξ)η = d
dt

∣∣
t=0

exp(tξ)η exp(−tξ).

Lemma 1.3. For all ξ, η, ζ ∈ g we have

[ξ, η] = −[η, ξ], (1.6)

[[ξ, η], ζ] + [[η, ζ], ξ] + [[ζ, ξ], η] = 0. (1.7)

Proof. We prove that the map g → Vect(G) : ξ 7→ Xξ defined by Xξ(g) := ξg
for ξ ∈ g and g ∈ G is a Lie algebra homomorphism. To see this, denote
by ψt ∈ Diff(G) the flow generated by Xξ, i.e. ψt(g) := exp(tξ)g for t ∈ R
and g ∈ G. Then, by definition of the Lie bracket of vector fields,

[Xξ, Xη](g) =
d
dt

∣∣
t=0

dψt(ψ−t(g))Xη(ψ−t(g))

= d
dt

∣∣
t=0

exp(tξ)η exp(−tξ)g
= [ξ, η]g

Here we have used Exercise 1.1 (i). Now the assertions follow from the
properties of the Lie bracket for vector fields.

Definition 1.4. A Lie algebra is a real vector space g equipped with a skew-
symmetric bilinear map g× g → g : (ξ, η) 7→ [ξ, η] that satisfies the Jacobi
identity (1.7).

Lemma 1.5. Let ξ, η ∈ g = Lie(G) and define γ : R → G by

γ(t) := exp(tξ) exp(tη) exp(−tξ) exp(−tη).

Then γ̇(0) = 0 and d
dt

∣∣
t=0

γ(
√
t) = [ξ, η].

Proof. As in the proof of Lemma 1.3, the flow of the vector field Xξ(g) = ξg
on G is given by t 7→ Lexp(tξ) and [Xξ, Xη] = X[ξ,η] for ξ, η ∈ g. Hence the
result follows from the corresponding formula for general vector fields.
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Lemma 1.6. Let R2 → G : (s, t) 7→ g(s, t) be a smooth map. Then

∂s
(
g−1∂tg

)
− ∂t

(
g−1∂sg

)
+
[
g−1∂sg, g

−1∂tg
]
= 0. (1.8)

Proof. If M is a smooth manifold, R2 → M : (s, t) 7→ γ(s, t) is a smooth
map, and X(s, t), Y (s, t) ∈ Vect(M) are smooth families of vector fields such
that

∂sγ = X ◦ γ, ∂tγ = Y ◦ γ,
then

(∂sY − ∂tX − [X, Y ]) ◦ γ = 0.

To obtain the formula (1.8), apply this identity to the manifold M := G, the
map γ := g : R2 → G, and the vector fields X := Xξ and Y := Xη (as in the
proof of Lemma 1.3), where ξ := (∂sg)g

−1 and η := (∂tg)g
−1.

Exercise 1.7. Prove that for every g ∈ G and every ξ ∈ g

g exp(ξ)g−1 = exp(Ad(g)ξ) (1.9)

Hint: Consider the curve γ(t) = g exp(tξ)g−1 and use Exercise 1.1.

Exercise 1.8. Prove that for every ξ ∈ g

Ad(exp(ξ)) = exp(ad(ξ)). (1.10)

Hint: See Lemma 2.1 below.

Exercise 1.9. Prove that any two elements ξ, η ∈ g satisfy [ξ, η] = 0 if and
only if exp(sξ) and exp(tη) commute for all s, t ∈ R.

2 Lie Group Homomorphisms

Let G and H be Lie groups with Lie algebras g and h. A Lie group homo-
morphism is a smooth map ϕ : G → H which is a group homomorphism. A
linear map Φ : g → h is called a Lie algebra homomorphism iff

[Φ(ξ),Φ(η)] = Φ([ξ, η])

for all ξ, η ∈ g. The next lemma asserts that the derivative of a Lie group
homomorphism at the identity is a Lie algebra homomorphism. An example
is the map g → Vect(G) : ξ 7→ Xξ in the proof of Lemma 1.3; the corre-
sponding Lie group homomorphism is the map G 7→ Diff(G) : g 7→ Lg. (See
Example 12.14 below.)
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Lemma 2.1. Let ϕ : G → H be a Lie group homomorphism. Then its
derivative Φ := dϕ(1l) : g → h at the identity is a Lie algebra homomorphism.

Proof. We show first that Φ and ϕ intertwine the exponential maps, i.e.

exp(Φ(ξ)) = ϕ(exp(ξ)) (2.1)

for all ξ ∈ g. To see this, consider the curve γ(t) := ϕ(exp(tξ)) ∈ H. This
curve satisfies γ(s + t) = γ(s)γ(t) for all s, t ∈ R and γ̇(0) = Φ(ξ). Hence,
by Lemma 1.2, γ(t) = exp(tΦ(ξ)). With t = 1 this proves (2.1).

Next we prove that

Φ(gξg−1) = ϕ(g)Φ(ξ)ϕ(g)−1 (2.2)

for ξ ∈ g and g ∈ G. Consider the curve γ(t) := g exp(tξ)g−1. By (2.1), we
have ϕ(γ(t)) = ϕ(g) exp(tΦ(ξ))ϕ(g)−1. Differentiate this curve at t = 0 to
obtain (2.2). By (2.1) and (2.2), we have

Φ([ξ, η]) = d
dt

∣∣
t=0

Φ(exp(tξ)η exp(−tξ))
= d

dt

∣∣
t=0

exp(tΦ(ξ))Φ(η) exp(−tΦ(ξ))
= [Φ(ξ),Φ(η)]

for all ξ, η ∈ g. This proves Lemma 2.1.

A representation of G is a Lie group homomorphism ρ : G → GL(V )
where V is a real or complex vector space. Differentiating such a map at g = 1l
gives a Lie algebra homomorphism ρ̇ : g → End(V ) defined by

ρ̇(ξ) := d
dt

∣∣
t=0

ρ(exp(tξ)) for ξ ∈ g.

Examples are the obvious action of U(n) on Cn and the induced actions on
spaces of symmetric polynomials or exterior forms.

Definition 2.2. Let g be a finite-dimensional Lie algebra. A Lie algebra
automorphism of g is a bijective Lie algebra homomorphism Φ : g → g, so
its inverse is also a Lie algebra homomorphism. The group of Lie algebra
automorphisms of g is denoted by Aut(g) ⊂ GL(g). A derivation of g is
a linear map δ : g → g that satisfies δ[ξ, η] = [δξ, η] + [ξ, δη] for all ξ, η ∈ g.
The space of all derivations of g is denoted by Der(g) ⊂ End(g).

Exercise 2.3. Prove that Aut(g) is a Lie subgroup of GL(g) with the Lie
algebra Lie(Aut(g)) = Der(g) ⊂ End(g). Hint: Use Theorem 3.1 below.

Exercise 2.4. Let G be a Lie group with the Lie algebra g := Lie(G). Prove
that Ad : G → Aut(g) is a Lie group homomorphism and ad : g → Der(g) is
the corresponding Lie algebra homomorphism. Hint: See Lemma 1.3.
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3 Closed Subgroups

Assume throughout that G is a Lie group (not necessarily compact) and
denote by g := Lie(G) its Lie algebra. Whenever necessary, we assume that g
is equipped with an inner product and define a Riemannian metric on G
by |v| := |g−1v| for g ∈ G and v ∈ TgG. The following theorem was first
proved in 1929 by John von Neumann [5] for the special case G = GL(n,R)
and then in 1930 by Élie Cartan [1] in full generality.

Theorem 3.1 (Closed Subgroup Theorem). Let G be a Lie group and
let H be a subgroup of G. Then the following are equivalent.

(i) H is a submanifold (and hence a Lie subgroup) of G.

(ii) H is a closed subset of G.

If (i) holds, then the Lie algebra of H is the space

h =
{
η ∈ G

∣∣ exp(tη) ∈ H for all t ∈ R
}
. (3.1)

The proof is based on the following three lemmas.

Lemma 3.2. Let ξ ∈ g and let γ : R → G be a curve that is differentiable
at t = 0 and satisfies γ(0) = 1l and γ̇(0) = ξ. Then

exp(tξ) = lim
k→∞

γ(t/k)k (3.2)

for every t ∈ R.

Proof. Assume for simplicity that G is a Lie subgroup of GL(n,R). Fix a
nonzero real number t and for k ∈ N define

ξk := k
(
γ(t/k)− 1l

)
∈ Rn×n.

Then

lim
k→∞

ξk = t lim
k→∞

γ(t/k)− γ(0)

t/k
= tγ̇(0) = tξ

and hence

exp(tξ) = lim
k→∞

(
1l +

ξk
k

)k

= lim
k→∞

γ(t/k)k.

(See [4, Satz 1.5.2].) This proves Lemma 3.2.
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Lemma 3.3. Let H ⊂ G be a closed subgroup. Then the set

h :=
{
η ∈ g

∣∣ exp(tη) ∈ H for all t ∈ R
}

in (3.1) is a Lie subalgebra of g

Proof. Let ξ, η ∈ h and define the curve γ : R → H by

γ(t) := exp(tξ) exp(tη)

for t ∈ R. This curve is smooth and satisfies γ(0) = 1l and γ̇(0) = ξ + η.
Since H is closed, it follows from Lemma 3.2 that

exp(t(ξ + η)) = lim
k→∞

γ(t/k)k ∈ H

for all t ∈ R and so ξ+ η ∈ h by definition. Thus h is a vector subspace of g.
Now fix an element ξ ∈ h. If h ∈ H, then

exp(sh−1ξh) = h−1 exp(sξ)h ∈ H

for all s ∈ R and hence h−1ξh ∈ h by definition. Take h = exp(tη) with η ∈ h
to obtain exp(−tη)ξ exp(tη) ∈ h for all t ∈ R. Differentiating this curve
at t = 0 gives [ξ, η] ∈ h and this proves Lemma 3.3.

Lemma 3.4. Let H ⊂ G be a closed subgroup and let h ⊂ g be the Lie sub-
algebra in Lemma 3.3. Let ξ ∈ g and let (ξi)i∈N be a sequence in g such
that

exp(ξi) ∈ H, ξi ̸= 0 (3.3)

for all i ∈ N and

lim
i→∞

ξi = 0, lim
i→∞

ξi
|ξi|

= ξ. (3.4)

Then ξ ∈ h.

Proof. Fix a real number t. Then, for each i ∈ N, there exists a unique
integer mi ∈ Z such that mi|ξi| ≤ t < (mi + 1)|ξi|. The sequence mi satisfies

lim
i→∞

mi|ξi| = t, lim
i→∞

miξi = lim
i→∞

mi|ξi|
ξi
|ξi|

= tξ.

Hence
exp(tξ) = lim

i→∞
exp(miξi) = lim

i→∞
exp(ξi)

mi ∈ H

for every t ∈ R. Thus ξ ∈ h by (3.1) and this proves Lemma 3.4.
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Proof of Theorem 3.1. We prove that (i) implies (ii) and (3.1). Thus assume
that H is a Lie subgroup of G and let h ⊂ g be defined by (3.1). Then h
is the Lie algebra of H. Namely, if η ∈ h, then the curve γ : R → G de-
fine by γ(t) := exp(tη) takes values in H and so η = γ̇(0) ∈ T1lH = Lie(H).
Conversely, if η ∈ Lie(H), then exp(tη) ∈ H for all t ∈ R by Lemma 1.2 and
so η ∈ h. Thus h = Lie(H).

To prove that H is closed, define the map ϕ : H× h⊥ → G by

ϕ(h, ξ) := h exp(ξ), h ∈ H, ξ ∈ h⊥.

Its derivative at (1l, 0) is bijective. Hence ϕ restricts to a diffeomorphism
from the product of two open neighborhoods V ⊂ H of 1l and W ⊂ h⊥ of
the origin onto the open neighborhood U := ϕ(V ×W ) ⊂ G of 1l. Shrinking
these neighborhoods, if necessary, we may assume that

U ∩ H = V. (3.5)

(Otherwise there exists a sequence (hi, ξi) ∈ V ×W converging to (1l, 0) such
that ϕ(hi, ξi) ∈ H \ V for all i, contradicting the fact that V ⊂ H is a neigh-
borhood of 1l.) Also, there is an open neighborhood U0 ⊂ G of 1l such that

g, g′ ∈ U0 =⇒ g−1g′ ∈ U. (3.6)

Now let hi ∈ H be a sequence that converges to an element g ∈ G. Then
the sequence h−1

i g converges to 1l. Choose i0 ∈ N such that h−1
i g ∈ U0 for

all i ≥ i0, and define (h′i, ξi) := ϕ−1(h−1
i g) ∈ V ×W for i ≥ i0. Then

h−1
i g = h′i exp(ξi), h′i ∈ V ⊂ H, ξi ∈ W ⊂ h⊥ (3.7)

for i ≥ i0 and
lim
i→∞

h′i = 1l, lim
i→∞

ξi = 0. (3.8)

For i, j ≥ i0 this implies h′i exp(ξi) exp(−ξj)(h′j)−1 = h−1
i hj. and hence

exp(ξi) = hij exp(ξj), hij := (h′i)
−1(h−1

i hj)h
′
j. (3.9)

Since limi→∞ g−1hih
′
i = 1l, there is an integer i1 ≥ i0 such that g−1hih

′
i ∈ U0

for all i ≥ i1. By (3.5), (3.6), (3.9) this implies

hij = (g−1hih
′
i)
−1(g−1hjh

′
j) ∈ U ∩ H = V (3.10)

for all i, j ≥ i1. By (3.7), (3.9), (3.10) we have (1l, ξi), (hij, ξj) ∈ V ×W
and ϕ(1l, ξi) = ϕ(hij, ξj) for all i, j ≥ i1. Since ϕ is injective on V ×W , this
implies hij = 1l and ξi = ξj for all i, j ≥ i1. Hence it follows from (3.8)
that ξi = 0 and so by (3.7) we have g = hih

′
i ∈ H for i ≥ i1. This shows

that H is a closed subset of G. Thus we have proved that (i) implies (ii).
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We prove that (ii) implies (i). Let H ⊂ G be a closed subgroup of G
and let h ⊂ g be the Lie subalgebra defined in equation (3.1) in Lemma 3.3.
Define k := dim(h) and ℓ := dim(g) ≥ k, and choose a basis e1, . . . , eℓ of g
such that the vectors e1. . . . , ek form a basis of h and ei ∈ h⊥ for i > k.
Let h0 ∈ H and define the map ψ : Rℓ → G by

ψ(x1, . . . , xℓ) := h0 exp(x
1e1 + · · ·+ xkek) exp(x

k+1ek+1 + · · ·+ xℓeℓ).

Then ψ(0) = h0, ψ(Rk × {0}) ⊂ H, and the derivative dψ(0) : Rℓ → Th0G is
bijective. Hence the inverse function theorem asserts that ψ restricts to a
diffeomorphism from an open neighborhood Ω ⊂ Rℓ of the origin to the open
neighborhood U := ψ(Ω) ⊂ G of h0 that satisfies

ψ(0) = h0, ψ(Ω ∩ (Rk × {0})) ⊂ U ∩ H.

We claim that there exists an open set Ω0 ⊂ Rℓ such that

0 ∈ Ω0 ⊂ Ω, ψ(Ω0 ∩ (Rk × {0})) = U0 ∩ H, U0 := ψ(Ω0). (3.11)

Assume, by contradiction, that such an open set Ω0 does not exist. Then
there exists a sequence xi = (x1i , . . . , x

ℓ
i) ∈ Rℓ such that

lim
i→∞

xi = 0, xi ∈ Ω \ (Rk × {0}), ψ(xi) ∈ H.

Define ηi :=
∑k

ν=1 x
ν
i eν ∈ h and ξi :=

∑ℓ
ν=k+1 x

ν
i eν ∈ h⊥ \ {0}. Then

lim
i→∞

ξi = 0, ξi ̸= 0, exp(ξi) = exp(−ηi)h−1
0 ψ(xi) ∈ H.

Passing to a subsequence, if necessary, we may assume that the sequence
ξi/|ξi| converges. Denote its limit by ξ := limi→∞ ξi/|ξi|. Then ξ ∈ h by
Lemma 3.4 and ξ ∈ h⊥ by definition. Since |ξ| = 1, this is a contradiction.
Thus there does exist an open set Ω0 ⊂ Rℓ that satisfies (3.11). Hence H is a
submanifold of G and so is a Lie subgroup of G. This proves Theorem 3.1.

Example 3.5. Choose a nonzero vector (ω1, . . . , ωn) ∈ Rn such that at least
one of the quotients ωi/ωj is irrational. Then the one-parameter subgroup

Sω := {(e2πitω1 , e2πitω2 , . . . , e2πitωn) | t ∈ R} ⊂ (S1)n ∼= Tn

of the torus is not closed. A similar example can be constructed in any Lie
group that contains a torus of dimension at least two.
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4 The Haar Measure

Let G be a compact Lie group and denote by C(G) the space of continuous
functions f : G → R with the norm

∥f∥ := sup
g∈G

|f(g)| .

The next theorem asserts the existence of a translation invariant measure on
every compact Lie group. The result extends to every compact Hausdorff
group. The proof given below extends to every compact Hausdorff group
that satisfies the second axiom of countability (i.e. its topology has a finite
or countable basis).

Theorem 4.1. Let G be a compact Lie group. Then there exists a bounded
linear functional M : C(G) → R that satisfies the following conditions.

(i) M(1) = 1.

(ii) M is left invariant, i.e. M(f ◦ Lg) =M(f) for f ∈ C(G) and g ∈ G.

(iii) M is right invariant, i.e. M(f ◦Rg) =M(f) for f ∈ C(G) and g ∈ G.

(iv) If f ≥ 0 and f ̸= 0, then M(f) > 0.

(v) Let ϕ : G → G denote the diffeomorphism defined by ϕ(g) = g−1. Then
M(f ◦ ϕ) =M(f) for every f ∈ C(G).

M is uniquely determined by (i) and either (ii) or (iii). It is called the Haar
measure on G.

Proof. We follow notes by Moser which in turn are based on a proof by
Pontryagin. Let A denote the set of all measures on G of the form

A =
k∑

i=1

αiδai

where αi ∈ Q and
∑

i αi = 1. If B =
∑ℓ

j=1 βjδbj is another such measure,
denote

A ·B :=
k∑

i=1

ℓ∑
j=1

αiβjδaibj .
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This defines a group structure onA. For A ∈ A we define two linear operators
LA, RA : C(G) → C(G) by

(LAf)(g) :=
m∑
i=1

αif(aig), (RAf)(g) :=
m∑
i=1

αif(gai)

for f ∈ C(G) and g ∈ G. Then

LA(f ◦Rh) = (LAf) ◦Rh, RA(f ◦ Lh) = (RAf) ◦ Lh, (4.1)

LA·B = LB ◦ LA, RA·B = RA ◦RB, LA ◦RB = RB ◦ LA, (4.2)

min f ≤ LAf ≤ max f, min f ≤ RAf ≤ max f. (4.3)

We make use of the following three observations.

Observation 1: Denote

Osc(f) := max f −min f.

If f ∈ C(G) is nonconstant, then there exists an A ∈ A such that min f <
minLAf and hence Osc(LAf) < Osc(f).

Suppose f assumes its maximum at a point g0 ∈ G. Choose a neighbourhood
U ⊂ G of 1l such that

gg0
−1 ∈ U =⇒ f(g) >

1

2
(max f +min f).

Now G =
⋃

a∈G a
−1U . Since G is compact, there exist finitely many points

a1, . . . , am ∈ G such that

G =
m⋃
i=1

ai
−1U.

This means that for every h ∈ G there exists an i such that aih ∈ U .
Consider the measure A := m−1

∑
i δai . Since, for every g ∈ G, at least one

of the points aigg0
−1 lies in U we obtain

(LAf)(g) =
1

m

m∑
i=1

f(aig)

≥ m− 1

m
min f +

1

2m
(max f +min f)

> min f.

Hence minLAf > min f and, by (4.3), Osc(LAf) < Osc(f).
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Observation 2: For every f ∈ C(G) the set

L(f) := {LAf |A ∈ A}

is bounded and equicontinuous.

Boundedness follows from (4.3). To prove equicontinuity, note that, since G
is compact and second countable, it is a metrizable topological space. Let
d : G × G → R be a distance function which induces the given topology.
Fix a function f ∈ C(G) and an ε > 0. Since G is compact, f is uniformly
continuous. Hence there is a δ > 0 such that, for all g, h ∈ G,

d(g, h) < δ =⇒ |f(g)− f(h)| < ε. (4.4)

We prove that there exists an open neighbourhood U ⊂ G of 1l such that

g−1h ∈ U =⇒ d(g, h) < δ. (4.5)

We argue by contradiction. Suppose that there exist sequences gν , hν ∈ G
such that gν

−1hν → 1l and d(gν , hν) ≥ δ. Passing to a subsequence we may
assume that gν converges to g. Then hν = gν(gν

−1hν) converges also to g.
Hence, for ν sufficiently large, we have d(gν , g) < δ/2 and d(hν , g) < δ/2,
contradicting the assumption that d(gν , hν) ≥ δ. This proves (4.5).

A similar argument shows that there is a constant δ′ > 0 such that

d(g, h) < δ′ =⇒ g−1h ∈ U. (4.6)

Now let g, h ∈ G such that d(g, h) < δ′. Then, by (4.6), we have

(ag)−1(ah) = g−1h ∈ U

for every a ∈ G, hence, by (4.5),

d(ag, ah) < δ,

hence it follows from (4.4) that

|f(ag)− f(ah)| < ε

for every a ∈ G, and this implies

|(LAf)(g)− (LAf)(h)| < ε

for every A ∈ A. Thus we have proved equicontinuity.
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Observation 3: For every f ∈ C(G), infA∈A Osc(LAf) = 0.

Choose a sequence Aν ∈ A such that

lim
ν→∞

Osc(LAνf) = inf
A∈A

Osc(LAf).

By Observation 2 and the Arzéla-Ascoli theorem, the sequence fν := LAνf
has a uniformly convergent subsequence (still denoted by fν). Let f0 denote
the limit of this subsequence. Then

Osc(f0) = inf
A∈A

Osc(LAf). (4.7)

Now, for every B ∈ A,

Osc(LBf0) = lim
ν→∞

Osc(LBLAνf) = lim
ν→∞

Osc(LAν ·Bf) ≥ Osc(f0).

The penultimate equality follows from (4.2) and the last inequality from (4.7).
By Observation 1, f0 is constant. Hence Osc(f0) = 0 and so Observation 3
follows from (4.7).

Observation 3 shows that there is a sequence Aν ∈ A such that LAνf
converges uniformly to a constant p ∈ R (called a left mean of f). Similarly,
there exists a sequence Bν ∈ A such that RBνf converges uniformly to a
constant q ∈ R (called a right mean of f). Since

∥LARBf −RBf∥ ≤ Osc(RBf), ∥RBLAf − LAf∥ ≤ Osc(LAf) (4.8)

for f ∈ C(G) and A,B ∈ A it follows that the right and left means agree and
hence are independent of the choices of the sequences Aν and Bν . Namely,

p = lim
ν→∞

RBνLAνf = lim
ν→∞

LAνRBνf = q.

Let us define the operator M : C(G) → R by

M(f) := lim
ν→∞

LAνf = lim
ν→∞

RBνf,

where Aν , Bν ∈ A are chosen such that Osc(LAνf) and Osc(RBνf) converge
to zero. ThusM(f) is the left mean and the right mean of f . It is immediate
from this definition that M(1) = 1, M(λf) = λM(f) for λ ∈ R, that M is
left and right invariant, and

min f ≤M(f) ≤ max f.
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Now let f, f ′ ∈ C(M) and choose sequences Aν , Bν ∈ A such that

M(f) = lim
ν→∞

LAνf, M(f ′) = lim
ν→∞

RBνf
′.

SinceM is left and right invariant, we haveM(LAνRBν (f+f
′)) =M(f+f ′).

Hence there is a sequence Cν ∈ A such that

M(f + f ′) = lim
ν→∞

LCνRBνLAν (f + f ′).

By (4.8), the right hand side also converges to M(f) +M(f ′) and hence

M(f + f ′) =M(f) +M(f ′)

for f, f ′ ∈ C(G). Thus we have proved thatM is a nonegative bounded linear
functional that satisfies the assertions (i), (ii), and (iii) of the theorem.

We prove that M satisfies (iv). Hence let f ∈ C(G) be a function such
that f ≥ 0 and f ̸≡ 0. Then, by Observation 1, there exists an A ∈ A such
that

minLAf > 0.

Choose Bν ∈ A such that RBνf converges to M(f). Then

M(f) = lim
ν→∞

LARBνf = lim
ν→∞

RBνLAf ≥ minLAf > 0

as claimed.
Next we prove that M is uniquely determined by conditions (i) and (ii).

To see this, let M ′ be another bounded linear functional on C(G) that satis-
fies (i) and (ii). Then M ′(c) = c for every constant c and

M ′(LAf) =M ′(f)

for every f ∈ C(G) and every A ∈ A. Given f ∈ C(G) choose a sequence
Aν ∈ A such that LAνf converges uniformly to M(f). Then

M(f) =M ′(M(f)) = lim
ν→∞

M ′(LAνf) =M ′(f).

This proves uniqueness. That M satisfies condition (v) follows from unique-
ness and the fact that the map C(G) → R : f 7→ M(f ◦ ϕ) is a bounded
linear functional that satisfies (i) and (ii). This proves Theorem 4.1.
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5 Invariant Inner Products

An inner product ⟨., .⟩ on g is called invariant iff it is invariant under the
adjoint action of G, i.e.

⟨g−1ξg, g−1ηg⟩ = ⟨ξ, η⟩

for ξ, η ∈ g and g ∈ G. A Riemannian metric on G is called bi-invariant
iff the left and right translations Lh and Rh are isometries for every h ∈ G.
Every invariant inner product on g determines a bi-invariant metric on G via

⟨v, w⟩ := ⟨g−1v, g−1w⟩ = ⟨vg−1, wg−1⟩ (5.1)

for v, w ∈ TgG. In turn, such a metric determines a volume form and hence
a bi-invariant measure on G. By Theorem 4.1 this agrees with the Haar
measure up to a constant factor. Conversely, if G is compact, one can use
the existence of a translation invariant measure to prove the existence of an
invariant inner product.

Proposition 5.1. Let G be a compact Lie group. Then g carries an invariant
inner product.

Proof. LetM : C(G) → R denote the Haar measure and Q : g×g → R be any
inner product. For ξ, η ∈ g define fξ,η : G → R by fξ,η(g) := Q(gξg−1, gηg−1).
Then the formula ⟨ξ, η⟩ :=M(fξ,η) defines an inner product on g. That it is
invariant follows from the formula fhξh−1,hηh−1 = fξ,η ◦Rh.

Remark 5.2. (i) The proof of Proposition 5.1 shows that the existence of a
right invariant measure on G suffices to establish the existence of an invariant
inner product on g, and hence the existence of a bi-invariant measure on G.

(ii) On any Lie group the existence of a right invariant measure is easy to
prove. Choose any inner product on g and extend it to a Riemannian metric
on G by left translation. Then the right translations are isometries and hence
the volume form defines a right invariant measure on G.

(iii) Combining (i) and (ii) gives rise to a simpler proof of the existence of a
Haar measure for compact Lie groups.

(iv) Uniqueness in Theorem 4.1 implies that every left invariant measure is
right invariant. Here is a direct proof for compact Lie Groups: If ω is a left
invariant volume form on G, then so is Rg

∗ω. Hence there exists a group
homomorphism λ : G → R such that Rg

∗ω = eλ(g)ω. Since G is compact, the
only group homomorphism from G to R is λ = 0.
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Lemma 5.3. Let G be a compact Lie group with a bi-invariant Riemannian
metric. Then the geodesics have the form

γ(t) = exp(tξ)g

for g ∈ G and ξ ∈ g.

Proof. Let I = [a, b] ⊂ R be a closed interval and γ0 : I → G be a geodesic.
Let ξ : I → g be a smooth curve such that ξ(a) = ξ(b) = 0 and consider the
map

γ(s, t) := γ0(t) exp(sξ(t)).

Then γ−1∂sγ = ξ and hence

1

2

d

ds

∫ b

a

⟨γ−1∂tγ, γ
−1∂tγ⟩ dt =

∫ b

a

⟨∂s(γ−1∂tγ), γ
−1∂tγ⟩ dt

=

∫ b

a

⟨∂t(γ−1∂sγ), γ
−1∂tγ⟩ dt

= −
∫ b

a

⟨ξ, ∂t(γ−1∂tγ)⟩ dt.

Here the penultimate equality follows from Lemma 1.6 and Exercise 5.5.
Now γ0 is a geodesic if and only if the left hand side vanishes at s = 0 for
every ξ, and the right hand side vanishes at s = 0 for every ξ if and only
if ∂t(γ0

−1∂tγ0) ≡ 0. This proves Lemma 5.3.

Exercise 5.4. (i) Prove that the group GL+(n,R) of real n × n-matrices
with positive determinant is connected.

(ii) Prove that the exponential map exp : Rn×n → GL+(n,R) is not sur-
jective for n > 1. Hint: Every negative eigenvalue of an exponential ma-
trix Φ = exp(A) must have even multiplicity.

(iii) Prove that Φ2 is an exponential matrix for every Φ ∈ GL(n,R).
(iv) Prove that for every compact connected Lie group G the exponential
map exp : g → G is surjective. Hint: Use Proposition 5.1 (existence of an
invariant inner product), Lemma 5.3 (geodesics and exponential map), and
the Hopf-Rinow theorem (the existance of minimal geodesics).

Exercise 5.5. Let G be a compact connected Lie group. Prove that an inner
product ⟨·, ·⟩ on g := Lie(G) is invariant if and only if

⟨[ξ, η], ζ⟩ = ⟨ξ, [η, ζ]⟩

for ξ, η, ζ ∈ g.
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6 The Center

Let G be a connected Lie group. The subgroup

Z(G) := {g ∈ G | gh = hg ∀h ∈ G}

is called the center of G. By Theorem 3.1 it is a Lie subgroup of G with the
corresponding Lie subalgebra

Z(g) := {ξ ∈ g | [ξ, η] = 0 ∀ η ∈ g} .

Note that Z(G) is a normal subgroup and the center of the quotient G/Z(G)
is trivial. The following theorem is due to Herman Weyl.

Theorem 6.1. Let G be a compact connected Lie group. Then the first Betti
number of G is given by dimH1(G;R) = dimZ(g).

Proof. The proof consists of three steps.

Step 1: Suppose G is equipped with a bi-invariant Riemannian metric. Then

∇vX(g) =

(
dξ(g)v +

1

2
[ξ(g), η]

)
g,

where ξ : G → g, η ∈ g, v = ηg ∈ TgG, and X(g) = ξ(g)g.

Suppose first that ξ(g) ≡ ξ is constant. Then, by Lemma 5.3, the integral
curves of Xξ are geodesics. Hence

∇Xξ
Xξ = 0

for every ξ ∈ g. Replace ξ by ξ + η to obtain

∇XηXξ +∇Xξ
Xη = 0

for all ξ, η ∈ g. Since

∇XηXξ −∇Xξ
Xη = [Xξ, Xη] = X[ξ,η],

it follows that

∇XηXξ =
1

2
X[ξ,η].

This proves Step 1 in the case where ξ : G → g is constant. The general case
is an immediate consequence.
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Step 2: The Riemann curvature tensor of G is given by

R(ξg, ηg)ζg = −1

4
[[ξ, η], ζ]g

for g ∈ G and ξ, η, ζ ∈ g.

Consider the right invariant vector fields Xξ(g) = ξg for ξ ∈ g. By Step 1,

∇XηXξ =
1

2
X[ξ,η].

Hence Step 2 follows by straight forward calculation from the identity

R(Xξ, Xη)Xζ = ∇Xξ
∇XηXζ −∇Xη∇Xξ

Xζ +∇[Xξ,Xη ]Xζ .

Step 3: We prove the theorem.

Let e1, . . . , ek be an orthonormal basis of g. Then, by Step 2, the Ricci tensor
of G is given by

Ric(ξg, ηg) =
k∑

i=1

⟨R(eig, ξg)ηg, eig⟩ =
1

4

k∑
i=1

⟨[ξ, ei], [η, ei]⟩ (6.1)

Hence Ric(ξg, ξg) ≥ 0 with equality if and only if ξ ∈ Z(g). Now let α ∈
Ω1(G) and choose ξ : G → g such that

αg(ηg) = ⟨ξ(g), η⟩.

The Bochner–Weitzenböck formula asserts that

∥dα∥2L2 + ∥d∗α∥2L2 = ∥∇α∥2L2 +

∫
G

Ric(α, α)dvol. (6.2)

Since Ric(α, α) ≥ 0, this shows that α is harmonic if and only if ∇α ≡ 0 and
Ric(α, α) ≡ 0. By (6.1) and Step 1 this means that

dξ(g)ηg =
1

2
[η, ξ(g)] = 0

for every g ∈ G and every η ∈ g. Equivalently, ξ : G → g is constant
and takes values in the center of g. Thus we have proved that the space of
harmonic 1-forms can be identified with Z(g). This proves Theorem 6.1.
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Theorem 6.2. Let G be a compact Lie group. Then the following holds.

(i) The fundamental group of G is abelian.

(ii) If Z(G) is finite, then so is π1(G).

Proof. Assertion (i) holds for every topological group. To see this, choose
two curves α, β : [0, 1] → G with the endpoints

α(0) = α(1) = β(0) = β(1) = 1l.

Denote

α#β(t) :=

{
α(2t), if 0 ≤ t ≤ 1/2,

α(1)β(2t− 1), if 1/2 ≤ t ≤ 1.

(Here the term α(1) can be dropped, but the more general form will be
needed below.) Define

αs(t) :=

{
α(2t− s), if s/2 ≤ t ≤ (s+ 1)/2,

1l, otherwise,

and

βs(t) :=

{
β(2t+ s− 1), if (1− s)/2 ≤ t ≤ 1− s/2,

1l, otherwise,

for 0 ≤ s, t ≤ 1. Then γs(t) = αs(t)βs(t) is a homotopy from γ0 = α#β
to γ1 = β#α. This proves (i).

To prove (ii), note that by (i) the fundamental group

Γ := π1(G)

is abelian, and by Theorem 6.1

Hom(Γ,R) ∼= H1(G;R) = 0.

This implies that Γ is finite. To see this, note first that Γ is finitely generated.
Let γ1, . . . , γn ∈ Γ be generators. Since Γ is abelian, the set R ⊂ Zn of all
integer vectors m = (m1, . . . ,mn) that satisfy

γ1
m1 · · · γnmn = 1

form a subgroup of Zn and there is a natural isomorphism

Γ ∼= Zn/R.

Since Hom(Γ,R) = R⊥ = {0}, it follows that R spans Rn. Hence the quotient
Rn/R is compact, so Γ ∼= Zn/R is a finite set. This proves Theorem 6.2.
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Now let us denote by G̃ the universal cover of G. In explicit terms,

G̃ = {γ : [0, 1] → G | γ(0) = 1l} / ∼

where ∼ denotes homotopy with fixed endpoints. The projection

π : G̃ → G

is given by π([γ]) = γ(1).

Proposition 6.3. Let G be a connected Lie group. Then

Z(G̃) = π−1(Z(G)).

Proof. Let α, β : [0, 1] → G be smooth curves such that

α(0) = β(0) = 1l, α(1) ∈ Z(G).

Define

αs(t) :=

{
α((1 + s)t), if 0 ≤ t ≤ 1/(s+ 1),

α(1), otherwise,

and

βs(t) :=

{
β((2t− s)/(2− s)), if s/2 ≤ t ≤ 1,

1l, otherwise,

for 0 ≤ s, t ≤ 1. Since α(1) ∈ Z(G), we have

α1β1 = β1α1 = α#β.

Moreover α0 = α and β0 = β. Hence both αβ and βα are homotopic to
α#β. This proves that

π−1(Z(G)) ⊂ Z(G̃).

The converse inclusion is obvious.

The commutator subgroup

[G,G] ⊂ G

is defined as the smallest subgroup of G that contains all commutators
[a, b] := aba−1b−1 for a, b ∈ G. Thus [G,G] is the subset of all products
of finitely many such commutators. It is a normal subgroup of G.
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Proposition 6.4. Let G be a compact connected Lie group. Then Z(G) is
finite if and only if [G,G] = G.

Proof. Choose an invariant inner product on the Lie algebra g = Lie(G)
(Proposition 5.1) and consider the subbundle

E := {(g, ξg) | ξ ⊥ Z(g)} ⊂ TG.

By Exercise 5.5, the Lie bracket of any two right invariant vector fields
Xξ(g) = ξg andXη(g) = ηg is contained in E. Hence, by Frobenius’ theorem,
E is integrable. Let H be the leaf of E through 1l, i.e.

H :=
{
γ(1) | γ : [0, 1] → G, γ(0) = 1l, γ(t)−1γ̇(t) ⊥ Z(g)

}
.

If α, β : [0, 1] → G are paths that are tangent to E, then so are αβ and α−1.
Hence H is a subgroup of G. Next we prove that

[G,G] ⊂ H.

To see this note that, for every pair ξ, η ∈ g the curve

γ(t) := exp(tξ) exp(tη) exp(−tξ) exp(−tη)

is tangent to E. Since the exponential map is surjective it follows that every
commutator [a, b] = aba−1b−1 of two elements in G lies in H. Hence

[G,G] ⊂ H.

Next we prove that
H ⊂ [G,G]

To see this note that, by Exercise 5.5, the orthogonal complement of Z(g) is
spanned by vectors of the form [ξ, η] for ξ, η ∈ g. Choose ξ1, . . . , ξk, η1, . . . , ηk
such that the vectors [ξi, ηi] form a basis of Z(g)⊥. For i = 1, . . . , k define
the curve γi : R → [G,G] by

γi(t) := exp(
√
tξi) exp(

√
tηi) exp(−

√
tξi) exp(−

√
tηi)

for t ≥ 0 and γi(t) := γi(−t)−1 for t < 0. Then γi is continuously differen-
tiable and γ̇i(0) = [ξi, ηi]. Define the map ϕ : Rk → [G,G] by

ϕ(t1, . . . , tk) := γ1(t1) · · · γk(tk).
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This map is a continuously differentiable embedding near t = 0 and it is
everywhere tangent to E. Hence the image U0 of a sufficiently small neigh-
bourhood of 0 ∈ Rk under ϕ is a neighbourhood of 1l in H with respect to
the intrinsic topology of H and it is contained in [G,G]. More generally,
for every h ∈ H the set U = U0h ⊂ H is a neighbourhood of h with re-
spect to the intrinsic topology and Uh−1 ⊂ [G,G]. Hence the sets H ∩ [G,G]
and H \ [G,G] are both open with respect to the intrinsic topology of H.
Since H ∩ [G,G] ̸= ∅ it follows that H ⊂ [G,G], as claimed.

Thus we have proved that

[G,G] = H

is a leaf of the foliation determined by E. Hence [G,G] = G if and only
if E = TG if and only if Z(G) is finite. This proves Proposition 6.4.

Corollary 6.5. Let G be a compact connected Lie group with finite center.
Then every principal G-bundle P → Σ over a compact oriented Riemann
surface of sufficiently large genus carries a flat connection.

Proof. By Theorem 6.2, π1(G) is finite, and hence G̃ is compact. By Propo-
sition 6.3, we have

π1(G) = π−1(1l) ⊂ Z(G̃).

There is a one-to-one correspondence between isomorphism classes of prin-
cipal G-bundles over a Riemann surface and elements γ ∈ π1(G). Suppose
that Σ is a Riemann surface of genus g and let Pγ → Σ be the principal
bundle corresponding to γ ∈ π1(G). Then a gauge equivalence class of flat
connection on Pγ (with respect to the identity component of the gauge group)
can be represented by elements

α1, . . . , αg, β1, . . . , βg ∈ G̃

that satisfy
g∏

j=1

[αj, βj] = γ.

By Proposition 6.4, every element γ ∈ G̃ can be expressed in this form
whenever Z(G̃) is finite. This proves Corollary 6.5.

Exercise 6.6. The nontrivial SO(3)-bundle over the 2-sphere does not carry
a flat connection.
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7 Inner Automorphisms

Let g be a finite-dimensional Lie algebra. An automorphism Φ ∈ Aut(g) is
called an inner automorphism iff there exists a smooth path η : [0, 1] → g
such that Φ(ξ(0)) = ξ(1) for every solution ξ : [0, 1] → g of the ordinary
differential equation ξ̇ + [ξ, η] = 0. The inner automorphisms of g form a
group which will be denoted by Inn(g) ⊂ Aut(g). If g = Lie(G) is the Lie
algebra of a connected Lie group G, then Inn(g) is the image of the adjoint
representation Ad : G → Aut(g). The following example shows that Inn(g)
need not be a closed subset of Aut(g).

Example 7.1. Let A ∈ GL(V ) be an automorphism of a real or complex
vector space V . Then G = R× V is a Lie group with the product

(s, x) · (t, y) := (s+ t, x+ exp(sA)y) (7.1)

for s, t ∈ R and x, y ∈ V . The unit is the origin in R× V , the inverse
of (s, x) ∈ G is the pair (s, x)−1 = (−s,− exp(−sA)x), the adjoint action
of G on itself is given by (s, x) · (t, y) · (s, x)−1 = (t, x+exp(sA)y−exp(tA)x),
so the adjoint action of (s, x) ∈ G on the Lie algebra g = R× V is given by

Ad(s, x)(τ, η) = (τ, exp(sA)η − τAx) (7.2)

for (τ, η) ∈ g, and hence the Lie bracket on g is given by

[(σ, ξ), (τ, η)] = (0, σAη − τAξ) (7.3)

for (σ, ξ), (τ, η) ∈ g. Since A is nonsingular, the center of g is trivial.
Consider the case V = C2 and A = diag(iα, iβ), where α, β are nonzero

real numbers such that α/β is irrational. Then

Ad(s, x)(τ, η) = (τ, esiαη1 − τ iαx1, e
siβη2 − τ iβx2)

for s, τ ∈ R and x1, x2, η1, η2 ∈ C by (7.2). Now choose a pair λ1, λ2 ∈ S1 such
that (λ1, λ2) ̸= (esiα, esiβ) for all s ∈ R and define the linear map Φλ : g → g
by Φλ(τ, η) := (τ, λ1η1, λ2, η2). Then Φλ ∈ Aut(g) \ Inn(g). Since α/β is irra-
tional, there exists a sequence si ∈ R such that limi→∞(esiiα, esiiβ) = (λ1, λ2).
Hence limi→∞Ad(si, 0) = Φλ and so Inn(g) is not closed in Aut(g).

For every finite-dimensional Lie algebra g the group Inn(g) is the leaf
through the identity of a foliation on Aut(g) with T1lInn(g) = ad(g). Thus
it carries an intrinsic smooth structure which turns it into a Lie group with
the Lie algebra ad(g) ∼= g/Z(g). This shows that every finite-dimensional Lie
algebra with a trivial center is the Lie algebra of a connected Lie group.
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8 Maximal Toral Subgroups

Let G be a compact connected Lie group. A Lie subgroup of G is a closed
subgroup H which is a submanifold. A linear subspace h ⊂ g is called a
Lie subalgebra iff it is invariant under the Lie bracket. If H ⊂ G is a Lie
subgroup, then by definition of the Lie bracket h := T1lH is a Lie subalgebra
of g. A maximal torus in G is a connected abelian subgroup T ⊂ G which
is not properly contained in any other connected abelian subgroup. The
fundamental example is the subgroup of diagonal matrices in U(n) or SU(n).

Exercise 8.1. Let T ⊂ G be a maximal torus with Lie algebra t := Lie(T).
Let η ∈ g such that [η, τ ] = 0 for every τ ∈ t. Prove that η ∈ t.

Lemma 8.2. Let G be a compact connected Lie group and T ⊂ G be a
maximal torus. Then every element in G is conjugate to an element in T.

Proof. Given h ∈ G choose ξ ∈ g with exp(ξ) = h. Such an element exists by
Exercise 5.4 (iv). Then, by Exercise 1.7, ghg−1 = exp(gξg−1) for every g ∈ G.
Hence we must find g ∈ G such that gξg−1 ∈ Lie(T) = t. Choose an invariant
inner product on g and fix a generator τ ∈ t such that {exp(sτ) | s ∈ R} is
dense in T . Since the orbit of ξ under the adjoint action of G is compact
there is an η ∈ g, conjugate to ξ, which minimizes the distance to τ in this
conjugacy class, i.e.

|η − τ |2 = inf
g∈G

|gηg−1 − τ |2.

We must prove that η ∈ t. To see this differentiate the map

G → R : g 7→ |gηg−1 − τ |2

at g = 1l to obtain ⟨η − τ, [ζ, η]⟩ = 0 for all ζ ∈ g. This implies ⟨ζ, [η, τ ]⟩ = 0
for all ζ ∈ g and hence [η, τ ] = 0. By Exercise 1.9, exp(tη) commutes with
exp(sτ) for all s and t. Since τ generates the torus, it follows that exp(tη)
commutes with T for every t and hence [η, t] = 0. By Exercise 8.1, this
implies η ∈ t.

Lemma 8.3. Any two maximal tori in G are conjugate.

Proof. Let T1,T2 ⊂ G be two maximal tori and choose an element g2 ∈ T2

such that T2 = cl
({
g2

k | k ∈ Z
})
. By Lemma 8.2, there exists a g ∈ G such

that g2 ∈ gT1g
−1. Hence T2 ⊂ gT1g

−1, and hence T2 = gT1g
−1.
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Lemma 8.3 shows that any two maximal tori in G have the same dimen-
sion. This dimension is called the rank of G. The rank of G agrees with the
dimension of a maximal abelian Lie subalgebra of g. (Prove this!)

Lemma 8.4. Let T ⊂ G be a maximal torus. Then every element of the Lie
algebra g := Lie(G) is conjugate to an element of t := Lie(T).

Proof. Let ξ ∈ g. The set {exp(sξ) | s ∈ R} is a torus and hence is contained
in a maximal torus T′. By Lemma 8.3, there exists a g ∈ G such that
gT′g−1 = T. Hence exp(sgξg−1) ∈ T for every s ∈ R, and hence gξg−1 ∈ t.
This proves Lemma 8.4.

Lemma 8.5. Let G be a compact connected Lie group and let T ⊂ G be a
maximal torus. Then T is a maximal abelian subgroup of G.

Proof. We follow the argument of Frank Adams in Lectures on Lie groups.
Let h ∈ G be an element that commutes with T. We shall prove that h ∈ T.
To see this let S ⊂ G be a maximal torus containing h and denote by

H := cl
({
hk | k ∈ Z

})
the subgroup of G generated by h. Examining closed subgroups of tori we
see that H is a Lie subgroup of S. Moreover, the Lie algebra h = Lie(H)
commutes with t = Lie(T) and hence must be contained in t. Hence the
identity component of H is equal to H ∩ T and the quotient H/(H ∩ T) is a
finite group. This finite group is generated by a single element [h] ∈ G/(T∩H)
and hence is isomorphic to Zm for some integer m. This implies hm ∈ T.
Hence the set

T̂ := {hit | t ∈ T, 1 ≤ i ≤ m− 1}
is a Lie subgroup of G such that

T̂/T ∼= Zm.

Any such group is generated by a single element ĥ. To see this, choose
an isomorphism ϕ : Rn/Zn → T, a vector τ = (τ1, . . . , τn) ∈ Rn such
that ϕ(τ) = hm, and a vector ω = (ω1, . . . , ωn) ∈ Rn such that the num-
bers 1, ω1, . . . , ωn are rationally independent. Then the element

ĥ := hϕ((ω − τ)/m) ∈ G

generates T̂. By Lemma 8.2, there exists a maximal torus containing ĥ and
hence both h and T. Since T is a maximal torus it follows that h ∈ T. This
proves Lemma 8.5.
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Example 8.6. In general, a maximal abelian subgroup need not be a torus.
For example the n× n-matrices with diagonal entries ±1 and determinant 1
form a maximal abelian subgroup of G = SO(n).

For every maximal torus T ⊂ G denote

GT :=
{
g ∈ G | g−1Tg = T

}
.

The quotient W := GT/T is called the Weyl group of T. The next lemma
shows that every adjoint orbit in g intersects t/W in precisely one point.

Lemma 8.7. Let G be a compact connected Lie group and T ⊂ G be a
maximal torus. Let ξ, η ∈ t. Then the following are equivalent.

(i) There exists a g ∈ G such that g−1ξg = η.

(ii) There exists a g ∈ GT such that g−1ξg = η.

Proof. That (ii) implies (i) is obvious. Hence suppose that g0
−1ξg0 = η for

some g0 ∈ G. Choose sequences ξν , ην ∈ t such that ξν → ξ, ην → η, and

cl({exp(sξν) | s ∈ R}) = cl({exp(tην) | t ∈ R}) = T

for every ν. Choose gν ∈ G such that∣∣gν−1ξνgν − ην
∣∣ = inf

g∈G

∣∣g−1ξνg − ην
∣∣ . (8.1)

Since |g0−1ξνg0 − ην | converges to zero it follows that

lim
ν→∞

∣∣gν−1ξνgν − ην
∣∣ = 0. (8.2)

Now differentiate the map g 7→ |g−1ξνg − ην |2 at g = gν . Then, by (8.1), we
obtain

0 =
1

2

d

dt

∣∣∣∣
t=0

∣∣exp(−tζ)gν−1ξνgν exp(tζ)− ην
∣∣2

= ⟨gν−1ξνgν − ην , [gν
−1ξνgν , ζ]⟩

= ⟨[gν−1ξνgν , ην ], ζ⟩
for every ζ ∈ g. Hence [gν

−1ξνgν , ην ] = 0. Since ην generates the torus T
this implies gν

−1ξνgν ∈ t. Since ξν generates the torus, this implies gν ∈ GT.
Passing to a convergent subsequence, we may assume that gν converges to
some element g ∈ GT. By (8.2), we have

g−1ξg − η = lim
ν→∞

(
gν

−1ξνgν − ην
)
= 0

and this proves Lemma 8.7.
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9 Isotropy Subgroups

Let G be a compact connected Lie group and M be a compact smooth
manifold equipped with a left action of G. The action will be denoted by

G×M →M : (g, x) 7→ gx.

The isotropy subgroup of an element x ∈M is defined by

Gx := {h ∈ G |hx = x} .

Since Ggx = gGxg
−1 the set of isotropy subgroups is invariant under conjuga-

tion. The next theorem asserts that the set of conjugacy classes of isotropy
subgroups is finite.

Theorem 9.1. There exist finitely many Lie subgroups H1, . . . ,HN of G such
that for every x ∈M there exists a j such that Gx is conjugate to Hj.

Proof. The proof is by induction on the dimension of M . If M is zero-
dimensional, then the result is obvious. Now assume that dim M = n > 0
and that the result has been proved for all manifolds of dimensions less
than n. We prove that every point x0 ∈M has a neighbourhood U in which
only finitely many isotropy subgroups occur up to conjugacy. To see this,
let G0 := Gx0 choose a G-invariant metric onM , denote by Lx : g → TxM the
infinitesimal action, and define H0 := ker L∗

x0
⊂ Tx0M . Then the exponential

map
G×H0 →M : (g, v0) 7→ g expx0

(v0)

descends to a map
ϕ0 : G×G0 H0 →M,

where (g, v0) ∼ (gg0, g
−1
0 v0) for g ∈ G, v0 ∈ H0, and g0 ∈ G0. The restriction

of ϕ0 to a sufficiently small neighbourhood of the zero section in the vector
bundle G ×G0 H0 → G/G0 is a G-equivariant diffeomorphism onto a neigh-
bourhood of the G-orbit of x0. It follows that the isotropy groups of points
x ∈M belonging to this neighbourhood are all conjugate to subgroups of G0

that appear as isotropy subgroups of the action of G0 on H0. By consider-
ing the action of G0 on the unit sphere in H0 we obtain from the induction
hypothesis that there are only finitely many such isotropy subgroups. This
proves the local statement. Cover M by finitely many such neighbourhoods
to prove the global assertion of Theorem 9.1.

28



10 Centralizers

Let G be a compact connected Lie group. For any subset H ⊂ G the cen-
tralizer of H is defined by

C(H) := CG(H) := {g ∈ G | gh = hg ∀h ∈ H}

By Theorem 3.1 this set is a Lie subgroup of G with Lie algebra

Lie(C(H)) =
{
ξ ∈ g |hξh−1 = ξ ∀h ∈ H

}
=

⋂
h∈H

ker(1l− Ad(h)).

Moreover, C(G) = Z(G) is the center of G and C(Z(G)) = G. A subgroup
H ⊂ G is abelian if and only if H ⊂ C(H) and it is maximal abelian if and
only if H = C(H). For a singleton H = {h} we denote C(h) := C({h}).
Lemma 10.1. Let G be a group. Then, for every subset H ⊂ G,

H ⊂ C(C(H)), C(C(C(H))) = C(H).

Proof. The first assertion follows directly from the definition and the second
assertion follows from the first. Namely, the inclusion H ⊂ C(C(H)) implies
that C(C(C(H))) ⊂ C(H), and the converse inclusion follows by applying the
first assertion to C(H) instead of H. This proves Lemma 10.1.

A subgroup H ⊂ G is called a centralizer subgroup iff there exists a
subset of G whose centralizer is equal to H. By Lemma 10.1 this condition
is equivalent to

H = C(C(H)). (10.1)

A Lie subalgebra h ⊂ g is called a centralizer subalgebra iff there exists a
centralizer subgroup H ⊂ G such that h = Lie(H). Let us denote by C ⊂ 2G

the set of all centralizer subgroups. By (10.1), the map

C → C : H 7→ C(H) (10.2)

is an involution. Moreover the group G acts on C by conjugation and the
involution H 7→ C(H) is equivariant under this action, i.e.

C(gHg−1) = gC(H)g−1.

The fixed points of the involution (10.2) are the maximal abelian subgroups
of G. Consider the equivalence relation on C defined by H ∼ H′ iff there exists
an element g ∈ G such that H′ = gHg−1. The following theorem asserts that
the quotient C/∼ is a finite set.
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Theorem 10.2. Let G be a compact connected Lie group. Then there exist
finitely many centralizer subgroups H1, . . . ,Hm of G such that every central-
izer subgroup H ⊂ G is conjugate to one of the Hi.

Proof. Since G is compact it admits a faithful representation ρ : G → U(n).
Now let H ⊂ G be a subgroup and let g ∈ C(H). Then ρ(g) commutes
with all matrices in the span of ρ(H). Choose elements h1, . . . , hn2 ∈ H
such that ρ(H) is contained in the span of the matrices ρ(hi). Then C(H)
can be characterized as the set of all g ∈ G such that ρ(g) commutes
with ρ(hi) for i = 1, . . . , n2. In other words, if the group G acts on the vector
space V := (Cn×n)n

2
by g · Ai := ρ(g)Aiρ(g)

−1 for i = 1, . . . , n2, then every
centralizer subgroup of G is the isotropy subgroup of some element of V . By
Theorem 9.1, the set of conjugacy classes of such isotropy subgroups is finite.
This proves Theorem 10.2.

11 Simple Groups

A Lie algebra g is called abelian iff the Lie bracket vanishes. A Lie sub-
algebra h ⊂ g is called an ideal iff [h, g] ⊂ h. The Lie algebra of a normal
Lie subgroup of G is necessarily an ideal. A Lie algebra g is called simple
iff it is not abelian and has no nontrivial ideals (that is {0} and g are the
only ideals in g). It is called semi-simple iff it is a direct sum of simple Lie
algebras. A Lie group is called simple (respectively semi-simple) iff its Lie
algebra is simple (respectively semi-simple).

Theorem 11.1. Every compact connected simply connected simple Lie group
is isomorphic to one in the following list

An := SU(n+ 1), n ≥ 1,
Bn := Spin(2n+ 1), n ≥ 2,
Cn := Sp(n), n ≥ 3,
Dn := Spin(2n), n ≥ 4,

or to one of the exceptional groups G2, F4, E6, E7, E8.

There are relations such as Spin(3) ∼= SU(2) ∼= Sp(1), Spin(5) ∼= Sp(2),
and Spin(6) ∼= SU(4). The Lie groups D1

∼= Spin(2) ∼= U(1) ∼= S1 and
Spin(4) ∼= SU(2) × SU(2) are not simple. (See Exercises 12.10 and 12.11
below for Spin(3) and Spin(4).)
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The Killing form

Every Lie algebra carries a natural pairing

κ(ξ, η) := trace(Ad(ξ)Ad(η))

called the Killing form. On su(n) this form is negative definite. In general
the Killing form may have a kernel and/or be indefinite.

Theorem 11.2 (Cartan). The Killing form is nondegenerate (and negative
definite) if and only if G is semisimple.

Exercise 11.3. Prove that the Killing forms on su(n) and so(2n) are given
by

κ(ξ, η) = −(2n− 1) trace(ξ∗η), ξ, η ∈ su(n),

κ(ξ, η) = −(n− 2) trace(ξTη), ξ, η ∈ so(2n).

Exercise 11.4. Prove that the Killing form on SL(2,R) is indefinite.

Root systems

Let G be a compact Lie group with maximal torus T. The exponential map
is onto by Exercise 5.4 (iv). It determines an isomorphism

T ∼= t/Λ

where t = Lie(T) and

Λ := {τ ∈ t | exp(τ) = 1l}

is a lattice which spans t. A one-dimensional complex representation is a
homomorphism T → S1. Under the identification T ∼= t/Λ any such homo-
morphism is of the form τ 7→ e2πiw(τ) where

w : t → R

is a linear map that satisfies

w(Λ) ⊂ Z.

Any such map w ∈ t∗ is called a weight.
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Now consider the adjoint representation of T on g. Since the action
preserves any invariant inner product, the commuting Automorphisms ad(τ)
for τ ∈ t are simultaneously diagonalizable (over C). It follows that there
exists a decomposition

g = t⊕
⊕
α

Vα

where Vα ⊂ g are two-dimensional representations of T. In other words there
exists a complex structure Jα on Vα and weights wα ∈ t∗ such that

[τ, ξ] = 2πJαwα(τ)ξ, τ ∈ t, ξ ∈ Vα.

The weights wα are called the roots of the Lie algebra g. For each α define
τα ∈ t to be the dual element with respect to the Killing form, i.e.

κ(τα, σ) = wα(σ), σ ∈ t.

The length of the root wα is defined by

ℓ(α) :=
√

−κ(τα, τα).

The length of the longest root is an important invariant of the Lie group G.
We denote the square of its inverse by

a(G) :=
1

supα ℓ(α)
2
.

Here is a list of these invariants for the simple groups.

G dim(G) a(G)

SU(n) n2 − 1 n
Spin(n) 1

2
n(n− 1) n− 2

Sp(n) n(2n+ 1) n+ 1
G2 14 4
F4 52 9
E6 78 12
E7 133 18
E8 248 30
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12 Examples

Example 12.1 (General linear group). The group GL(n,R) of invertible
real n × n-matrices is a Lie group. This space is an open set in Rn×n and
hence is obviously a manifold. Its Lie algebra is the vector space Rn×n of all
real n× n matrices with Lie bracket operation

[A,B] := AB −BA.

In this case the exponential map exp : Rn×n → GL(n,R) is the usual ex-
ponential map for matrices and the expressions gv and vg for v ∈ ThG are
given by matrix multiplication. The example GL(n,C) of invertible complex
n × n-matrices is similar. However, the group GL(n,C) is connected while
the group GL(n,R) has two components distinguished by the sign of the
determinant.

Example 12.2 (Special linear group). The determinant map

det : GL(n,C) → C∗

is a Lie group homomorphism and its kernel is a Lie group denoted by

SL(n,C) :=
{
Φ ∈ Cn×n | det Φ = 1

}
.

The formula
det(exp(A)) = exp(trace(A))

shows that the Lie algebra of SL(n,C) is given by

sl(n,C) :=
{
A ∈ Cn×n | traceA = 0

}
.

The Lie group SL(n,R) with Lie algebra sl(n,R) is defined analogously.

Example 12.3 (Circle). The unit circle

S1 := {z ∈ C | |z| = 1}

in the complex plane is a Lie group (under multiplication of complex num-
bers). Its Lie algebra is the space iR of imaginary numbers with zero Lie
bracket. (See Exercise 1.9.) The exponential map iR → S1 descends to a Lie
group isomorphism R/Z → S1 : t 7→ e2πit.
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Example 12.4 (Torus). Let V be an n-dimensional real vector space and
Λ ⊂ V be a lattice (a discrete additive subgroup) which spans V . Then

T := V/Λ

is a compact abelian Lie group (the group operation is the addition in V ) with
Lie algebra V . The exponential map is the projection V → V/Λ. Any such
Lie group is called a torus. Tori can be characterized as compact connected
finite-dimensional abelian Lie groups. The basic example is the standard
torus Tn := Rn/Zn and every n-dimensional torus is isomorphic to Tn.

Example 12.5 (Orthogonal group). The orthogonal n×n-matrices form
a Lie group

O(n) :=
{
Φ ∈ Rn×n |ΦTΦ = 1l

}
.

This group has two components distinguished by the determinant detΦ = ±1
and the component of the identity is denoted by

SO(n) := {Φ ∈ O(n) | det Φ = 1}.

Its Lie algebra is the space of antisymmetric matrices

so(n) :=
{
A ∈ Rn×n |AT + A = 0

}
.

The group SO(n) is compact and connected and the exponential map is
surjective (see Exercise 5.4).

Example 12.6 (Unitary group). The unitary n × n-matrices form a Lie
group

U(n) :=
{
U ∈ Cn×n |U∗U = 1l

}
where U∗ denotes the conjugate transpose of U . This group is connected and
its Lie algebra is given by

u(n) :=
{
A ∈ Cn×n |A∗ + A = 0

}
.

The case n = 1 corresponds to the circle S1 = U(1). The subgroup of unitary
matrices of determinant 1 is denoted by

SU(n) := U(n) ∩ SL(n,C)

and its Lie algebra by

su(n) := {A ∈ u(n) | trace(A) = 0} .

Both groups U(n) and SU(n) are compact and connected.
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Example 12.7 (Unit quaternions). Denote by

H = R4

the space of quaternions

x = x0 + ix1 + jx2 + kx3

with (noncommutative) multiplicative structure

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i ki = −ik = j.

The norm of x ∈ H is defined by

|x|2 := xx̄ = x0
2 + x1

2 + x2
2 + x3

2, x̄ := x0 − ix1 − jx2 − kx3,

and satisfies the rule |xy| = |x| · |y|. Hence the unit quaternions form a group

Sp(1) := {x ∈ H | |x| = 1}

with unit 1 and inverse map x 7→ x̄. Its Lie algebra consists of the imaginary
quaternions

sp(1) := {x ∈ H |x0 = 0} .

The exponential map is given by the usual formula exp(x) =
∑∞

n=0 x
n/n!.

The quaternion multiplication defines a group structure on S3 = Sp(1) and a
Lie algebra structure on R3 ≃ sp(1). This Lie algebra structure corresponds
to the vector product.

Example 12.8. The quaternion matrices Φ ∈ Hn×n with Φ∗Φ = 1l form a
compact connected group denoted by Sp(n). Its Lie algebra sp(n) consists
of the quaternion matrices A ∈ Hn×n with A∗ +A = 0. Here A∗ denotes the
conjugate transpose as in the complex case.

Exercise 12.9. (i) Prove that the map

Sp(1) → SU(2) : x 7→ U(x)

defined by

U(x) :=

(
x0 + ix1 x2 + ix3

−x2 + ix3 x0 − ix1

)
is a Lie group isomorphism.

35



(ii) Prove that the corresponding Lie algebra homomorphism

sp(1) → su(2) : ξ 7→ u(ξ)

is given by

u(ξ) :=

(
iξ1 ξ2 + iξ3

−ξ2 + iξ3 −iξ1

)
.

Show that the matrices

I =

(
i 0
0 −i

)
, J =

(
0 1

−1 0

)
, K =

(
0 i
i 0

)
.

satisfy the quaternion relations. In other words, the Lie algebra su(2) is
isomorphic to the imaginary quaternions and the isomorphism is given by
i 7→ I, j 7→ J , k 7→ K. The natural orientation of SU(2) is determined by
the irdered basis I, J,K of su(2).

(iii) Prove that

[u(ξ), u(η)] = 2u(ξ × η), trace(u(ξ)∗u(η)) = 2⟨ξ, η⟩

for ξ, η ∈ R3 ∼= Im(H).

Exercise 12.10 (Spin(3)). The unit quaternions act on the imaginary qua-
ternions by conjugation. This determines a homomorphism

Sp(1) → SO(3) : x 7→ Φ(x)

defined by
Φ(x)ξ := xξx̄

for x ∈ Sp(1) and ξ ∈ Im(H) ∼= R3. On the left the multiplication is
understood as a product of matrix and vector and on the right as a product
of quaternions.

(i) Prove that

Φ(x) =

 x20 + x21 − x22 − x23 2(x1x2 − x0x3) 2(x0x2 − x1x3)
2(x0x3 − x1x2) x20 − x21 + x22 − x23 2(x2x3 − x0x1)
2(x1x3 − x0x2) 2(x0x1 − x2x3) x20 − x21 − x22 + x23

 .

(ii) Verify that the map SU(2) → SO(3) : U(x) 7→ Φ(x) is a Lie group
homomorphism and a double cover. Deduce that π1(SO(3)) = Z2.
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(iii) Let su(2) → so(3) : u(ξ) 7→ A(ξ) denote the corresponding Lie algebra
homomorphism. Prove that

A(ξ) = 2

 0 −ξ3 ξ2
ξ3 0 −ξ1

−ξ2 ξ1 0

 .

Prove that [A(ξ), A(η)] = 2A(ξ × η) and trace(A(ξ)TA(η)) = 8⟨ξ, η⟩.

Exercise 12.11 (Spin(4)). The group Sp(1) × Sp(1) acts on H by the or-
thogonal transformations x 7→ uxv̄ for (u, v) ∈ Sp(1) × Sp(1). Prove that
this action determines a double cover

Sp(1)× Sp(1) → SO(4)

and find an explicit formula for the matrix Ψ(u, v) ∈ R4×4 defined by

Ψ(u, v)x = uxv̄.

Lemma 12.12. (i) SO(n) is connected and in the case n ≥ 3 its fundamental
group is isomorphic to Z2. Hence for n ≥ 3 the universal cover of SO(n) is
a compact group (with the same Lie algebra). It is denoted by Spin(n).

(ii) SU(n) is connected and simply connected and π2(SU(n)) = 0.

(iii) The fundamental group of U(n) is isomorphic to the integers. The
determinant homomorphism det : U(n) → S1 induces an isomorphism of
fundamental groups.

Proof. The subgroup of all matrices Φ ∈ SO(n) whose first column is the
first unit vector e1 = (1, 0, . . . , 0) ∈ Rn is isomorphic to SO(n − 1). Hence
there is a fibration

SO(n− 1) ↪→ SO(n) → Sn−1

where the second map sends a matrix in SO(n) to its first column. The
homotopy exact sequence of this fibration has the form

πk+1(S
n−1) → πk(SO(n− 1)) → πk(SO(n)) → πk(S

n−1)

By Exercise 12.10, π1(SO(3)) ≃ Z2. For n ≥ 4 this follows from the exact
sequence with k = 1. The connectedness of SO(n) is obvious for n = 1, 2.
For n ≥ 3 it follows from the exact sequence with k = 0. This proves (i).
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To prove (ii) consider the fibration

SU(n− 1) ↪→ SU(n) → S2n−1

where the last map sends U ∈ SU(n) to the first column of U . The homotopy
exact sequence of this fibration has the form

πk+1(S
2n−1) → πk(SU(n− 1)) → πk(SU(n)) → πk(S

2n−1).

For n = 1 the group SU(1) = {1} is obviously connected and simply con-
nected. For n ≥ 2 use the exact sequence inductively (over n) with k = 0, 1.
The statement about π2 is proved similarly with k = 2.

To prove (iii) consider the fibration

SU(n) ↪→ U(n) → S1.

The homotopy exact sequence of this fibration has the form

1 = π1(SU(n)) → π1(U(n)) → π1(S
1) → π0(SU(n)) = 1.

In view of statement (ii) this shows that π1(U(n)) ≃ π1(S
1) ≃ Z.

Let Y be a compact oriented smooth 3-manifold, and recall from Exer-
cise 12.9 that SU(2) is diffeomorphic to S3 and carries a natural orientation.
Hence every smooth map g : Y → SU(2) has a well defined degree. The
next proposition shows that this degree can be expressed as as the integral
of natural 3-form over Y .

Lemma 12.13. For every compact oriented smooth 3-manifold Y and every
smooth map g : Y → SU(2) we have∫

Y

trace
(
g−1dg ∧ g−1dg ∧ g−1dg

)
= −24π2 deg(g).

Proof. Denote

ωg := trace
(
g−1dg ∧ g−1dg ∧ g−1dg

)
∈ Ω3(Y ).

If f : Y ′ → Y is a smooth map, then

ωg◦f = f ∗ωg.
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In particular, with ω0 := ωid ∈ Ω3(SU(2)), we have ωg = g∗ω0 and hence∫
Y

ωg = deg(g)

∫
SU(2)

ω0. (12.1)

To compute the integral of ω0 consider the diffeomorphism U : S3 → SU(2)
defined in Exercise 12.9. With the standard orientations of S3 and SU(2)
this map has degree 1. Moreover, it follows from the symmetry of this map
that ωU is a constant multiple of the volume form on S3. To find out the
factor we compute the form on the tangent space TxS

3 for x = (1, 0, 0, 0).
On this space

U−1dU = Idx1 + Jdx2 +Kdx3,

hence

U−1dU ∧ U−1dU = 2Idx2 ∧ dx3 + 2Jdx3 ∧ dx1 + 2Kdx1 ∧ dx2,

and hence

U−1dU ∧ U−1dU ∧ U−1dU = 2(I2 + J2 +K2)dx1 ∧ dx2 ∧ dx3

This implies ωU = −12 dvolS3 and hence, by (12.1) with g = U ,∫
SU(2)

ω0 =

∫
S3

ωU = −12Vol(S3) = −24π2.

This proves Lemma 12.13.

Example 12.14 (Diffeomorphisms). LetM be a compact manifold. Then
the diffeomorphisms of M form an infinite-dimensional Lie group Diff(M)
with group multiplication given by composition (f, g) 7→ f ◦g. Its Lie algebra
is the space Vect(M) of vector fields on M . The Lie algebra structure on
Vect(M) is the usual one if the sign in the definition of the Lie bracket of two
vector fields is chosen appropriately. The one-parameter subgroup generated
by a vector field X ∈ Vect(M) is its flow R → Diff(M) : t 7→ ϕt defined by

d

dt
ϕt = X ◦ ϕt, ϕ0 = id.

Note also that the inverse of the adjoint action of Diff(M) on Vect(M) is given
by pullback, i.e. Ad(ϕ−1)X = ϕ∗X = dϕ◦X ◦ϕ−1. Interesting subgroups are
given by the (exact) volume preserving diffeomorphisms or by the isometries
of a Riemannian manifold, or by the (Hamiltonian) symplectomorphisms of
a symplectic manifold.
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Example 12.15 (Invertible linear operators). For invertible operators
on an infinite-dimensional Hilbert space H the relation between Lie-group
and Lie-algebra is somewhat subtle. Not every one parameter group t 7→ S(t)
of invertible linear operators is differentiable. Such groups can be generated
by unbounded operators and this leads to the theory of semigroups of linear
operators.
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