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1 Cross products

Assume throughout that V is a finite-dimensional real vector space. A skew-
symmetric bilinear map

VxV—=V:(uv)—uxv (1.1)
is called a cross product if it satisfies the following two axioms.
(A) u x (u xv) € span{u, v} for all u,v € V.

(B) If u,v € V are linearly independent, then so are u, v, u X v.
The next observation is discussed in Donaldson’s lecture [IJ.

Theorem 1.1. Assume dim(V) > 1 and let (1.1) be a skew-symmetric bilin-
ear map. Then the map (1.1)) satisfies (A) and (B) if and only if there exists

an inner product on V' that satisfies the equations
(uxv,uy = (uxuv,v)y=0, (1.2)
[ x vf? = [u*o]* = (u,v)? (1.3)

for all u,v € V.. Morover, if such an inner product exists, it is uniquely
determined by the cross product and is given by the formula

_ trace (A,A,)

<U,U> = m, AUU =uXw, (14)

foru,v e V.
Proof. See page 2 O



Remark 1.2. (i) It follows from Theorem |1.1{ and [7, Theorem 2.5] that V/
admits a cross product if and only if its dimension is either 0, 1, 3, or 7.

(ii) The formula x X y := (z1ys — T2y )es defines a skew-symmetric bilinear
map on R? that satisfies (A) and (1.3, but not (B) and (1.2).

(lll) The formula x x Y 1= z1€e1 + 2262 + (23 -+ 22)63 with Z1 ‘= X2Y3 — T3Ya,
29 i= X3Y1 — T1Y3, 23 = T1Ys — Ty, defines a skew-symmetric bilinear map
on R3 that satisfies (B) but not (A).

(iv) Let (u,v) — u x v be the skew-symmetric bilinear map on R* defined

by ey x e; = e; for ¢ # 0 and ez X ej = ey, for each cyclic permutation ¢, j, k
of 1,2,3. This map satisfies (1.3]) but not (A) , and (| .

Proof of Theorem[1.1. The proof has five steps.
Step 1. Let (-,-) be an inner product that satisfies (L.2)) and (L.3). Then

u X (uxv) = (u,v)u — |ul*v for all u,v €V, (1.5)

the map (1.1)) is a cross product, and the inner product is given by (1.4)).

Equation was established in 7, Lemma 2.9]. It implies that satis-
fies (A) and (B) and that trace(A2) = (1 — dim(V))|u|? for all u € V. This
proves Step 1. Throughout the remainder of the proof we assume that our
skew-symmetric bilinear map (|1.1]) is a cross product.

Step 2. There exists a map ¢V — R and a map V — V* :uw— A, such
that q(0) =0, Ag =0, g(u) >0 for 0 #u €V, and for all u,v € V

u X (uxv)=A,(0)u—qlu. (1.6)

Fix a nonzero vector u € V. Since A,u = 0 by skew-symmetry, the linear
map A, : V — V descends to an endomorphism A4, : V,, — V, of the quo-
tient space V, := V/Ru. Let m,:V — V., denote the canonical projection
and fix a vector v € V such that u and v are linearly independent. Then
by (A) there exists a real number q(u, v) such that A, A,v € —q(u,v)v + Ru.
Hence the vector 0 # ¥ := m,(v) € V,, satisfies A,4,0 = —q(u,v)v and so
each nonzero vector in V,, is an eigenvector of A,A,. Thus q(u) := q(u,v)
is independent of v and A,A,v + ¢(u)v € Ru for every v € V. Hence there
exists a linear functional A, : V' — R such that A,A,v + q(u)v = A, (v)u for
all v € V. Since the bases u, v, A,v and u, A,v, A, A,v induce the same orien-
tation on the 3-dimensional subspace A := span{u, v, A,v} whenever u and v
are linearly independent, it follows that g(u) > 0. This proves Step 2.
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Step 3. Let q:V >R and V = V*:uw— A, be as in Step 2. Then the
formula (1.4]) defines an inner product on V' and, for all u,v € V,

lu|? = (u, u) = q(u), u x (uxv) = A, (v)u— |ul®v, (1.7)

lu x v|* = |ul*|v]? — Au(v)?, Au(v) = Ay (u), Auxo(u) =0.  (1.8)

Fix a nonzero vector u € V. Since A,u =0, it follows directly from (1.6
that trace(A,A,) = (1 — dim(V))q(u). Hence the bilinear map

trace(A,A,
VxV—=R:(uv)— (uv) ::#m(v))

satisfies (u,u) = g(u) > 0 for every nonzero vector v € V" and therefore is an

inner product satisfying ((1.7)). Use (1.7) repeatedly to obtain

Auso(w)u x v =|u x v[’u+ (uxv) x ((ux v) X u)

= Jux v*u+ (uxv) x (Jul>v — A, (v)u)
= Jux v*u+ ul*(v x (vxu))+ )(ux(uxv)
= Ju % v[*u+ |ul*(Ay(w)v — |v|*u ) Ay (0) (Ay(v)u — Julv)

= (Ju x v* + A (v)* = |u*[v)u + [u* (Ay(u) — Ay(v))v.

If u,v are linearly independent, this implies (1.8) by (B). Next observe
that Ay, = tA, and A, (u) = |u|? for v € V and ¢t € R by (1.7). Thus (1.8)
continues to hold when u, v are linearly dependent, and this proves Step 3.

Step 4. Let V. — V*:uw A, be as in Step 2 and let (-,-) be the inner
product in Step 3. Then A,(v) = (u,v) for all u,v € V.

When u, v are linearly dependent, this follows directly from and .
Thus assume that u, v are linearly independent. Then A := span{u,v,u X v}
is a three-dimensional subspace of V' by (B) and is invariant under the cross
product by (A). Define the linear maps A, B : A — A by

Aw = u X w, Bw:=v xw
for w € A and abbreviate A := A, (v) = A, (u) (see (1.8) in Step 3). Then

AB(u x v) = BA(u X v) = =A\(u X v),
ABw + BAw + 2(u,v)w € span{u, v}

for all w € A by (|1.7). Take w = u x v and use (B) to obtain A = (u,v). This
proves Step 4.

(1.9)



Step 5. The inner product in Step 3 satisfies (1.2) and (1.3)).
By Step 4 and ((1.7)) the inner product in Step 3 satisfies (1.5)), i.e.

u x (uxv) = (u,v)u— |ul*v

for all u,v € V. This implies

(u,u X (uxv)) =0 (1.10)
for all u,v € V. Now fix a pair of vectors u,v € V such that u # 0 and define
uXv
w = _W
e Cx) )
uX (uxwv U, v
T T T P

by (1.5)), hence u X (u x w) = u x v, and hence (u,u x v) =0 by (1.10).
This shows that the inner product in Step 3 satisfies ((1.2)). That it also

satisfies ([1.3]) follows from Step 4 and the identity |u x v|? = |u|?|v|* — A, (v)?
in ((1.8) in Step 3. This proves Step 5 and Theorem . O

2 Volume forms

Let V' be a seven-dimensional real vector space. Recall from [7, Section 3]
that a 3-form ¢ € A3V* is called nondegenerate if, for every pair of lin-
early independent vectors u,v € V there exists a third vector w € V' such
that ¢(u,v,w) # 0. Call an inner product (-,-) compatible with a 3-form ¢
if the skew-symmetric bilinear map V x V — V : (u,v) — u X v, defined by

(u X v,w) = P(u,v,w) (2.1)

for u,v,w € V, is a cross product that satisfies and . Then [7,
Theorem 3.2] asserts that a 3-form ¢ is nondegenerate if and only if it admits
a compatible inner product, that this inner product is uniquely determined
by ¢ in the nondegenerate case, and that it is characterized by the equation

6(u,v)dvol = c(u)p A (v)p AN for u,v €V, (2.2)
where the orientation is chosen such that (u,u) > 0 for u # 0, and the scaling
factor is chosen such that dvol € ATV* is the volume form associated to
the inner product and orientation. Conversely, Theorem asserts that

every cross product ([1.1)) on V' uniquely determines a nondegenerate 3-form ¢
via (1.4)) and (2.1). It is called the associative calibration [3].
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Now let ¢ € A3V* be a nondegenerate 3-form and denote by
x50 APV — ATRY

the Hodge x-operator associated to the inner product and orientation de-
termined by ¢. Then the volume form associated to the inner product and
orientation determined by ¢ is given by

p(6) = dvol, = 2(x4) A 6 (2.3)

Thus p defines a map, equivariant under the action of the general linear group,
from the space P C A3V* of nondegenerate 3-forms to the space YV C A"V*
of volume forms.

Theorem 2.1. The derivative of the map p:P —V in (2.3) at an ele-
ment ¢ € P in the direction ¢ € TyP = A3V* is given by
~ 1 ~
Ap(0)6 = 5 (+50) A & (2.4

Proof. Fix an associative calibration ¢ € P and denote by 1 := *,¢ € A*V*
the corresponding coassociative calibration. Then there is a natural splitting
AV =AY @ AT @ Ay,
where A} C A3V* is the 1-dimensional subspace spanned by ¢ and the 7-
dimensional subspace A2 and the 27-dimensional subspace A3, are given by

A= {u(up|ueV}, A ={weNV |pAw=0,¢YAw=0}.

This splitting is orthogonal for the inner product determined by ¢ and
we A DA = wAY =0

(see [7, Theorem 8.5]). Hence w At = m;(w) A1 for all ¢ € P and w € A3V*,
For k = 1,7,27 denote by m;, : A3V* — A3 the ¢-orthogonal projection.
Then the derivative of the map

P — AV ¢ O(d) 1= x40
at ¢ € P in the direction gg € T,P = A*V* is given by
40(0)0 = % (3m(8) + 71(9) + 1(3) (2.5)
(see [2] and [7, Theorem 8.18]).



Since 7p(¢) = ¢ A O(¢), it follows from (2.5) that

Tdp(6)d = $ A O(9) + & A dO(H)d
=N kgd+ O Ay ( 1(6) + m2() + 7T27($)>
= & Axsd+ (m1(0) + 72(8) + m2r(9) ) A w0
= oAU+ (3m(0) + m(8) + r(9) ) A v
=AY+ EONY
= ga/\ * 0
for all ¢ € P and all ¢ € T,P = A3V*. This proves Theorem [2.1] 0

3 The Hitchin functional

Let M be a closed oriented 7-manifold, fix a cohomology class a € H3(M;R),
and denote by &, C Q3(M) the space of closed 3-forms ¢ € Q3(M) that
represent the cohomology class a and are nondegenerate and compatible with
the orientation. Then every ¢ € &, determines a volume form

dvoly = %(*W) Ao e Q' (M)

as in (2.3) and the total volume of M with respect to this volume form defines
a functional ¥, : &, — R given by

Yo(9) = /Mdvol¢ (3.1)
for ¢ € A,

Theorem 3.1. An element ¢ € &, is a critical point of the volume func-
tional ¥, if and only if dxs¢ = 0.

Proof. By Theorem 2.1] the differential of the functional #; at ¢ € &, in the
direction of an exact 3-form ¢ € T, %, is given by

~

)9 = [ (x60) 1.

This expression vanishes for every exact 3-form éﬁ\ if and only if the 4-form *4¢
is closed. n



A nondegenerate 3-form ¢ on M is called a Gy-structure if it is closed
and coclosed with respect to the Riemannian metric and orientation deter-
mined by ¢. Thus an element ¢ € &2, is a Gao-structure if and only if it is
a critical point of the volume functional ¥#,. A theorem of Fernandez and
Gray [2] asserts that a nondegenerate 3-form ¢ is a Gy-structure if and only
if the associated cross product is invariant under parallel transport for the
associated Riemannian metric.
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