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Abstract

The goal of this paper is to give in outline a new proof of the fact that
the Floer cohomology groups of the loop space of a semi-positive symplectic
manifold (M,w) are naturally isomorphic to the ordinary cohomology of
M. We shall then outline a proof that this isomorphism intertwines the
quantum cup-product structure on the cohomology of M with the pair-of-
pants product on Floer-homology. One of the key technical ingredients of
the proof is a gluing theorem for J-holomorphic curves proved in [20]. In
this paper we shall only sketch the proofs. Full details of the analysis will
appear elsewhere.

1 Introduction

The Floer homology groups of a symplectic manifold (M,w) can intuitively
be described as the middle dimensional homology groups of the loop space.
The boundary loops of J-holomorphic discs in the symplectic manifold with
center in a given homology class o € H,(M) (integral homology modulo
torsion) form a submanifold of the loop space of roughly half dimension
and should therefore determine a Floer homology class. This determines a
homomorphism H,(M) — HF,(M) which, in view of Poincaré duality, can
also be described in terms of cohomology classes. The goal of this paper is
to give a rigorous meaning to these heuristic ideas (Sections 2 and 3), prove
that the resulting homomorphism is in fact an isomorphism (Section 4), and
then show that it intertwines the respective product structures (Section 5).

The rigorous definition of Floer homology involves an infinite dimensional
version of Morse theory for the perturbed symplectic action functional (on
the space of contractible loops in M) which is due to Floer [11]. Here the
perturbation is given by a Hamiltonian term and the critical points are the
periodic solutions of the corresponding time dependent Hamiltonian system.
The gradient flow of the action functional gives rise to a chain complex which
is generated by these periodic solutions. The boundary operator is obtained
by counting connecting orbits and these can be interpreted as perturbed J-
holomorphic cylinders which connect two such periodic solutions. There is
a relative Morse-type index for any pair of periodic solutions and this in-
dex determines the dimension of the space of J-holomorphic cylinders. If



one considers the unperturbed symplectic action functional then the critical
points are the constant loops and the connecting orbits are J-holomorphic
spheres. Hence the unperturbed symplectic action is a (multi-valued) Morse-
Bott function on the loop space of M whose critical manifolds (in the uni-
versal cover) are copies of M. This should imply that the Floer homology
groups of M are isomorphic to the ordinary homology of M, tensored by a
suitable Novikov ring associated to the group of covering transformations.
In the previous literature (cf. [11], [16], [19], [21], [28]) this fact is proved
by considering time independent Hamiltonian functions and then proving
that in the case of index difference 1 all the connecting orbits are indepen-
dent of the circle variable and hence correspond to ordinary gradient flow
lines. It then follows from Morse theory that Floer homology is isomorphic
to ordinary homology (cf. [26], [30]).

In this paper we give an alternative construction of this isomorphism
which goes back to an idea of Graeme Segal. It is based on the study of
J-holomorphic discs with infinite cylindrical ends which on these cylindrical
ends satisfy the perturbed Cauchy-Riemann equations and have finite energy.
We shall then outline a proof that this isomorphism intertwines the quantum
cup-product in ordinary cohomology with the pair-of-pants product in Floer
homology. This new approach also covers some cases (namely N = n — 1
and N = n—2in (c) in Section 2) for which the isomorphism had previously
not been established.

Our approach is related to the ideas of a (1 + 1)-dimensional topological
quantum field theory as follows. The general principle should be that invari-
ants of a closed 2-dimensional manifold ¥ should be obtained by integrating
cohomology classes over certain moduli spaces My associated to the surface
3. In our case this moduli space is the space of J-holomorphic maps ¥ — M
in a given homology class A € H>(M). The relevant cohomology classes on
My are pullbacks e*a of cohomology classes a € H*(M) under evaluation
maps e : & — M. Evaluating a top dimensional product of such classes on
the fundamental class of My gives the Gromov-Witten invariants

Ox alar,...,ap) = {e1* a1 A+ Aepap, [Mx]).

This was made rigorous by Ruan-Tian in [24]. For the case ¥ = S? another
exposition can be found in McDuff-Salamon [20]. In particular, in the case
¥ = 5% and p = 3 these invariants can be interpreted as homomorphisms

H*(ju) ® H*(AM) (3¢ H*(AM) —C: (a,b, C) — E‘I)A(a, b,C)e_tw(A)
A

and these determine Witten’s deformed quantum cup product strucure
on H*(M). The ordinary cup-product corresponds to the case ¢ = 0.

A relative version of these invariants can intuitively be described along
the following lines. Associated to a 1-dimensional compact manifold I' is the
space Nr of smooth maps ' — M. Now if ¥ is a Riemann surface with
boundary 9% = T then there is an obvious restriction map p : Ms — Nos
and hence there should be an induced map

pr : Ho(M5z) — Hy(Nax).

The image of the fundamental class of My, is just the set of maps 0% — M
which extend to J-holomorphic curves ¥ — M. This is a kind of nonlinear



Hardy space and is roughly a middle dimensional submanifold of Nax. The
relevant homology theory for such objects is Floer homology. Thus if the
boundary

ox=T1uU...uly

has ¢ components then we should obtain a homology class
Vs = pu([Ms]) € HF(T1) ® - ® HF,(Ty)

The rigorous definition of these relative invariants will be given in Section 3.
Intuitively, the Floer homology class Uy should be obtained by pushing down
the cycle p(Myx) C Moz using the gradient flow of the (unperturbed) action
functional. But the gradient lines of the action functional (in each component
of 9X) are holomorphic cylinders and the critical points are constant loops.
Hence the part of p(Msx) which under the gradient flow gets stuck on the
critical manifolds should correspond exactly to those J-holomorphic maps
u : 2 — M which extend over £ discs to give J-holomorphic maps @ : ¥ — M
on the corresponding closed Riemann surface. Thus the class ¥s should
be determined by J-holomorphic maps on closed surfaces with £ marked
points, which is precisely how the Gromov-Witten invariants are defined.
In particular, when £ = p = 3 and X has genus g = 0, then the homology
class Uy, determines, via Poincaré duality, the pair-of-pants product on Floer
cohomology HF*(M) = H*(M). For the above reasons this product should
agree with the quantum deformation of the cup-product defined in terms
of the Gromov-Witten invariants. The deformation parameter ¢ in Floer
homology arises from the Novikov ring.

The difficulty with this approach is that the Floer homology groups have
not been defined in a rigorous way with the unperturbed symplectic action
functional but require a Hamiltonian perturbation. Thus there are two theo-
ries, one of which revolves around J-holomorphic curves, the Gromov-Witten
invariants, and quantum cohomology, and can be interpreted as Morse thory
for the unperturbed symplectic action, while the other revolves around Floer
homology, Hamiltonian differential equations, and the pair-of-pants product,
and can be interpreted as Morse thory for the perturbed symplectic action.
The purpose of our paper is to show that both approaches are isomorphic
and give the same invariants.

The present paper was written while all three authors were at the New-
ton Institute in Cambridge and we would like to thank the institute for its
hospitality. We also would like to thank Simon Donaldson Helmut Hofer,
Dusa McDuff, Kaoru Ono, and Graeme Segal for helpful discussions.

2 Symplectic Floer homology

Throughout we shall assume that our symplectic manifold (M, w) is compact
and semi-positive. This means that it satisfies one of the following three
conditions

(a) ([w], A) = Xc1, A) for every A € mo(M) where A > 0 (M is monotone).
(b) {c1, A) =0 for every A € ma(M).

(c¢) The minimal Chern number N > 0 defined by {c1,m2(M)) = NZ is
greater than or equal to n — 2.



Here ¢ = ¢1(TM, J) is the first Chern class of the tangent bundle TM with
an almost complex structure J which is compatible with w in the sense that

gi(v,w) = w(v, Jw)

defines a Riemannian metric on M. The space of such structures will be de-
noted by J(M,w). These assumptions guarantee that for a generic almost
complex structure J € J(M,w) there is no J-holomorphic curve with nega-
tive Chern number. At present this condition is required for the definition
of both Floer homology and quantum cohomology.

We shall begin this section by discussing the relevant Novikov rings and
then recalling the definition of Floer homology as given in [16] by the second
author in collaboration with Hofer. In the Section 3 we shall discuss relative
Donaldson-type invariants in symplectic Floer homology.

Novikov rings

Throughout we shall identify S* = R/Z and denote by £ the space of con-
tractible loops z : S' — M. For every loop z € L there exists a smooth
map v : B — M defined on the unit disc B = {z € C||z| < 1} which
satisfies 'v(e%”) = z(t). Two such maps vy and v; are called equivalent
if their sum vo#(—wv1) is a torsion class in Ha(M,Z). We shall use the no-
tation [z,u0] = [z,u1] for equivalent pairs and denote by L the space of
equivalence classes. The elements of £ will be denoted by #. The space L
is the unique covering space of £ whose group of deck transformations is
the image I' C H2(M) of the Hurewicz homomorphism 72(M) — Ho(M).
Here H;(M) denotes integral homology modulo torsion. We denote by
IT'x L — L : (A, £) — A#i the obvious action of T' on L.

Now consider the homomorphism w : I' — IR defined by integrating the
form w over the class A € T'. Associated to this homomorphism is the
Novikov ring A = A, whose elements are formal sums

A= Z )\Ae27riA
Aer
with rational coefficients A4 € (Q which satisfy the finiteness condition
#H#{AET|Aa#0,w(A) <c} <
for every ¢ > 0. The multiplication is given by
Ak p = Z Aappe’mHA+E)
A,B
This ring comes with a natural grading defined by
deg(e%m) = 2c1(A)

and we shall denote by Ay the elements of degree k. Note in particular that
Ao is a subring and Ax will only be nonempty if k¥ is an integer multiple of
2N. Moreover, the multiplication maps A; x Ax — Aj4x.



The quantum cohomology groups of a symplectic manifold are de-
fined as the tensor product of ordinary cohomology with the Novikov ring.
To be more precise we define

QH"(M) = P H’ (M) @ Ak,

where H*(M) denotes the quotient of H*(M,Z) modulo torsion. Think of

an element of QH*(M) as a formal sum of the form
0= Z aA627riA’ aa € H’“_ch(A)(M,Q),
A€T
with #{A €T |aa #0, w(A) < ¢} < oo for every c. The module structure
over the Novikov ring A, is given by
Axa= Z /\A_BaBEQTriA.
A,B

Similarly, consider the quantum homology QH.(M) = H,(M) ® A. Tt is
convenient to write the elements of QHk(flJ) as a formal sums

o = Z O[Aezﬂ—iAa aa € Hk+2c1(A)(A[5 Q)a
AeT

which satisfy #{A €T |aa #0, w(A) < ¢} < oo for every ¢. The module
structure over the Novikov ring is given by the same formula as above with
a replaced by o. There is a natural pairing QHy (M) x QH*(M) — Ag given

by ‘
(a,a) = Z Z(aA_B,aB)e%ZA

c1(A)=0 B

fora € QHr(M,Q)and o € QHr(M,Q). The Poincaré duality isomorphism
PD: QH*(M) — QHa2y—x(M) is given by

PD(a) = Y PD(aa)e’™".

Floer homology

Let H; = Hi41 : M — R be a smooth family of Hamiltonian functions and
consider the time-dependent Hamiltonian differential equation

i(t) = Xo(z(t),  o(Xo)w = dH,. (1)

Denote by P(H) the set of all contractible 1-periodic solutions z(t) = z(t+1)
of (1) and assume that these are all nondegenerate. Similarly, let P(H) C

L denote the set of those pairs [z,u] € L with z € P(H). This can be
interpreted as the set of critical points of the perturbed symplectic action
functional Ay : £ — R defined by

Au(3)=- /D uw w — /01 H(t,z(t))dt



for & = [z, u]. Note that
An(A#3) = An(z) — w(A)

for every € £ and every A € T'. The gradient flow lines of Ap with respect
to the L?-inner product induced by ¢ are solutions u : R? — M of the PDE

dsu + J(u)dyu — VH(u) =0 (2)
which satisfy u(s,t) = u(s,t+ 1) and the limit condition

lim (s, t) = z%(¢) (3)

s—too

with z* € P(H). Given i* ¢ ﬁ(H) we denote by M(27,5F, H, J) the set
of those solutions u of (2) and (3) for which #*#u = #*. The energy of such
solutions is given by

et

The following result was proved in [28] based on a transversality theorem
in [13].

dstl

24100 — Xe(u)[?) dtds = Au(37) — Au(i").

Proposition 2.1 (Transversality) For a generic pair (H,J) € HJreg =
HTreg( M, w) the spaces M(i~, 3%, H, J) are all finite dimensional manifolds
of dimensions

dim "M(i_a i+a Ha J) = u(i_) - u(i+)

Here the map p : 'ﬁ(H) — Z 18 given by the Conley-Zehnder index. It
satisfies

p(A#E) = p(E) — 2¢1(A).
Moreover, p([z,u]) agrees with the Morse coindex (i.e. 2n minus the Morse
index) whenever H : M — R is a (time-independent) Morse function with
sufficiently small second derivatives, z is a critical point of H, and u(z) =z
s the constant disc.

Proposition 2.2 (Compactness) For a generic pair (H,J) € HJreg =
HTreg(M,w) we have

2 # AM(2, A#§)/R} < o0
w(A)<e
cq(A)=0

forall 3,y € 5(H) with p(§) — () = 1 and every constant c.

To prove this, one has to show that the relevant moduli spaces are com-
pact. This will be the case if no bubbling occurs. The key observation is
that, for a generic almost complex structure J, the points lying on a J-
holomorphic spheres of Chern number 0 form a set in M of codimension 4
and so, for a generic H, no such sphere will intersect an isolated connecting
orbit. Thus, it follows from Gromov’s compactness theorem that they can-
not bubble off. Moreover, J-holomorphic spheres of negative Chern number
do not exist by weak monotonicity. J-holomorphic spheres of Chern number
at least 1 connot bubble off because otherwise in the limit there would be a



connecting orbit with negative index difference but such orbits do not exist
generically. This is the essence of the proof of Proposition 2.2. Details are
carried out in [16].

Whenever u(z) — pu(§) = 1 we denote

n(E, ) = # {M(z,9)/R},

where the connecting orbits are to be counted with appropriate signs deter-
mined by a system of coherent orientations of the moduli spaces of connect-
ing orbits as in [12]. These numbers determine a cochain complex as follows.
Define CF = CFy(H) as the set of formal sums

E= Y &(#)

ZeP(H)
n(&)=k

with rational coefficients ¢z € Q which satisfy the finiteness condition
{z € P(H) | & #0, Au(F) > c} < o0

for every ¢. This complex CFy is a module over the Novikov ring A = A,

via
AxE= Z Z /\Af(—A)#i <f>
P A
Note that the dimension of C' Fy over A, is precisely the number of 1-periodic
solutions of (1) with Conley-Zehnder index p(z) = k(mod 2N).
The above numbers n(#, §) determine a boundary map 0k : CFx(H) —
CFy_1(H) defined by

w(@)=k=1

for z € ﬁ(H) with u(z) = k. Proposition 2.2 guarantees the finiteness con-
dition required for {z) € CFr_1(H). Floer’s proof that the square of this
operator is zero carries over to the semi-positive case. Here the key observa-
tion is that 1-parameter families of connecting orbits with index difference 2
will still avoid the J-holomorphic spheres of Chern number 0 because they
form a 3-dimensional set in M while these J-holomorphic spheres form a
set of codimension 4. Similarly, holomorphic spheres of Chern number 1
can only bubble off if they intersect a periodic solution, and this does not
happen for a generic H because the points on these spheres form a set in
M of codimension 2 while the periodic orbits form 1 dimensional sets. For
J-holomorphic spheres with Chern number at least 2 the same argument as
above applies. Hence no bubbling occurs for connecting orbits with index
difference 2 and hence such orbits can only degenerate by splitting into a pair
of orbits each with index difference 1. As in the standard theory (cf. [11],
[19], [28]) this shows that
dod=0.

Hence the solutions of (2) determine a chain complex (C'Fy,d) and its ho-

mology groups

HE(H, )= k2

im d




are called the Floer homology groups of the pair (H,J). Because the
coboundary map is linear over A,, it follows that the Floer cohomology groups
form a module over A,. In [16] it is proved that the Floer cohomology groups
are independent of the almost complex structure J and the Hamiltonian H
used to define them. This is stated more precisely in the next theorem.

Theorem 2.3 Given regular pairs (H®, J%), (H'B, Jﬁ) € HJreg there exists
a natural isomomorphism

P . HF(M,w, H*,J*) — HF(M,w, H?, J?)

which preserves the grading by the Conley-Zehnder index. If (HY,J7) €
HT:eg is another such pair then

P o P = o7, H** =id.
These isomorphisms ®P* are linear over Ay.
Remark 2.4 (Poincaré duality) Consider the Floer cochain complex
CF*(H) ~ Hom(CFy(H),Ao) ~ CFsp_x(H)
with the the Hamiltonian H; = — H_;. First define CFk(H) as the space of
formal sums
=Y i (2)

w(z)=k

which satisfy the opposite finiteness condition
{f € P(H) | ns # 0, An(3) < c} <00

for every ¢. The action of the Novikov ring on this group is given by
Ak = Z ZAMA#& (£).
i A

for A € A, and 9 € C’Fk(H). There is a pairing CF* x C'F, — Ag defined

by
<77,€> = Z (Z 175;6;;#5;) e2m‘A
A z

where the sum is over all A € T with ¢;(A) = 0. This determines the
isomorphism CF*(H) = Hom(CFy(H), Ag). Secondly, note that there is a
one-to-one correspondence of periodic solutions z € P(H) with € P(H) via
z(t) = z(—t). In the universal cover the element [z,v] € ﬁ(H) corresponds

to [Z,7] € ﬁ(ﬂ) where v(z) = v(z) and
AH([E’ 5]) = _AH([Z'VU])’ H([f, 'l_)]) =2n — u([z‘, U])

(with the index conventions of Proposition 2.1). This shows that CF¥(H) =
CFan—x(H). Since the solutions of (2) for the two Hamiltonians are related
by u(s,t) = u(—s, —t) it follows that the two boundary operators are also the

same. Hence there is a natural isomorphism HFk(H, J) = HFs,—x(H, J).



Now use the isomorphism of Theorem 2.3 to obtain a Poincaré duality
isomorphism

PDp: HF*(H,J) — HFan_x(H,J).
Now there is an obvious pairing H Fopn_k(H, J) % HFQ"_k(H, J) — Ag in
view of the identification CF* = Hom(CFy, Ag). Combining this with the
Poincaré duality isomorphism we obtain a Poincaré duality pairing

HF*H,J)x HF*" ¥ (H,J) — Ao
and similarly for homology.

Remark 2.5 (Products) Even though the product
M=M x---x M,

of semi-positive symplectic manifolds is not, in general, semi-positive its
Floer homology groups are well-defined for every product almost complex
structure

J=JL x---x J;

(compatible with the product symplectic form) and arbitrary Hamiltonian
functions H: : M — IR. To see this one only needs to examine the proof of
the compactness result Proposition 2.2 and observe that the J-holomorphic
curves are all products of J;-holomorphic curves in M; and so cannot have
negative Chern number for generic J;’s.

It is interesting to discuss the case where M1 = --- M; = M and H is a
sum of Hamiltonian functions H; = H;(¢,z) on M in more detail. The tensor
product over the Novikov ring A, of the Floer chain complexes C'F,(H;) can
be described as follows. Denote by ﬁ(Hl, ..., Hy) the set of all equivalence
classes

& =[#1,...,%]

where z; € 5(H,) and the equivalence relation is given by
[Z1,...,Z0] ~ [Ar#T1, ..., AeH#HT4]

Vxhenever A; € T and Ay +--- 4+ A, 1s a torsion class. Then I' acts on
P(Hi,...,Hy) by

w(@) =Y p@),  Am(i) = Am ()

i=1 i=1

for z = [Z1,...%4] € 73(H1, ..., Hg). With this notation the tensor product
CFu(Hiy,...,H)) = CF«(H1) @ --- @ CF«(H¢) can be defined exactly as in
the case £ = 1. Namely, CFr(Hi,..., He) is the set of formal sums

E= > &)

ZEP(Hy,...,Hy)
n(&)=k



with rational coefficients ¢; € Q which satisfy
{i € P(Hy, ..., Ho) & #0, Au(3) > c} < oo

for all c. Also the boundary operator is given by the same formula. More
precisely, let £,y € P(Hi,..., H;) with p(2) — p(§) = 1. Then the corre-
sponding entry of the boundary operator can only be nonzero if there exist
representatives ¥ = [Z1,...,%¢] and § = [g1,...,7¢] of these equivalence
classes such that u(%;) — u(g;) =1 for some j and &; = §; for all : # 5. In
this case the entry of the boundary map is given by

n(irlj) = n(‘%j:lljj)'

Note that the right hand side is independent of the choice of the repre-
sentatives of # and § with the above properties because n(A#%;, A#§;) =
n(Z;, ;) for all A € T'. The resulting Floer homology groups are

HF.(Hiy,...,Hy,J)= HF(H,,J)® - ® HF*(Hy, J)

where the right hand side is the graded tenmsor product over the Novikov
ring Ao. At this place the choice of rational coefficients is essential. In the
case of integer coefficients the Floer homology of the product is given by the
Kinneth formula. The corresponding Floer cohomology groups are

HF (Hy,...,Hy,J)= HF(H,,J)® - @ HF*(Hy, J).

As before they are generated by the cochain complex CFk(Hl, ..., Hy) =
Hom(CFr(H,..., Hy), Ao).

3 Relative Donaldson type invariants

We shall now consider J-holomorphic curves u : % — M defined on a Rie-
mann surface ¥ of genus g with £ cylindrical ends Z; = ¢;((0,00) x S') C X.
We shall fix an almost complex structure j on ¥ such that ¢}j agrees with
the standard structure on the cylinders. We shall also fix £ time dependent
Hamiltonian functions H; = H;(s,t,z) = H;(s,t + 1,z) which vanish near
s = 0 and are independent of the s-variable for s > 1. Assume that the
periodic solutions of the Hamiltonian differential equation z = X;(1,¢,z)
with ¢(X;)w = dH; are all nondegenerate and denote by ﬁ(Hz) C £ the lift
of the set of such periodic solutions. Given #; = [z4,v;] € 5([—].) we shall
consider the space

Mz (51,...,50) = Mx(i1,... 50, Hr,..., He, J)

of all smooth maps u : X — M which satisfy the following conditions.

(a) uis J-holomorphic on the complement

EozZ—UZi.

10



(b) The maps u; = u o ¢; satisfy
sui + J(u)dpu; — VH(s, t,u;) =0,

z:(t) = lim wi(s,t).
8= 00
(c¢) The map u capped off by the discs v; (with opposite orientations) rep-
resents a torsion homology class in Ho(M,Z).

Note that the condition (c) and hence the space Mx(Z4,..., #;) depends
only on the equivalence class of the f-tuple [Z1,...,%/] as defined in Re-
mark 2.5. The space Mx(%1,...,%¢) is a finite dimensional manifold for a
generic choice of Hamiltonian functions H;. Under the index conventions of
Proposition 2.1 its dimension is given by

dim Ms(i1,...,50) =2n(1 —g) — > _ p().

1=1

The details are carried out in [31].

Figure 1: J-holomorphic curves with marked points

Now fix d distinct points z1,..., 24 € X and homology classes a1,...,aq €
H,(M) such that

£ d

> u(E) =2m(1—g) =Y (20 — deg(a)). (4)

i=1 v=1

Represent these classes by generic cycles (still denoted by «,) and define

Ms(aq, ..., aq,81,..., %)

11



to be the set of all curves u € Mx(Z1,...,%,) with u(z,) € a, (see Figure 1).
This is a finite set (for generic choices) and we denote

ny(a1,...,aq,81,...,50) = #Ms(a1, ..., a4, 1, ..., 54)
where the points are counted with appropriate signs. Here we suppress the
dependence on J and H; in the notation. Now the numbers will in general
depend on the choices. However they define a Floer homology class which is
independent of the choices. From this point of view Floer homology can in
fact be interpreted as a framework to extract the invariant information from
these moduli spaces. More precisely we define the cycle

Ys(ar,...,0q) = an(oq,...,ad,il,...,fz)(h,...,m)

Iy

in CFy(H1,...,H) = CFy(H1)®--@CFy(H¢). Here the sum runs over all
equivalence classes of {-tuples [Z1,...,%¢] (as in Remark 2.5 above) which
satisfy the dimension condition (4). The following theorem shows that these
cycles determine a Floer homology class which is independent of the choices.
In summary, the marked surface ¥ determines a multi-linear map

Vs : Ho(M)® - ® Ho(M) — HF (H\) ® - ® HF,(H,).

This can be interpreted as a symplectic version of a relative Donaldson
invariants which in their original context are defined for 4-manifolds X
with boundary and take values in the Floer homology groups of dX. In
the symplectic case the relative Donaldson invariants of * take values in the
Floer homology of 0%.

Theorem 3.1 (i) The above chain Yz (a1, ...,aq) is a Floer homology cy-
cle. The corresponding Floer homology class is denoted by

‘If):(oq, .. .,ozd) € HF*(Hl) R @ HF»:(H().

It has degree 2n(1 — g) — Zd

S—q(2n —deg(av)).

(ii) If one of the cycles a,, is a boundary then ¥x(a1,...,aq) is a bound-
ary in the Floer chain complex. Moreover, the Floer homology class
Us(ai,...,aq) is independent of the choice of the marked points z,
used to define it.

(iii) The Floer homology class Ux(a1,...,aq) is natural under variation
of the Hamiltonian functions and the almost complex structure. This
means that for two choices (J°, HF, ey Hf) and (JY,H],...,H)) the
corresponding classes are related by

Ul(aq,...,o4q) :(Iﬂﬁllfg(al,...,ad)

where ®7° : HF,(HP, JP)y — HF(H", J") is the isomorphism of The-

orem 2.3.

Proof: The theorem follows from the standard gluing and compactness
arguments in Floer homology. The first statement is proved by considering
the ends of the one-dimensional moduli spaces where at one of the ends

#; € P(H;) is replaced by §: € P(H;) with u(§:) = p(&:) — 1. The second

12



statement follows also by considering one-dimensional moduli spaces, but in

this case the dimension is increased because the cycle &« = a3 X -+ X g is
replaced by a chain 8 in M? with

ap = a.
More precisely, choose an equivalence class = [£1,...,%,] as in Remark 2.5

with #; € P(H:) and
u(z) = 2n(1 — g) — 2nd — deg(a).
Consider the 1-dimensional moduli space Mx(f, %) with boundary
OIMx(8,%) = Mx (98, ).

This moduli space will not be compact, in general, but solutions could break
up into pairs u € Mx(f,9), v € Mx(g, %) with p(§) = p(Z) + 1. The
dimension formula shows that dim My (83, §) = 0 and hence there are finitely
many such pairs. The total number of boundary points and such ends is even,
or zero when counted with appropriate signs. Hence

n(a,8) =Y ns(B,§)n(j,8)

Y

where the sum runs over all § with u(3) = 2n(1 — g) — 2nd — deg(a) + 1.
This can be abbreviated in the form

¥z (98) = dv=(6)

where the boundary operator an the right is the one in the Floer chain
complex. This shows that the Floer homology class Us(a) depends only on
the homology class of & and not on the cycle by which it is represented. This
proves (ii). Statement (iii) is proved by an obvious gluing argument. The
details will be carried out elsewhere. a

Remark 3.2 This homomorphism extends naturally, as a multi-linear map
over the Novikov ring, to the quantum homology of M. This can be explicitly
expressed as follows. The degree-k-part of the tensor product QH*(i’\/[)@d
over A can be written as the space of formal sums

a= Z aae’™4, o € Ho(M,Q)% deg(aa) =k + 2¢c1(A)
A

with #{A € T'|aa # 0, w(A) < ¢} < oo for all c. Now if we abbreviate
Z = [Z1,...,%¢] as in Remark 2.5 then we can write

d(a) = ) nu(aa, (—A)#5)(Z)

AF

where the sum runs over all A €T and % € 'ﬁ(Hl, ooy He) with p(8) =k =
deg(a). Moreover, the numbers nx (a4, (—A)#%) are now rational and are
obtained from the integer versions in the obvious way (some integer multiple
of a4 lifts to an integral class). It is easy to see that this map ¢ is linear
over the Novikov ring and extends the map of Theorem 3.1. This gives rise
to relative Donaldson type invariants of the form

Us : QH.(M)®! — HF.(H\) ® - @ HF.(Hy).
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Example 3.3 The first case is where ¥ = C is the complex plane or, in
other words, a disc with a cylindrical end. In this case the space

M(&) = M(3, H, )

consists of all perturbed J-holomorphic curves u : C — M such that the map
(s,t) — u(e?™**")) satisfies the perturbed equation for s > 0 with limit
z e ﬁ(H) This space is a manifold of dimension 2n — pu(z). For a generic
cycle o representing a homology class of degree deg(a) = u(#) we denote
by n(a,Z) the number of curves u € M(Z) with u(0) € «, counted with
appropriate signs (see Figure 2). These numbers determine a homomorphism

¢: QHi(M) — CFy(H) defined by

6(a) = n(aa, (—A)#i)(#)

AE

for o = ZA aae?™A ¢ QHy(M) where the sum runs over all A € T' and all
# € P(H) with u(2) = k. This chain ¢(a) € CFx(H) is a Floer homology
cycle and, while the chain ¢(«) itself will depend on the cycles represent-
ing the classes a4, the resulting Floer homology class ®(a) € HF,(M) is
independent of these choices and so depends only on the homology class of
a.

Figure 2: The homomorphism QH.(M) — HF.(M)

This homomorphism ® : QHy(M) — HFy(H,J) is of course a special
case of the map Vs constructed in Theorem 3.1 and Remark 3.2. In partic-
ular, if (H?, J#) and (H",J") are two regular pairs and

®°: QH. (M) — HF,(H" J?),  ® :QH.M)— HF.(H",J")
denote the above homomorphism then, by Theorem 3.1, we have
P =07 0 0"
where ®°* is the isomorphism of Theorem 2.3. The dual homomorphism
PDro®oPD: QH* (M) — HF*(H,J)

of cohomologies will also be denoted by ®. We shall prove in Section 4 that
® is indeed an isomorphism

Example 3.4 (Cap product) Consider now the case where ¥ = 7 = R x
S! is a cylinder and d = 1. Fix a homology class o € H.(M) of fixed degree.
Then

Uz(a) € HFW(H1)® HF\(H2)

14



is a class of degree deg(a). Via Poincaré duality this map determines a
homomorphism

HFy(Hy) = HF* *(H1) — HFi—codimo(H2)

which is given by contracting a cohomology class in H F*(H,) with the first
factor of ¥z () € HFy(H1)®H F(H>). With Hy = H> = H these maps can
be interpreted as a kind of cap product with the cohomology class ¢ = PD(«)
with Floer homology:

H)(M)® HFw(H,J) — HFs_;(H,J): (a,&) — aNgp¢.

Geometrically, this product can be interpreted in terms of counting the con-
necting orbits which pass through the Poincaré dual o = PD(a) (see Fig-
ure 3). If there are no J-holomorphic spheres, then one can prove that this
pairing corresponds to the ordinary cap-product under the isomorphism of
Example 3.3. This was exploited by Floer, and more recently by Ono and
LeHong, to prove cup-length estimates for periodic solutions of Hamiltonian
systems.

1]
N
N

~_| _|

Figure 3: Cap-product on Floer homology

Example 3.5 (Natural isomorphisms) In the case where a = [M] is
the fundamental class we obtain homomorphisms H Fyx(H;) — H Fy(Hs) in
Example 3.4. These are precisely the isomorphisms of Theorem 2.3.

Example 3.6 (Pair-of-pants product) Consider the case where ¥ is a
pair of pants, i.e. a surface of genus zero with three cylindrical ends where

Hy = H, = H3 = H (see Figure 4). Then

Us([M]) € HF(H)® HF.(H)® HF.(H)

is a class of degree 2n. In view of Poincaré duality this class can be inter-
preted as a map

HF(H)y® HF*(H) — HF't* (H) : (n,¢) — nUr ¢

obtained by contracting the cohomology classes , ( € H F*(H) with the first
two factors in Wx([M]). This is the pair-of-pants product on Floer homology.

Now all other relative Donaldson invariants can be computed from these
examples by the gluing formula below. At this stage it is perhaps more
enlightning to consider cylindrical ends with two possible orientations (as a

15



z1

z2

Figure 4: Cup-product on Floer homology

right or a left end) and write the relative Donldson invariants as an induced
homomorphisms ¥y from the Floer homology of the left end to the Floer
homology of the right end. The connected sum of two surfaces ¥/ = D#Y’
obtained from gluing the right ends of ¥ to the left ends of X’ then corre-
sponds to the obvious composition (see Figure 5)

‘IIB#E’ = ‘I/EI o \I/)j.

Instead we shall phrase the result in terms of Poincaré duality. The proof
will be carried out elsewhere.

Figure 5: Composition

Theorem 3.7 Let X' = S#,%' be the oriented connected sum of Lo and
1 over p of the boundary components. Then
‘I/EII([)Zl, ceey ozd_|_d/) = <‘I/E(011, ceey ozd), ‘I/E/(ong.], ey ad+d/))p

where the right hand side denotes the Poincaré duality pairing on 2p factors
in Floer homology.

An interesting special case is where ©” is a closed surface. In this case
the polynomials ¥y, take values in Z and these are the Gromov-Witten
invariants as defined by Ruan in [23]. Other references are [20] and [24].

4 Morse theory

Our goal in this section is to prove the following theorem. This result extends
easily to integer coeflicients.



Theorem 4.1 The homomorphism ® : QH.(M) — HF\«(H,J) defined in
Ezxzample 3.3 is bijective.

Proof: The key idea of the proof is to express the map ® in an alternative
way via Morse theory. Choose a generic Morse function Ho : M — IR
and consider the Morse complex C'M,(Ho,w) defined as a module over the
Novikov ring A = A, which is generated by the critical points of Hy. More
explicitly, we think of the elements of CMy(Hp,w) as formal sums of the

= Z E$07A<z05A>

xg,A

form

with rational coefficients &z,,4. Here the sum is over all pairs (zo, A) con-
sisting of a critical point zo of Hy and a homology classes A € ' with

p(zo, A) =ind gy (zo) — 2¢1(A) = k.
We impose the finiteness condition
{<z05A>|E$0,A # 0, w(A) < C} < oo.

The boundary operator on CM,(Hy) is defined by the gradient flow lines
v:R — M of the gradient flow of Hy

¥ = —=VHo(y).

Denote by no(zo, yo) the number of connecting orbits from zo to yo when-
ever indg,(zo) — indm,(yo) = 1 and define the boundary operator dns :
CM,(Ho) — CM,_1(Ho) by

On{zo, A) = Z no(zo, Yo ){yo, A)

ind g (yo)=k—1

whenever ind g, (zo) = k. As an additive group the homology of this complex
is naturally isomorphic to the quantum homology of M

HM.(M,w) = QH.(M) = H,(M) ® Au.

(See for example [26], [30], [34].)

— Y

A3

Figure 6: Unstable manifold and J-holomorphic disc

Now define a map ¢ : CM,(Ho,w) — CF.(H) as follows. Given a critical

point zo € Crit(Hp) and a periodic orbit § € P(H) consider the space

M(zo,§) = {u € M(7) |u(0) € W (z0)}

17



where M(y) = M(y, H,J) is defined as in Example 3.3. This space is a
manifold of dimension

dim M(zo, §) = ind g, (z0) — p(§).

In the case of index difference zero we obtain a finite set and denote the
oriented number of elements by n(zo,§) = #M(zo, §) (see Figure 6). Now

define
¢ (w0, A) = Z n(z, (—A)#3)(9)

Y

where the sum is over all § € P(H) which satisfy p(§) = indm, (z) — 2¢1(A).
This map is linear over the Novikov ring. Moreover, it follows from the usual
argument in Floer homology that ¢ intertwines the the boundary operators
and so descends to a homomorphism of the homology groups

& : HM.(Ho,w) — HF.(H,J).

We first claim that this homomorphism agrees with the one of Example 3.3
under the above identification of H M, (Ho,w) with QH,(M). To see this just
note that a homology class o € H,(M) can be represented by a chain & =
Zxo &(a,z0)zo in the Morse complex. Geometrically, this means that o can
be represented by a cycle which is arbitarily close to the corresponding sum
W, = Zmu &(a, zo)W™(zo) of unstable manifolds. For this cycle the Floer
homology class ¢(&) is precisely given by the intersection numbers of M(g)
with W,. But this is the definition of the homomorphism in Example 3.3.

(D

y

Figure 7: J-holomorphic disc and stable manifold

Now consider the inverse homomorphism
U:HF(H,J)— HM,(Ho,w)
which is defined as follows. Denote
M™(§)=M"(§,H,T)=M([y,0,H,J)

where § = [y, v], §(t) = y(—t) and 9(z) = v(z) are defined as in Remark 2.4,
and M(y) is defined as in Example 3.3. Think of M™(§) as the space of
perturbed J-holomorphic curves u : C — M which have a cylindrical end to
the left converging to §. Explicitly, the cylindrical end is given by the map
(5,t) — u(e™2™ =+ for 5 < 0. Note that

dim M~ (§) = u(d).
Now the space

M (§,20) = {u € M7 (§)|u(0) € W*(z0)}

18



is a manifold of dimension
dim M™ (g, z0) = p(§) — ind g, (20).

Counting the number of elements in the case of index difference zero gives rise
to integers n(§, z0) = #M ™ (§, z0) whenever p(§) = ind g, (z0) (see Figure 7).
These numbers determine a chain map ¢ : CF,(H, J) — CM,(Ho,w) defined
by
¥(§) = Y n((—A)#0, 20)(z0, A).
zp,A

Here the sum runs over all (z9, A) € Crit(Ho) x T' with u(§) = indg,(z) —
2¢1(A). The induced map on homology is the above map W.

! .
Zo 20

Figure 8: W o ® =id

We now prove that ¥ o ® = id. On the chain level this composition is
given by the numbers

n(zo, 20, A; H,J) = Y _ n(z0, §)n((—A)#3, 20) (5)

g
for triples (zo, 20, A) where zg, zo are critical points of Ho and A € T’ with
indg,(zo) —ind g, (20) + 2¢1(A) = 0.

In (5) the sum runs over all § € P(H) with u(§) = ind#,(zo). The usual
gluing and compactness arguments in Floer homology show that the in-
teger n(zo, 20, A; H, J) can be interpreted as the number of perturbed J-
holomorphic spheres u : S> — M such that

u(0) € W¥(zo),  u(o0) € W*(20)

(see Figure 8). Here the perturbation is a Hamiltonian one with a very long
neck and two J-holomorphic caps at the ends. Now choose a homotopy of
perturbations from the given one to zero. For the zero perturbation there
cannot be any solutions for dimensional reasons unless A = 0 and zg = 2.
Now the induced map on Floer homology is independent of the choice of the
perturbation and for the zero perturbation we obtain

1 if w0 =2,A=0
n(xo,zo,A;OaJ):{ 0 otheorwiseo, ’

These numbers determine the identity homomorphism on CM,(Ho,w). Thus
we have proved that on the chain level the map ¥ o ¢ is chain homotopy
equivalent to the identity and hence ¥ o & =id.
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Figure 9: @ o ¥ =id

The converse homomorphism ® o ¥ is on the chain level given by the

numbers
n(3,2) =Y n((=A)#, yo)n(yo, (—A)#2) (6)

vo,A

for &,z € ﬁ(H) with (%) = p(Z) where the sum runs over all all pairs
(0, A) € Crit(Ho) x T with indg,(yo) = (%) + 2¢1(A). A gluing argument
in ordinary Morse theory now shows that the numbers n(Z, ) can be inter-
preted geometrically as the number of triples (u™, v, ut) where u™ € M™ (%),
ut € M(%), and ¥ = =V Ho(y) with v(£T) = u*(0). Now varying the pa-
rameter T will not change the induced map on Floer homology (see Figure 9).
Hence we may take T'= 0 and consider the map given by the numbers

no(Z,2) = #{(uv", u+) |u™ € M™(2), ut € M(2),u (0) = u+(0)}.

Now a gluing argument for J-holomorphic curves, as in the appendix of [20],
shows that no(Z,Z) agrees with the number of perturbed J-holomorphic
cylinders running from Z to Z. A further homotopy argument, which is also
used in the proof of Theorem 2.3, shows that the numbers no(Z, §) induce
the identity map on Floer homology. Thus we have proved that on the chain
level the map ¢ o 9 is chain homotopy equivalent to the identity and hence

do ¥ =1d. o

5 Quantum cohomology

The quantum cohomology ring of a semi-positive symplectic manifold is a de-
formation of the cup-product structure on ordinary cohomology, tensored by
the Novikov ring, which in Section 2 was denoted by QH*(M) = H*(M)®A.
We have seen in Example 3.3 and Theorem 4.1 that there is a natural isomor-
phism ® : QH*(M) — HF*(H,J) and our goal in this section is to prove
that this isomorphism intertwines the deformed cup-product on QH*(M)
with the pair-of-pants product on HF*(H, J) defined in Example 3.6.
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Figure 10: Witten’s deformed cup-product

Let us first recall the definition of the deformed cup-product of Wit-
ten (cf. [20], [23], [35]). Given a spherical homology class A € Hy(M) =
Hy(M,Z)/torsion consider the space M(A, J) of all simple J-holomorphic
spheres u : S — M representing the class A. For a generic almost complex
structure J € J(M,w) this is a manifold of dimension 2n + 2¢;(A4). For
three generic cycles «, 3,y in H.(M) with

deg(a) + deg(B) + deg(y) = 4n — c1(A)
define
Da(a,B,7) =# {uec M(A J)|u(0) € a, u(l) € 8, u(cx) € v}

(see Figure 10). Here the number of points has to be counted with appro-
priate signs and the resulting integer is independent of the choice of the
signs. This definition works unless A is a multiple class with Chern num-
ber c1 (A) = 0. In this case the compactness argument fails because of the
possible presence of multiply covered curves with Chern number zero. This
difficulty can be overcome by either considering J-holomorphic curves in
52 x M asin [20] or by perturbing the nonlinear Cauchy-Riemann equations
with a zero order term as in [23], [24]. Both modifications give rise the same
invariant ® 4(a, 8, 7). Moreover, if A = 0 is the class of constant curves, we

define
@0(0{,,3,’]/) = Cl/ﬁ'}/

to be the ordinary triple intersection number. Now the deformed cup product
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of two classe a = PD(a) € H*(M) and b = PD(8) € H* (M) is defined by

axb= Z(a *b)ae?™A

A
where (a % b)a € HF 4721 (M) is given by

((a*b)a,7) =Pa(a,B, 7).

for ¥ € Hiqe—2c,¢4)(M). Note that o, 8, v satisfy the dimension condition
required for the definition of ® 4(a, 3, v). Note also that the 0-component of
a * b is the ordinary cup-product (a * b)o = a Ub. It was proved by Ruan-
Tian [24], Liu [18], and McDuff-Salamon [20] that the quantum cup-product
is associative.

Theorem 5.1 The isomorphism ® : QH*(M) — HF*(H,J) defined in
Ezample 3.8 intertwines the quantum cup-product on QH* (M) with the pair-
of-pants product of Example 3.6, i.e.

O(a +b) = B(a) Up B(b)

fora,b € QH*(M). It also intertwines the cap-product of Example 3.4 with
the pair-of-pants product via

PDr(aNp PDp(3(b))) = B(a * b)

for a,b € QH*(M). Here PDp : HF.(H,J) — HF*"*(H,J) denotes the
Poincaré duality isomorphism of Floer homology (and its inverse) as defined
in Remark 2.4.

Remark 5.2 Since ® is an isomorphism (Theorem 4.1) it follows that the
cap-product and the cup-product in Floer homology are related by

PDF(CL Ng E) = <I>(a) Ur PDF(E)
fora € QH*(M) and € € HF\(H, J).
Proof of Theorem 5.1: Let a,b € H*(M) and denote « = PD(4),
3 = PD(b). For £ € P(H) with u(#) = deg(a) denote

n(a, &) = #Msx(a, £)
where ¥ = C as in Section 3 and Example 3.3. Then the Floer homology
class PDp(®(a) Ur ®(b)) is given by
PDR(B(a) Ur D) = 3 nla, £)u(B,9)n (3, 5 2)().
5,5,%

Here n(%, §; Z) denotes the oriented number of J-holomorphic pants with two
limits , § on the left and one limit Z on the right. The sum is over all triples

33,7 with u(2) = u(z) + a(§) and u(z) = deg(a), u(j) = deg(B).
Now the usual gluing theorem in Floer homology shows that

PDr(®(a) Ur B() = 3 n(o, ,2)(2)

z
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Figure 11: ®(a) Up ®(b)

where n(a, 8,2) = #M(a, 3, %) is the number of J-holomorphic discs with
one cylindrical end to the right converging to Z which intersect both o and 3
at two prescribed points z1, z2 € C (see Figure 11). This is in fact a special
case of Theorem 3.7 and can be rephrased as the formula

PDp(®(a) Up (b)) = Us(a,B) € HF(H,J)
where ¥ = C. Hence we must prove that
Us(a,B) = ®(ax*b). (7)
To see this we first observe, as in [20], that the Poincaré dual
€4 =PD((axb)a)

can be represented by the pseudo-cycle of all points which lie on J-holomor-
phic A-curves which intersect both & = PD(a) and # = PD(b). Hence the
right hand side of (7) is given by

B(a*b) = Z > n(éa, (—A)#E)(3).

Thus we must prove that

n(aaﬂai') = Zn(gAa(_A)#i') (8)

A

For each class A € T the integer n(¢a, (—A)#%) counts the number of J-
holomorphic discs u € M((—A)#&) (with cylindrical end to the right) such
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Figure 12: ®(a *b)

that u(0) lies on a J-holomorphic A-curve which intersects both a and
(see Figure 12).

To prove (8) just consider the (perturbed) J-holomorphic planes u. : C —
M with cylindrical end # and u.(0) € o, u.(¢) € 5. Now consider the limit
e — 0. In the limit one obtains either a J-holomorphic plane with u(0) €
a N 3, and this contributes to the term n(&, ), or else a J-holomorphic A-
sphere v : S> — M bubbles off at z = 0. On the complement of 0 the curve
u. (z) will then converge to a perturbed J-holomorphic plane v : C — M with
limit (—A)## and u(0) = v(cc). Moreover, the bubble »(S?) must intersect
both o and 3. For a generic J these intersections must occur at distinct
points. Thus the limit curves (u,v) contribute to the term n(€a, (—A)#%)
on the right hand side of (8). This argument works only if there are no
J-holomorphic curves of Chern number zero. If such spheres exist then the
invariants ®(«, 3,v) and hence the class ¢4 = PD((a * b)4) must in fact
be defined in terms of perturbed J-holomorphic curves. In this case the
proof can be modified by choosing an additional Hamiltonian perturbation
for the function @(s,t) = u(e2™***)) in the region 1/2 < s < 3/4 and then
stretching the neck 3/4 < s < 1 on which we have the unperturbed Cauchy-
Riemann equations. Details of this argument will be carried out elsewhere.

This proves the first statement in Theorem 5.1. The second statement fol-
lows by considering moduli spaces of the form M(a, &), M(%, 8,§), M(7,7),
and using the usual gluing techniques. a

Theorem 5.1 has important consequences because, in general, the pair-
of-pants product on Floer cohomology is difficult to compute directly while
recently the deformed cup-product on quantum cohomology has been com-
puted in many cases. For complex Grassmanians see Vafa [33], Witten [36],
Piunikhin [25], Siebert Tian [32], for flag varieties see Givental Kim [14],
for generalized flag varieties see Astashkevich-Sadov [2] and for some other
examples see Kontsevich—Manin [17]. In the next example we recall a recent
computation by Donaldson [6].

Example 5.3 (Donaldson) Let X be a compact oriented Riemann surface
of genus 2 and P — ¥ be an SO(3)-bundle with w2(P) # 0. Denote by My
the moduli space of flat connections on P. This space has real dimension 6
and, as a complex manifold, can be identified with the intersection of two
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quadrics in CP®. Tts Betti-numbers are
bo=bs=bs=bs =1, b1 =bs=0, bs=4.

In particular, there is a natural isomorphism p : Hi(%) — H®(Ms). Let
hoj € HQj(ﬂ’[E) denote the natural generators of the even dimensional co-
homology for j = 0,1,2,3 with Ap = 1. Then the ordinary cohomology ring
structure is given by

ha U ha = 4ha, ha U hs = he, u(71)Uu(7z)= (‘}/1 ~‘}/2)h6.
The minimal Chern number of Ms is 4 and so the quantum cohomology
groups are graded modulo 4 with QH® = H° @ H*, QH' = H' @ H® = {0},
QH? = H*> @ H°, QH® = H®. According to Donaldson [6] the deformed
cup-product is given by

ha x hy = 4(h4 =+ q),

h2 * h4 = h6 + 2h2qa
h2 * h6 = 4(h4q + q2),
w(m) * u(r2) = (11 - 12)(he — h2q)

where ¢ denotes an auxiliary variable of degree 4.
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