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1 Introduction

This is an expository paper. The goal is to give a proof of the following van-
ishing theorem for the Seiberg-Witten invariants of connected sums of smooth
4-manifolds.

Theorem 1.1 Suppose that X is a compact oriented smooth 4-manifold diffeo-
morphic to a connected sum X1#Xo where

bt (X7) > 1, b (Xo) > 1,

and b (X) — b1(X) is odd. Then the Seiberg-Witten invariants of X are all

ZEero.

This result is the Seiberg-Witten analogue of Donaldson’s original theorem
about the vanishing of the instanton invariants [2] for connected sums. An
outline of the proof of Theorem 1.1 was given by Donaldson in [1]. The key
ingredient of the proof is a removable singularity theorem for the Seiberg-Witten
equations on flat Fuclidean 4-space. A proof of Theorem 1.1 was also indicated
by Witten in his lecture on 6 December 1994 at the Isaac Newton Institute
in Cambridge. The result was used by Kotschick in his proof that (simply
connected) symplectic 4-manifolds are irreducible [4].

*Thanks to Mario Micallef for helpful discussions



Seiberg-Witten equations on R*

Identify R* with the quaternions H via 2 = zq + iz1 + jrs + kx3 and consider
the standard spin® structure I' : H = T, H — C*** given by

_ 0 7(€) _ §o+1i&1 & +1i&s
o= v ) 0=(-ge 81 )
Thus y(ep) = 1, v(e1) = I, v(e2) = J, and v(e3) = K with

() () k= (20)

Given a connection 1-form A = >, A;dr; with A; : H — R and a spinor
® : H — C? denote

3
0P
Vad = ;qumxj, V;® = oe; + A;®
The Seiberg-Witten equations have the form
DA(I) = O7 p+(FA) = ((I)CID*)O (1)

where Dy = =V + IVh + JV, + K'Vj is the Dirac operator associated to the
connection A, Fy = dA = ,_. Fi;dx; A dx; is the curvature, and p(F4) €
C?*2 is given by

i<J

pT(Fa) = (Fo1 + Fas)I + (Foo + F31)J + (Fos + Fi2) K.

Moreover, (®®*)y denotes the traceless part of the matrix ®®* € C2*2 and
hence the second equation in (1) is equivalent to Fo; + Fog = —271®* [P, Fyo +
F31 = —271®*J®, and Fyz + Fio = —27'®*K®. The energy of a pair (4, ®)
on an open set ) C R* is given by

3
1
B4, = [ | 321w + glal + Y7
=0

i<j

It is invariant under the action of the gauge group Map(, S') by (4,®) —
(u*A,u=t®) where u*A = u~tdu + A. The proof of Theorem 1.1 relies on the
following removable singularity theorem for the finite energy solutions of (1).
Denote the unit ball in R* by B = B* = {z € R*||z| < 1}. If ® = 0 then the
result reduces to Uhlenbeck’s removable singularity theorem for ASD instantons
in the case of the gauge group G = S' (cf. Uhlenbeck [10] and Donaldson—
Kronheimer [2], pp 58-72 and 166-170).



Theorem 1.2 (Removable singularities) Let A € Q' (B — {0},iR) and ® €
C®(B — {0}, C?) satisfy (1) with

E(A,®; B) < .

Then there exists a gauge transformation u : B — {0} — St such that u(z) =1
for |z| =1 and u* A and u='® extend to a smooth solution of (1) over B.

The following three fundamental identities will play a crucial role in the
proof of Theorem 1.2. The first is the Weitzenbock formula

3
DA*DaA® + > ViVid = p™(Fa)® (2)
1=0

where Do™ = Vp + IV4 + JV + KV5. The second is the energy identity
BA.®0) = [ (1Da0f + |5 (F0) - (@07 )
Q
+ ANdA + / <‘I)7 Va,, ® + F(V)DA‘I)> dvolgn
o0 o0

for A € QY(R?*iR) and ® € C>(R* C?). Here we use the norm |T|? =
Ltrace(T*T) for complex 2 X 2-matrices so that 1, I, J, K form an orthonormal
basis of C2*2. Moreover, v : 90 — R* denotes the outward unit normal vec-
tor field, Va,® =3, v;Vi®, and I'(v) = =l + 1] + voJ + v3K. The third
equation is

AP = —2[V4@” — |of* (4)
for solutions of (1) where A = — 3", 9%/0z;2. It is proved by direct computation
using (2) and p*(Fa)® = (90*)y® = |®|?®/2. Equation (4) was first noted by
Kronheimer and Mrowka in [5] and lies at the heart of their compactness proof
for the solutions of (1).

Proof of the energy identity: The proof relies on the familiar equation

/<|FA|2_2|FX|2> :/FA/\FA: ANdA,
Q Q aQ
and on the formula
/(|VA<I>|2 - |DA<I>|2> :/ (®,V4,® + T (v)DA®) —/<‘I>,p+(FA)<I)>.
Q 19) Q
This last equation follows from Stokes’ theorem and (2). With |p*(F4)|* =

2|F % and (@, pt(Fa)®) = 2(p*(Fa), (®P*)o) the rest of the proof is an easy
exercise. |



2 Removable singularities for 1-forms

The first step in the proof of Theorem 1.2 is the following weak removable
singularity theorem for 1-forms on R™. The theorem asserts that if « is a 1-
form on the punctured ball B” — {0} such that da is of class L? then there exists
a function € : B"—{0} — R such that a—d¢ is of class W2 (and d* (a—d¢) = 0).
If n = 4 and « is anti-self-dual then it follows easily that o — d§ extends to a
smooth 1-form on B*. This is Uhlenbeck’s removable singularity theorem for
ASD instantons in the case G = S'. Note also that this is the special case
® = 0 in Theorem 1.2. Even though this result is simply a special case of
Uhlenbeck’s theorem we give a proof below which is is specific to the abelian
case and is considerably simpler than both Ulenbeck’s original proof in [10] and
the proof given by Donaldson and Kronheimer in [2]. Throughout denote by
B"(r) = {z € R"||z| <r} the closed ball in R™ of radius r and abbreviate
B™ = B"(1) and A(rg,r1) = A"(ro,m1) ={z € R"|ro < |z| < 71} for ro < 71.

Proposition 2.1 (Uhlenbeck) Assume n >4 and let o € QY (B™ — {0}) be a
smooth real valued 1-form which satisfies

/ |da|? < oco.

Then there exists a smooth function & : B™ — {0} — R such that a — d§ is of
class W2 on the (unpunctured) unit ball and satisfies

2
| (|V(a—d§)|2+%> <t [ JdaP

o _
o
Here d§/0v denotes the normal derivative on 0B™ and a(v) = Y, a;(z)z; for
|z] = 1.

as well as

d*(a—d&) =0, a(v).

Note that addition of any exact 1-form on B™ — {0} does not alter the L>-
norm of da. Thus the behaviour of a near zero may be extremely singular. The
proposition asserts that there exists an exact 1-form d¢ on B"™ —{0} which tames
the singularity at 0 in the sense that a —d¢ is of class W2 on B™. The function
& will be constructed as a limit of functions &, : B™(1)—B"™(e) — R which satisfy
d*(a — d¢.) = 0 with boundary condition 9¢./0v = a(v) on 9(B; — B:). The
convergence proof relies on the following three lemmata.

Lemma 2.2 Assume n > 4. Then every smooth 1-form a € Q(A"(e,1)) with
a(v) =0 on 0A™(g,1) satisfies the inequality

2
/ (|VO¢|2+%> §4/ <|da|2+ |d*a|2>.
A(e,1) || A(e,1)



Proof: Let a = Zi o;dz; be a smooth 1-form on a domain 2 C R™ with
smooth boundary. Suppose that (a,v) = Y7 | a;; = 0 on Q. This condition
is equivalent to xalaq = 0. Integration by parts shows that

0
HVMF—WMW—HWMV—/m<aqﬁ>dmbg—/ a A xda.
o0 v J9)

Here all norms on the left are L?-norms on A(e,1). Now use the formulae
*dx;|on = vidvolaq and dz; A x(dx; A dxj) = — * dz; for i < j to obtain

Oa ov;
a N xda — / <a, —> dvolpn = / aja;—2 dvolpg.
/BQ o ov 0 ; ! Oz

This equation uses the fact that >, a;1; = 0 on 0 and a = (av,...,ap) is
tangent to 9. In the case Q = A(g, 1) the last two identities combine to

2 2 w2, 4
IVal? = ol + [a'al* + = [ jof = [ jof )
T |=€ x|l=

for 1-forms on A(e, 1) which satisfy (o, ) = 0 on the boundary. Now consider
the function f(z) = z/|z|? with div(f) = (n — 2)/|z|?. Then for every smooth
function u : A(e,1) - R

1
Sk WP = = vl
|z|=¢e |z|=1 0A(e,1)

IN

2/ |u||vu| _/ div(f)|u|2
A(e,1) || A(e,1)
2
:2/ Mwm_m_@/ fu?
A |l Ae,) 7]

1 2
5/ |Vu|2—<n—2——>/ %
Ae,1) 6) Jaen |zl

The last inequality holds for any constant 6 > 0. If n > 4 we can choose
1/(n —2) < d§ < 1. For example, with 6 = 3/4 we obtain from (5)

3 2 4 |a|?
IVal? < ||dal? + [|d*a|® + = |Va|* - (n -2 —) / —.
4 3) Jae |2

IN

This holds for all n. But for n > 4 the last term on the right is negative and
the desired inequality follows. O



Lemma 2.3 (Poincaré’s inequality) There is a constant ¢ = c¢(n) > 0 such
that every smooth function £ : A™(1/2,1) — R with mean value zero satisfies

the inequality
[ epsef
A(1/2,1) A(1/2,1)

Lemma 2.4 Fuvery smooth function £ : A™(ro,r1 +t) — R satisfies

[ ors2f e [ e
A(’I‘(),’I‘l) A(’I‘()-‘rt,’r'l -‘rt) A(T‘(),’Ij +t)

for0<rg<ri <land0<t<1.

Proof: Consider the identity

Ere) = £((t + r)z) — / (VE((r + )2), 2) ds

and use the Cauchy-Schwartz inequality to obtain

2

r+t
W\/; Sn71|d§(Sl’)|2dS

€ra)l® <26l + M)l + g

for [x] = 1 and n > 3. In the case n = 2 there is a similar inequality with
1/(n —2)r"=2 replaced by log(r +t) —logr < r —log r. Now multiply by r"~!
and integrate over S™~! and over ro < 7 < 7. m|

Lemma 2.5 Let u: B™ — {0} — R be a smooth function such that

/n |Vu(z)? < oco.

Then u is of class W12 on B™, i.e. its distributional derivatives exist and agree
with the ordinary derivatives.

Proof: For any compactly supported test function ¢ : B™ — R integrate the
function ud;p + ¢0;u over the annulus € < || < 1 and show that the boundary
integral over |z| = € converges to zero as € — 0. a

Proof of Proposition 2.1: For every € > 0 there exists a smooth function
&+ A™(g,1) — R which satisfies

Tla—d&) =0, 2= =(a)

where the last equation holds on the boundary. The function & is only deter-
mined up to a constant which can be fixed by the normalization condition

/ é(z)dx = 0.
1/2</<1



It follows from Lemma 2.2 that

2
< dlldel[7 a1y -

a — dé.|?
Ve~ delaery + [T

e<|z|<1 ||

Fix some number § > 0. Then for ¢ < §
IVd&ellr2ags1)) < 2lldelpe + IVl 12451y »

ld€ellL2agsy) < 2l g2 + el p2ags,n)) -

Now use Lemma 2.3 and the mean value condition to control the L2-norm of &,
on A(1/2,1) and Lemma 2.4 to control this norm on A(d,1/2). This shows that
for every 6§ > 0 there exists a constant ¢s > 0 such that

1€ellwa.2cags1y) < o

for every ¢ € (0,6). Now the usual diagonal sequence argument shows that
there exists a sequence &; — 0 such that &, converges strongly in W12(K) and
weakly in W22 (K) for every compact subset K C B™ —{0}. The limit function
€ :B"— {0} — R is of class W22 on every compact subset away from 0 and
satisfies d* (o — d¢) = 0 and («a — d€,v) = 0. Hence Lemma 2.2 shows that

o — d€|?
/K(|V<a—d£>|2+7' mf' >§4/Bn'd°"2

for every compact subset K C B™ — {0}. By Lemma 2.5, a — d¢ is of class W12
on B™. This proves the proposition. O

3 Proof of the removable singularity theorem

By Proposition 2.1 there exists a smooth function ¢ : B* — {0} — iR such that
A — d¢ is of class W12 on the closed ball B* and d*(A — d¢) = 0. Hence we
may assume from now on that A € W12 and d*A = 0. Moreover, by the finite
energy condition, we have ® € L* and V;® € L2. The Sobolev embedding
theorem shows that A € L* and hence

8,0 =V,®— A, e L?

for i = 0,1,2,3. By Lemma 2.5, this shows that ® € W2, Thus we have a
solution (A, ®) of (1) which is smooth on the punctured ball B* — {0} and on
the closed ball satisfies

Aewh? o cwh?, d*A=0.



We shall prove in three steps that there exists a constant ¢ > 0 such that

Eo(A,®; B,) = /

|z <r

1
(|VA<I>|2 + 5|<1>|4> <er? (6)

Step 1: For every r € (0,1]

Eo(A, ®; B,) = /

|z|=r

Z<q>7viq>>%.

i

Let © C R* be any open domain with smooth boundary such that A and & are
defined on its closure. (Thus 0 ¢ €Q.) Consider the energy

1
B, 00 = [ (|VA¢|2+—|¢|4+2|F:|2) = [ @)
Q 4 onN

The first equality follows from the fact that |®|* = 8|F|? for solutions of (1)
and the second equality follows from the energy identity (3). Abbreviate

T
sn=[ e
Then f: (0,1] — R is a smooth function and the previous identity shows that
EO(Av(I);BT - Bs) = f(?") - f(E)

Hence f is monotonically increasing and bounded below. This shows that the
limit f(0) := lim._,q f(¢) exists. Now it follows from the finiteness of the energy
that ® € L* and V;® € L? and hence (®, V;®) € L*/3 for all i. Moreover, by
Holder’s inequality,

S < ety [ (ol [Tae)

and hence

r

/1 7|f(7‘)|4/3 dr < oo.
0

This shows that there must be a sequence ¢; — 0 with f(g;) — 0 and it follows
that f(0) = 0. This implies f(r) = Eo(A, ®; B;) as claimed.

Step 2: Every smooth function u : R* — {0} — R satisfies the identity

_/ &_/ 2u—|—(Vu7x>_/ 2u+ (Vu,x)
p<lai<r [T Jgj=r 1P wl=p P

This is Stokes’ theorem on the annulus p < |z| < r with Av = — Y, 9%v/0z;% =
0 for v(z) = 1/]z|2.



Step 3: Proof of (6).
Recall from (4) that A|®|? = —2|V4®|? — |®|%. Moreover, note that

/ (V|®?,z) = 2/ D (@, Vi) = 2rf(r).
|z|=r |z|=r "
Hence it follows from Step 2 with u = |®|? that

2 4 2 2
J e P B 0}
p<la|<r Jz|=r |

|‘/I‘.|2 73 2 z|=p p3 p2

This implies

flp) _ flr) 1 2
5~ < 2 T3 i |D|
for 0 < p <r and (6) follows.
By (4), the function x +— |®(x)|* is subharmonic and hence
2
4
= w2

8¢
272

2
2() [ oS oA ) <

for » = |z|. The first inequality is the mean value inequality for subharmonic
functions, the second follows from the definition of Ejy, and the last follows
from (6). Thus

8c

d(z)t < —
| (1’)| = 7T2|{E|2

and, since the function = — 1/|x|® is integrable in a neighbourhood of zero
whenever a < 4, it follows that |®|? is integrable for every p < 8. Thus we have
proved that |®|? € LP for any p < 4. Since d*A = o ((®®*)g) this shows that

dT A € LP for any p < 4. Now recall that d*A = 0 and hence
AA = d*dA = 2d*d* A = 2d° o (9D*),).

Note that A is a weak solution of this equation on the closed (unpunctured) ball
and hence it follows that A € WP for any p < 4. Thus A € L? for any ¢ < oo.
The formula

0=Ds®=Dd-T(A)D

with T'(A)® € LP now shows that ® € WP for any p < 4. Thus ® € LY for
some ¢ > 4 and using the last equation again with I'(A)® € L? we find that
® € W4 for some ¢ > 4. This implies d*o ™ ((®®*)) € L? and, by the previous
equation A € W24, Using the two equations alternatingly we conclude that A
and ® are smooth on B;. This is a standard elliptic bootstrapping argument
and completes the proof of Theorem 1.2.



4 Proof of the vanishing theorem

The goal of this section is to prove Theorem 1.1. The proof given here was out-
lined by Donaldson in [1]. It is based on choosing a sequence of metrics g, on the
connected sum X;#Xs which pinches the neck to a point and has the property
that the scalar curvature s, is bounded below by a constant independent of v.
Note, however, that the scalar curvature will diverge to 400 near the pinched
neck. More precisely, the following remark shows how to construct a metric
on the unit disc in R* which agrees with the standard metric outside a ball of
radius § and with the pullback metric from R x £53 under the diffeomorphism
x — (clog|z|,ex/|x|) inside a punctured ball of radius §™*! for some integer
m.

Remark 4.1 Consider the diffeomorphism

f:RY*—{0} - R xeS3, f(z) = (slog |x|,5£>.

|
It is easy to see that the pullback of the standard product metric g. on R x €53
under this diffeomorphism is given by

2

frg:(&m) = —5 (&)

9
|[?

for |z| < e2. Now choose a function A : (0,1] — [1,00) which satisfies

e/r ifr<§mtl
’\(T)_{ /1 if 7 > 6. @

and consider the metric

gr(&m) = A(|z))* (€, ).

Note that for |z| < §™*! this metric agrees with the above pullback metric f*g..
The scalar curvature of g, is given by

AN N3N r

N A
One can choose A decreasing and thus A (r) < 0 for all r. It remains to prove
that A can be chosen such that (7) is satisfied and, say,

N(r) N
A(r) +3 rA(r)

<1 (8)

Here the constant 1 is an arbitrary choice and can be replaced by any positive
number. We must prove that for every § > 0 there exists a function A : [0,1] —

10



[0c0) which satisfies (7) and (8) for some constant € > 0. Following Micallef
and Wang [7] we introduce a function « = «(r) by
N« Nd a+a?

A r’ A r r2

Then the conditions (7) and (8) take the form

1, forr < émtl,
o(r) = { 0, forr >34, (9)
o al2-a)
—_—t — > 1. 1
- (10)

Consider the curve v(t) = a(de~*). Then (10) translates into
< (2 =)y + 8%

and (9) reads v(t) =1 for t > T = log(d~™) and ~(t) = 0 for ¢ < 0. A solution
of the differential equation 4 = (2 — «)y is given by the explicit formula

262me2t

t) = ————=+.
’Y( ) 1+52m62t

This solution satisfies y(0) = 26%™ /(14-26?™) < 1 and v(T') = y(log(6—™)) = 1.
Perturbing this function slightly near t = 0 and ¢ = T gives a smooth solution
of the required differential inequality provided that m is sufficiently large. Note
that essentially the same argument can be used to prove the theorem of Gromov
and Lawson about positive scalar curvature for connected sums [3]. a

Recall that the solutions of the Seiberg-Witten equations for a spin® structure
I': TX — End(W) form a moduli space space M (X, T, g,n) which, for a generic
perturbation 7, is a finite dimensional compact manifold of dimension

dim M(X, T, g,n) = £8P
4 4

where x = x(X) and 0 = o(X) denote the Euler characteristic and signature of
X and ¢ = ¢1(Lr) € H?(X,Z) is the characteristic class of the spin® structure.
It is convenient to think of the connected sum as follows. Fix two points 1 € X3
and z2 € X5 and choose a metric g; on X; which is flat in a neighbourhood of x;.
Now construct a sequence of manifolds X, = X;#, X5 by removing arbitrarily
small discs from X; and X, centered at z; and xo respectively, modifying
the metrics g; as in Remark 4.1 above, and then identifying two annuli which
are isometric to [0, 1] x €,93. Given two spin® structures I'y over X; and I'y
over X5 one obtains a corresponding sequence of spin® structures I',, over X,
by identifying I'y and I's in suitable trivializations over the two annuli. Let us

11



choose a sequence of perturbations 7, on X, which vanish near the neck and are
independent of v on the complement of the neck. Any such sequence determines
two fixed perturbations 7; and 72 on X; and Xs, respectively, which vanish in
the given neighbourhoods of z1 and z3. In [8], Chapter 9, it is proved that the
perturbation can be chosen such that the moduli spaces M(X1,I'1, 91,7 ) and
M(X2,T, g2,m2) are regular.

Assume first that the moduli space M(X,,T,,g,,m,) is zero dimensional.
We prove that this space must be empty for v sufficiently large. Suppose oth-
erwise that for every v there exists a solution (A,,®,) of the Seiberg-Witten
equations for the metric g, and the perturbation 7n,. In [5] Kronheimer and
Mrowka proved that the spinors @, satisfy the inequality

1
®,| < —=infs,.
S;pl | < —5infs

where s, denotes the scalar curvature of g, (see also [8]). The previous exercise
shows that there exists a constant ¢ > 0 such that s, (z) > —c for all z € X and
all v. Hence the ®, are uniformly bounded. Now A, and @, restrict to solutions
of the Seiberg-Witten equations on X; (for the metric g; and the perturbation
71) outside any neighbourhood of x1. Hence it follows from the compactness
theorem in [5] (see also [8], Chapter 9) that there exists a subsequence which
converges in the C*-topology on every compact subset of X;—{x1} to a solution
(A1, @1) of the Seiberg-Witten equations which is defined on X; — {1} and has
finite energy. Since ¢ is flat and 7n; vanishes near x; the removable singularity
theorem 1.2 asserts that A; and ®; extend to a smooth solution over all of
X1. This shows that the moduli space M1 = M(X1,T'1,91,7) is nonempty.
Obviously, the same argument applies to X5. Now the perturbation n was chosen
such that 7; and 7y are regular for g; and go. But the dimension formula shows
that
0 = dim M = dim M; + dim M, + 1.

Hence one of the moduli spaces must have negative dimension. Since both mod-
uli spaces are regular it follows that one of them must be empty, a contradiction.
This shows that the assumption that M(X,,T',,g,,7,) was nonempty for all
v must have been false. But if there is a metric for which the moduli space
is empty then the Seiberg-Witten inveriant is zero. Thus we have proved that
the Seiberg-Witten invariant must vanish whenever the moduli space is zero
dimensional.

A similar argument applies to the cut-down moduli spaces when dim M > 0.
For this case it is useful to intersect the moduli space M1, say, with suitable
submanifolds of the form

. o A x O (X, W)
N, = {[A@] } /X (h(A), ®)dvol = 0} C ) = = Lp(X. 50

12



where h : A(T1) — C>°(X, W;")* satisfies
h(u*A) = u(y)u~'h(A)

for every gauge transformation u : X; — S! and some y € X;. The map h
can be localized near y as follows. For every 1-form o € Q!(X,iR) and every
smooth path v : [0,1] — X consider the holonomy p, () € S defined by

pa(y) = exp (/7 a) :

For each point x € X; near y let v, : [0, 1] — X; denote the path running from
x to y in a straight line in a local chart. Fix a reference connection Ay and a
nonzero section ¥ € C° (X, Wfr ) with support in the given neighbourhood of
y. Then the map

h(A)(x) = pa—a,(72)¥(z)

has the required properties. Now, as before, dim M = dim M; + dim My + 1
and hence one of the moduli spaces must have dimension strictly smaller than
M. Suppose without loss of generality that

dim M; < dim M = 2d

and choose d functions hq, ..., hg : A1) — C*°(X,W;")* as above which are
localized somewhere on X; away from x;. Then, for a generic perturbation 7,

M(X1,T1,91,m) NNy, N NN, = 0.
On the other hand the h; determine functions
hiw t A(Ty) — C%(X, W,0)*
(defined by the same formula) and one can examine the moduli spaces
M(Xy, T, gy 0) O Nwy , 0 O Ny -

If these are nonempty for all v then it follows as above that the space M; N
Ny, N+ NNy, is nonempty contradicting the choice of the perturbation 7.
Hence these moduli spaces are empty for large v and thus the Seiberg-Witten
invariants are zero.
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