
The Viterbo–Maslov Index in Dimension Two

Joel W. Robbin

University of Wisconsin

Dietmar A. Salamon∗

ETH-Zürich
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Abstract

We prove a formula that expresses the Viterbo–Maslov index of

a smooth strip in an oriented 2-manifold with boundary curves con-

tained in 1-dimensional submanifolds in terms the degree function on

the complement of the union of the two submanifolds.

1 Introduction

We assume throughout this paper that Σ is a connected oriented 2-manifold
without boundary and α, β ⊂ Σ are connected smooth one dimensional ori-
ented submanifolds without boundary which are closed as subsets of Σ and
intersect transversally. We do not assume that Σ is compact, but when it is,
α and β are embedded circles. Denote the standard half disc by

D := {z ∈ C | Im z ≥ 0, |z| ≤ 1}.

Let D denote the space of all smooth maps u : D → Σ satisfying the bound-
ary conditions u(D ∩ R) ⊂ α and u(D ∩ S1) ⊂ β. For x, y ∈ α ∩ β let
D(x, y) denote the subset of all u ∈ D satisfying the endpoint conditions
u(−1) = x and u(1) = y. Each u ∈ D determines a locally constant function
w : Σ \ (α ∪ β) → Z defined as the degree

w(z) := deg(u, z), z ∈ Σ \ (α ∪ β).

∗Partially supported by the Swiss National Science Foundation Grant 200021-127136
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When z is a regular value of u this is the algebraic number of points in
the preimage u−1(z). The function w depends only on the homotopy class
of u. We prove that the homotopy class of u is uniquely determined by its
endpoints x, y and its degree function w (Theorem 2.4). The main theorem of
this paper asserts that the Viterbo–Maslov index of an element u ∈ D(x, y)
is given by the formula

µ(u) =
mx +my

2
, (1)

where mx denotes the sum of the four values of w encountered when walk-
ing along a small circle surrounding x, and similarly for y (Theorem 3.4).
The formula (1) plays a central role in our combinatorial approach [1, 7] to
Floer homology [4, 5]. An appendix contains a proof that the space of paths
connecting α to β is simply connected under suitable assumptions.

Acknowledgement. We thank David Epstein for explaining to us the proof
of Proposition A.1.

2 Chains and Traces

Define a cell complex structure on Σ by taking the set of zero-cells to be
the set α ∩ β, the set of one-cells to be the set of connected components of
(α \ β) ∪ (β \ α) with compact closure, and the set of two-cells to be the
set of connected components of Σ \ (α ∪ β) with compact closure. (There is
an abuse of language here as the “two-cells” need not be homeomorphs of
the open unit disc if the genus of Σ is positive and the “one-cells” need not
be arcs if α ∩ β = ∅.) Define a boundary operator ∂ as follows. For each
two-cell F let ∂F =

∑

±E, where the sum is over the one-cells E which abut
F and the plus sign is chosen iff the orientation of E (determined from the
given orientations of α and β) agrees with the boundary orientation of F as
a connected open subset of the oriented manifold Σ. For each one-cell E let
∂E = b− a where a and b are the endpoints of the arc E and the orientation
of E goes from a to b. (The one-cell E is either a subarc of α or a subarc of
β and both α and β are oriented one-manifolds.) For k = 0, 1, 2 a k-chain
is defined to be a formal linear combination (with integer coefficients) of
k-cells, i.e. a two-chain is a locally constant map Σ \ (α ∪ β) → Z (whose
support has compact closure in Σ) and a one-chain is a locally constant map
(α\β)∪(β \α) → Z (whose support has compact closure in α∪β). It follows
directly from the definitions that ∂2F = 0 for each two-cell F .
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Each u ∈ D determines a two-chain w via

w(z) := deg(u, z), z ∈ Σ \ (α ∪ β). (2)

and a one-chain ν via

ν(z) :=

{

deg(u
∣

∣

∂D∩R
: ∂D ∩ R → α, z), for z ∈ α \ β,

− deg(u
∣

∣

∂D∩S1
: ∂D ∩ S1 → β, z), for z ∈ β \ α.

(3)

Here we orient the one-manifolds D∩R and D∩ S1 from −1 to +1. For any
one-chain ν : (α \ β) ∪ (β \ α) → Z denote

να := ν|α\β : α \ β → Z, νβ := ν|α\β : β \ α → Z.

Conversely, given locally constant functions να : α\β → Z and νβ : β\α → Z,
denote by ν = να − νβ the one-chain that agrees with να on α \ β and agrees
with −νβ on β \ α.

Definition 2.1 (Traces). Fix two (not necessarily distinct) intersection
points x, y ∈ α ∩ β.

(i) Let w : Σ \ (α ∪ β) → Z be a two-chain. The triple Λ = (x, y,w) is
called an (α, β)-trace if there exists an element u ∈ D(x, y) such that w is
given by (2). In this case Λ =: Λu is also called the (α, β)-trace of u and
we sometimes write wu := w.

(ii) Let Λ = (x, y,w) be an (α, β)-trace. The triple ∂Λ := (x, y, ∂w) is called
the boundary of Λ.

(iii) A one-chain ν : (α\β)∪(β\α) → Z is called an (x, y)-trace if there exist
smooth curves γα : [0, 1] → α and γβ : [0, 1] → β such that γα(0) = γβ(0) = x,
γα(1) = γβ(1) = y, γα and γβ are homotopic in Σ with fixed endpoints, and

ν(z) =

{

deg(γα, z), for z ∈ α \ β,
− deg(γβ, z), for z ∈ β \ α.

(4)

Remark 2.2. Assume Σ is simply connected. Then the condition on γα
and γβ to be homotopic with fixed endpoints is redundant. Moreover, if
x = y then a one-chain ν is an (x, y)-trace if and only if the restrictions
να := ν|α\β and νβ := −ν|β\α are constant. If x 6= y and α, β are embedded
circles and A,B denote the positively oriented arcs from x to y in α, β,
then a one-chain ν is an (x, y)-trace if and only if να|α\(A∪β) = να|A\β − 1
and νβ |β\(B∪α) = νβ|B\α − 1. In particular, when walking along α or β, the
function ν only changes its value at x and y.
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Lemma 2.3. Let x, y ∈ α ∩ β and u ∈ D(x, y). Then the boundary of the
(α, β)-trace Λu of u is the triple ∂Λu = (x, y, ν), where ν is given by (3). In
other words, if w is given by (2) and ν is given by (3) then ν = ∂w.

Proof. Choose an embedding γ : [−1, 1] → Σ such that u is transverse to γ,
γ(t) ∈ Σ \ (α∪ β) for t 6= 0, γ(−1), γ(1) are regular values of u, γ(0) ∈ α \ β
is a regular value of u|D∩R, and γ intersects α transversally at t = 0 such that
orientations match in

Tγ(0)Σ = Tγ(0)α⊕ Rγ̇(0).

Denote Γ := γ([−1, 1]). Then u−1(Γ) ⊂ D is a 1-dimensional submanifold
with boundary

∂u−1(Γ) = u−1(γ(−1)) ∪ u−1(γ(1)) ∪
(

u−1(γ(0)) ∩ R)
)

.

If z ∈ u−1(Γ) then

im du(z) + Tu(z)Γ = Tu(z)Σ, Tzu
−1(Γ) = du(z)−1Tu(z)Γ.

We orient u−1(Γ) such that the orientations match in

Tu(z)Σ = Tu(z)Γ⊕ du(z)iTzu
−1(Γ).

In other words, if z ∈ u−1(Γ) and u(z) = γ(t), then a nonzero tangent vector
ζ ∈ Tzu

−1(Γ) is positive if and only if the pair (γ̇(t), du(z)iζ) is a positive
basis of Tγ(t)Σ. Then the boundary orientation of u−1(Γ) at the elements of
u−1(γ(1)) agrees with the algebraic count in the definition of w(γ(1)), at the
elements of u−1(γ(−1)) is opposite to the algebraic count in the definition of
w(γ(−1)), and at the elements of u−1(γ(0)) ∩ R is opposite to the algebraic
count in the definition of ν(γ(0)). Hence

w(γ(1)) = w(γ(−1)) + ν(γ(0)).

In other words the value of ν at a point in α \ β is equal to the value of w
slightly to the left of α minus the value of w slightly to the right of α.
Likewise, the value of ν at a point in β \α is equal to the value of w slightly
to the right of β minus the value of w slightly to the left of β. This proves
Lemma 2.3.
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Theorem 2.4. (i) Two elements of D belong to the same connected compo-
nent of D if and only if they have the same (α, β)-trace.

(ii) Assume Σ is diffeomorphic to the two-sphere. Then Λ = (x, y,w) is an
(α, β)-trace if and only if ∂w is an (x, y)-trace.

(iii) Assume Σ is not diffeomorphic to the two-sphere and let x, y ∈ α∩β. If ν
is an (x, y)-trace, then there is a unique two-chain w such that Λ := (x, y,w)
is an (α, β)-trace and ∂w = ν.

Proof. We prove (i). “Only if” follows from the standard arguments in degree
theory as in Milnor [6]. To prove “if”, fix two intersection points

x, y ∈ α ∩ β

and, for X = Σ, α, β, denote by P(x, y;X) the space of all smooth curves
γ : [0, 1] → X satisfying γ(0) = x and γ(1) = y. Every u ∈ D(x, y) deter-
mines smooth paths γu,α ∈ P(x, y;α) and γu,β ∈ P(x, y; β) via

γu,α(s) := u(− cos(πs), 0), γu,β(s) = u(− cos(πs), sin(πs)). (5)

These paths are homotopic in Σ with fixed endpoints. An explicit homotopy
is the map

Fu := u ◦ ϕ : [0, 1]2 → Σ

where ϕ : [0, 1]2 → D is the map

ϕ(s, t) := (− cos(πs), t sin(πs)).

By Lemma 2.3, he homotopy class of γu,α in P(x, y;α) is uniquely deter-
mined by να := ∂wu|α\β : α \ β → Z and that of γu,β in P(x, y; β) is
uniquely determined by νβ := −∂wu|β\α : β \ α → Z. Hence they are
both uniquely determined by the (α, β)-trace of u. If Σ is not diffeomorphic
to the 2-sphere the assertion follows from the fact that each component of
P(x, y; Σ) is contractible (because the universal cover of Σ is diffeomorphic
to the complex plane). Now assume Σ is diffeomorphic to the 2-sphere. Then
π1(P(x, y; Σ)) = Z acts on π0(D) because the correspondence u 7→ Fu iden-
tifies π0(D) with a space of homotopy classes of paths in P(x, y; Σ) connect-
ing P(x, y;α) to P(x, y; β). The induced action on the space of two-chains
w : Σ \ (α ∪ β) is given by adding a global constant. Hence the map u 7→ w
induces an injective map

π0(D(x, y)) → {2-chains}.

This proves (i).
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We prove (ii) and (iii). Let w be a two-chain, suppose that

ν := ∂w

is an (x, y)-trace, and denote

Λ := (x, y,w).

Let γα : [0, 1] → α and γβ : [0, 1] → β be as in Definition 2.1. Then there is a
u′ ∈ D(x, y) such that the map s 7→ u′(− cos(πs), 0) is homotopic to γα and
s 7→ u′(− cos(πs), sin(πs)) is homotopic to γβ. By definition the (α, β)-trace
of u′ is Λ′ = (x, y,w′) for some two-chain w′. By Lemma 2.3, we have

∂w′ = ν = ∂w

and hence w−w′ =: d is constant. If Σ is not diffeomorphic to the two-sphere
and Λ is the (α, β)-trace of some element u ∈ D, then u is homotopic to u′

(as P(x, y; Σ) is simply connected) and hence d = 0 and Λ = Λ′. If Σ is
diffeomorphic to the 2-sphere choose a smooth map v : S2 → Σ of degree d
and replace u′ by the connected sum u := u′#v. Then Λ is the (α, β)-trace
of u. This proves Theorem 2.4.

Remark 2.5. Let Λ = (x, y,w) be an (α, β)-trace and define

να := ∂w|α\β , νβ := −∂w|β\α.

(i) The two-chain w is uniquely determined by the condition ∂w = να − νβ
and its value at one point. To see this, think of the embedded circles α and
β as traintracks. Crossing α at a point z ∈ α \ β increases w by να(z) if
the train comes from the left, and decreases it by να(z) if the train comes
from the right. Crossing β at a point z ∈ β \ α decreases w by νβ(z) if the
train comes from the left and increases it by νβ(z) if the train comes from
the right. Moreover, να extends continuously to α \ {x, y} and νβ extends
continuously to β \ {x, y}. At each intersection point z ∈ (α ∩ β) \ {x, y}
with intersection index +1 (respectively −1) the function w takes the values

k, k + να(z), k + να(z)− νβ(z), k − νβ(z)

as we march counterclockwise (respectively clockwise) along a small circle
surrounding the intersection point.
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(ii) If Σ is not diffeomorphic to the 2-sphere then, by Theorem 2.4 (iii), the
(α, β)-trace Λ is uniquely determined by its boundary ∂Λ = (x, y, να − νβ).

(iii) Assume Σ is not diffeomorphic to the 2-sphere and choose a universal
covering π : C → Σ. Choose a point x̃ ∈ π−1(x) and lifts α̃ and β̃ of α and β
such that x̃ ∈ α̃ ∩ β̃. Then Λ lifts to an (α̃, β̃)-trace

Λ̃ = (x̃, ỹ, w̃).

More precisely, the one chain ν := να − νβ = ∂w is an (x, y)-trace, by
Lemma 2.3. The paths γα : [0, 1] → α and γβ : [0, 1] → β in Definition 2.1
lift to unique paths γα̃ : [0, 1] → α̃ and γβ̃ : [0, 1] → β̃ connecting x̃ to ỹ. For

z̃ ∈ C \ (Ã∪ B̃) the number w̃(z̃) is the winding number of the loop γα̃ − γβ̃
about z̃ (by Rouché’s theorem). The two-chain w is then given by

w(z) =
∑

z̃∈π−1(z)

w̃(z̃), z ∈ Σ \ (α ∪ β).

To see this, lift an element u ∈ D(x, y) with (α, β)-trace Λ to the universal
cover to obtain an element ũ ∈ D(x̃, ỹ) with Λũ = Λ̃ and consider the degree.

Definition 2.6 (Catenation). Let x, y, z ∈ α∩β. The catenation of two
(α, β)-traces Λ = (x, y,w) and Λ′ = (y, z,w′) is defined by

Λ#Λ′ := (x, z,w + w′).

Let u ∈ D(x, y) and u′ ∈ D(y, z) and suppose that u and u′ are constant near
the ends ±1 ∈ D. For 0 < λ < 1 sufficiently close to one the λ-catenation
of u and u′ is the map u#λu

′ ∈ D(x, z) defined by

(u#λu
′)(ζ) :=







u
(

ζ+λ
1+λζ

)

, for Re ζ ≤ 0,

u′
(

ζ−λ
1−λζ

)

, for Re ζ ≥ 0.

Lemma 2.7. If u ∈ D(x, y) and u′ ∈ D(y, z) are as in Definition 2.6 then

Λu#λu′ = Λu#Λu′.

Thus the catenation of two (α, β)-traces is again an (α, β)-trace.

Proof. This follows directly from the definitions.
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3 The Maslov Index

Definition 3.1. Let x, y ∈ α ∩ β and u ∈ D(x, y). Choose an orientation
preserving trivialization

D× R
2 → u∗TΣ : (z, ζ) 7→ Φ(z)ζ

and consider the Lagrangian paths

λ0, λ1 : [0, 1] → RP1

given by

λ0(s) := Φ(− cos(πs), 0)−1Tu(− cos(πs),0)α,

λ1(s) := Φ(− cos(πs), sin(πs))−1Tu(− cos(πs),sin(πs))β.

The Viterbo–Maslov index of u is defined as the relative Maslov index of
the pair of Lagrangian paths (λ0, λ1) and will be denoted by

µ(u) := µ(Λu) := µ(λ0, λ1).

By the naturality and homotopy axioms for the relative Maslov index (see
for example [8]), the number µ(u) is independent of the choice of the triv-
ialization and depends only on the homotopy class of u; hence it depends
only on the (α, β)-trace of u, by Theorem 2.4. The relative Maslov index
µ(λ0, λ1) is the degree of the loop in RP1 obtained by traversing λ0, followed
by a counterclockwise turn from λ0(1) to λ1(1), followed by traversing λ1 in
reverse time, followed by a clockwise turn from λ1(0) to λ0(0). This index
was first defined by Viterbo [9] (in all dimensions). Another exposition is
contained in [8].

Remark 3.2. The Viterbo–Maslov index is additive under catenation, i.e. if

Λ = (x, y,w), Λ′ = (y, z,w′)

are (α, β)-traces then

µ(Λ#Λ′) = µ(Λ) + µ(Λ′).

For a proof of this formula see [9, 8].
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Definition 3.3. Let Λ = (x, y,w) be an (α, β)-trace and

να := ∂w|α\β , νβ := −∂w|β\α.

Λ is said to satisfy the arc condition if

x 6= y, min |να| = min |νβ| = 0. (6)

When Λ satisfies the arc condition there are arcs A ⊂ α and B ⊂ β from x
to y such that

να(z) =

{

±1, if z ∈ A,
0, if z ∈ α \ A,

νβ(z) =

{

±1, if z ∈ B,
0, if z ∈ β \B.

(7)

Here the plus sign is chosen iff the orientation of A from x to y agrees with
that of α, respectively the orientation of B from x to y agrees with that of β.
In this situation the quadruple (x, y, A,B) and the triple (x, y, ∂w) determine
one another and we also write

∂Λ = (x, y, A,B)

for the boundary of Λ. When u ∈ D and Λu = (x, y,w) satisfies the arc
condition and ∂Λu = (x, y, A,B) then

s 7→ u(− cos(πs), 0)

is homotopic in α to a path traversing A and the path

s 7→ u(− cos(πs), sin(πs))

is homotopic in β to a path traversing B.

Theorem 3.4. Let Λ = (x, y,w) be an (α, β)-trace. For z ∈ α ∩ β denote
by mz(Λ) the sum of the four values of w encountered when walking along a
small circle surrounding z. Then the Viterbo–Maslov index of Λ is given by

µ(Λ) =
mx(Λ) +my(Λ)

2
. (8)

We first prove the result for the 2-plane and the 2-sphere (Section 4).
When Σ is not simply connected we reduce the result to the case of the
2-plane (Section 5). The key is the identity

mgx̃(Λ̃) +mg−1ỹ(Λ̃) = 0 (9)

for every lift Λ̃ to the universal cover and every deck transformation g 6= id.
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4 The Simply Connected Case

A connected oriented 2-manifold Σ is called planar if it admits an (orienta-
tion preserving) embedding into the complex plane.

Proposition 4.1. Equation (8) holds when Σ is planar.

Proof. Assume first that Σ = C and Λ = (x, y,w) satisfies the arc condition.
Thus the boundary of Λ has the form

∂Λ = (x, y, A,B),

where A ⊂ α and B ⊂ β are arcs from x to y and w(z) is the winding number
of the loop A−B about the point z ∈ Σ \ (A∪B) (see Remark 2.5). Hence
the formula (8) can be written in the form

µ(Λ) = 2kx + 2ky +
εx − εy

2
. (10)

Here εz = εz(Λ) ∈ {+1,−1} denotes the intersection index of A and B at a
point z ∈ A ∩ B, kx = kx(Λ) denotes the value of the winding number w at
a point in α \A close to x, and ky = ky(Λ) denotes the value of w at a point
in α \A close to y. We now prove (10) under the assumption that Λ satisfies
the arc condition. The proof is by induction on the number of intersection
points of B and α and has seven steps.

Step 1. We may assume without loss of generality that

Σ = C, α = R, A = [x, y], x < y, (11)

and B ⊂ C is an embedded arc from x to y that is transverse to R.

Choose a diffeomorphism from Σ to C that maps A to a bounded closed
interval and maps x to the left endpoint of A. If α is not compact the
diffeomorphism can be chosen such that it also maps α to R. If α is an
embedded circle the diffeomorphism can be chosen such that its restriction
to B is transverse to R; now replace the image of α by R. This proves Step 1.

Step 2. Assume (11) and let Λ̄ := (x, y, z 7→ −w(z̄)) be the (α, β̄)-trace
obtained from Λ by complex conjugation. Then Λ satisfies (10) if and only if
Λ̄ satisfies (10).

Step 2 follows from the fact that the numbers µ, kx, ky, εx, εy change sign
under complex conjugation.
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Step 3. Assume (11). If B ∩ R = {x, y} then Λ satisfies (10).

In this case B is contained in the upper or lower closed half plane and the
loop A∪B bounds a disc contained in the same half plane. By Step 1 we may
assume that B is contained in the upper half space. Then εx = 1, εy = −1,
and µ(Λ) = 1. Moreover, the winding number w is one in the disc encircled
by A and B and is zero in the complement of its closure. Since the intervals
(−∞, 0) and (0,∞) are contained in this complement, we have kx = ky = 0.
This proves Step 3.

Step 4. Assume (11) and #(B ∩ R) > 2, follow the arc of B, starting at
x, and let x′ be the next intersection point with R. Assume x′ < x, denote
by B′ the arc in B from x′ to y, and let A′ := [x′, y] (see Figure 1). If the
(α, β)-trace Λ′ with boundary ∂Λ′ = (x′, y, A′, B′) satisfies (10) so does Λ.

1

2

−2

x’ x y

−1

Figure 1: Maslov index and catenation: x′ < x < y.

By Step 2 we may assume εx(Λ) = 1. Orient B from x to y. The Viterbo–
Maslov index of Λ is minus the Maslov index of the pathB → RP1 : z 7→ TzB,
relative to the Lagrangian subspace R ⊂ C. Since the Maslov index of the
arc in B from x to x′ is +1 we have

µ(Λ) = µ(Λ′)− 1. (12)

Since the orientations of A′ and B′ agree with those of A and B we have

εx′(Λ′) = εx′(Λ) = −1, εy(Λ
′) = εy(Λ). (13)

Now let x1 < x2 < · · · < xm < x be the intersection points of R and B in
the interval (−∞, x) and let εi ∈ {−1,+1} be the intersection index of R
and B at xi. Then there is an integer ℓ ∈ {1, . . . , m} such that xℓ = x′ and
εℓ = −1. Moreover, the winding number w slightly to the left of x is

kx(Λ) =

m
∑

i=1

εi.
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It agrees with the value of w slightly to the right of x′ = xℓ. Hence

kx(Λ) =
ℓ

∑

i=1

εi =
ℓ−1
∑

i=1

εi − 1 = kx′(Λ′)− 1, ky(Λ
′) = ky(Λ). (14)

It follows from equation (10) for Λ′ and equations (12), (13), and (14) that

µ(Λ) = µ(Λ′)− 1

= 2kx′(Λ′) + 2ky(Λ
′) +

εx′(Λ′)− εy(Λ
′)

2
− 1

= 2kx′(Λ′) + 2ky(Λ
′) +

−1− εy(Λ)

2
− 1

= 2kx′(Λ′) + 2ky(Λ
′) +

1− εy(Λ)

2
− 2

= 2kx(Λ) + 2ky(Λ) +
εx(Λ)− εy(Λ)

2
.

This proves Step 4.

Step 5. Assume (11) and #(B ∩R) > 2, follow the arc of B, starting at x,
and let x′ be the next intersection point with R. Assume x < x′ < y, denote
by B′ the arc in B from x′ to y, and let A′ := [x′, y] (see Figure 2). If the
(α, β)-trace Λ′ with boundary ∂Λ′ = (x′, y, A′, B′) satisfies (10) so does Λ.

−2

y

−1

x x’
2

1

Figure 2: Maslov index and catenation: x < x′ < y.

By Step 2 we may assume εx(Λ) = 1. Since the Maslov index of the arc in
B from x to x′ is −1, we have

µ(Λ) = µ(Λ′) + 1. (15)

Since the orientations of A′ and B′ agree with those of A and B we have

εx′(Λ′) = εx′(Λ) = −1, εy(Λ
′) = εy(Λ). (16)
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Now let x < x1 < x2 < · · · < xm < x′ be the intersection points of R and
B in the interval (x, x′) and let εi ∈ {−1,+1} be the intersection index of R
and B at xi. Since the value of w slightly to the left of x′ agrees with the
value of w slightly to the right of x we have

m
∑

i=1

εi = 0.

Since kx′(Λ′) is the sum of the intersection indices of R and B′ at all points
to the left of x′ we obtain

kx′(Λ′) = kx(Λ) +

m
∑

i=1

εi = kx(Λ), ky(Λ
′) = ky(Λ). (17)

It follows from equation (10) for Λ′ and equations (15), (16), and (17) that

µ(Λ) = µ(Λ′) + 1

= 2kx′(Λ′) + 2ky(Λ
′) +

εx′(Λ′)− εy(Λ
′)

2
+ 1

= 2kx(Λ) + 2ky(Λ) +
−1− εy(Λ)

2
+ 1

= 2kx(Λ) + 2ky(Λ) +
εx(Λ)− εy(Λ)

2
.

This proves Step 5.

Step 6. Assume (11) and #(B ∩ R) > 2, follow the arc of B, starting at
x, and let y′ be the next intersection point with R. Assume y′ > y. Denote
by B′ the arc in B from y to y′, and let A′ := [y, y′] (see Figure 3). If the
(α, β)-trace Λ′ with boundary ∂Λ′ = (y, y′, A′, B′) satisfies (10) so does Λ.

By Step 2 we may assume εx(Λ) = 1. Since the orientation of B′ from y to
y′ is opposite to the orientation of B and the Maslov index of the arc in B
from x to y′ is −1, we have

µ(Λ) = 1− µ(Λ′). (18)

Using again the fact that the orientation of B′ is opposite to the orientation
of B we have

εy(Λ
′) = −εy(Λ), εy′(Λ

′) = −εy′(Λ) = 1. (19)
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−2

x y

−1

y’

1

Figure 3: Maslov index and catenation: x < y < y′.

Now let x1 < x2 < · · · < xm be all intersection points of R and B and let
εi ∈ {−1,+1} be the intersection index of R and B at xi. Choose

j < k < ℓ

such that
xj = x, xk = y, xℓ = y′.

Then
εj = εx(Λ) = 1, εk = εy(Λ), εℓ = εy′(Λ) = −1,

and
kx(Λ) =

∑

i<j

εi, ky(Λ) = −
∑

i>k

εi.

For i 6= j the intersection index of R and B′ at xi is −εi. Moreover, ky(Λ
′)

is the sum of the intersection indices of R and B′ at all points to the left of
y and ky′(Λ

′) is minus the sum of the intersection indices of R and B′ at all
points to the right of y′. Hence

ky(Λ
′) = −

∑

i<j

εi −
∑

j<i<k

εi, ky′(Λ
′) =

∑

i>ℓ

εi.

We claim that

ky′(Λ
′) + kx(Λ) = 0, ky(Λ

′) + ky(Λ) =
1 + εy(Λ)

2
. (20)

To see this, note that the value of the winding number w slightly to the left
of x agrees with the value of w slightly to the right of y′, and hence

0 =
∑

i<j

εi +
∑

i>ℓ

εi = kx(Λ) + ky′(Λ
′).

14



This proves the first equation in (20). To prove the second equation in (20)
we observe that

m
∑

i=1

εi =
εx(Λ) + εy(Λ)

2

and hence

ky(Λ
′) + ky(Λ) = −

∑

i<j

εi −
∑

j<i<k

εi −
∑

i>k

εi

= εj + εk −
m
∑

i=1

εi

= εx(Λ) + εy(Λ)−
m
∑

i=1

εi

=
εx(Λ) + εy(Λ)

2

=
1 + εy(Λ)

2
.

This proves the second equation in (20).
It follows from equation (10) for Λ′ and equations (18), (19), and (20)

that

µ(Λ) = 1− µ(Λ′)

= 1− 2ky(Λ
′)− 2ky′(Λ

′)−
εy(Λ

′)− εy′(Λ
′)

2

= 1− 2ky(Λ
′)− 2ky′(Λ

′)−
−εy(Λ)− 1

2

= 2ky(Λ)− εy(Λ) + 2kx(Λ) +
1 + εy(Λ)

2

= 2kx(Λ) + 2ky(Λ) +
1− εy(Λ)

2
.

Here the first equality follows from (18), the second equality follows from (10)
for Λ′, the third equality follows from (19), and the fourth equality follows
from (20). This proves Step 6.

Step 7. Equation (8) holds when Σ = C and Λ satisfies the arc condition.

It follows from Steps 3-6 by induction that equation (10) holds for every
(α, β)-trace Λ = (x, y,w) whose boundary ∂Λ = (x, y, A,B) satisfies (11).
Hence Step 7 follows from Step 1.
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Next we drop the assumption that Λ satisfies the arc condition and extend
the result to planar surfaces. This requires a further three steps.

Step 8. Equation (8) holds when Σ = C and x = y.

Under these assumptions να := ∂w|α\β and νβ := −∂w|β\α are constant.
There are four cases.

Case 1. α is an embedded circle and β is not an embedded circle. In this
case we have νβ ≡ 0 and B = {x}. Moroeover, α is the boundary of a unique
disc ∆α and we assume that α is oriented as the boundary of ∆α. Then
the path γα : [0, 1] → Σ in Definition 2.1 satisfies γα(0) = γα(1) = x and is
homotopic to ναα. Hence

mx(Λ) = my(Λ) = 2να = µ(Λ).

Here the last equation follows from the fact that Λ can be obtained as the
catenation of να copies of the disc ∆α.

Case 2. α is not an embedded circle and β is an embedded circle. This
follows from Case 1 by interchanging α and β.

Case 3. α and β are embedded circles. In this case there is a unique pair of
embedded discs ∆α and ∆β with boundaries α and β, respectively. Orient
α and β as the boundaries of these discs. Then, for every z ∈ Σ \ α ∪ β, we
have

w(z) =















να − νβ, for z ∈ ∆α ∩∆β ,
να, for z ∈ ∆α \∆β,

−νβ , for z ∈ ∆β \∆α,
0, for z ∈ Σ \∆α ∪∆β.

Hence
mx(Λ) = my(Λ) = 2να − 2νβ = µ(Λ).

Here the last equation follows from the fact Λ can be obtained as the catena-
tion of να copies of the disc ∆α (with the orientation inherited from Σ) and
νβ copies of −∆β (with the opposite orientation).

Case 4. Neither α nor β is an embedded circle. Under this assumption we
have να = νβ = 0. Hence it follows from Theorem 2.4 that w = 0 and Λ = Λu

for the constant map u ≡ x ∈ D(x, x). Thus

mx(Λ) = my(Λ) = µ(Λ) = 0.

This proves Step 8.
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Step 9. Equation (8) holds when Σ = C.

By Step 8, it suffices to assume x 6= y. It follows from Theorem 2.4 that every
u ∈ D(x, y) is homotopic to a catentation u = u0#v, where u0 ∈ D(x, y)
satisfies the arc condition and v ∈ D(y, y). Hence it follows from Steps 7
and 8 that

µ(Λu) = µ(Λu0
) + µ(Λv)

=
mx(Λu0

) +my(Λu0
)

2
+my(Λv)

=
mx(Λu) +my(Λu)

2
.

Here the last equation follows from the fact that wu = wu0
+ wv and hence

mz(Λu) = mz(Λu0
) +mz(Λv) for every z ∈ α ∩ β. This proves Step 9.

Step 10. Equation (8) holds when Σ is planar.

Choose an element u ∈ D(x, y) such that Λu = Λ. Modifying α and β
on the complement of u(D), if necessary, we may assume without loss of
generality that α and β are mebedded circles. Let ι : Σ → C be an orientation
preserving embedding. Then ι∗Λ := Λι◦u is an (ι(α), ι(β))-trace in C and
hence satisfies (8) by Step 9. Since mι(x)(ι∗Λ) = mx(Λ), mι(y)(ι∗Λ) = my(Λ),
and µ(ι∗Λ) = µ(Λ) it follows that Λ also satisfies (8). This proves Step 10
and Proposition 4.1

Remark 4.2. Let Λ = (x, y, A,B) be an (α, β)-trace in C as in Step 1 in the
proof of Theorem 3.4. Thus x < y are real numbers, A is the interval [x, y],
and B is an embedded arc with endpoints x, y which is oriented from x to y
and is transverse to R. Thus Z := B ∩ R is a finite set. Define a map

f : Z \ {y} → Z \ {x}

as follows. Given z ∈ Z \ {y} walk along B towards y and let f(z) be the
next intersection point with R. This map is bijective. Now let I be any of
the three open intervals (−∞, x), (x, y), (y,∞). Any arc in B from z to f(z)
with both endpoints in the same interval I can be removed by an isotopy of
B which does not pass through x, y. Call Λ a reduced (α, β)-trace if z ∈ I
implies f(z) /∈ I for each of the three intervals. Then every (α, β)-trace is
isotopic to a reduced (α, β ′)-trace and the isotopy does not effect the numbers
µ, kx, ky, εx, εy.

17
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Figure 4: Reduced (α, β)-traces in C.

Let Z+ (respectively Z−) denote the set of all points z ∈ Z = B∩R where
the positive tangent vectors in TzB point up (respectively down). One can
prove that every reduced (α, β)-trace satisfies one of the following conditions.

Case 1: If z ∈ Z+ \ {y} then f(z) > z. Case 2: Z− ⊂ [x, y].
Case 3: If z ∈ Z− \ {y} then f(z) > z. Case 4: Z+ ⊂ [x, y].

(Examples with εx = 1 and εy = −1 are depicted in Figure 4.) One can then
show directly that the reduced (α, β)-traces satisfy equation (10). This gives
rise to an alternative proof of Proposition 4.1 via case distinction.

Proof of Theorem 3.4 in the Simply Connected Case. If Σ is diffeomorphic
to the 2-plane the result has been established in Proposition 4.1. Hence
assume

Σ = S2.

Let u ∈ D(x, y). If u is not surjective the assertion follows from the case
of the complex plane (Proposition 4.1) via stereographic projection. Hence
assume u is surjective and choose a regular value z ∈ S2\(α∪β) of u. Denote

u−1(z) = {z1, . . . , zk}.

For i = 1, . . . , k let εi = ±1 according to whether or not the differential
du(zi) : C → TzΣ is orientation preserving. Choose an open disc ∆ ⊂ S2

centered at z such that
∆̄ ∩ (α ∪ β) = ∅
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and u−1(∆) is a union of open neighborhoods Ui ⊂ D of zi with disjoint
closures such that

u|Ui
: Ui → ∆

is a diffeomorphism for each i which extends to a neighborhood of Ūi. Now
choose a continuous map u′ : D → S2 which agrees with u on D \

⋃

i Ui and
restricts to a diffeomorphism from Ūi to S2 \∆ for each i. Then z does not
belong to the image of u′ and hence equation (8) holds for u′ (after smoothing
along the boundaries ∂Ui). Moreover, the diffeomorphism

u′|Ūi
: Ūi → S2 \∆

is orientation preserving if and only if εi = −1. Hence

µ(Λu) = µ(Λu′) + 4

k
∑

i=1

εi,

mx(Λu) = mx(Λu′) + 4

k
∑

i=1

εi,

my(Λu) = my(Λu′) + 4

k
∑

i=1

εi.

By Proposition 4.1 equation (8) holds for Λu′ and hence it also holds for Λu.
This proves Theorem 3.4 when Σ is simply connected.

5 The Non Simply Connected Case

The key step for extending Proposition 4.1 to non-simply connected two-
manifolds is the next result about lifts to the universal cover.

Proposition 5.1. Suppose Σ is not diffeomorphic to the 2-sphere. Let
Λ = (x, y,w) be an (α, β)-trace and π : C → Σ be a universal covering. De-
note by Γ ⊂ Diff(C) the group of deck transformations. Choose an element
x̃ ∈ π−1(x) and let α̃ and β̃ be the lifts of α and β through x̃. Let Λ̃ = (x̃, ỹ, w̃)
be the lift of Λ with left endpoint x̃. Then

mgx̃(Λ̃) +mg−1ỹ(Λ̃) = 0 (21)

for every g ∈ Γ \ {id}.
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Lemma 5.2 (Annulus Reduction). Suppose Σ is not diffeomorphic to the
2-sphere. Let Λ, π, Γ, Λ̃ be as in Proposition 5.1. If

mgx̃(Λ̃)−mgỹ(Λ̃) = mg−1ỹ(Λ̃)−mg−1x̃(Λ̃) (22)

for every g ∈ Γ \ {id} then equation (21) holds for every g ∈ Γ \ {id}.

Proof. If (21) does not hold then there is a deck transformation h ∈ Γ \ {id}
such that mhx̃(Λ̃)+mh−1ỹ(Λ̃) 6= 0. Since there can only be finitely many such

h ∈ Γ \ {id}, there is an integer k ≥ 1 such that mhkx̃(Λ̃) + mh−kỹ(Λ̃) 6= 0

and mhℓx̃(Λ̃) +mh−ℓỹ(Λ̃) = 0 for every integer ℓ > k. Define g := hk. Then

mgx̃(Λ̃) +mg−1ỹ(Λ̃) 6= 0 (23)

and mgk x̃(Λ̃) +mg−k ỹ(Λ̃) = 0 for every integer k ∈ Z \ {−1, 0, 1}. Define

Σ0 := C/Γ0, Γ0 :=
{

gk | k ∈ Z
}

.

Then Σ0 is diffeomorphic to the annulus. Let π0 : C → Σ0 be the obvious
projection, define α0 := π0(α̃), β0 := π0(β̃), and let Λ0 := (x0, y0,w0) be the
(α0, β0)-trace in Σ0 with x0 := π0(x̃), y0 := π0(ỹ), and

w0(z0) :=
∑

z̃∈π−1

0
(z0)

w̃(z̃), z0 ∈ Σ0 \ (α0 ∪ β0).

Then

mx0
(Λ0) = mx̃(Λ̃) +

∑

k∈Z\{0}

mgk x̃(Λ̃),

my0(Λ0) = mỹ(Λ̃) +
∑

k∈Z\{0}

mg−kỹ(Λ̃).

By Proposition 4.1 both Λ̃ and Λ0 satisfy equation (8) and they have the
same Viterbo–Maslov index. Hence

0 = µ(Λ0)− µ(Λ̃)

=
mx0

(Λ0) +my0(Λ0)

2
−

mx̃(Λ̃) +mỹ(Λ̃)

2

=
1

2

∑

k 6=0

(

mgk x̃(Λ̃) +mg−k ỹ(Λ̃)
)

= mgx̃(Λ̃) +mg−1ỹ(Λ̃).

Here the last equation follows from (22). This contradicts (23) and proves
Lemma 5.2.
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Lemma 5.3. Suppose Σ is not diffeomorphic to the 2-sphere. Let Λ, π, Γ,
Λ̃ be as in Proposition 5.1 and denote να̃ := ∂w̃|α̃\β̃ and νβ̃ := −∂w̃|β̃\α̃.
Choose smooth paths

γα̃ : [0, 1] → α̃, γβ̃ : [0, 1] → β̃

from γα̃(0) = γβ̃(0) = x̃ to γα̃(1) = γβ̃(1) = ỹ such that γα̃ is an immersion
when να̃ 6≡ 0 and constant when να̃ ≡ 0, the same holds for γβ̃, and

να̃(z̃) = deg(γα̃, z̃) for z̃ ∈ α̃ \ {x̃, ỹ},

νβ̃(z̃) = deg(γβ̃, z̃) for z̃ ∈ β̃ \ {x̃, ỹ}.

Define
Ã := γα̃([0, 1]), B̃ := γβ̃([0, 1]).

Then, for every g ∈ Γ, we have

gx̃ ∈ Ã ⇐⇒ g−1ỹ ∈ Ã, (24)

gx̃ /∈ Ã and gỹ /∈ Ã ⇐⇒ Ã ∩ gÃ = ∅, (25)

gx̃ ∈ Ã and gỹ ∈ Ã ⇐⇒ g = id. (26)

The same holds with Ã replaced by B̃.

Proof. If α is a contractible embedded circle or not an embedded circle at all
we have Ã ∩ gÃ = ∅ whenever g 6= id and this implies (24), (25) and (26).
Hence assume α is a noncontractible embedded circle. Then we may also
assume, without loss of generality, that π(R) = α, the map z̃ 7→ z̃ + 1
is a deck transformation, π maps the interval [0, 1) bijectively onto α, and
x̃, ỹ ∈ R = α̃ with x̃ < ỹ. Thus Ã = [x̃, ỹ] and, for every k ∈ Z,

x̃+ k ∈ [x̃, ỹ] ⇐⇒ 0 ≤ k ≤ ỹ − x̃ ⇐⇒ ỹ − k ∈ [x̃, ỹ].

Similarly, we have

x̃+ k, ỹ + k /∈ [x̃, ỹ] ⇐⇒ [x̃+ k, ỹ + k] ∩ [x̃, ỹ] = ∅

and

x̃+ k, ỹ + k ∈ [x̃, ỹ] ⇐⇒ [x̃+ k, ỹ + k] ⊂ [x̃, ỹ] ⇐⇒ k = 0.

This proves (24), (25), and (26) for the deck transformation z̃ 7→ z̃ + k. If g
is any other deck transformation, then we have

α̃ ∩ gα̃ = ∅

and so (24), (25), and (26) are trivially satisfied. This proves Lemma 5.3.
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Lemma 5.4 (Winding Number Comparison). Suppose Σ is not diffeo-
morphic to the 2-sphere. Let Λ, π, Γ, Λ̃ be as in Proposition 5.1, and let
Ã, B̃ ⊂ C be as in Lemma 5.3. Then the following holds.

(i) Equation (22) holds for every g ∈ Γ that satisfies gx̃, gỹ /∈ Ã ∪ B̃.

(ii) If Λ satisfies the arc condition then (21) holds for every g ∈ Γ \ {id}.

Proof. We prove (i). Let g ∈ Γ such that gx̃, gỹ /∈ Ã∪ B̃ and let γα̃, γβ̃ be as
in Lemma 5.3. Then w̃(z̃) is the winding number of the loop γα̃ − γβ̃ about

the point z̃ ∈ C \ (Ã ∪ B̃). Moreover, the paths

gγα̃ : [0, 1] → C, gγβ̃ : [0, 1] → C

connect the points gx̃, gỹ ∈ C \ (Ã ∪ B̃). Hence

w̃(gỹ)− w̃(gx̃) = (γα̃ − γβ̃) · gγα̃ = (γα̃ − γβ̃) · gγβ̃.

Similarly with g replaced by g−1. Moreover, it follows from Lemma 5.3, that

Ã ∩ gÃ = ∅, B̃ ∩ g−1B̃ = ∅.

Hence

w̃(gỹ)− w̃(gx̃) =
(

γα̃ − γβ̃
)

· gγα̃

= gγα̃ · γβ̃

= γα̃ · g−1γβ̃

=
(

γα̃ − γβ̃
)

· g−1γβ̃

= w̃(g−1ỹ)− w̃(g−1x̃)

Here we have used the fact that every g ∈ Γ is an orientation preserving
diffeomorphism of C. Thus we have proved that

w̃(gx̃) + w̃(g−1ỹ) = w̃(gỹ) + w̃(g−1x̃).

Since gx̃, gỹ /∈ Ã ∪ B̃, we have

mgx̃(Λ̃) = 4w̃(gx̃), mg−1ỹ(Λ̃) = 4w̃(g−1ỹ),

and the same identities hold with g replaced by g−1. This proves (i).
We prove (ii). If Λ satisfies the arc condition then gÃ ∩ Ã = ∅ and

gB̃ ∩ B̃ = ∅ for every g ∈ Γ \ {id}. In particular, for every g ∈ Γ \ {id},
we have gx̃, gỹ /∈ Ã ∪ B̃ and hence (22) holds by (i). Hence it follows from
Lemma 5.2 that (21) holds for every g ∈ Γ\{id}. This proves Lemma 5.4.
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The next lemma deals with (α, β)-traces connecting a point x ∈ α ∩ β to
itself. An example on the annulus is depicted in Figure 5.

Lemma 5.5 (Isotopy Argument). Suppose Σ is not diffeomorphic to the
2-sphere. Let Λ, π, Γ, Λ̃ be as in Proposition 5.1. Suppose that there is a deck
transformation g0 ∈ Γ \ {id} such that ỹ = g0x̃. Then Λ has Viterbo–Maslov
index zero and mgx̃(Λ̃) = 0 for every g ∈ Γ \ {id, g0}.
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Figure 5: An (α, β)-trace on the annulus with x = y.

Proof. By assumption, we have α̃ = g0α̃ and β̃ = g0β̃. Hence α and β
are noncontractible embedded circles and some iterate of α is homotopic to
some iterate of β. Hence, by Lemma A.4, α must be homotopic to β (with
some orientation). Hence we may assume, without loss of generality, that
π(R) = α, the map z̃ 7→ z̃ + 1 is a deck transformation, π maps the interval
[0, 1) bijectively onto α, R = α̃, x̃ = 0 ∈ α̃∩ β̃, β̃ = β̃+1, and that ỹ = ℓ > 0
is an integer. Then g0 is the translation

g0(z̃) = z̃ + ℓ.
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Let Ã := [0, ℓ] ⊂ α̃ and let B̃ ⊂ β̃ be the arc connecting 0 to ℓ. Then, for
z̃ ∈ C \ (Ã ∪ B̃), the integer w̃(z̃) is the winding number of Ã− B̃ about z̃.
Define the projection π0 : C → C by

π0(z̃) := e2πiz̃/k,

denote α0 := π0(α̃) = S1 and β0 := π(β̃), and let Λ0 = (1, 1,w0) be the
induced (α0, β0)-trace in C with w0(z) :=

∑

z̃∈π−1(z) w̃(z̃). Then α0 and β0

are embedded circles and have the winding number ℓ about zero. Hence
it follows from Step 8, Case 3 in the proof of Proposition 4.1 that Λ0 has
Viterbo–Maslov index zero and satisfies mx0

(Λ0) + my0(Λ0) = 2µ(Λ0) = 0.
Hence Λ̃ also has Viterbo–Maslov index zero.

It remains to prove that mgx̃(Λ̃) = 0 for every g ∈ Γ \ {id, g0}. To see
this we use the fact that the embedded loops α and β are homotopic with
fixed endpoint x. Hence, by a Theorem of Epstein, they are isotopic with
fixed basepoint x (see [2, Theorem 4.1]). Thus there exists a smooth map
f : R/Z× [0, 1] → Σ such that

f(s, 0) ∈ α, f(s, 1) ∈ β, f(0, t) = x,

for all s ∈ R/Z and t ∈ [0, 1], and the map R/Z → Σ : s 7→ f(s, t) is an
embedding for every s ∈ [0, 1]. Lift this homotopy to the universal cover to
obtain a map f̃ : R× [0, 1] → C such that π ◦ f̃ = f and

f̃(s, 0) ∈ [0, 1], f̃(s, 1) ∈ B̃1, f̃(0, t) = x̃, f̃(s+ 1, t) = f̃(s, t) + 1

for all s ∈ R and t ∈ [0, 1]. Here B̃1 ⊂ B̃ denotes the arc in B̃ from 0 to 1.
Since the map R/Z → Σ : s 7→ f(s, t) is injective for every t, we have

gx̃ /∈ {x̃, x̃+ 1, . . . , x̃+ ℓ} =⇒ gx̃ /∈ f̃([0, ℓ]× [0, 1])

for every every g ∈ Γ. Now choose a smooth map ũ : D → C with
Λũ = Λ̃ (see Theorem 2.4). Define the homotopy Fũ : [0, ℓ] × [0, 1] → C

by Fũ(s, t) := ũ(− cos(πs/ℓ), t sin(πs/ℓ)). Then, by Theorem 2.4, Fũ is ho-
motopic to f̃ |[0,ℓ]×[0,1] subject to the boundary conditions f̃(s, 0) ∈ α̃ = R,

f̃(s, 1) ∈ β̃, f̃(0, t) = x̃, f̃(ℓ, t) = ỹ. Hence, for every z̃ ∈ C\ (α̃∪ β̃), we have

w̃(z̃) = deg(ũ, z) = deg(Fũ, z̃) = deg(f̃ , z̃).

In particular, choosing z̃ near gx̃, we find mgx̃(Λ̃) = 4 deg(f̃ , gx̃) = 0 for
every g ∈ Γ that is not one of the translations z̃ 7→ z̃ + k for k = 0, 1, . . . , ℓ.
This proves the assertion in the case ℓ = 1.
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If ℓ > 1 it remains to prove mk(Λ̃) = 0 for k = 1, . . . , ℓ− 1. To see this,
let Ã1 := [0, 1], B̃1 ⊂ B̃ be the arc from 0 to 1, w̃1(z̃) be the winding number
of Ã1 − B̃1 about z̃ ∈ C \ (Ã1 ∪ B̃1), and define Λ̃1 := (0, 1, w̃1). Then, by
what we have already proved, the (α̃, β̃)-trace Λ̃1 satisfies mgx̃(Λ̃1) = 0 for
every g ∈ Γ other than the translations by 0 or 1. In particular, we have
mj(Λ̃1) = 0 for every j ∈ Z \ {0, 1} and also m0(Λ̃1)+m1(Λ̃1) = 2µ(Λ̃1) = 0.

Since w̃(z̃) =
∑ℓ−1

j=0 w̃1(z̃ − j) for z̃ ∈ C \ (Ã ∪ B̃), we obtain

mk(Λ̃) =

ℓ−1
∑

j=0

mk−j(Λ̃1) = 0

for every k ∈ Z \ {0, ℓ}. This proves Lemma 5.5.

The next example shows that Lemma 5.4 cannot be strengthened to assert
the identity mgx̃(Λ̃) = 0 for every g ∈ Γ with gx̃, gỹ /∈ Ã ∪ B̃.

Example 5.6. Figure 6 depicts an (α, β)-trace Λ = (x, y,w) on the annulus
Σ = C/Z that has Viterbo–Maslov index one and satisfies the arc condition.
The lift satisfies mx̃(Λ̃) = −3, mx̃+1(Λ̃) = 4, mỹ(Λ̃) = 5, and mỹ−1(Λ̃) = −4.
Thus mx(Λ) = my(Λ) = 1.
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Figure 6: An (α, β)-trace on the annulus satisfying the arc condition.
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Proof of Proposition 5.1. The proof has five steps.

Step 1. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ such that

gx̃ ∈ Ã \ B̃, gỹ /∈ Ã ∪ B̃.

(An example is depicted in Figure 7.) Then (22) holds.
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1

y

Figure 7: An (α, β)-trace on the torus not satisfying the arc condition.

The proof is a refinement of the winding number comparison argument in
Lemma 5.4. Since gx̃ /∈ B̃ we have g 6= id and, since x̃, gx̃ ∈ Ã ⊂ α̃, it
follows that α is a noncontractible embedded circle. Hence we may choose
the universal covering π : C → Σ and the lifts α̃, β̃, Λ̃ such that π(R) = α,
the map z̃ 7→ z̃ + 1 is a deck transformation, the projection π maps the
interval [0, 1) bijectively onto α, and

α̃ = R, x̃ = 0 ∈ α̃ ∩ β̃, ỹ > 0.

By assumption and Lemma 5.3 there is an integer k such that

0 < k < ỹ, gx̃ = k, g−1ỹ = ỹ − k.

Thus g is the deck transformation z̃ 7→ z̃ + k.
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Since gx̃ /∈ B̃ and gỹ /∈ B̃ it follows from Lemma 5.3 that g−1ỹ /∈ B̃ and
g−1x̃ /∈ B̃ and hence, again by Lemma 5.3, we have

B̃ ∩ gB̃ = B̃ ∩ g−1B̃ = ∅.

With γα̃ and γβ̃ chosen as in Lemma 5.3, this implies

γβ̃ · (γβ̃ − k) = (γβ̃ + k) · γβ̃ = 0. (27)

Since k,−k, ỹ + k, ỹ − k /∈ B̃, there exists a constant ε > 0 such that

−ε ≤ t ≤ ε =⇒ k + it, −k + it, ỹ − k + it, ỹ + k + it /∈ B̃.

The paths gγα̃ ± iε and gγβ̃ ± iε both connect the point gx̃± iε to gỹ ± iε.
Likewise, the paths g−1γα̃±iε and g−1γβ̃±iε both connect the point g−1x̃±iε
to g−1ỹ ± iε. Hence

w̃(gỹ ± iε)− w̃(gx̃± iε) = (γα̃ − γβ̃) · (gγα̃ ± iε)

= (γα̃ − γβ̃) · (γα̃ + k ± iε)

= (γα̃ + k ± iε) · γβ̃
= γα̃ · (γβ̃ − k ∓ iε)

= (γα̃ − γβ̃) · (γβ̃ − k ∓ iε)

= (γα̃ − γβ̃) · (g
−1γβ̃ ∓ iε)

= w̃(g−1ỹ ∓ iε)− w̃(g−1x̃∓ iε).

Here the last but one equation follows from (27). Thus we have proved

w̃(gx̃+ iε) + w̃(g−1ỹ − iε) = w̃(g−1x̃− iε) + w̃(gỹ + iε),

w̃(gx̃− iε) + w̃(g−1ỹ + iε) = w̃(g−1x̃+ iε) + w̃(gỹ − iε).
(28)

Since

mgx̃(Λ̃) = 2w̃(gx̃+ iε) + 2w̃(gx̃− iε),

mgỹ(Λ̃) = 2w̃(gỹ + iε) + 2w̃(gỹ − iε),

mg−1x̃(Λ̃) = 2w̃(g−1x̃+ iε) + 2w̃(g−1x̃− iε),

mg−1ỹ(Λ̃) = 2w̃(g−1ỹ + iε) + 2w̃(g−1ỹ − iε),

Step 1 follows by taking the sum of the two equations in (28).
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Step 2. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ. Suppose that
either gx̃, gỹ /∈ Ã or gx̃, gỹ /∈ B̃. Then (22) holds.

If gx̃, gỹ /∈ Ã ∪ B̃ the assertion follows from Lemma 5.4. If gx̃ ∈ Ã \ B̃ and
gỹ /∈ Ã∪B̃ the assertion follows from Step 1. If gx̃ /∈ Ã∪B̃ and gỹ ∈ Ã\B̃ the
assertion follows from Step 1 by interchanging x̃ and ỹ. Namely, (22) holds
for Λ̃ if and only if it holds for the (α̃, β̃)-trace −Λ̃ := (ỹ, x̃,−w̃). This covers
the case gx̃, gỹ /∈ B̃. If gx̃, gỹ /∈ Ã the assertion follows by interchanging Ã
and B̃. Namely, (22) holds for Λ̃ if and only if it holds for the (β̃, α̃)-trace
Λ̃∗ := (x̃, ỹ,−w̃). This proves Step 2.

Step 3. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ such that

gx̃ ∈ Ã \ B̃, gỹ ∈ B̃ \ Ã.

(An example is depicted in Figure 8.) Then (21) holds for g and g−1.
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Figure 8: An (α, β)-trace on the annulus with gx̃ ∈ Ã and gỹ ∈ B̃.

Since gx̃ /∈ B̃ (and gỹ /∈ Ã) we have g 6= id and, since x̃, gx̃ ∈ Ã ⊂ α̃
and ỹ, gỹ ∈ B̃ ⊂ β̃, it follows that gα̃ = α̃ and gβ̃ = β̃. Hence α and β are
noncontractible embedded circles and some iterate of α is homotopic to some
iterate of β. So α is homotopic to β (with some orientation), by Lemma A.4.
Hence we may choose the universal covering π : C → Σ and the lifts α̃, β̃, Λ̃
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such that π(R) = α, the map z̃ 7→ z̃ + 1 is a deck transformation, π maps
the interval [0, 1) bijectively onto α, and α̃ = R, x̃ = 0 ∈ α̃ ∩ β̃, ỹ > 0. Thus
Ã = [0, ỹ] is the arc in α̃ from 0 to ỹ and B̃ is the arc in β̃ from 0 to ỹ.
Moreover, β̃ = β̃ + 1 and the arc in β̃ from 0 to 1 is a fundamental domain
for β. By assumption and Lemma 5.3 there is an integer k such that k ∈ Ã
and −k ∈ B̃. Hence Ã does not contain any negative integers and B̃ does
not contain any positive integers. Choose kÃ, kB̃ ∈ N such that

Ã ∩ Z = {0, 1, 2, · · · , kÃ} , B̃ ∩ Z = {0,−1,−2, · · · ,−kB̃} .

For 0 ≤ k ≤ kÃ let Ãk ⊂ α̃ and B̃k ⊂ β̃ be the arcs from 0 to ỹ − k and
consider the (α̃, β̃)-trace

Λ̃k := (0, ỹ − k, w̃k), ∂Λ̃k := (0, ỹ − k, Ãk, B̃k),

where w̃k(z̃) is the winding number of Ãk− B̃k about z̃ ∈ C\ (Ãk∪ B̃k). Note
that Λ̃0 = Λ̃ and

B̃k ∩ Z = {0,−1,−2, · · · ,−kB̃ − k} .

We prove that, for each k, the (α̃, β̃)-trace Λ̃k satisfies

mj(Λ̃k) +mỹ−k−j(Λ̃k) = 0 ∀ j ∈ Z \ {0}. (29)

If ỹ is an integer, then (29) follows from Lemma 5.5. Hence we may assume
that ỹ is not an integer.

We prove equation (29) by reverse induction on k. First let k = kÃ. Then
we have j, ỹ + j /∈ Ãk for every j ∈ N. Hence it follows from Step 2 that

mj(Λ̃k) +mỹ−k−j(Λ̃k) = m−j(Λ̃k) +mỹ−k+j(Λ̃) ∀ j ∈ N. (30)

Thus we can apply Lemma 5.2 to the projection of Λ̃k to the quotient C/Z.
Hence Λ̃k satisfies (29).

Now fix an integer k ∈ {0, 1, . . . , kÃ − 1} and suppose, by induction, that
Λ̃k+1 satisfies (29). Denote by Ã′ ⊂ α̃ and B̃′ ⊂ β̃ the arcs from ỹ − k − 1
to 1, and by Ã′′ ⊂ α̃ and B̃′′ ⊂ β̃ the arcs from 1 to ỹ − k. Then Λ̃k is the
catenation of the (α̃, β̃)-traces

Λ̃k+1 := (0, ỹ − k − 1, w̃k+1), ∂Λ̃k+1 = (0, ỹ − k − 1, Ãk+1, B̃k+1),

Λ̃′ := (ỹ − k − 1, 1, w̃′), ∂Λ̃′ = (ỹ − k − 1, 1, Ã′, B̃′),

Λ̃′′ := (1, ỹ − k, w̃′′), ∂Λ̃′′ = (1, ỹ − k, Ã′′, B̃′′).
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Here w̃′(z̃) is the winding number of the loop Ã′− B̃′ about z̃ ∈ C \ (Ã′∪ B̃′)
and simiarly for w̃′′. Note that Λ̃′′ is the shift of Λ̃k+1 by 1. The catenation
of Λ̃k+1 and Λ̃′ is the (α̃, β̃)-trace from 0 to 1. Hence it has Viterbo–Maslov
index zero, by Lemma 5.5. and satisfies

mj(Λ̃k+1) +mj(Λ̃
′) = 0 ∀j ∈ Z \ {0, 1}. (31)

Since the catenation of Λ̃′ and Λ̃′′ is the (α̃, β̃)-trace from ỹ− k− 1 to ỹ− k,
it also has Viterbo–Maslov index zero and satisfies

mỹ−k−j(Λ̃
′) +mỹ−k−j(Λ̃

′′) = 0 ∀j ∈ Z \ {0, 1}. (32)

Moreover, by the induction hypothesis, we have

mj(Λ̃k+1) +mỹ−k−1−j(Λ̃k+1) = 0 ∀j ∈ Z \ {0}. (33)

Combining the equations (31), (32), and (33) we find

mj(Λ̃k) +mỹ−k−j(Λ̃k) = mj(Λ̃k+1) +mj(Λ̃
′) +mj(Λ̃

′′)

+mỹ−k−j(Λ̃k+1) +mỹ−k−j(Λ̃
′) +mỹ−k−j(Λ̃

′′)

= mj(Λ̃k+1) +mj(Λ̃
′)

+mỹ−k−j(Λ̃
′) +mỹ−k−j(Λ̃

′′)

+mj−1(Λ̃k+1) +mỹ−k−j(Λ̃k+1)

= 0

for j ∈ Z \ {0, 1}. For j = 1 we obtain

m1(Λ̃k) +mỹ−k−1(Λ̃k) = m1(Λ̃k+1) +m1(Λ̃
′) +m1(Λ̃

′′)

+mỹ−k−1(Λ̃k+1) +mỹ−k−1(Λ̃
′) +mỹ−k−1(Λ̃

′′)

= m1(Λ̃k+1) +mỹ−k−2(Λ̃k+1)

+m0(Λ̃k+1) +mỹ−k−1(Λ̃k+1)

+mỹ−k−1(Λ̃
′) +m1(Λ̃

′)

= 2µ(Λ̃k+1) + 2µ(Λ̃′)

= 0.

Here the last but one equation follows from equation (33) and Proposition 4.1,
and the last equation follows from Lemma 5.5. Hence Λ̃k satisfies (29). This
completes the induction argument for the proof of Step 3.
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Step 4. Let Ã, B̃ ⊂ C be as in Lemma 5.3 and let g ∈ Γ such that

gx̃ ∈ Ã ∩ B̃, gỹ /∈ Ã ∪ B̃.

Then (21) holds for g and g−1.

Since gỹ /∈ Ã ∪ B̃ we have g 6= id. Since gx̃ ∈ Ã ∩ B̃ we have α̃ = gα̃
and β̃ = gβ̃. Hence α and β are noncontractible embedded circles, and they
are homotopic (with some orientation) by Lemma A.4. Thus we may choose
π : C → Σ, α̃, β̃, Λ̃ as in Step 3. By assumption there is an integer k ∈ Ã∩B̃.
Hence Ã and B̃ do not contain any negative integers. Choose kÃ, kB̃ ∈ N

such that

Ã ∩ Z = {0, 1, . . . , kÃ} , B̃ ∩ Z = {0, 1, . . . , kB̃} .

Assume without loss of generality that kÃ ≤ kB̃. For 0 ≤ k ≤ kÃ denote by
Ãk ⊂ Ã and B̃k ⊂ B̃ the arcs from 0 to ỹ − k and consider the (α̃, β̃)-trace

Λ̃k := (0, ỹ − k, w̃k), ∂Λ̃k := (0, ỹ − k, Ãk, B̃k).

In this case
B̃k ∩ Z = {0, 1, . . . , kB̃ − k}.

As in Step 3, it follows by reverse induction on k that Λ̃k satisfies (29) for
every k. We assume again that ỹ is not an integer. (Otherwise (29) follows
from Lemma 5.5). If k = kÃ then j, ỹ−j /∈ Ãk for every j ∈ N, hence it follows
from Step 2 that Λ̃k satisfies (30), and hence it follows from Lemma 5.2 for
the projection of Λ̃k to the annulus C/Z that Λ̃k also satisfies (29). The
induction step is verbatim the same as in Step 3 and will be omitted. This
proves Step 4.

Step 5. We prove the proposition.

If both points gx̃, gỹ are contained in Ã (or in B̃) then g = id by Lemma 5.3,
and in this case equation (22) is a tautology. If both points gx̃, gỹ are not
contained in Ã∪ B̃, equation (22) has been established in Lemma 5.4. More-
over, we can interchange x̃ and ỹ or Ã and B̃ as in the proof of Step 2.
Thus Steps 1 and 4 cover the case where precisely one of the points gx̃, gỹ
is contained in Ã ∪ B̃ while Step 3 covers the case where g 6= id and both
points gx̃, gỹ are contained in Ã ∪ B̃. This shows that equation (22) holds
for every g ∈ Γ \ {id}. Hence, by Lemma 5.2, equation (21) holds for every
g ∈ Γ \ {id}. This proves Proposition 5.1.
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Proof of Theorem 3.4 in the Non Simply Connected Case. Choose a univer-
sal covering π : C → Σ and let Γ, α̃, β̃, and Λ̃ = (x̃, ỹ, w̃) be as in Proposi-
tion 5.1. Then

mx(Λ) +my(Λ)−mx̃(Λ̃)−mỹ(Λ̃) =
∑

g 6=id

(

mgx̃(Λ̃) +mg−1ỹ(Λ̃)
)

= 0.

Here the last equation follows from Proposition 5.1. Hence, by Proposi-
tion 4.1, we have

µ(Λ) = µ(Λ̃) =
mx̃(Λ̃) +mỹ(Λ̃)

2
=

mx(Λ) +my(Λ)

2
.

This proves (8) in the case where Σ is not simply connected.

A The Space of Paths

We assume throughout that Σ is a connected oriented smooth 2-manifold
without boundary and α, β ⊂ Σ are two embedded loops. Let

Ωα,β := {x ∈ C∞([0, 1],Σ) | x(0) ∈ α, x(1) ∈ β}

denote the space of paths connecting α to β.

Proposition A.1. Assume that α and β are not contractible and that α is
not isotopic to β. Then each component of Ωα,β is simply connected and
hence H1(Ωα,β;R) = 0.

The proof was explained to us by David Epstein [3]. It is based on the
following three lemmas. We identify S1 ∼= R/Z.

Lemma A.2. Let γ : S1 → Σ be a noncontractible loop and denote by

π : Σ̃ → Σ

the covering generated by γ. Then Σ̃ is diffeomorphic to the cylinder.

Proof. By assumption, Σ is oriented and has a nontrivial fundamental group.
By the uniformization theorem, choose a metric of constant curvature. Then
the universal cover of Σ is isometric to either R2 with the flat metric or to
the upper half space H2 with the hyperbolic metric. The 2-manifold Σ̃ is a
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quotient of the universal cover of Σ by the subgroup of the group of covering
transformations generated by a single element (a translation in the case of
R2 and a hyperbolic element of PSL(2,R) in the case of H2). Since γ is not
contractible, this element is not the identity. Hence Σ̃ is diffeomorphic to the
cylinder.

Lemma A.3. Let γ : S1 → Σ be a noncontractible loop and, for k ∈ Z,
define γk : S1 → Σ by

γk(s) := γ(ks).

Then γk is contractible if and only if k = 0.

Proof. Let π : Σ̃ → Σ be as in Lemma A.2. Then, for k 6= 0, the loop
γk : S1 → Σ lifts to a noncontractible loop in Σ̃.

Lemma A.4. Let γ0, γ1 : S1 → Σ be noncontractible embedded loops and
suppose that k0, k1 are nonzero integers such that γk0

0 is homotopic to γk1
1 .

Then either γ1 is homotopic to γ0 and k1 = k0 or γ1 is homotopic to γ0
−1

and k1 = −k0.

Proof. Let π : Σ̃ → Σ be the covering generated by γ0. Then γ0
k0 lifts to

a closed curve in Σ̃ and is homotopic to γ1
k1 . Hence γ1

k1 lifts to a closed
immersed curve in Σ̃. Hence there exists a nonzero integer j1 such that
γ1

j1 lifts to an embedding S1 → Σ̃. Any embedded curve in the cylinder
is either contractible or is homotopic to a generator. If the lift of γ1

j1 were
contractible it would follow that γ0

k0 is contractible, hence, by Lemma A.3,
k0 = 0 in contradiction to our assumption. Hence the lift of γ1

j1 to Σ̃ is not
contractible. With an appropriate sign of j1 it follows that the lift of γ1

j1 is
homotopic to the lift of γ0. Interchanging the roles of γ0 and γ1, we find that
there exist nonzero integers j0, j1 such that

γ0 ∼ γ1
j1, γ1 ∼ γ0

j0

in Σ̃. Hence γ0 is homotopic to γ0
j0j1 in the free loop space of Σ̃. Since the

homotopy lifts to the cylinder Σ̃ and the fundamental group of Σ̃ is abelian,
it follows that

j0j1 = 1.

If j0 = j1 = 1 then γ1 is homotopic to γ0, hence γk1
0 is homotopic to γ0

k0 ,
hence γ0

k0−k1 is contractible, and hence k0 − k1 = 0, by Lemma A.3. If
j0 = j1 = −1 then γ1 is homotopic to γ0

−1, hence γ−k1
0 is homotopic to γ0

k0 ,
hence γ0

k0+k1 is contractible, and hence k0 + k1 = 0, by Lemma A.3. This
proves Lemma A.4.
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Proof of Proposition A.1. Orient α and β and and choose orientation pre-
serving diffeomorphisms

γ0 : S
1 → α, γ1 : S

1 → β.

A closed loop in Ωα,β gives rise to a map u : S1 × [0, 1] → Σ such that

u(S1 × {0}) ⊂ α, u(S1 × {1}) ⊂ β.

Let k0 denote the degree of u(·, 0) : S1 → α and k1 denote the degree of
u(·, 1) : S1 → β. Since the homotopy class of a map S1 → α or a map S1 → β
is determined by the degree we may assume, without loss of generality, that

u(s, 0) = γ0(k0s), u(s, 1) = γ1(k1s).

If one of the integers k0, k1 vanishes, so does the other, by Lemma A.3. If they
are both nonzero then γ1 is homotopic to either γ0 or γ−1

0 , by Lemma A.4.
Hence γ1 is isotopic to either γ0 or γ−1

0 , by [2, Theorem 4.1]. Hence α is
isotopic to β, in contradiction to our assumption. This shows that

k0 = k1 = 0.

With this established it follows that the map u : S1 × [0, 1] → Σ factors
through a map v : S2 → Σ that maps the south pole to α and the north pole
to β. Since π2(Σ) = 0 it follows that v is homotopic, via maps with fixed north
and south pole, to one of its meridians. This proves Proposition A.1.
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