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1 Introduction

This paper is a sequel to [4]. It studies the moduli space of stable maps
whereas [4] studied the moduli space of stable marked nodal Riemann surfaces.
The latter can be considered as a special case of the former by taking the target
manifold M to be a point. In both cases the moduli space is the orbit space
of a groupoid where the objects are compact surfaces with additional structure.
(We think of a map from a surface to another manifold as a structure on the
surface.) In both cases the difficulty is that to achieve compactness of this mod-
uli space it is necessary to include objects whose underlying surfaces are not
homeomorphic.

Here we study only that part of the moduli space of stable maps which
can be represented by regular stable maps. Only by restricting attention to
regular stable maps can we hope to construct an orbifold structure. We also
limit attention to target manifolds M which are integrable complex and not just
almost complex.

As in [4] we make heavy use of “Hardy decompositions”. The idea is to
decompose a Riemann surface ¥ into two surfaces ¥’ and X" intersecting in
their common boundary I". A holomorphic map from ¥ into a complex manifold
M is uniquely determined by its restriction to I' and so the space of all such
holomorphic maps can be embedded into the space V of smooth maps from I'
to M. In this way we identify the holomorphic maps with V' N V" where V'
and V" are the maps from I' to M which extend holomorphically to ¥’ and
3" respectively. (In the case where X is the Riemann sphere, M = C U {0},
and I is the equator, V' would consist of those maps whose negative Fourier
coefficients vanish and V" would consist of those maps whose positive Fourier
coefficients vanish. Hence the name Hardy decomposition.) The importance
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of this construction becomes clear when we consider a parameterized family
{Zp}pep of Riemann surfaces. By judiciously choosing the decomposition we
can arrange that the one dimensional manifolds I'y are all diffeomorphic, even
though the manifolds 3 are not all homeomorphic. Then we identify the various
I'y with a disjoint union I' of circles. Under suitable hypotheses we are able to
represent the holomorphic maps from Xj to M (for varying b) as a submanifold
of the manifold of smooth maps from I' = 9%] = 93} to M.

Our theorems led to a theory of Fredholm triples in Section 6. These are
triples (X, X', X”) where X is a Hilbert manifold and X', X" are Hilbert sub-
manifolds such that T, X'NT, X" and T, X/ (T, X'+T, X") are finite dimensional
for every x € X' N X”. We prove a finite dimensional reduction theorem for
morphisms of such triples. We hope this theory has separate interest.

In Section 8 we show that the orbifold topology is the same as the well known
topology of Gromov convergence.

Naming the additional structures which occur in this paper as opposed to [4]
caused us to exhaust the Latin and Greek alphabets. Accordingly we have
changed notation somewhat. For example, the aforementioned decomposition
Y=YUX was ¥ =AU in [4]. We also use the following notations

:= arithmetic genus of ¥ /v,
:= number of marked points,
:= number of nodal points,
:= complex dimension of A,
:= complex dimension of B,
:= complex dimension of M.

3 T w X 5 0™

We have used the \mathsf font for these integers so that we can write a € A,
b € B for the elements. We will also use the symbol d to denote a homology
class in Hy(M;Z).

2 Stable maps

2.1. Throughout let (M, J) be a complex manifold without boundary. A con-
figuration in M is a tuple (X, s., v, j,v) where (X, s, v, J) is a marked nodal
Riemann surface (see [4, §3]) whose quotient X /v is connected and v : ¥ — M
is a smooth map satisfying the nodal conditions

{z,y} ev = v(z) =v(y).

Thus v descends to the quotient /v and we write v : ¥/v — M for a smooth
map v : X — M satistying the nodal conditions. We say that the configuration
has type (g, n) if the marked nodal surface (X, s., ) has type (g, n) in the sense
of [4, Definition 3.7] and that it has type (g,n,d) if in addition the map v
sends the fundamental class of ¥ to the homology class d € Hy(M;Z). The
configurations form the objects of a groupoid; an isomorphism

¢ : (Z/,S;,I//,j/,vl) - (Za S*,V,j,’l))



is an isomorphism ¢ : ¥’ — ¥ of the underlying marked nodal Riemann surfaces
such that
v =vod.

Given two nonnegative integers g and n and a homology class d € Hy(M;Z)
we denote by Bgn(M,J) the groupoid of configurations of type (g,n) and by
Bg.nd(M,J) the subgroupoid of configurations of type (g,n,d).

2.2. The configuration (X, s.,v,j,v) is called holomorphic if the map v is
holomorphic, i.e. if

9;,7(v) =% (dv + J(v)dv o j) = 0.

A stable map is a holomorphic configuration whose automorphism group is
finite. This means that each genus-0 component of ¥ on which v is constant
carries at least three special points and each genus-1 component of 3 on which
v is constant carries at least one special point. A component on which v is con-
stant is commonly called a ghost component so a stable map is a holomorphic
configuration such that each ghost component is stable in the sense of [4, Defi-
nition 3.7]. The stable maps of type (g, n) are a subgroupoid of Bg (M, J); the
orbit space ﬂg,n of this subgroupoid is (set theoretically) the moduli space
of stable maps of type (g,n). Similarly define the subset Mg n 4. Our goal is to
construct a canonical orbifold structure on the regular part of this space.

Definition 2.3. A holomorphic configuration (X, s., v, j, v) is called regular if
0,1 * . 0,1
Q" (3,0"TM) =im D, +dv - Q" (2, TY) (1)

where
Dy : Q°(S/v,v*TM) — Q' (S,0"TM)

is the linearized Cauchy Riemann operator (see [2, page 41] and 2.6 below).

2.4. Fix v and s.. Let J(X) C End(TY) denote the manifold of complex
structures on ¥ and let

B:=J(X) x C*(Z/v,M).
Form the vector bundle £ — B with fiber
0,1 X
Ejw = Q7 (80T M)

and let S : B — & denote the section defined by the nonlinear Cauchy—Riemann
operator

S(], U) = 5j7](7}).

A configuration (j,v) is holomorphic and only if S(j,v) = 0. The intrinsic
derivative of S at a zero (j,v) € S7*(0) is the operator D; ,, : T}, ,B — &;, given
by

D;(§,0) = Dy0 + %J(v) dv - .



A holomorphic configuration (j,v) is regular if and only if the operator Dj,
is surjective. This follows from the following three assertions: (1) the tangent
space to B at (j,v) is

T;uB = Q)1 (S, TS) x Q°(S,v*TM)
(2) When v is holomorphic, we have J(v)dv - 7 = dv - jj. (3) The map

QB TS) - QPY S, TE) 1 ) - 4)
is bijective. Hence, for a regular holomorphic configuration, the zero set of S is
a Fréchet manifold near (j,v) with tangent space ker D, ,. This zero set is the
“stratum” consisting of the holomorphic configurations of type (g,n) obtained
by fixing v and varying (j,v). Fixing j gives the vector bundle over C*° (X /v, M)

with fibers 92’1(2, v*TM). When the configuration (j,v) is holomorphic, the
operator D, is the intrinsic derivative of the section v — S(j,v).

2.5. The section (j,v) — S(j,v) = 9;.5(v) is equivariant under the action of
the group Diff (X, v) of orientation preserving diffeomorphisms that preserve the
nodal structure. The Lie algebra of Diff (X, v) is the space

Vect(Z,v) == {€ € QUE,TE) | €(2) =0Vz € Uv}

of vector fields on ¥ that vanish on the nodal set. The infinitesimal equivariance
condition is

Dy(dv - €) = dv - 0;¢ (2)
for every ¢ € Vect(X, v). The diffeomorphism group Diff (X, ) acts on the space
Zo(S,v; M, J) = (Z"\ A) x S71(0)

(where A is the fat diagonal) by

g (s1,---2 80, 5,0) = (97 (s1), .-, "(sn), 9" j.v 0 g) (3)

for g € Diff(X,v). Let Po(X,v; M, J) C Z.(2,v; M, J) denote the subset of
stable maps, i.e. the subset where Diff (X, v) acts with finite isotropy. Then the
quotient space

Mo (S, v; M, J) = Po(S,v; M, J) /Diff (S, v)

is a stratum of the moduli space /\;lg,n(M7 J) of all stable maps of genus g
with n marked points. The stratum can also be expressed as the quotient
Mo(S,v; M, J) = S71(0)stable/Diff (, v, 5.) where Diff(2,v,s.) C Diff(3,v)
denotes the subgroup of all diffeomorphisms ¢ € Diff (X, v) that satisfy ¢(s;) = s;
fori=1,...,n.

2.6. Let (3, v, j) be a nodal Riemann surface and v : ¥ — M be a smooth map.
Fix a connection on T'M and define

Dyt := 5 (Vo + J(v)Vioj) — 3J(v)VsJ (v)0), s (v). (4)



(See [2, page 41].) The definition for D, is meaningful even when J is not
integrable. If 9, ;(v) = 0, then the right hand side of (4) is independent of
the choice of the connection V and is the operator of Definition 2.3. If J is
integrable, v*T'M — ¥ is a holomorphic vector bundle and D, is its Cauchy
Riemann operator. If V is the Levi Civita connection of a Kdhler metric, then
VJ = 0 and the last term vanishes. In general (assuming neither integrability
nor that (j,v) is a zero) the formula for D, still defines a Cauchy—Riemann
operator on v*T'M which depends however on the connection and might not be
complex linear, but it is always Fredholm.

3 Unfoldings of stable maps

3.1. Fix two nonnegative integers g and n and a homology class d € Hy(M;Z).
A (holomorphic) family of maps (of type (g,n,d)) is a triple

(m:Q — B,S.,H)
where (7, S,) is a marked nodal Riemann family (of type (g,n)) and
H:Q— M

is a holomorphic map such that the restriction of H to each fiber Q) represents
the homology class d. A desingularization v : ¥ — @Q; of a fiber induces a
holomorphic configuration (3, s., v, j, v) with

v:=Hou.

The family of maps is called stable if each configuration that arises from
a desingularization of a fiber is a stable map. Given two families of maps
(ma:P— AR, Hy) and (7 : Q — B,S«,Hp) amap f : P, — Qp is called
a fiber isomorphism if it is a fiber isomorphism of marked nodal Riemann
families and

Huy|P,=Hpo f.

A morphism between two families of maps (74, R«, Ha) and (75, 5., Hg) is a
commutative diagram

M
Hy
Hp
P 2 Q
WA\L \LWB
A ¢ B

such that, for each a € A, the restriction of ® to the fiber P, is a fiber isomor-
phism. The morphism is called continuous, continuously differentiable, smooth,
or holomorphic if both maps ¢ and ® are.



Definition 3.2. An unfolding of maps is a quadruple (75, S«, Hp,b) where
(7B, S, Hp) is a family of maps and b € B. An unfolding (7g, S, Hp,b) is
called universal if, for every other unfolding (74, R«, Ha,a) and every fiber
isomorphism f : P, — @y, there is a unique morphism

(¢= (I)) : (TFA,R*,HA,G) - (ﬂ—Bv‘S’*aHBub)

of families of maps such that
O|P, = f.

This is to be understood in the sense of germs; the morphism may only be
defined after shrinking A, and two morphisms are considered equal if they agree
on some neighborhood of P,.

Definition 3.3. Let (7 : Q@ — B,S.,H,b) be an unfolding of maps and
u: X — Qp be a desingularization with induced structures s, v, j, and v on X
Define the spaces

X, = {4 € Q°E/v,u*TQ) | dr(u)i = constant, i(s;) € Ty(s)Si}

Y= {n € Q5 (£,u"TQ) | dr(u)n = 0},
X, = QUS/v v TM), Yy = Q7 (3, 0"TM).
Consider the diagram

x, M (5)

N
dH (u)

yuﬁyv

where the vertical maps are the restrictions to the indicated subspaces of the
linearized Cauchy—Riemann operators (see 2.6)

D, : Q°(2,u*TQ) — QV(2, u*TQ),

D, : QS v*TM) — QY2 v*TM)

associated to the holomorphic maps v and v. Thus D, is the intrinsic deriva-
tive in 2.3. The diagram (5) commutes because H is holomorphic and hence
0,7y (Hou) = dH (u)-0j,j,(u). The commutative diagram (5) determines maps

dH (u) : ker D,, — ker D,, dH (u) : cokerD,, — cokerD,, (6)

The unfolding is called infinitesimally universal if the maps in (6) are both
bijective.

Remark 3.4. Let (3, s.,v,7,v) be induced by a desingularization u : ¥ — Qp
of an unfolding (7 : Q — B, Sy, H,b). Then (X, s«,v,j,v) is reqular if and only



if the map dH(u) : cokerD, — cokerD, is surjective. To see this note that
dH (u) : cokerD,, — cokerD, is surjective if and only if

Vo = im D, +im (dH(u) : Vo — V). (7)
Since u is an immersion, the map

T;7(8) = QN (5,T%) — Yo s+ du-1)
is an isomorphism. But v = H ou so dv - n = dH (u) o du - ) so

dv - QPH(S,TY) = im (dH (u) : Yy — Vo).

Hence equation (1) is equivalent to equation (7) which asserts that the holo-
morphic configuration (X, s, v, j,v) is regular.

When M is a point the above definitions and the following theorems agree
with the corresponding ones in [4].

Theorem 3.5. A holomorphic configuration (X, s«, v, j,v) admits an infinites-
imally universal unfolding if and only if it is a reqular stable map.

Proof. The hard part of the proof is to show that ‘if’ holds under the additional
assumption that the underlying marked nodal Riemann surface (%, s.,v,j) is
stable. We will prove this in Section 7. Here we give the easy parts of the proof.

We prove ‘if’ (assuming the aforementioned result of Section 7). By adding
marked points in the appropriate components we may construct a stable map
whose underlying marked nodal Riemann surface is stable. Hence, by backwards
induction, it is enough to prove the following

Claim. If a stable map admits an infinitesimally universal unfolding and the
configuration which results on deleting a marked point is also a stable map, then
it too admits an infinitesimally universal unfolding.

To prove the claim let (7 : Q@ — B, S1,...,Sh, H,bp) be an infinitesimally
universal unfolding of (%, s1,...,sn,v,Jj,v) with associated desingularization
u: X — Qp, and assume that (2, s1,...,80—1, 7,7, v) is still stable. We will con-
struct an infinitesimally universal unfolding (7 : Q" — B’,S1,...,S,_1, H',by)
such that B’ is a submanifold of B, Q' := 7~ !(B’) is a submanifold of Q,
H' :=H|Q',and S/ =S NQ fori=1,...,n—1. Define the space

X, = {a e QS/v,u*TQ) | dn(u)i = constant, (s;) € Ty(s)Si for i <n}.

Note that )?u is obtained from X, by removing the constraint on the value (s,)
at the last marked point. Thus &), is a subspace of )?u of complex codimension
one; a complement of X, in X, is spanned by any vertical vector field along u,
satisfying the nodal condition, that vanishes at the marked points s; for i < 1
and does not vanish at s,. Denote by



the operator given by the same formula as D,, on the larger domain. Note that
the diagram (5) continues to commute when we replace X, and D,, by X, and
D, respectively. We prove the following.

(a) im D,, = im ﬁu and ker D,, C ker ﬁu is a subspace of codimension one.
(b) There is an element @ € ker D,, with dH (u)& = 0 and b := dr(u)i # 0.

With this understood we choose a complex submanifold B’ C B of codimension
one such that 7 is tranverse to B’ and b ¢ Ty, B’. Then the kernel of the
resulting operator D!, is a complex subspace of the kernel of ﬁu of codimension
one. Since b ¢ Ty, B, the kernel of D/, is mapped under dH (u) isomorphically
onto the kernel of D,. Since D! has the same image as l~)u and D, we deduce
that dH (u) also induces an isomorphism from the cokernel of D!, to that of
D,. Hence (r : Q" — B',S},...,S_1,H' by) is an infinitesimally universal
unfolding of (X, s1,...,8n—1,¥,4,v) as claimed.

It remains to prove (a) and (b). To prove (a) note that D, has the same
image as D,. (If n € ), belongs to the image of l~)u then dH (u)n € im D,, and,
since the second map in (6) is injective, this implies that 7 belongs to the image
of D,,.) Hence (a) follows from the fact that X, has codimension one in X,. To
prove (b) we use the fact that the first map in (6) is surjective and dH (u) maps
the kernel of Eu to the kernel of D,. Hence there is an element

@ € ker D, Nker dH (u) \ ker D,.

Any such element satisfies
dm(u)t # 0.

Otherwise there is a vector field £ € Vect(X) with & = du - §; since 4 €
fu this implies that £ belongs to the Lie algebra of the stabilizer subgroup
of (3,81,...,80—1,V,7,v), contradicting stablility. Thus we have proved (a)
and (b) and hence the claim.

We prove ‘only if’. Let (3, sy, v, j,v) be induced by a desingularization
u: X — @ of the infinitesimally universal unfolding (7 : @ — B, S, H,b).
Then the holomorphic configuration (3, s, v, j,v) is regular, by Remark 3.4.
Next we argue as in [4]. Assume that (X, s, v, j,v) is regular but not stable.
Then either ¥ has genus one, v is constant, and there are no special points or
else ¥ contains a component of genus zero on which v is constant and which
carries at most two special points. In either case there is an abelian complex
Lie group A (namely A = ¥ in the former case and A = C* in the latter) and
an effective holomorphic action

AXY —3:(a,2) — ax(z)

that preserves the given structures. Let P := A x X, w4 be the projection on
the first factor, R, := A X s4, fa(a, z) :=v(z), and ap € A be the identity. If



up : X — @ is any desingularization of a fiber Qp, of an unfolding (7p : Q —
B, S., fB,bp) which induces the given structures on ¥, then

D4 (a, z) = ug(2), Dy(a, 2) = ug(ax(z))

are distinct morphisms from (74, R, fa,a0) to (75, S«, [B,bo) which extend the
fiber isomorphism P,, — Qp, : (ao, 2) — ug(z). Hence (7p, Sk, fB,bo) is not a
universal unfolding. O

Theorem 3.6. An unfolding of a reqular stable map is universal if and only if
it is infinitesimally universal.

Proof. We prove ‘if” in Section 7. For ‘only if” we argue as in [4]. A composition
of morphisms (of nodal families of maps) is again a morphism. The only mor-
phism which is the identity on the central fiber of a universal unfolding is the
identity. It follows that any two universal unfoldings of the same holomorphic
configuration are isomorphic. By Theorem 3.5 there is an infinitesimally uni-
versal unfolding and by ‘if’ it is universal and hence isomorphic to every other
universal unfolding. Any unfolding isomorphic to an infinitesimally universal
unfolding is itself infinitesimally universal. O

Example 3.7. Here is an example of an unfolding which is universal but not
infinitesimally universal. Let B = C, by = 0, ¥ be a Riemann surface of genus
g>1,Q=M=BxX g :Q — B be the projection on the first factor,
and Hg : Q — M Dbe the identity map. This is trivially universal as follows.
If (w4, Ha,ap) is another unfolding and fy : P,y — @b, is a fiber isomorphism
as in 3.1, then fo = Hy|P,,, the unique solution of Hg o ® = Hy is ® = Ha,
and ¢ is uniquely determined by the condition 7 0o ® = ¢ o m4. To show that
that the example is not infinitesimally universal it is enough (by Theorem 3.5)
to show that the fiber is not regular, i.e. that

imD,, + dv - Q) (3, T%) € Q) (S, TM)

where v : ¥ — M is the map v(z) := (bg,2). Now TM is the direct sum
of dv - T'Y with a trivial bundle, so it is enough to show that D, followed by
projection of the trivial bundle is not surjective. But this is the linear operator
0:0%%) — 92’1(2). Its cokernel is the space of holomorphic 1-forms and it
has dimension g.

Theorem 3.8. If an unfolding (m, Sy, H,by) is infinitesimally universal, then
the unfolding (mw, S., H,b) is infinitesimally universal for b sufficiently near by.

3.9. Fix two nonnegative integers g and n and a homology class d € Hy(M;Z).
A universal family of maps of type (g, n, d) is a marked nodal family of maps
(mp : Q — B, S., Hp) satisfying the following conditions.

(1) (7B, S«, Hp,b) is a universal unfolding of maps of type (g, n,d) for every
be B.



(2) Every regular stable map of type (g, n,d) arises from a desingularization of
at least one fiber of mp.

(3) B is second countable.

The existence of a universal marked nodal family of maps for every triple (g, n,d)
follows immediately from Theorems 3.5, 3.6, and 3.8 as in [4, Proposition 6.3].

3.10. Every universal family (7 : @ — B, Ss, Hg) of maps of type (g,n,d)
determines a groupoid (B, T, s,t, e,i,m) as in [4, Definition 6.4]; here I denotes
the set of all triples (a, f,b) such that a,b € B and f : Q, — @ is a fiber
isomorphism satisfying Hg o f = Hp|Q,, and the structure maps s,t: T' — B,
e:B—T,i: T —=T,and m: I'sx;I' = I are defined by

s(a, f,b) :=a, t(a, f,b) =10, e(a) == (a,id, a),

i(aa s b) = (bafilaa% m((b,g,c), (a7f7 b)) = (aag of, C)'

The associated groupoid is equipped with a functor B — Bécfd(M, J):b— 3y
to the groupoid of Definition 2.3, i.e. ¢ : X — @p denotes the canonical
desingularization in [4, Remark 4.4]. By definition the induced map

BT — Mt (M, J)
on orbit spaces is bijective. As in [4, Theorem 6.5] the groupoid (B,T) equips
the moduli space ./\/lgcf 4(M, J) with an orbifold structure which is independent
of the choice of the universal family.

Theorem 3.11. Let (g : Q — B, S«, Hp) be a universal family of maps of
type (g,n,d) as in 3.9. Then the associated groupoid (B,I") constructed in 3.10
is proper in the sense of [4, 2.2].

Proof. See Section 7. O

Corollary 3.12. Fiz a homology class d € Ha(M;Z). Then the moduli space
M:Eﬁd(M, J) of isomorphism classes of reqular stable maps of genus g with n
marked points representing the class d is a complex orbifold of dimension

dime M5 (M, J) = (g9 — 1)(3 — dime M) + {(e1(T'M),d) + n.
Remark 3.13. If (M,w,J) is a Kéhler manifold with a transitive action by
a compact Lie group G, then every genus zero configuration in M is regular
(see [5] or [2, Proposition 7.4.3]). Hence the moduli space Mg d(M,J) is a
(compact) complex orbifold for every d € Ho(M;Z). For M = CP™ this result
is due to Fulton and Pandharipande [1]. Their result applies to all projective
manifolds whenever all the stable maps are regular. In such cases they show
that the moduli space is an algebraic orbifold. In contrast, our result shows
that the set of regular maps into any complex manifold is an orbifold.
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4 Stable maps without nodes

In this section we restrict attention to regular stable maps without nodes. Let
(3, 54, jo, Vo) be a regular stable map of type (g,n,d) without nodes. We will
construct an infinitesimally universal unfolding (w5, Ss, Hpg, bo) of (X, s«, jo, Vo),
show that it is universal, and prove that every other infinitesimally universal
unfolding of (3, s, jo, vo) is isomorphic to the one we’ve constructed.

4.1. Fix two nonnegative integers n and g, a homology class d € Ho(M;Z), and
a compact oriented surface ¥ without boundary of genus g. Denote

sx €EX"\A, jeT(X),veC>®X,M)

Pi=1(s1,...,8n,5,0)| 055(v) =0, [v] =d
D; , is onto, (s«,j,v) is stable

where A C X" denotes the fat diagonal, [v] := v,[X] denotes the homology class
represented by v, and

Djo: QB TS) x QO(S, 0" T M) — Q%(S, 0" T M)

denotes the linearized Cauchy—Riemann operator of 2.4. Thus P is the regular
part of the space Pp 4(2; M, J) in 2.5. The group

G := Diffo(X)

of orientation preserving diffeomorphisms of ¥ that are isotopic to the identity
acts on P as in equation (3):

g (51, 80,5,0) = (97 (51),-- .97 (30), 975, 970)
for g € G.
Remark 4.2. Roughly speaking, the tuple (Q — B, S.,H) defined by
B:=7P/g, Q:=P xg?%,
H(s15---y8n,4,0,2]) :i=0v(2), S :={[s1,---,8n,7,0,2] € Q|z=si}
is a universal family. Our task is to make sense of these quotients. In the case
n>2-—2g

the action is free. In general, the action is only semi-free, i.e. the isotropy group
of a point in P is always finite but it might be nontrivial. (Example: n = 0,
Y =M = 5% v(z) = 22.) In this case the quotient spaces B and Q cannot be
manifolds and hence do not qualify as universal unfoldings. However, we shall
prove that even in this case every point in P admits a holomorphic local slice for
the G-action and that these slices can be used to construct universal unfoldings.
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4.3. The space P is an infinite dimensional Frechét manifold. Its tangent space
at a point p = (s4,j,v) € P is the space T,P of all tuples p = (8,7, 0) with
5 €TX, 1€ T;T(X), 0 € QOT,v*TM) that satisfy

1
D,o+ §J(v)dv 0j=0. (8)

The Lie algebra of G is Lie(G) = Vect(X) and its (contravariant) infinitesimal
action at p € P is the operator L, : Vect(X) — T, P defined by

(9)

d
L€ = —g
p§ dtgtp

t=0
where p = (s4,4,v) € P and R — G : t — g, satisfies

d

Sal =t (10)

t=0

go = lda

(The right hand side of (9) is independent of the choice of g; satisfying (10).)
Since 2j0;§ = Lej € T;J(X) is the Lie derivative of j in the direction &,
equation (9) may be written

L€ = (=E&(s1),- -, —§(sn),2j(§j§,dv =€), p=(81,---,8n,J,0). (11)

The image of £, is the tangent space 1,G*p to the G-orbit of p. The space T,,P
carries a natural complex structure Z(p) : T, P — TP given by

Z(p)(315- -+ 580, 0) i= (4(51)315 - -+ 3 (8n)3n, 5J; T (0)0) (12)

for p = (s1,...,5n,J,v) € P. The tangent space TP is invariant under Z(p)
because the differential dv and the operator D, are complex linear. The G-action
preserves this complex structure and the formula

['pjg = I(p)£p§7 p= (8*,]',1}) eP,

shows that 7,G*p is a complex subspace of T),P. In other words, the orbits of
G are complex submanifolds of P and the complex structure descends to the
quotient P/G. The space P (without marked points) is the zero set of the
section (j,v) +— 0; 7(v) of an infinite dimensional vector bundle. The intrinsic
differential of this section at a zero (j,v) is the operator D;, in 2.4 and this
operator is surjective by assumption. Condition (8) asserts that the pair (j,9)
belongs to the kernel of D;,. Choosing a suitable Sobolev completion P* of
P (see the proof of Theorem 4.6 below) we can deduce that P?® is a smooth
Hilbert manifold whose tangent space is given by (8). The action of G on this
Hilbert manifold is not smooth; on any Sobolev completion its differential takes
values in another Sobolev completion with one derivative less. However, in the
Frechét category, where B is a finite dimensional smooth manifold, the notion
of a smooth map ¢ : B — P and its differential du(b) : T, B — T,;)P have well
defined meanings via evaluation maps.
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Lemma 4.4. Let A be a complex manifold (with complex structure v/—1),
A—P:a— p(a) = (Tl(a)a ceey rn(a’)aj(a’)a U(a))

be a smooth map and n : TA — Vect(X) be a 1-form on A with values in the
space of vector fields on ¥ such that

n(a,V=1a) = —j(a)n(a,a) (13)

for all (a,a) € TA. Define an almost complex structure Jp on P := A X X,
sections Ri,...,Ry C P, and a map Ha : P — M by

Jp(a,z)(a,z) = (\/—_ld,j(a)(z)é + n(a, &)(z)) , (14)
R :={(a,ri(a))|a € A}, Hal(a, z) :==v(a)(z). (15)
Then the following are equivalent.

(1) The tuple (ma, Ri,Ha) is a (holomorphic) family of maps, i.e. Jp is in-
tegrable, each R; is a compler submanifold of P, and Ha : P — M is
holomorphic.

(ii) p and n satisfy the differential equation
dp(a)a + Z(p(a))dp(a)V—1a — Lyayn(a, v—1a) =0 (16)
for every a € A and every a4 € T, A.

Proof. We prove that (i) implies (ii). If the almost complex structure Jp is
integrable then, by [4, Corrigendum, Lemma A], we have

dj(a)a + j(a)dj(a)v/—1a — L, , /~1a)j(a) = 0. (17)

Moreover, for i = 1,...,n the set R; is a complex submanifold of A x 3, if and
only if

dri(a)a + j(a)dri(a)vV—1a + n(a, v —1a)(ri(a)) =0
and Hy : A x % — M is holomorphic if and only if

(dv(a)a)(z) + J (v(a)(2))(dv(a)V'=1a)(2) — d(v(a))(2)n(a, V=1a)(z) = 0.

In the last formula (dv(a)d)(z) denotes the derivative of v(a)(z) with respect
to a and d(v(a))(z)Z denotes the derivative of v(a)(z) with respect to z. This
proves that (i) implies (ii).

Conversely, assume (ii) and, without loss of generality, that A is an open set
in C2. Fix two vectors a,b € C* and, for a € A, define ((a) € Vect(Z) by

SN

((a) = Ounla,a)V=Tb— j(a)din(a,a)
_8177(0‘7 6)\/__1&’ + j(a)aln(a’v ZA))& + [77(@7 d)7 Tl(av b)]
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Then
Leayi(a) =0, ((a)(ri(a)) =0,  Le@v(a) =0

fora € Aandi=1,...,n. Here the first equation follows from [4, Corrigendum,
Lemma B] and the other two equations follow from similar, though somewhat
lengthy, calculations. Now it follows from the stability condition in the definition
of P that ¢(a) = 0 for every a € A and hence, by [4, Corrigendum, Lemma A
the almost complex structure Jp is integrable. This proves the lemma. O

4.5. Let po := (S0,+,J0,v) € P, B be a complex manifold with base point
bo € B, and ¢+ : B — P be a smooth map such that ¢(bg) = pg. The map ¢ is
called holomorphic if its differential du(b) : T4 B — T,)P is complex linear
for every b € B. The map ¢ is called a slice at by if for every smooth map
p: (4,a0) — (P,po) there is a neighborhood Ag of ap in A and unique smooth
maps D : (Ag,a0) — (G,id) and ¢ : (Ag,ap) — (B,by) such that

for a € Ag. The map ¢ is called an infinitesimal slice at by if
imde(bo) ® Ty G 0o = T, P, ker di(bg) = 0. (18)
Write ¢(b) =: (o1(b),...,0n(b),5(b),v(b)). Then (18) can be expressed as follows.
(1) If b € Ty, B and @ € Vect(X) satisfy
doi(bo)b — i(s0,;) =0
dj(bo)b + 2j0d;, 0 = 0 — b=0, @=0. (19)
dv(bo)b + dvg -4 =0

(1) If § € T,,%, j € T;,J(2), and © € QO(X,v5TM) satisfy (8) then there
exists a pair (b, @) € Ty, B x Vect(X) such that

dj(bo)b + 2j00j, 0 = J, (20)
dv(bo)b + dvo - G = .

Theorem 4.6 (Slice Theorem). (i) A smooth infinitesimal slice is a slice.

(ii) If v : B — P is an infinitesimal slice at by € B then it is an infinitesimal
slice at b for b sufficiently near bg.

(iii) Fvery point in P admits a holomorphic infinitesimal slice v : B — P of
complex dimension dim¢ B = (m — 3)(1 — g) + {(c1,d) + n.
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Proof. Choose an integer s > 3 and let G® denote the Sobolev completion of G
in the H*® topology and P* denote the Sobolev completion of P in the H*~!
topology on j and the H® topology on v. Then

PECE" x JUE) x H (S, M)

is a smooth Hilbert submanifold. Now let ¢« : (B,by) — (P,po) be a smooth
infinitesimal slice.

Claim 1: The map
BxG®—P?:(bg)— F°(b,g) := g u(b)

is a C*~2 map between Hilbert manifolds. The tangent space of G° at ¢ = id
is the space H*(X,TX) of vector fields of class H® and the differential of F* at
the pair (b,id) is

dF*(b,id)(b, €) = du(b)b + L, 1€

forbe T,B and £ € H¥(S,TX). (See (11) for the definition of L))
Denote the value of ¢(b) at a point z € ¥ by

L(b)(l‘) = (01,b7 RN Un,bajb($)7vb($)~

The maps 0; : B — X, j: Bx X — End(TY), and v : B x X — M are all
smooth by hypothesis. The map G* — G° : g — ¢~ ! is smooth. Hence the map
BxG* — X :(b,g)— g (0:p) is as smooth as the evaluation map G¥x ¥ — %,
i.e. it is C*~2 by Sobelov. Moreover, the map g — dg is smooth as a map from
H*® to H*~1. Since (¢*j»)(z) = dg(z) " ju(g(x))dg(x) this shows that the map

Bx G — J"H):(b,g) — g

is smooth. The map B x G° — H*(X, M) : (b,g) — vy o g is smooth because
the map v : B x ¥ — M is smooth. This proves claim 1.

Claim 2: The operator dF*(b,id) is bijective if and only if v is an infinitesimal
slice at b.

To see this, assume first that ¢ is an infinitesimal slice at b. Then, by ellip-
tic regularity, every element in the kernel of dF?*(b,id) is smooth and hence
the operator is injective by (f). For surjectivity we observe that the image of
dF?(b,id) is closed by the elliptic estimate, that the smooth elements are dense
in T,)P*, and that the smooth elements of T, )P* are contained in the image
of dF*(b,id) by (). Conversely, if dF*(b,id) is bijective, it follows from elliptic
regularity that ¢ satisfies the infinitesimal slice conditions () and () at b. This
proves claim 2.

Shrinking B if necessary, we may assume that dF*(b,id) is bijective for
every b € B. By Claim 2 this implies that ¢ is an infinitesimal slice at every
point b € B and dF*¥ (b,id) is bijective for every b and every s’. Hence, by
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equivariance, dF s (b, g) is bijective for every integer s’ > 2, every b € B, and
every g € G° . In particular, we have proved (ii).

Now fix an integer so > 3. Then it follows from the inverse function theorem
that F°° maps an open H*° neighborhood of (bg,id) in B x G* by a C*0—2-
diffeomorphism onto an open neighborhood of py in P®°. Given a smooth map
p: (A 5a0) — (P,po) choose Ay C A to be the preimage of this neighborhood of
po and define the C*©~2 map

Ag— BxG% :a+— (¢(a)7®(a))

by
(6(a), ®(a)) == (F*) " (p(a)).
Then
p(a) = ®(a)"u(¢(a))

for every a € Ag. Since the complex structures on ¥ associated to ¢ o ¢(a) and
p(a) are smooth it follows from elliptic regularity that ®(a) € G is smooth for
every a € Ag. Thus ®(a) € G* and F*(¢p(a), ®(a)) = p(a) for every a € Ay and
every s. Since the differential dF*(¢(a), ®(a)) is bijective for every a € Ay and
every integer s > 2, it follows that the map a — (¢(a),®(a)) is a C*~2 map
from Ay to B x G° for every integer s > 3. Hence this map is smooth. This
proves (i).

We prove (iii). Fix an element (sg«,jo,v0) € P. Let G C G denote the
identity component of the isotropy subgroup of the tuple (s «,jo). Thus

(1}, ifn>2-2g,
T2, ifg=1,n=0,
G:=<¢ C* ifg=0,n=2, (21)

C*x C, ifg=0,n=1,
PSL(2,C), ifg=0,n=0.

First we choose a G-invariant holomorphic map
i A= (S\A) X T(E),  wla) = (01(a),...,on(a), j(a)),

defined on an open neighborhood A C C3&~3+n+dimeG of 5 point ag, that is
transverse to the G-action and satisfies

to(ao) = (S0,%,Jo)-

We do this as follows. In the case n > 2 — 2g we choose a slice in Teichmiiller
space Ty n as in the proof of [4, Theorem 8.9]. There are two cases with n < 2—2g.
Ifg =1 (so ¥ =T?) and n = 0 we take A = H to be the upper half plane and
define 1o : A — J(¥) as the standard map to the complex structures on the
torus (see [4, Section 7]). If g = 0 (so ¥ = §?) and n < 2 we take A to be a
point. Note that

dimg A — dimc G =3g—3+n (22)
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in all cases and that G is the isotropy group of each element of the slice, i.e. for
g € G and a € A we have g*1p(a) = to(a) if and only if g € G.
The map ¢ gives rise to an infinite dimensional vector bundle

£— Ax C®(%,M)

with fibers

Eaw 1= Qg (8, 0" TM).

The Cauchy—Riemann operator defines a section
AxC®(E,M)— & :(a,v) — 3j(a))J(v) (23)
whose intrinsic derivative at a point (a,v) is the operator

Dayw : ToA x QU0 TM) — Q5 (5, 0°T M)

given by
1
Dy, (G, 0) := Dj(ay,o(dj(a)a, v) = Dy + §J(U)dv - dj(a)a. (24)

Since the operator D, 4, is surjective and ¢ is an infinitesimal slice, it follows
that the section (23) is transverse to the zero section at (ag, vg). Hence it follows
from the implicit function theorem in suitable Sobolev completions (see e.g. [2,
Chapter 3]) that a neighborhood of (ag,vp) in the zero set of (23) is a smooth
submanifold of A x C°°(X, M). It is denoted by

Z = {(a,v) € Ax C>®(Z,M)|0j(a),s(v) =0, supdar(v(z),v0(2)) < 6} .

ZEX

The group G acts on Z. Since
indexg(D,) = m(2 — 2g) + 2 (c1,d)
by the Riemann-Roch theorem, it follows from (22) that
dimg Z — dimg G = (m — 3)(2 — 2g) + 2 {¢1,d) + 2n.

Since ¢ is holomorphic and J is integrable, the operator (24) is complex lin-
ear for all (a,v) € Z. This shows that Z is a finite dimensional submanifold
of A x C(X, M) whose tangent space at each point (a,v) € Z is a complex
subspace of T, A x QY(X,v*TM). The almost complex structure on any such
submanifold is integrable, because C*°(3, M) is a complex manifold and the
graph of a smooth function between complex vector spaces is a complex sub-
manifold if and only if the function is holomorphic. With this understood we
obtain the desired infinitesimal slice from a holomorphic slice B C Z for the G
action. This proves the theorem. O
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Remark 4.7. In the proof of part (iii) of Theorem 4.6 one can reduce the case
n < 2 —2g with G # {1} to the case n > 2 — 2g with G = {1} by a similar
argument as we used in the proof of Theorem 3.5.

4.8. Let (50,4, jo,v0) € P, B be a manifold with base point by € B, and
B =P b u(b) = (01(0) - .-, on(b), 5 (B), v())
be a holomorphic map such that
J(bo) = jo, v(bg) = wo, gi(bo) = so,i, i=1,...,n.
Define the unfolding (7, : Q, — B, S, «, H,, bo) by

Q,:=BxX%, J,(b,2) := ( 0

where /—1 denotes the complex structure on B and
H,(b,z) :=v(b)(2), S.i:={(b,0i(b))|b e B}, i=1,...,n.

Lemma 4.9. Let (m,,5,+, H,,bo) be the unfolding associated to a holomorphic
map t: B — P as in 4.8. Then the following are equivalent.

(i) The unfolding (m,, S, «, H,,bo) is infinitesimally universal.

(ii) The map ¢ is an infinitesimal slice at by.

Proof. Let ug : (X, jo) — Q. be the holomorphic embedding
uo(z) == (bo, 2)

so that H, o ug = vo. Then the operator D,,, has domain
= { (@,5) € Q°(S, TX) x Ty, B i(s0,) = dor ()b | .

target space ), 1= Qg(’)l (X,TY), and is given by

Dy, (@, b) = 0j, 1t — 5dodj(bo)b-
The linearized operator in 2.6 is
Dyy 1 Xy = Vo, Xy = QNS 03TM), Y = Q0N(E, 05T M).
The homomorphisms
ker D,,, — ker D,,, cokerD,,, — cokerD,, (25)
are induced by the maps
Xy — Xyt (0,0) > duvg -+ do(bo)b,  Vu— Vo i duvg - 7).

We must prove that the maps in (25) are isomorphisms if and only if (ii) holds.
Note that the second map in (25) is necessarily surjective because (X, so +, jo, vo)
is a regular stable map.
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We prove that (i) implies (i). We prove that the first map in (25) is bijective.
Let (@1,b) € ker Dy, and assume that its image in ker D,, vanishes. Then

= 1
8j011 — §]Odj(b0)b = O, d’Uo U+ dU(bo)b =

Since (ii,b) € X, we have doi(by) = @(so;) for i = 1,...,n and hence, by (ii)
and (f) in 4.5, b=0and @ = 0. Thus we have proved that the homomorphism
ker D,,, — ker D, is injective. Next we prove that this map is surjective. Let
v € QV(X,v3TM) be a vector field along vg such that D,,d = 0. Then the tuple
(81,...8n,7,0) with § = 0 and j = 0 satisfies (8). Hence, by (ii) and (f) in 4.5,
there is a pair (4, b) such that
doi(bo)a — i(s0;) =0,  dj(bo)b+ 2jods,a =0,  dv(b)b+ dvg - = .

This implies

_ 1 . .

8j0a — Ejodj(bo)b = 07 U= d’l)(bo)b + d’UQ -0
and so © belongs to the image of the map ker D,,, — ker D,,,. This shows that
the first map in (25) is an isomorphism.

Next we prove that the second map in (25) is bijective. Let n € ), such

that dvg - € im D,,, and choose 9 € Q°(X, v3T M) such that

dvg -1+ D,y 0 = 0.

Then ¢ and j:= —2jon satisfy (8). Hence, by (ii) and (f) in 4.5, there is a pair
(1,b) such that

doi(bo)b — @(so;) =0, dj(bo)b+ 2jodseti =], dv(bo)b + dvg - it = D,
This implies
- - 1.
(’U,,b) € Xu; D’U.o (’U,,b) = _5.]0.] ==,

and hence n € imD,,,. This shows that the second map in (25) is injective and,
since we have already proved surjectivity, it is an isomorphism. Thus we have
proved that (ii) implies (i).

We prove that (i) implies (ii) Assume that the maps in (25) are bijective.
If & and b satisfy (19) then (i, b) € Xy, Dy, (i, b) = 0, and the image of (i, b)
under the homomorphism X,, — X, vanishes. Since the first map in (25) is
injective, this implies @ = 0 and b = 0. Now suppose that j and @ satisfy (8)
with v = vy, i.e.

o1 . . L.

O:DUOD—F—J(vO)de 0j= Dy, 0+ dvgon, 1= S jo].

Hence dvg o n = —D,, 0 € imD,,,. Since the second map in (25) is injective this

implies 7 € imD,,. Choose a pair (i,b) € X, such that Dy, (i,b) = —7. Then
@ and b satisfy

doi(bo)b — a(so,) = 0, J=—2jon = 2joDuy (1, b) = 2508, + dj (bo)b.
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Hence
Dyy® = —dvg -7 = duo - Dy (@, 5) = Dy, (duo At dv(bo)é) .

The last equation follows from the fact that and the diagram (5) in Definition 3.3
commutes, reading H,(p,z) = v(b)(z) for H. Since the first map in (25) is

surjective, there exists a pair (4o, by) € ker D,,, such that

>

= dvg - (1 + @) + dv(bo) (b + bo).

Hence the pair (i + dig, b+ bo) satisfies (20) with & = 0. In the case & # 0
choose first a vector field @y € Vect(X) such that —ag(so,) = & fori=1,...,n
and denote

jl Z:j—QjOajo’llo, ’IA}1 Z:ﬁ—d’()o "&0.

This pair still satisfies (8). Hence, by what we have already proved, there exists
a pair (@1, b1) that satisfies (20) with (8,7, 9) replaced by (0,71, 1). Hence the
pair @ := G+, b := by satisfies (20). Thus we have proved that (i) implies (ii).
This completes the proof of the lemma. O

Lemma 4.10. Fiz a regular stable map (2, so.«, jo,vo) and let
B =P b i(b) = (01(0), .., 0n(0), j(5), v(0))
be a holomorphic infinitesimal slice such that
1(bo) = (0%, Jo; v0)-

Let (7, S, «, H,,bo) be the unfolding constructed in 4.8. Then every continuously
differentiable morphism (¢, ®) from (ma : P — A, Ri, Ha,ag) to (7, S, «, H,,bo)
18 holomorphic.

Proof. Choose a smooth trivialization
AXY — P:(a,z)—1(a,z) =74(2)

so that 7, : ¥ — P, is a desingularization (with no singularities) for every a € A.
The stable map on ¥, induced by 7,, is the tuple

p(a) = o d(a) = (a1(¢(a)), ..., on(¢(a)), j((a)),v(¢(a))) € P.
The complex structure on A x ¥ induced by 7 has the form
(@,2) = (V=1a,j(¢(a))(2)2 + n(a, a)(2))

for a suitable 1-form T, A — Vect(X) : @ — n(a,a). Since this complex structure
is integrable, the map Hq o7 : A X ¥ — M is holomorphic, and 77(R;) is a
complex submanifold of A x ¥ for every i, it follows from Lemma 4.4 that

dp(a)a + Z(p(a))dp(a)v/—1a — Ly@yn(a, V—1a) =0
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for every a € A and every a € T, A. Since p = ¢t o ¢ and ¢ is holomorphic, this
implies

du(¢(a)) (dp(a)a + V=1dp(a)V=1a) = L,4ayn(a, vV~1a)

for all @ and a. Since ¢ is a slice this implies that n = 0 and ¢ is holomorphic.
Hence @ is holomorphic as well and this proves the lemma. o

Theorem 4.11. Theorems 3.5, 3.6, and 3.8 hold for regular stable maps with-
out nodes. Moreover, if (rp : Q — B,S., Hp,bo) is any universal unfold-
ing without nodes and (¢, ®) is a continuously differentiable morphism from
(ma: P — A R, Ha,a0) to (g, S«, Hp,by) then ¢ and ® are holomorphic.

Proof. Step 1. Theorem 8.5 holds for stable maps without nodes. We proved
“only if” immediately after the statement of Theorem 3.5; we prove “if” here.
Fix a regular stable map (%, so «, jo, Vo), let ¢ : B — P be a holomorphic in-
finitesimal slice such that ¢(bo) = (s0,+, jo, Vo), and let (m,, S, «, H,, bp) be the un-
folding constructed in 4.8. Then it follows from Lemma 4.9 that (7,, S, ., H,, bo)
is infinitesimally universal.

Step 2. The unfolding (7,, S, «, H,,bo) is universal. Let (ma, R, Ha,ao)
be an unfolding of (3, s «, jo,v0) and fo : P, — @b, be a fiber isomorphism.
Assume w.l.o.g. that

P:sza fo(ao,Z):(bo,Z).

Denote by p(a) = (r«(a),j(a),v(a)) € P the regular stable map on the fiber
over a determined by (74, Rs«, Ha,ag). Then

p(ao) = (50,5, Jo,vo) = t(bo)-

Now any two smooth maps ¢ : A — B and ® : P — @, that intertwine the
projections and satisfy ®|P,, = fo have the form

®(a,z) = (¢(a), Pa(2)),

where A — Diff(X) : a — @, is a smooth map such that ®,, = id. The pair
(¢, ®) is a smooth morphism from (74, R, Ha,ao) to (m,, S, «, H,,bo) if and
only if

p(a) = ®5u(d(a))

for every a € A. Hence the existence and uniqueness of smooth morphisms
follows from the Theorem 4.6 (i).That every smooth morphism is holomorphic
follows from Lemma 4.10.

Step 3. FEvery infinitesimally universal unfolding of (X, so.«, jo, Vo) s iso-
morphic to (m,, S, «, H,,bo). Let (ma, Ry, Ha, ao) be an unfolding and

fo: Pay — Qo
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be a fiber isomorphism. By Step 2, there exists a holomorphic morphism (¢, ®)
from (ma, Ry, Ha,ao) to (m,,S, «, H,,by). The map

pi=t0o¢p: A—TP

is holomorphic. Since (w4, Ry, Ha,ap) is infinitesimally universal, p is a in-
finitesimal slice at ag, by Lemma 4.9. Hence the differential d¢(ag) is bijective.
This implies that (¢, ®) is an isomorphism.

Step 4. Since every infinitesimally universal unfolding of (%, s¢ «, jo, vo) is
isomorphic to (w,,S, «, H,,bo) and (r,, S, «, H,,by) is universal we have proved
Theorem 3.6 for stable maps without nodes. By Lemma 4.9 and Theorem 4.6,
the unfolding (m,, S, «, H,,b) is infinitesimally universal for b near by and hence
Theorem 3.8 holds for stable maps without nodes. The ‘moreover’ assertion
follows from Lemma 4.10 and Step 3. This proves Theorem 4.11. O

5 Hardy decompositions

This section follows closely Sections 9 and 11 of [4]. It is convenient to use
slightly different notation; for example P = N U M in [4] becomes P = P’ U P”
and the open sets U,V C @ in [4] are replaced by U’, U”. With these changes
we review the notation from [4].

5.1. Throughout this section
(ma: P — A Ry, Ha,a0), (7B : Q@ — B, S, Hp, bo)

are unfoldings of maps,
fO : Pao - Qbo

is a fiber isomorphism, and pi,p2,...,pk are the nodal points of the central
fiber P,,, so qi := fo(pi) (for i = 1,...,k) are the nodal points of the central
fiber Qp,. As in [4] we denote by C4 C P and Cp C @ the critical points of 74
and 7p, respectively.

5.2. Let U’ C @ be an open neighborhood of Cg equipped with nodal coordi-
nates. This means
U'=U{u---uu,

where the sets U/ have pairwise disjoint closures, each U is a connected neigh-
borhood of one of the components of Cp, and for i = 1,...,k there is a holo-
morphic coordinate system

(G,7m): B — Cx CP™!
and holomorphic functions &, 7; : U/ — C such that

(&, mi,miomp): U — CxCxCP!
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is a holomorphic coordinate system and & = (jomg. Assume that U’ NS, = 0.
Let U” C @ be an open set such that

Q=U'uU", U'nCp =10,

and U/ NU” intersects each fiber @ in two open annuli with |&| > |ni| on one
component and |&| < |ni| on the other. Introduce the abbreviations

U:=0'nU0", U:=U0/nU", Upnj:={&>nl}, Uz:={& <|nl},
Uy :=U"NQy, Uy ==U"NQy, Uy :=UNQy.
5.3. As in [4] we use a Hardy decomposition
P=P UP' 9P =dP" =P NP’

for (ma, R«,ap). Thus P’ and P” are submanifolds of P intersecting in their

common boundary and
P =P U---UP,

where P/ is a closed neighborhood of p; disjoint from the elements of R., the P/
are pairwise disjoint, and each P’ is the domain of a nodal coordinate system.
The latter consists of three holomorphic maps

(zi, ;) : P/ — D2, zi: A—C, ti: A—CL,
such that each map
A—=DxC':a (z(a),ti(a))
is a holomorphic coordinate system, each map
P —D? x C7' i p e (@i(p), i(p), ti(ma(p))
is a holomorphic coordinate system, and
zi(pi) = yi(pi) =0, 2 0TA = TiYi.

Restricting to a fiber gives a decomposition

P,=P,UP/, P =P NP, P! :=P'NP,

where P! is a Riemann surface with boundary and each component of P, is
either a closed annulus or a pair of transverse closed disks. Abbreviate

I,:=P, NP/=0P,=0P/.
The nodal coordinate system determines a trivialization

k
v AxT —oP,  T=J{(1),G2)} xS, (26)

i=1
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given by

7 Hp) = (ma(p), (i, 1), i(p)), p € P = {lu| =1},
: 1,2),4i(a)), q € 0P = {|y[ = 1}.

Forae Aandi=1,... kdefine ¢, : I' = Ty by t4(A) := t(a, \) and denote

8i,1P,; = 61Pi’ﬂPa, 8i12P(; = (%Pi’ﬂPa, P;,i = P;ﬂR/.

e
50

Figure 1: A Hardy decomposition of P.

5.4. Lemma 11.3 in [4] asserts that, after shrinking A and B if necessary, there
is a Hardy decomposition P = P’ U P"” as in 5.3 and there are open subsets
U'=U{U---UU[, U", U of Q and functions &, n;, ¢, 7i as described in 5.2 such
that

FolPly) C Upe folPLy) € UL

giofOO‘rrl(xvoaO):xa niofooyi_l(07y’0):y

for ,y € D. Fix a Hardy decomposition P = P’ U P” for (74, R+, ag), open
subsets U' = Uj U---UU,, U", U of Q, and functions &, n;, G, 7 as described
in 5.2, such that these conditions are satisfied.

5.5. Fix an integer s +1/2 > 1. For a € A and b € B define an open subset
U(a,b) C H*(Ty, Up)
by the condition that for o € H*(T's, Up) we have o € U(a, b) if
a(@i)lP;) Cc Uin, a(@i)gP;) C Uia,

(see 5.2 for the notation U 1 and Ui 2) and the curves & o aoxi_l and ;0 O‘Oyi_l
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from S! to C\ 0 both have winding number one about the origin.

I cH ls+1/2 P N — /Fa
U(ab) = Lactfan| ) SHI T (FLU)ra=Filal
and fI(CA ﬂPa) =CgNQy,

U”(a b) = {a c u(a b) Hf” S H015+1/2(P:7Ué/) o= fI/|Fa} |

and f"(R. N P,) = S.NQy

Here Hol**'/2(X|Y) denotes the set of maps of class H*t%/2 from X to Y
which are holomorphic on the interior of X. Holomorphicity at a nodal point
is defined as in [4, §11.1]. Note that the function f’: P, — U} in the definition
of U'(a,b) maps the boundary I', = OP, into U, = U, N U}/; similarly for f” in
the definition of U (a,b). Define

U, = |_| U(a,d), U, .= |_| U'(a,b), U = |_| U’ (a,b),

beB beB beB

R . ’ "o.__ "

U=\ |t, u=1_u, u=||ul.
acA acA acA

Our notation means that the three formulas (a,a,b) € U, (a,b) € U,, and
« € U(a,b) have the same meaning.

5.6. We use the nodal coordinate system of 5.3 to construct an auxiliary Hilbert
manifold structure on Y. The domains of the maps in this space vary with a so
we replace them with a constant domain by using an appropriate trivialization.
Define an open set

Uy C {(a,a,b) € Ax H*(T,U) X B|wg oa = b}
by the condition that the map
Uy — U : (a,0,b) — (a,a0u,,b)

is a bijection. In particular a((i,1) x S') C Uiz and a((i,2) x S') C Uis
for (a,a,b) € Up. (By a standard construction H*(T',U) is a complex Hilbert
manifold and the subset {(a, o, b) | mTpoa = b} is a complex Hilbert submanifold
of Ax H*(I',U) x B. This is because the map H*(I',U) — H*(T", B) induced
by mp is a holomorphic submersion. Note that U is a connected component of
{(a,a,b) | mp o & = b} and hence inherits its Hilbert manifold structure.) We
emphasize that the resulting Hilbert manifold structure on U depends on the
choice of the Hardy trivialization. Two different Hardy trivializations give rise
to a homeomorphism which is of class C* on the dense subset & N H*1*.

5.7. The fiber isomorphism fy: P,, — Qp, determines a point

(ag, o := follay,b0) € U;
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this point lies in U’ NU" as
ao = f§Ilay = f§ITay, where fo = folPay, [0 == folPL,.

In the sequel we will denote neighborhoods of ag in A and (ag, g, bp) in U’, U”,
or U by the same letters A, respectively U’, U"”, or U, and signal this with the
text “shrinking A, U’, U", or U, if necessary”.

Lemma 5.8. For every (a,a,b) € U NU" there is a unique fiber isomorphism
f: Py — Qp with fIT, = a.

Proof. This follows immediately from [4, Lemma 9.4]. O

Theorem 5.9. Fiz an integer s + 1/2 > 4. After shrinking A, U, U", U, if
necessary, the following holds.

(i) For each a € A, U, and U] are complex submanifolds of U,.

(ii) Let (a,a,b) e’ NU" and f : P, — Qy be the associated fiber isomorphism
with « = f|Ty. Let w : ¥ — P, be a desingularization with induced
structures j, v, sy, u := fow on X and D, be the operator in Definition 3.3.
Then

T(a,b)ua
Tia,pU;, + T(ayb)u,;"

ker D, = T(a)b)u:l N T(mb)l/{[l’, cokerD,, =2

(iii) U' and U" are complex submanifolds of U.
(iv) The projections U — A, U' — A, U" — A are holomorphic submersions.

Proof. Theorems 9.5 and 11.9 in [4]. The condition s + 1/2 > 4 is used in
compactness arguments for the proofs of (i) and (iii). These compactness ar-
guments can be eliminated by modifying the definition of ¢” along the lines of
the definition of V" in 5.11 below. O

5.10. As in [4, Definition 11.6], we use a Hardy trivialization for (74 : P —
A, Ry, ag), i.e. atriple (P’'UP" ., p) where P = P'UP" is a Hardy decomposition
with corresponding trivialization ¢ : A x I' — P’ as in 5.3 and
p:P”—»P(;’0 =:Q
is a trivialization such that p, := p|P/ : P! — Q is a diffeomorphism satisfying
Pag = id, Pa O la = lag

for a € A. We require further that p is holomorphic in a neighborhood of the
boundary.
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5.11. Let (74 : P — A, Ry, ap) be an unfolding of marked nodal Riemann sur-
faces and hg : P, — M be a holomorphic map. Choose a Hardy decomposition
P = P'UP"” as in 5.3 and a Hardy trivialization p, : P, — Q as in 5.10. We
would like to imitate Theorem 5.9 and define subsets V., V) C H*(T'y, M) of
those maps 3 € V, which extend holomorphically to P, P! respectively, but it
is convenient to restrict the extensions. Let

Vi=Viu---uV,cM

be an open neighborhood of the image ho(P,, N Cy4) of the nodal set so that
each pair (V}’, ho(pi)) is holomorphically diffeomorphic to the open unit ball in
C™ centered at origin, the closures of the sets V; are pairwise disjoint, and

ho(Pyy NP!) C VY.

For a € A abbreviate
V, := H*(Ty, M).

Let V! C V, be the subspace of those 3 that extend holomorphically to P/, i.e.
V= {6 €V, |3 € Hol"" V(P M) s.t. W/ (P.;) C Vi and 8 = h’|1“a} .

Let Wy be a neighborhood of ho|Q in H*+1/2(Q, M), where Q = P!/ as in 5.10.
Via the trivialization p, : P, — € this determines an open subset

We i= {h" € HHV2(PY M) |1 o p; € Wo}
of H¥*Y/2(P! M) for a € A. Let
V= {5 €Va| TN € Wy NHOIH (P! M) s.t. 3 = h”|Fa}

V= | [ Ve, V=[]V, V=[]V

acA acA a€A

Define

Then every pair (a,3) € V' NV" determines a holomorphic map h : P, — M
such that kT, = §. As in 5.6 we use the nodal coordinate system of 5.3 to
construct an auxiliary Hilbert manifold structure on V via the bijection

V- Ax H(T,M): (a,B) — (a,50tqa)- (27)
Theorem 5.12. Continue the notation of 5.3, 5.10, and 5.11. Fiz an integer
s+1/2 > 1. After shrinking A and Wy, if necessary, the following holds.
(i) For each a € A, V! and V! are complex submanifolds of V.

(i) Let (a,8) €e V' NV" and h : P, — M be the associated holomorphic map
with § = h|Ty. Let w : ¥ — P, be a desingularization with induced
structures sy, v, j, v:=how on X and D, be the operator in 3.3. Then

T3V,

~ / 1 ~
ker DU = TﬁVa N Tgva, cokerDv = W.
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(iii) V' and V" are complex submanifolds of V.
(iv) The projections V — A, V' — A, V"' — A are holomorphic submersions.

Proof of Theorem 5.12 (i) and (ii). In parts (i) and (ii) the point a is fixed. We
introduce the following notation to make the proof look more like the proof of [4,
Theorem 9.5].Use the notation of part (ii). Abbreviate

Y = w Y(P), Y i=w Y (P).
Thus ¥/ and ¥ are submanifolds of ¥ such that
S=YUus, oY =05 =x'Nny"
-1

Now w1t o4, is a diffeomorphism from T' in (26) to X’ N X”. To simplify the
notation we assume that I' = X’ N X”. The submanifold ¥’ is a disjoint union

Y=Xu---ux,

where each set X is either an embedded closed annulus or else the union of
two disjoint embedded closed disks centered at two equivalent nodal points.
It follows that every pair of equivalent nodal points appears in some /. In
case X is a disjoint union of two disks, say ¥{ = 3 | UX{,, choose holomorphlc
dlﬁeomorphlsms zi: X, —»Dandy: X/, - D which send the nodal point to 0.
In case X/ is an annulus choose a holomorphlc diffeomorphism z; : ¥/ — A(d;, 1)
and define yi : 20— A6, 1) by yi = 6i/xi.

Let V§ ¢ H*(', M) be the subspace of those H*®-functions v : I' — M
that extend holomorphically to H*t'/2-functions v’ : ¥/ — M which map each
pair of equivalent nodal points to the same point in M and take X/ to Vi
Let V{ ¢ H*(T', M) be the subspace of those H*-functions v : I' — M that
extend holomorphically to H*t'/?-functions v” : ¥” — M such that A" :=
v" ow ™ P! € W,. In this notation part (i) asserts that V) and V) are complex
submanifolds of H*(T', M).

We prove that V} is a complex submanifold of H*(T", M). Choose coordinate
charts ¢; : V' — C™ such that ¢i(Ha(pi)) = 0 and ¢i(V}’) is the open unit ball

I
in C™ for every i. Define the map

V6_>(HS(‘Sd?(Cm))Qk:WH(glanla"'ugkunk) (28)

by
& i=vioyoum n=1hioyoy . (29)

The image of (28) is the set of all tuples (£1,71,...,& ) in (H*(S',C™))2«
that satisfy the following conditions.

(a) The functions &,n; : S* — C™ take values in the open unit ball.

(b) If ¥/ is the disjoint union of two discs then all negative Fourier coefficients
of & and n; vanish and the zeroth coeflicients agree.
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(c) If ¥/ is an annulus then 7; ; extends holomorphically to an H**'/2 function
on the annulus A(d;, 1) and 7;(y) = &(di/y) for every y € S*.

Conditions (b) and (c) define a closed subspace of (H*(S*,C™))2¢ and condi-
tion (a) defines an open set in this subspace. Hence the image of (28) is an
open set in a Hilbert subspace and this shows that V{ is a Hilbert submanifold
of H*(T', M).

We prove that Hol**1/2(S” M) is a complex submanifold of H5t1/2(3" M).
To see this note that the Cauchy-Riemann operator v — 9 ;(v") defines a
holomorphic section of the vector bundle & — B := H*t'/2(%" M) with fibers

Egr = HTV2(S", AT @ (v)*T M)

The intrinsic derivative of this section at a zero v” is the Cauchy—Riemann oper-
ator Dy : TynB — &, of the holomorphic vector bundle (v")*TM — %”. Since
each component of ¥” has nonempty boundary the operator D, is surjective;
a right inverse can be constructed from an appropriate Lagranglan boundary
condition (see [2, Appendix C.1.10]). This proves that Hol*™"/?(X” M) is a
complex submanifold of H*+1/2(%" M).

We prove that Vj is a complex submanifold of H*(I', M). The restriction
map

Hol**V/2(S", M) — Vo : v — o"|T

is an injective holomorphic immersion. That it is holomorphic is obvious, that
it is injective follows from unique continuation, and that it is an immersion
follows from the elliptic boundary estimate in [4, Theorem B.4]. It follows that
the image of a sufficiently small neighborhood of H 4 ow|X” under the restriction
map is a complex submanifold of H*(T', M); this image is V{/. This proves (i).

We prove (ii). It follows directly from the definitions that there is a map

ker D, — TV, NIV : 9 — o w71|Fa~

As in the proof of Theorem 9.5 (ii) in [4] this map is injective by unique contin-
uation and is surjective by elliptic regularity. Now define a map

TsV, .

coker D,, — W 2 [n] =[]

as follows. Given n € QU1 (X, v*T M) choose two vector fields ¢ along v’ := v|%’
and £ along v” := v|X” that satisfy

D& =Y,  Dp& =ny", ¢ -¢'I'=pouwl.

One verifies as in the proof of [4, Theorem 9.5 (iii)] that this map is well defined
and bijective. That this map is well defined follows directly from the definitions
and that it is injective uses elliptic regularity. The proof of surjectivity is based
on the following two assertions.

(a) Each element in the quotient TgV,/(TsV., + TgV.) can be represented by
a smooth vector field along 3.
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(b) For every smooth vector field 3 along 3 there exist vector fields &' along
v’ and ¢ along v such that &|T' — ¢”|T' = B o w|T" and the (0, 1)-form 7
along v defined by n|¥' := D, ¢ and n|¥" := D,»¢£" is smooth.

One first proves (b) by an argument in local coordinates, using the construction

due to Emile Borel of a smooth function with a prescribed Taylor series at a

point. Once (b) is established assertion (a) follows from the observation that

the subspace of those elements of the quotient T3V, /(T3V, + T3V.) that admit
smooth representatives is both finite dimensional and dense. The details are
exactly as in the proof of [4, Theorem 9.5 (iii)] and will be omitted. Thus
we have proved (ii). The proofs of (iii) and (iv) are given below after some
preparation. o

5.13. Let D C C be the closed unit disc. The standard node is defined as the
map

N — int(D) : (z,y) — zv, N :={(z,y) e Dx D] |zy| < 1}.
For z € int(D) denote
N, :={(z,y) e DxD|zy = z}.
The boundary 0N, has two components
IN. :={(z,y) € N:| |z| =1},  OaN.:={(z,y) € N.| [y| =1}

which can be identified with the unit circle S = 0D C C via the embeddings
t1,t2 : St — N, given by

11,2(e) = (e, e72), Lo, () = (e72, €.

We study the set of all triples (z,&,7) where z € int(D) and ¢ : St — C™,
n: S — C™ are the boundary values a holomorphic map v : N, — C™, namely

i =vou,, N:i=10VO0lLly,.

At z = 0, the functions £ and 7 extend to the closed unit disk and agree at
the origin. More precisely, fix an integer s +1/2 > 1. For z € int(D) \ 0 let
Hol*TY/2(N,,C™) be the space of all maps v : N, — C™ of class H*T1/2 which
are holomorphic in int(N). The space Ny consists of two disks D x 0 and 0 x D
intersecting in (0,0). In this case let Hol**/?(Ny, C™) denote the space of all
continuous maps v : Ng — C™ such that v; := v|D x 0 and vg := v|0 x D are
holomorphic in the interior and restrict to H® functions on the boundary. In
both cases the trace theorem gives rise to a map

Hol**Y/2(N,,C™) — H*(S',C™) x H*(S',C™);v — (voi1.,v009.).
The norm on H*(S',C™) is given by

ISl =, [D A+ DGl ()= Gue™.

nez neZ
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Lemma 5.14. (i) The set
N = {(z,g,n) ’ Jv e Hols+1/2(Nz,(Cm) st.§=vou,,n=wvo Lgyz} )

is a complex submanifold of H*(S*,C™) x H*(S*,C™) x int(D).
(i) The projection N — int(D) : (£,m, z) — z is a surjective submersion.

(iii) Let A C int(D) x C*~! be an open set and A — N : (z,t) — (2,&2.4,M2.1)
be a holomorphic map. Then the map

H:{(z,y,t) € CT |2,y € int(D), (zy,t) € A} - C™
well defined by

gmy,t($)7 lfy 7& 07
H(z,y,t) := nwy,t(y)7 if ¥ # 0,
go,t(o) = 770,15(0), fo =Yy = 07

18 holomorphic.
Proof. Let (z,£,7n) € int(D) x H*(S*,C™) x H*(S*,C™) and write
Ea)=:> &a",  nly) = > mmy",
nez neZ

ie. &, nn € C™ are the Fourier coefficients of £, 7. When (2,¢,1) € N each of
these series converges on the annulus with inner radius |z| and outer radius one.
(Thus was used in defining H.) When z # 0 we have

(z,&,m) eN — Non = 2"&, for all n € Z,

but
0,&,m) e N = Co =10, & =1p =0forn<O0.

Denote by Hi(S',C™) C H*(S',C™) the Hardy space of all ( € H*(S*,C™)
whose Fourier coefficients ¢, vanish for Fn > 0. For z € int(D) define the
bounded linear operator 7. : H% (S, C™) — H* (S*,C™) by

T, (Z Cnein0> — Z chnefme'
n>0 n>0
Then the resulting map
int(D) x H5(S',C™) — H*(S',C™) : (2,¢4+) — T.(¢4)

is holomorphic. Moreover, the set A/ can be written in the form

HS Sl Ccm
N ={e s A4 T 3+ T | Sl TS )
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Hence N is a complex Hilbert submanifold of the space
Cx H*(S',C™)? = C x H5(S',C™)? x (C™) x H(S',C™)2.

The formula shows that the projection N/ — int(D) is a surjective submersion.
This proves (i) and (ii).

To prove (iii) we observe that the projection H*(S*,C™) — H$(S*,C™) and
the evaluation map int(D) x H (S*,C™) — C™ : (z,¢) — ((z) are holomorphic.
Hence (iii) follows from the identification

H(z,y,t) = &ay .4+ (T) + Ny .4+ (y) + Moy, t)

where A(z, t) denotes the common constant term of the power series £, + and 7, .
This proves the lemma. O

Proof of Theorem 5.12 (iii) and (iv). We prove that V' is a complex Hilbert
submanifold of V. As in the proof of (i) we choose holomorphic coordinate
charts v; : Vi’ — C™ such that ¢i(p;) = 0 and ¢;(VY’) is the open unit disc in C™

1
for every i. Define the map

VI — A X (Hs(sl7(cm))2k : (auﬁ) = (%5177717- "7§k777k)

by
Gi=tiofoxy,  mi=tiofoy .

as in (29). The image of this map is the subset
{(a7§15n17 cee 7§kank) € Ax HS(Slvcm))m( ‘ (Zi(a’)vgiani) ENV I} .

By Lemma 5.14, this set is a complex Hilbert submanifold of Ax (H*(S1,C™))2.
Hence V' is a complex Hilbert submanifold of V' and the projection ¥V — A is a
submersion.

The proof that V" is a complex Hilbert submanifold of V follows the argu-
ment in the proof of [4, Theorem 11.9 (ii)]. Define

B:={(a,h")[a € A 0" € HHVE(PY M)},
2= {(a,h") € B| 1" € Hol""/*(F}/, M)}

We construct an auxiliary Hilbert manifold structure on B and show that Z is
a smooth submanifold of B. Fix a Hardy trivialization (P = P’ U P” 4, p) as
in 5.10 and denote

Bo := {(a,w) |a€ A, we HS+1/2(Q7M)}
This space is a Hilbert manifold and the Hardy trivialization induces a bijection

By — B: (a,w) — (a,h” :=wo pg).
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This defines the Hilbert manifold structure on B. The bijection By — B identi-
fies the subset Z C B with the subset Zy C By given by

Zy = {(a7w) € BO ‘ w e H015+1/2((Q7j(a))7M)},

where j(a) := (pa)«(Jp|P)), pa : P — Q is the Hardy trivialization, and Jp is
the complex structure on P. (The map a — j(a) need not be holomorphic.)

We prove that Z is a smooth Hilbert submanifold of By. The tangent space
of By at a pair (a,w) is

TowBo = ToA x HY2(Q w*TM).
Let £ — By be the complex Hilbert space bundle whose fiber

Eapw = HTH2(QAT T* Q@ w* T M)
over (a,w) € By is the Sobolev space of (0, 1)-forms on (£, j(a)) of class H*~1/2
with values in the pullback tangent bundle w*T'M. As before the Cauchy-
Riemann operator defines a smooth section 0 : By — £ given by

B(a, w) = By, (w) = % (dw+ J o dw o j(a)). (30)

Here J denotes the complex structure on M. The zero set of this section is
the set Zy defined above. It follows as in the proof of (i) that the linearized
operator Dy v : To v Bo — Eq . is surjective and has a right inverse. Hence the
zero set Zj is a smooth Hilbert submanifold of By. Again as in the proof of (i)
restriction to the boundary gives rise to a smooth injective immersion

Zy =V : (a,w) — (a, (), ﬂ::wop;1|Fa.

The image of a sufficiently small neighbourhood of (ag, wy := H4|2) under this
immersion is V"; the neighborhood is ZyN (A x W) after shrinking A and W, if
necessary. Hence V" is a smooth Hilbert submanifold of V. That it is a complex
submanifold follows, as in the proof of Theorem 11.9 in [4], by introducing an
auxiliary (almost) complex structure on Zy. Namely, the push forward of the
complex structure on P” by the Hardy trivialization

Taxp: P = AxQ

of 5.10 has the form (14) for a smooth map j : A — J(f2) and a smooth 1-
form n : TA — Vect(Q) satisfying (13) and (17). Since p is holomorphic near
OP'" with respect to the complex structure of Q it follows that 7 vanishes near
A x 09Q. The tangent space T(q,.,)20 is the kernel of the operator D, ,, from
T (a,u)Bo to 92&}1)(9, w*T M) given by

1
D(a,w) (@, W) = Dyt + gJ(w)dw -dj(a)a. (31)
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It follows from (13) and (17) that the automorphisms
(a,w) — (V—1a, J(w)b — dw - n(a,a))

define an almost complex structure on Zy. Since n vanishes near the boundary,
the embedding

Zo—= Ax H*(T,M) : (a,w) — (a,w o tg,)

is holomorphic. Hence V" is a complex submanifold of V as claimed.

That the projection V" — A is a submersion follows from the fact that the
linearized operator (31) of the section (30) is already surjective when differen-
tiating in the direction of a vector field v along v. This completes the proof
Theorem 5.12. O

Definition 5.15. Let m4 : P — A be a nodal family and denote by
Cy,...,CxCP
the components of the singular set near P,,. The set
Ag :=7mA(Cr)N---Nma(Cy)

is called the core of the family. Recall from [4, Definition 12.1] that we call w4
regular nodal if the submanifolds 74 (C}) intersect transversally. In this case,
the core Ay is a complex submanifold of A of codimension k. We call an unfolding
(ma : P — A, R.,ap) regular nodal iff the ambient family 74 : P — A is
regular nodal. In [4, Theorem 5.6] we constructed a universal unfolding which
is regular nodal. By the uniqueness of universal unfoldings it follows (after
shrinking A if necessary) that every universal unfolding is regular nodal.

Theorem 5.16. Continue the notation of 5.3, 5.10, 5.11, and Definition 5.15,
and fix an integer s+1/2 > 1. Assume that the unfolding (7 a, R«, ao) (of marked
nodal Riemann surfaces) is universal. Let wg : ¥ — P,, be a desingularization
with induced structures so «, Vo, jo, Vo := hoowy on X. Then the configuration
(%, s0,+, Vo, Jo, Vo) is stable; assume that it is reqular. Then the following holds.

(1) V' and V" intersect transversally in V at (ag, Bo := ho|Tay)-
(ii) The projection V' N V" — A is tranverse to Ay at (ao, Bo).

Proof. Recall the auxiliary Hilbert manifold structure on V from 5.11 given by
the bijection (27). The tangent space at (a,7) € A x H*(I', M) is the set of
pairs (G,%) with @ € T A and 4 € H*(I',y*T'M). We abuse notation and write

T(aﬁ)V:TU«A X HS(F,’}/*TM)7 ’y::ﬁoba'

Below we prove the following.

Claim: If ¥ € QT,vTM) is a smooth vector field along vo := Bo © ta, then
the pair (0,%) belongs to the sum T(qy,50)V" + T(ag,80) V"
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We show first that this claim implies (i). By part (ii) of Theorem 5.12 the sum
T, Vi, + T3, Vi, is a closed subspace of Tz, Ve, and hence T4, 5,) V' +T{ag,50) V"
is a closed subspace of T(4, 3,)V. Hence the claim implies that every vertical
tangent vector (0,%) with ¥ € H*(I',v*TM) is contained in the sum T4, 5,) V' +
Tag,80) V" Since the projection V' — A is a submersion by part (iv), this implies

T(ao,ﬁo)v/ + T(aoﬁo)v// = T(ao,ﬁo)v'

Thus we have proved that (i) follows from the claim.
The desingularization wg : £ — P, induces a decomposition

y=yuy, Y.=w;'(P.,), X' :=wy'(P)).

ao ao

The intersection ¥’ N X" = 0¥’ = 90%” is diffeomorphic to the 1-manifold T
n (26). To simplify the notation we assume that

r=xnx"
The core admits a smooth desingularization
L:Ag x X — Py = Wzl(AQ)

that agrees with wg : ¥ — P,, at the base point ap and with the trivializa-
tion (26) on Ap x I'. Choose ¢ so that it maps each component of Ag x Uv to
the corresponding component C; of the singular set and so that

HR) = A x {504}, i=1,...,n.
For a € Ay define the desingularization ¢, : ¥ — P, by
ta(2) = t(a, 2).

The trivialization induces a map j : 49 — J(2) determined by the condition
that ¢, is holomorphic with respect to j(a) for every a € Ag. Since (w4, R, ag)
is a universal unfolding as in [4], the map j : A — J(X) contains a local slice
of the Diff (¥)-action.

We prove the claim. Let 4 € Q°(T', 4T M) be a smooth vector field along .
There exist & € QX vTM), " € QX" v3TM), and n € QOY(Z, 03T M)
such that

Y= =&, Dy =0, Dy =nx".

To see this take £ = 0 and construct £” so that D,,,&"” vanishes to infinite order
along I'. (The equation determines the Taylor expansion along I" and then
use Emile Borel’s extension theorem.) By the hypothesis that the stable map
(2, 80.%, Y0, jo, Vo) is regular, there exists @ € T,y A and 9 € Q°(X/vg, wiTM)
such that 1

1 = Doy w0 (G, D) := Dy, ¥ + §dvo - jodj(a)a.
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It follows that the pair ((¢' — 0)|T', —a) represents a tangent vector to V' and
the pair ((¢” — )|, —a) represents a tangent vector to V”. Their difference is
equal to (0,%). This proves the claim and hence part (i) of the theorem.

We prove (ii). By (i) and Theorem 5.12 (ii), the intersection V' NV has
complex dimension

dimc(V' NV") indexc(Dy, ) + dimg(A)

(m=3)(1—g)+ {c1,d)+n

where d := [vg] € Hz(M;Z) denotes the homology class represented by vg. Now
abbreviate
Yo :=vo|l'=Bpote : T — M.

Assertion (ii) follows from the fact that the subspace
Xo = {(8,9) € T(ag,00)V N T(ag,50)V" | & € Tay Ao}
has dimension
dimc Xy = (m—3)(1 —g) + (c1,d) +n—k. (32)

To prove this we observe that the pair (a,4) € T,, A x QO(T, y¢T M) belongs to
the intersection T4, 5,)V' N T(ay,5,)V" if and only if there exists a vector field
b € QY /v, viTM) satisfying

Dag o (@, D) = Dyy® + %dvo jodj(a)a =0, 9T =4.
Since the restriction of the operator
Dy : QS /v, 05 TM) — QO (S, vi T M)
is Fredholm with index
indexc(Dy,) = m(1 —g) + (c1,d)

and
dimg Ag =3g—3+n—k

and the augmented operator

Dagvo  Tag Ao X QU /v, 05T M) — QO (Z, 05T M)
is surjective, this implies (32) and hence part (ii) of the theorem. (]
5.17. For every a € A there is a map

Uy = Vo : (a,b) — f:= Hp o« (33)
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which sends U, to V! and U/ to V. It follows from our definitions and Theo-
rems 5.9 and 5.12 that the unfolding (7p, Ss, Hp,b) is infinitesimally universal
if and only if the operator

dHB (Oé) : T(ayb)l/{a — TﬁVa
induces isomorphisms
dHp (Oé) : T((Lb)ul; n T(a)b)u(;/ — TgV{l N TQV(;/,

T(a,b)ua _ TﬁVa
Tanly + TiapUy — TpVy+TpVy

dHg(«) :

for some (and hence every) unfolding (w4, R«, Ha,a) and fiber isomorphism
f: Py — Qp. Thus (33) is an exact morphism of Fredholm quadruples as in 6.5
below.

6 Fredholm intersection theory

6.1. Let E be a Hilbert space and E’, E” C E be closed subspaces. We call
(E,E’,E") a Fredholm triple (of subspaces) if the intersection E' N E” is
finite dimensional, the sum E’ + E” is a closed subspace of E, and the quotient
E/(E' 4+ E”) is finite dimensional. The triple (E,E’, E”) is Fredholm if and
only if the operator

E'xE"—E:(2,2")— 2 + 2" (34)

is Fredholm. The Fredholm index of the triple is defined as the Fredholm
index of the operator (34). The image of (34) is the sum E’ 4+ E” and its kernel
is isomorphic to E’ N E” via the inclusion

E'NE"—-E XE":zw (z,—x).
Hence the index of the triple (E, E’, E") is
index(E, E', E") := dim(E’' N E") — dim(E/(E' + E")).

Standard Fredholm theory implies that the Fredholm property and the index
are stable under small deformations of the subspaces E’ and E”.

6.2. Let X be a Hilbert manifold, X', X" C X be smooth submanifolds, and
xzg € X' NX". We call the quadruple (X, X', X", xy) Fredholm if the triple
(Too X, Tyo X', Ty, X”) is Fredholm. Define its Fredholm index to be the index
of the triple. If (X, X', X" x¢) is Fredholm then so is (X, X’, X", x) for x €
X' N X" sufficiently close to z¢g and both quadruples have the same Fredholm
index.
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Lemma 6.3 (Normal coordinates). Let (X, X', X", x) be a Fredholm quadruple
as in 6.2 and abbreviate

E:=T,X, E =T,X, E =T,X"

Then there are coordinates u,x’,x”,£& defined in a meighborhood of xy in X
satisfying the following conditions.

(1) u takes values in E' N E" and u(xo) = 0.

(ii) 2’ takes values in a complement to E' N E" in E' and z'(x¢) = 0.

(iii) " takes values in a complement to E' NE" in E" and x"(xq) = 0.

(iv) & takes values in a complement to E' + E" in E and &(xo) = 0.

(v) Near g the submanifolds X', X" and the subset X' N X" are given by
X//:{I/:Oa§:0}7 X’:{x”:O,{:f(u,x’)},

X'NX"={2'=0,2"=0,£ =0, f(u,0) =0}
for a smooth function f with f(0,0) =0 and df(0,0) = 0.

Proof. Choose any coordinate chart (X", xzo) — (E”,0) whose differential at xq
is the identity. This coordinate chart can be written as (u,z”) where u takes
values in E'NE" and z” takes values in a complement of E'NE" in E”. Extend
(u,2") to a coordinate chart (X,z¢) — (F,0). This extended coordinate chart
can be written as (u,2’, 2", &) where 2’ takes values in a complement of E' N E”
in E' and £ takes values in a complement of E' + E” in E. In these coordinates
we have

X"={2'=0,£ =0}, X' ={2" = ¢(u,2'),& = f(u,2')}.

where ¢(0,0) = 0, d¢(0,0) = 0 and f(0,0) = 0, df (0,0) = 0. Now replace " by
" — ¢(u,z’) to obtain the required coordinate system. O

Corollary 6.4. Let (X, X', X", x9) be as in Lemma 6.3. Then there exists a
neighborhood Xo of xo in X and finite dimensional submanifolds U, U', U" of
X, X', X", respectively, passing through xo such that

U'=UnX', U'=Unx", UnNnU”"=XoNnX'NnX"
and, for x € U' NU", we have

T,U T, X
T,U NT,U" = T,X' N T, X", @ o v ,
T, U +T,U0" ~ T, X'+ T,X"

We call (U,U’,U", xz9) o finite dimensional reduction.
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Proof. Let Xy be the domain of the normal form coordinates u,z’, z”, £ intro-
duced in Lemma 6.3. Then

XoNX'NX" = {(u,0,0,0)| f(u,0) = 0},
TEX/ N TxXH = {(17‘7 Oa 07 O) ‘ df(ua 0)(’[1’5 O) = 0} 9
/ " NN AN A af A~ p
T.X'"+ T, X" =< (a,2,2",8)|€— pavi € im—-
r
for x = (u,0,0,0) € Xo N X' N X"”. Hence the submanifolds
U :={(u,0,0,¢)}, U :={(u,0,0, f(u,0))}, U" :={(u,0,0,0)} (35)
satisfy the requirements of the corollary. O

6.5. A morphism from (X, X’ X" z¢) to (Y,Y',Y" yp) is a smooth map
h: X — Y such that

h(X/) C Y/, h(XH) C Y“, h(CC()) =10.

The morphism A is called exact (at x¢) if the differential dh(zo) : Ty X — T3y Y
induces isomorphisms

dh(z0) : Tpo X' N Ty X" — T, Y NT,, Y

and

dh(zp) : Ty X — Un )
Tos X'+ Ty X7 Ty Y + TyyY"

The inclusion of a finite dimensional reduction is an example of an exact mor-
phism.

Theorem 6.6. Let h : (X, X', X", z9) — (Y,Y',Y" y0) be a morphism of
Fredholm quadruples. Then the following are equivalent.

(1) h is exact at xg.

(ii) There exist finite dimensional reductions (U, U’,U" x¢) of (X, X', X", x0)
and (V,V' V" yo) of (YY", Y" yo) such that h maps U, U', U" diffeo-
morphically onto V, V', V" respectively.

Proof. We prove that (ii) implies (i). By (ii), the homomorphism dh(zg) from
Tpo X' NTp X" to Ty, Y NT,, Y" can be written as the composition

Ty X' N Ty X" = Ty, U' A T U" ™ 1 v/ AT, V" = T, Y O T, Y

and hence is an isomorphism. Similarly for the map from Ty X/ (T X' +T%, X")
to T, Y/ (T, Y + Ty Y.
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We prove that (i) implies (ii). Let u,2’, 2", ¢ be the normal coordinates on
X introduced in Lemma 6.3 and choose similar normal coordinates v,y’, 3", n
on Y at yo. Thus

Y'={y' =0,n=0}, Y ={y"=0,n=gy)}, (36)

Y'nY"={y' =0,9"=0,7=0,g(v,0) = 0} (37)

for a smooth function g with ¢(0,0) = 0 and dg(0,0) = 0. In these coordinates
the morphism h = (hq, ha, hs, ha) satsfies

ho(u,0,2”,0) =0,  ha(u,0,2”,0) =0 (38)
(because h(X") C Y"),
hs(u, a0, f(u,2')) =0, (39)
ha(u, 2,0, f(u,2")) = g(hy(u, 2,0, f(u, '), ha(u, 2,0, f(u,2')))  (40)
(because h(X') C Y'), and
det(0hy/0u)(0,0,0,0) £ 0,  det(dhs/0€)(0,0,0,0) # 0 (41)

(because h is exact). By (38) and (41), the restriction of h to a neighborhood
of g in U is an embedding. Shrinking the domain Xy C X of the normal
coordinates, if necessary, we may assume that h|U : U — Y is an embedding.

Denote
V :=h(U), V' = hU"), V"= hU").

We must prove that (V, V', V" yg) is a finite dimensional reduction.
(a) The set V consists of all quadruples of the form (v,y’, 3", n) where
Yy = ha(u,0,0,8), y" = h3(u,0,0,¢)
and u, £ are defined by h1(u,0,0,£) = v, ha(u,0,0,£) =n.
(b) The set V' consists of all quadruples of the form (v,y’,0, g(v,y’)) where
y' = ha(u, 0,0, f(u,0)), hi(u,0,0, f(u,0)) :=v.
(c) The set V" consists of all quadruples of the form (v,0,y”,0) where
y" := h3(u,0,0,0), h1(u,0,0,0) := v.

Thus a point in the intersection V' NV" has the form (v, 0, 0,0) where v satisfies
the conditions

(i) g(v,0)=0
(ii) If u is defined by hq(u,0,0, f(u,0)) := v then ha(u,0,0, f(u,0)) = 0.
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(iii) If u is defined by hy(u,0,0,0) := v then hs(u,0,0,0) = 0.

We show that (i) implies (ii) and (iii) whenever v is sufficiently small. For (ii)
we define u as the unique solution of hj(u,0,0, f(u,0)) = v so that

g(v,0) =0, g(v, ha(u,0,0, f(u,0))) = he(u,0,0, f(u,0)). (42)

We claim that for v sufficiently small this implies f(u,0) = 0. To see this we
use first that the solution u of the equation hq(u, 0,0, f(u,0)) = v satisfies an
inequality

[ull + [1f (u, 0)]| < cllvl| (43)
for v sufficiently small. Next we use the fact that ha(u,0,0,0) = 0 and hence
[[h2(u,0,0,9)] < cll€]]. (44)

Third, we have that h4(u,0,0,0) = 0 and Ohs/0¢ is invertible at the point
(0,0,0,0), hence also at the point (u,0,0,0) for u sufficiently small. Hence we
have an inequality

[ha(u,0,0,8)[ > e |i€]] (45)

for a suitable constant ¢ > 0 and u and ¢ sufficiently small. Fourth, since
9(0,0) = 0 and dg(0,0) = 0, there is an inequality

lg(v,y") = g, 0)lI < e ([loll + ly'ID) Iyl (46)

for a suitable constant c¢. Putting these four inequalities together and inserting
&= f(u,0) and y' = h2(u, 0,0, f(u,0)) we deduce

1f(w,0)[ < ¢llha(u, 0,0, f(u,0))] by (45)
= C||g(v7h2(u30703f(u70) ) —g(U,O)” by (42)
< A (vl + [Ih2(u, 0,0, f(u,0))[) [|h2(u, 0,0, f(u, 0))] by (46)
< & (llvll + el f (w0 11 (w, 0)]l by (44)
< (4 ol (0] by (43)

for v sufficiently small. With (¢3 + ¢®)||v|| < 1 this implies

f(u,0) =0

as claimed and hence hs(u,0,0, f(u,0)) = 0, by (38). Thus we have proved
that (i) implies (ii). Since f(u,0) = 0 we also deduce that our w is the unique
solution of hq(u,0,0,0) = v needed in (iii). Using f(u,0) = 0 again we obtain
hs3(u,0,0,0) = 0, by (39). Thus we have proved that (i) implies (ii) and (iii)
and hence

V' NV ={(v,0,0,0)| g(v,0) =0} = Yo nY' NY”

for a suitable open neighborhood Yj of yg in Y.
Next we examine the tangent spaces of V, V/, and V" at a point

y:= (v,0,0,0) € V' N V", g(v,0) = 0.
Let z = (u,0,0,0) € U' NU" with f(u,0) =0 be the element with h(x) = y.
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(A) The tangent space T,V consists of all vectors § = (0,4’,9",7) where

N 8h2 N 8h3 “ 8}13
§ = , "= U+ —
¢ —¢ (] 3¢

and 4, £ are defined by
~ L 8h1 - N 8h1 ~
v=(5) (%9 )

£ = <%%)77 (48)

Here and below all partial derivatives of h are evaluated at z = (u, 0,0, 0)
and we have used the fact that Oha/0u and Ohy/Ou vanish at x, by (38).

(B) The tangent space T, V' consists of all vectors § = (9,¢’,0,7) where

. Ohy 8f .. _9g. 0Oy
L . Ay
Vi=%caad T e T oy (49)
and 4 is defined
s (O O o)
u.—( + J¢ 8u> (50)

Here and below all partial derivatives of f are evaluated at (u,0) and all
partial derivatives of g at (v,0).

(C) The tangent space T,,V" consists of all vectors § = (0,0, 3"”,0) where

dhs O Ohy\
g = — a; 81{ = (8—ul> b. (51)
Note that —(0hs/0&)(0f/Ou) = Ohs/Ou, by (39).

We prove that the intersection T,V' N T, V" consists of all vectors § =
(0,0,0,0) where © satisfies the conditions

%@ =0, (52)
of .
5,0=0 (53)

where 4 is given by (50). First assume ¢ satisfies (52) and (53). We show that
g := (9,0,0,0) € T,V' NnT,V". By (53), we have §' = 0 in (49) and hence,
by (52), 7 = (0g/0v)d = 0 in (49). Thus g € T,V’. Moreover the vector
@ in (50) satisfies (Oh1/0u)tt = ¥ by (53) and, also by (53), we have §” = 0
n (51). Thus g € T,V".

Conversely assume § € T,,V' N T,V". We show that § = (9,0,0,0) where
0 satisfies (52) and (53). That ¢ has the form (9,0,0,0) follows immediately
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from (B) and (C). Equation (52) follows immediately from (B) and the fact that
9’ = 0. To prove that ¢ satisfies (53) we differentiate equation (40) at the point
x = (u,0,0,0) with respect to u to obtain

Ohy Of Oy (am 6h16f) dg Ohs Of (54)

€ ou v\ ou o€ ou) By o€ ou’
Here we have used the fact that dha/Ou and Ohy/Ou vanish at x, by (38).
Evaluating (54) in the direction of the vector 4 in (53) gives

OhaOf . _ 99, 09

“a = = 0.
oc ou' o' T oy
Since Ohy/0€ is invertible this proves (53).
We prove that
/ 7 N dg .
T,V AT,V" = {(5,0,0,0) ‘ Lo=0¢, (55)

i.e. that (52) implies (53). Let @ be given by (50) and abbreviate

o _Of .
Evaluating (54) again in the direction of the vector @ in (53) and using (52) we

obtain
Ohy » Og % A

9" oy og
Since 0g/0y’ vanishes at the origin it is small when v is small and hence, in this

case, £ = 0 as claimed. This proves (55). By (36), the right hand side of (55) is
T,Y' NT,Y". This proves that

T,v' nT,v"'=T,Y'nT,Y".
It remains to prove that

TV . LY (56)
T,V +T,V" ~ T,Y +T,Y"

Since T,V' N T, V" =T,Y' NT,Y" and the Fredholm quadruples (V, V', V", y)
and (Y,Y')Y” y) have the same Fredholm index for y € V' N V" sufficiently
small, both quotient spaces have the same dimension. Hence condition (56) is
equivalent to

T,V O (T,Y +T,Y") C T,V +T,V". (57)
The sum T,Y' + T,Y" is the set of all vectors § = (0,9, 4"”,7) that satisfy
. 99 ., . (0Og
- == . 58
1= 5,79 Elm<8v (58)
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To prove (57) fix a vector § = (0,9',9",%) € T,V N (T,Y' +T,Y"). By (58)
there is a vector 9 such that
A 89 ~7 89 A7
- B_g/y M (59)
We prove that
(ﬁ/a g/a 07 fl) € Tyv/a (/{}//7 07 ,y//, O) € Tyvua ﬁ// = ’0 - @/' (60)
To see this define the vectors 4 and é by
Ohy . Ohy, Ohy »
- Iy — ¢ = 61
ou Tt et (61)
as in (A) so that
~ ah2 2 ~ ahg N 8h3 o
r= 222 =S84 Z8E 62
A el (62)
Next define 4’ and 4" by
ohy ., OhiOf ., oht ., .,
By o€ auu =7, 5y U =0 (63)
Then, by (54), (59), and (61-63), we have
Ohy 8fA, 2\ Oy 8h1 Oh1 0f\ ., 0Og Oha Of ., .
ag( ) = o\ Taean)  Ta e aat
_ 89 o dg A/ A dg Oha 8f o _ ¢
= ' Tay¥ T oy e -¢
_ Og Ohy 8f”—§
N 8y 8§
Since 9g/0y’ is small when v is small this implies
~ _ %ﬁ/, ~/ + ’ﬁ,“ — ’ﬁ,

Here the last equation follows from the first and (61) and (63). Now it follows
from (62) that

ZQH 8hb’ i 8h3§ o 8h3 8hb’ 3f ’&/ %’&N _ %’&N.
ou Oou
Combining this with (C) and (63) we find that (9”,0,9"”,0) € T,V". Likewise

it follows from (B) and (59), (62) and (63) that (¢, A’ ,17’) € T,V’'. Thus we
have proved (60). This completes the proof of (57) and the theorem. O

u T oe 9 du -

Let A C X and B C Y be arbitrary subsets. Recall that ¢ : A — B is by
definition a diffeomorpism if it is bijective and ¢ and ¢! are smooth, i.e. for
every point x € A there is a smooth extension of ¢ from a neighbourhood of z
in X to Y, and for every point y € B there is a smooth extension of ¢~! from
a neighbourhood of y in Y to X (see [3]).
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Corollary 6.7. Let h: (X, X', X" x9) — (Y, Y',Y" y0) be an exact morphism
of Fredholm quadruples. Then the following holds.

(I) h maps a neighborhood of xy in X' N X" diffeomorphically onto a neighbor-
hood of yo in Y NY".

(I1) h is exact at every point x € X' N X" sufficiently close to xq.

Proof. Of course X’NX" need not be a manifold. Let (U, U’,U") and (V, V', V")
be the finite dimensional reductions of Theorem 6.6. Then assertion (I) follows
from the fact that h=! : V' — U extends to a smooth map from a neighborhood of
V to X. Assertion (II) follows from the equivalence of (i) and (ii) in Theorem 6.6;
namely, if (ii) holds for xo then it also holds for every point x € X' N X"
sufficiently close to z¢ (with the same finite dimensional reductions). This
proves the corollary. O

Theorem 6.8. Let hy : (X, X, X{) — (Y,Y{,Y)) be a smooth family of mor-
phisms of Fredholm triples parametrized by A € A, where A is a finite dimen-
stonal manifold, i.e. the map

h:AxX —>AXY, h(\, z) = (A ha(x)),
is smooth, the sets
X=X X7=| XY
A A
are smooth submanifolds of A x X, the sets

Yo=Y, Y= W
A A

are smooth submanifolds of A XY, and the projections from X', X" YY" to A
are submersions. Let \g € A, zg € Xf\o N Xf\’o, and yo := hx,(x0). Then the
following holds.

(i) The Fredholm indices are related by

index(A x X, X', X", (Ao, z0)) = index(X,, X3, XX, Zo) + dim A,
index(A x Y, Y, Y" (Ao, y0)) = index(Yy,, Y3, Yy, 40) + dim A.

(ii) hy, is exact at xo if and only if h is exact at (Ao, o).

Proof. There is a commutative diagram

TooXh, X Tug XY, —  TugXng

Tino20) X" X Tng ) X" — T(rg20)X
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of Fredholm operators where the horizontal arrows are as in 6.1 and the ver-
tical arrows are inclusions. The Fredholm index of the top horizontal ar-
row is index(Xy,, X} , X}, ,70), the index of the bottom horizontal arrow is
index(A x X, X', X", (Ao, xg)), that of the left vertical arrow is —2dim A, and
that of the right vertical arrow is —dim A. (Here we have used the fact that
the projections X’ — A and X” — A are submersions.) Hence assertion (i)
follows from the fact that the Fredholm index of a composition is the sum of
the Fredholm indices.

We prove (ii). Assume first that hy, is exact at z¢ and denote yo := hy,(x0).
We prove that the induced homomorphism

dh(Xo,xo) : T(ko,wo)X/ N T(AO)IO)X" — T(>\07y0)Y/ N T(ko,yo)YH (64)
is injective. If (A, &) € Tng.20) X' N Tirg.e0) X" and dh(Xo, o) (A, &) = 0 then
A=0,  dhy(x0)E=0.
Since the projections X’ — A and X” — A are submersions we have & €

Ty X3, NTiy XY, . By assumption, this implies # = 0. This shows that (64) is
injective, as claimed. We prove that the induced homomorphism

T(Ag,mg)(A X X) - T(Ao,yo) (A X Y)
T()\O;IO)X/ + T(>\07I0)X// T(Xo,yo)Y/ + T(>\07y0)YH

dh(Xo, o) : (65)

is surjective. Let (), §) € Tixo,yo)(A x Y). Since the projection X’ — A is a
submersion, there is a vector & € T,,X such that (5\,:2) € T(xg,z9)X'. Define
90 € T}y, Y by

(0,90) := (A, ) = dh(ho, 20)(}, 2).
By assumption, there exists a vector g € T, X such that
9o — dhxy (w0)20 € Ty Y' + Ty Y.

Hence
(0, :l}o) — dh()\o, .%'0)(07 i‘o) S T(Aoyyo)yl + T(Aoyyo)yn.

and hence
(5‘7 ?)) - dh()“)v .%'0)(07 ‘%0) € T()\oﬁyo)yl + T(Aoyyo)yll'

This shows that (65) is surjective, as claimed. Moreover, by (i) the quadruples
(Ax X, X' X" (Ao, 20)) and (A x Y, YY", (No,yo)) have the same Fredholm
index. Hence (64) and (65) are bijective and so h is exact at (Ao, zo)-

Conversely, assume that h is exact at (Mg, zo) so that (64) and (65) are
bijective. We prove that the induced homomorphism

dhxe (o) : Too X5, N Ty X3, — Ty Yy, N Ty Yy, (66)
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is injective. Let & € Ty, X\ N Ty, X} and suppose that dhy,(z9)Z = 0. Then
(07 i‘) € T()\o,zo)X/ N T(Aoymo)XH, dh()\o, Io)(07 i‘) = (07 0).

Since (64) is injective, this implies & = 0. This shows that (66) is injective. We
prove that the induced homomorphism

Ty X T, Y

dh :
Ao (‘TO) Trng\o + TIOX;IO - TyOYXO + Tyoy)(i)

(67)

is surjective. Let § € T,,Y. Since (65) is surjective, there exists a pair (\, &) €
T(xo,20) (A x X) such that

(0, 27) - dh()“)v ./L'Q)(j\, j) € T(Aoyyo)yl + T(onyf))y”'

Write

(0,3) — dh(Xo, mo) (A, &) = (X, 5') + (V. ") (68)

where A R
(Alv g/) € T()\o,yo)Ylv ()\1/7 g//) € T()xo,yo)Y”'

Since the projections X’ — A and X" — A are submersions, there exist tangent
vectors &', & € Ty, X such that

(N,2') € Ting oy X'y (V'2") € Ting ) X"
Define the tangent vectors g, 4y € Ty, Y by

(0,96) == (N, 5') — dh(ho, 20) (N, ") € Trg o) Y (69)
(A//

)
(0,90) :== (X", 9") — dh(Xo, zo) (X", 2") € Tixgwo)Y"
Since the projections Y’ — A and Y” — A are submersions we have
90 € TyoYx,s o € TyoYrn-
Moreover, by (68), we have
A+ XN +N =0

and hence, by (68) and (69),

G — dhag (20) (& + 2"+ 2") = G5 + 9o € Ty Y, + Tyo Y-

Hence (67) is surjective, as claimed. Now it follows again from the index iden-
tities in (i) that (66) and (67) are bijective and hence hy, is exact at xg. This
proves the theorem. O

Corollary 6.9. Let hy : (X, X}, XY) — (Y,Y},Y)) be as in Theorem 6.8 and
suppose that hy, is exact at zo € X3 N XY . Then the following holds.
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i is sufficiently close to Ao and x € N 18 sufficiently close to xg
i) If A i iently cl to A d XiNnXYi iently cl t
then h) s exact at x.

(i) If A =Y : X — yx is a smooth map such that yx € Y{ NY,' for every A
then, after shrinking A if necessary, there exists a unique smooth map
A — X : A=z such that xx € X\ N XY and hy(z\) = yx for every A.

Proof. Theorem 6.8 and Corollary 6.7 O

Remark 6.10. All the results of this section continue to hold in the complex
category, i.e. all Hilbert spaces are complex, all Hilbert manifolds are complex,
all maps are complex, the family {h)}rea in Theorem 6.8 is a holomorphic
family of holomorphic morphisms of complex Fredholm triples, etc. As a result
the map A — X in Corollary 6.9 is holomorphic.

7 Proofs of the main theorems

Proof of Theorem 3.8. Assume the unfolding (7p : Q — B, S, Hp,bg) is iin-
finitesimally universal. Let U,U’,U” be the manifolds in 5.5 and let V, V', V"
be the manifolds in 5.11 for

P:Qu A:B7 TA = TB, R*:S*u HA:H37

and an appropriate Hardy decomposition Q = Q' U Q". For a € A = B denote
b, = a, let a : Ty — Qp, be the inclusion of T, := Q) N QY into Qy,, and
abbreviate 8, := Hg oy : 'y — M. Then the morphism

Uy, = Vo : (a,b) — f:= Hp o« (70)

from the Fredholm quadruple (U, U, UL, (ay,ba)) to (Va, Vo, VY Ba) is exact
for a = agp = by, by Theorems 5.9 and 5.12 (see 5.17). The same theorems
assert that the family (70) of morphisms of Fredholm quadruples satisfies the
requirements of Theorem 6.8. Hence it follows from Corollary 6.9 that (70) is
exact for a = b sufficiently close to agp = byg. Hence, again by Theorems 5.9
and 5.12, the unfolding (75 : @ — B, S, Hp,b) is infinitesimally universal for
b sufficiently close to by. This proves the theorem. O

Proof of Theorem 3.6. We proved ‘only if” in Section 3. To prove ‘if’ assume
that (7p : @ — B,S«, Hp,bp) is an infinitesimally universal unfolding. We
prove that it is universal. Let (w4 : P — A, Ry, Ha, ag) be another unfolding of
maps and fo : P, — Qp, be a fiber isomorphism. Choose a Hardy decomposi-
tion P = P’ U P” and open subsets U’, U”, and U := U' NU" of Q as in 5.2,
5.3, and 5.4. Let U, U', U"” be as in 5.5 and V, V', V" be as in 5.11. Then

(ao = f0|1—‘a0,b0) S Z/[tllo nu’ Bo := HA|Fa0 S thlo N V(/ZID.

aop?

Since the unfolding (75, Sk, Hp, bo) is infintesimally universal the map

uaoqvao:(a,b)'—)ﬂZ:HBOOé
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is an exact morphism of Fredholm triples as in 6.5 (see 5.17). By Theorems 5.9
and 5.12 the family of maps

Uy — Vs i (a,b) — f:=Hpoa,

parametrized by a € A satisfies the hypotheses of Theorem 6.8 (in the complex
category). Moreover, there is a holomorphic map

A—>V:a>—>(a,ﬂa), ﬂa = HA|FGEV(;QV(;/'

Hence it follows from Corollary 6.9 and Remark 6.10 that, after shrinking A if
necessary, there exists a unique holomorphic map

A—-U:a— (a,aq,b,), (g, b)) €U, NUY, (71)

such that 5, = Hp o a, for every a € A. Define ¢ : A — B by ¢(a) := b,
for every a € A let f, : P, — Qp, be the unique fiber isomorphism with
falT'a = aq, and define @ : P — Q by ®|P, := f,. Then ¢ is holomorphic. That
the restriction of ® to int(P’) is holomorphic follows from [4, Lemma 10.18].
To prove that the restriction of ® to int(P”) is holomorphic we write it as the
composition

int(P") - AxQ—-U"xQ—Q

where the first map is m4 X p, the second map is the product of (71) with the
identity, and the third map is the evaluation map (a, f”, 2) — f"(p;1(2)). All
four spaces are complex manifolds and all three maps are holomorphic. The
argument is as in Step 3 in the proof of [4, Theorem 5.3]. It is important to
remember that the complex structure on the factor 2 depends on a € A and is
twisted by n(a, @) as in (14). This proves that ® is holomorphic on P\dP’. Since
® is continuous, it is holomorphic everywhere. This proves the theorem. o

Proof of Theorem 8.5. Given the work done in Section 3 it remains to prove
‘if” under the assumptions that (X, so «, V0, jo, vo) is a regular stable map and
the underlying marked nodal Riemann surface (X, so «, v, jo) is still stable. Let
(ma : P — A, R.,a0) be a universal unfolding of this marked nodal Riemann
surface (in the sense of [4, Definition 5.1]) and wg : ¥ — P,, be a desingu-
larization of the central fiber. Define the holomorphic map hg : P,, — M by
ho o wg := vg. Choose a Hardy decomposition

P=P UP, r,.=P,NP NP,

as in 5.3, fix an integer s + 1/2 > 1, and define V, V', V" as in 5.11. The
desingularization wg : ¥ — P,, induces a decomposition

Soyuy, YAy —oy =y
with ¥/ := wy ' (P') and ¥" := wy *(P"). As in the proof of Theorem 5.12 the

map wy ' 0 tg, is a diffeomorphism from T' in (26) to ¥/ N X" and, to simplify
the notation, we assume that I' = ¥’ N X" so that tq, = wo|T' : T' — P,,. The
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infinitesimally universal unfolding of the stable map (X, so «, V0, jo,vo) is the
tuple
(75 : Q@ — B, S«, Hp, bo)

defined by

B:=v'nV', Q:={pp)ePxB[BeV, NV .}
78(p, B) == (ma(p), B), bo := (ao, Bo), (72)
Si:={(pB)eQ|pe R},  Hgp,B) = hsp),

where hg : P, — M is the unique holomorphic map with

hs|Ta = B.

Asin 5.11, V is a complex Hilbert manifold and by part (iii) of Theorem 5.12 the
sets V' and V" are complex submanifolds of V. By part (i) of Theorem 5.16, the
submanifolds V" and V" intersect transversally at (ag, 5o) and hence B = V'NY”
is a complex submanifold of V (after shrinking V' and V" if necessary). By
Theorem 5.12, B has dimension

dim¢ B=(m—3)(1 —g) + {(c1,d) +n. (73)
We prove that @ is a complex submanifold of P x V. Define

fiB—A by fap)=a

for (a,8) € B =V NV". Then the projection 7 :  — B is the pullback of
the projection m4 : P — A by the map f, i.e. @ is the preimage of the diagonal
in A X A under the holomorphic map

TaXf:PxB—AxA

and 7p is the restriction of projection on the first factor to . The map w4 X f
is transverse to the diagonal if and only if

TraA = imdra(p) + dryv(a, 8) (Tia,p)V N LapV") (74)

for every p € P and every § € V., NV with a = ma(p), where 1, : V — A
denotes the obvious projection. Equation (74) follows immediately from part (ii)
of Theorem 5.16. Hence @ is a complex submanifold of P x ) and the projection
mp : @ — B is holomorphic. We prove that the map 7 is a nodal family of
Riemann surfaces in Lemma 7.1 below. The subset S; C @ is the transverse
intersection of the complex submanifolds R; X V and @), and hence is a complex
submanifold of @ (of codimension one).

We prove that Hg : Q@ — M is holomorphic. For this we use the Hardy
decomposition

Q=Q uQ", Q =Qn (P xV), Q" =Qn(P"xV).
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That Hp is holomorphic in the interior of @’ follows from Lemma 5.14 (iii). To
prove that Hp is holomorphic in the interior of ) write it as the composition

nt(Q") - BxQ—=V'xQ—M

where the first map is given by a Hardy trivialization 7 g X p, the second by the in-
clusion B — V", and the third is the evaluation map ((a, 8), 2) — (hj3(pg " (2)))
where hj : P,/ — M is the unique holomorphic map with hj[['; = 8. As in the
proof of Theorem 3.6 all four spaces are complex manifolds and all three maps
are holomorphic. This proves that Hp is holomorphic in @ \ 0Q'. Since Hp is
continuous it is holomorphic everywhere.

We prove that the unfolding (g : @ — B,Si, Hp,bg) is infinitesimally
universal. Note that Qp, = P,, x {80} and define ug : ¥ — Qp, by

uo(2) := (wo(2), Bo)-
Since hg, o wg = vy we have
Hp oug(z) = Hp(wo(2), Bo) = hp,(wo(2)) = vo(2)

for every z € X. As before we denote by f : B = V' NV"” — A the obvious
projection and by by = (ag,5p) € B the base point. Then the kernel of the
derivative df (bo) : Ty, B — Tu, A is the intersection TV, N TpV,, . Hence, for
z € ¥ we have p := wo(2) € Py, ¢ := up(z) = (wo(2), Bo) € Qp,, and

kerd(f omp)(q) = kerdma(p) x (TsVi, NTsVs,) -

The restriction of dHp(q) : T4Q — Ty, (-)M to this space is

dHp(uo(2))(p, B) = 0(2) + dvo(2)2

where 2 € T, is the unique element with dw(z2)2 = p and ¢ € Q°(X /v, viT M)
is the unique vector field along vy that satisfies the nodal condition, belongs to
the kernel of D, and satisfies 8|1 = 3 0 1, .

We prove that the induced map

dHp(ug) : ker Dy, — ker D, (75)

is bijective. The domain of D,,, is the space

Xy = {(u},é) € Q%S /v, wiTP) x T,B (s03) € T”“(S“‘)Rﬂ}
dma(wo)w = df (bo)b
the target space can be identified with
Vo = Yo = {n € Q' (S, wiTP) | dra(wo)n =0},
and the operator is given by
Doy, (10,b) := D,

0 W-
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Since the unfolding (7 4, R, ag) (of marked nodal Riemann surfaces) is universal,
the operator

W(S0.i) € Ty (s iRi
Duy Xy = {w € QS /v, wiTP) (50.) € Ton (o0 } Vs

dma(wp) = constant

is bijective. It follows that the projection (1w, 13) — b is an isomorphism from the
kernel of D,,, to the kernel of the linear map df (bo) : Tpy B — T4, A. Now recall
that f: B =1V NV’ — A denotes the obvious projection. Then the kernel
of df (a0, Bo) : T(ay,pe)(V NV") — To,A is the intersection T, V;, N Tp,Vy,
which, by Theorem 5.12 (ii), is isomorphic to the kernel of D,,,. The composite
isomorphism

ker D,,, — ker df(ag, Bo) — ker D,,

is given by (0, 13) — (B — © where b = (0, B) and ¢ is the unique element in the
kernel of D,, with 9|T' = Bo tag- This map is precisely (75) which is therefore
an isomorphism.

Now it follows from Theorem 5.16 (ii) that the nodal family (7p, Sk, bg) is
regular nodal, i.e. the projections of the critical manifolds intersect transversally
at by. Hence, by [4, Lemma 12.2], the operator D,,, has Fredholm index

indexc(Dy,) = 3—3g—n+dimcB
m(l - g) + <clud>
= indexc(Dy,).

Here the second equality follows from (73). Since the kernels are isomorphic
it follows that cokernels of D,,, and D,, have the same dimensions. Moreover,
the induced homomorphism dHp(ug) : cokerD,,, — coker D,, is surjective, by
Remark 3.4, and hence is bijective. This completes the proof of Theorem 3.5. [

Lemma 7.1. Letmy : P — A be a nodal family and f : B — A be a holomorphic
map such that f x ma : B x P — A X A is transverse to the diagonal. Then the
pullback g : Q@ — B of ma by f is a nodal family.

Proof. The pullback is defined by

Q:={(b,p) € Bx P|malp) = f(0)},  mp(bp):=b.

The condition that f x4 : BXx P — A X A is transverse to the diagonal implies
that @ is a submanifold of B x P. We prove that

(i) (b,p) € Q is a regular point of 7p if p is a regular point of 74, and
(ii) (b,p) € Q is a nodal point of 7p if p is a nodal point of 7 4.

To prove (i) assume w.l.o.g. that P = C x 4 so Q = C x graph(f). Then
wp(b, z, f(b)) = b so wp is a submersion.
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To prove (ii) assume that w.lo.g. that P = Cx Cx U, A = C x U,
ma(z,y,u) = (zy,u), and f(b) = (¢(b), g(b)) € C x U. Then

Q={(b,z,y,u)|zy =2=((b), u=g()}

The condition that f x w4 is transverse to the diagonal at (b, z,y,u) € @ is that
for all (21,11, 22,02) € T2 u)A X T(zu)A = C x T,U x C x T,,U the equations

5 = dC(b)b+2
= dg(b)b+a
Z2 = Tytay+z
g = 041

have a solution
be TvB, (&,9,0)¢€ Tiayu)P = C? x T,U, (3,4) e T,A=CxT,U.

At a nodal point we have x = y = 0 so transversality implies that d{(b) # 0.
This implies that there is a coordinate system on B with ( as its first element.
The pullback to @ of the coordinates other than ¢ together with the functions
x and y give the desired nodal coordinates on . This proves (ii) and the
lemma. O

Corollary 7.2. Let ma : P — A be regular nodal family and f : B — A be a
holomorphic map which is transverse to the core Ag of ma. Then the hypothesis
of Lemma 7.1 holds, the pullback g : Q — B is reqular nodal, and its core is

By := [~ (Ap).

Proof. Denote by C4,...,Cx C P the components of the singular set of 4.
The proof of Lemma 7.1 shows that the hypothesis that f x 74 is transverse to
the diagonal is equivalent to the hypothesis that f is transverse to each 74 (C}).
The hypothesis that w4 is regular nodal is that these projections m4(C}) of the
critical manifolds intersect transversally. Hence T,Ag = (), Tama(C) so f is
certainly transverse to each m4(C;) and the hypothesis of Lemma 7.1 holds.
The hypothesis that m4 is regular nodal implies that in a neighborhood
of each point of the core Ay of w4 there are coordinates zi,..., 2k, u1,... on
A such that for each i, z; together with the remaining coordinates for the base
coordinates of a nodal coordinate system. In particular, 74 (C;) = {2z = 0}. The
transversality hypothesis implies that the functions f*z; are independent, i.e.
the sequence f*z1, ..., f*z¢ extends to a coordinate system on B. Now the proof
of Lemma 7.1 shows that for each i a reordering of these coordinates which puts
f*z first is the base coordinate system of a nodal coordinate system. The core
By is then defined by f*z; = --- f*2x = 0 which shows that By = f~1(4p). O

Definition 7.3. Let (74 : P — A, R., Ha,a0) and (75 : Q — B, S, Hp,by) be
two unfoldings of type (g, n,d). A sequence of fiber isomorphisms fj : P,, — Qp,
is said to DMG converge to a fiber isomorphism fo : P, — Qy, if ar — ao,
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by — by, and for every Hardy decomposition P = P’UP" as in 5.3 the sequence
frota, : T — Q converges to fpo e, : I' — Q in the C* topology. (DMG con-
vergence of fiber isomorphisms is essentially the same as DM convergence in [4,
Definition 13.7]. The only difference is that in the former case we deal with
unfoldings of stable maps whereas in the latter case we deal with unfoldings
of marked nodal Riemann surfaces, i.e. the two notions of fiber isomorphism
differ.)

Lemma 7.4. Let (my : P — A, R.,Ha,a0) and (7rp : Q@ — B,S«, Hp,by) be
two universal unfoldings of type (g,n,d), (®,9) : (P, A) — (Q, B) be the germ
of a morphism satisfying Hg o ® = Ha, ¢(ag) = by, and Py, = fo, ar € A and
b € B be two sequences with ar, — ag and by, — by, and fir : Py, — Qp, be a
sequence of fiber isomorphisms. Then the following are equivalent.

(1) The sequence (ak, fr,br) DMG converges to (ao, fo,bo).
(ii) For k sufficiently large we have ¢(ay) = by and ®,, = fk.

Proof. That (ii) implies (i) is obvious. We prove that (i) implies (ii). Recall the
Hardy decomposition in the definition of the spaces U, U’, " in 5.5 and V, V',
V" in 5.11. Then

(a,®4|Ta, d(a)) €U NU", (ak, felTa,,bk) €U NU"

for every a € A and every sufficiently large k, by DMG convergence. The
sequences (ak, P, |Ta,, Plar)) and (ak, frx|Ta,,br) converge to the same point
(ao, fo|Tay,bo) € U’ NU". Moreover, their images under the Fredholm map

unu" —=v' nv'’:(a,a,b) — (a,Hg o a)

agree because
HBofk :HA|Pak :HBO(I)ak-

Moreover it follows from infinitesimal universality and Theorems 5.9, 5.12,
and 6.8 that the map (a,a,b) — (a,Hp o a) from (U, U, U", (ag, fo|To,b0))
to (V, V', V" (ag, Hp o fo|T'o)) is an exact morphism of Fredholm quadruples
(see 6.5). Hence (fi|Ta,,br) = (Po,|Ta,,d(ar)) for k sufficiently large, by
Corollary 6.7, and hence also fi = ®,,. This proves the lemma. O

Proof of Theorem 3.11. Let (m : Q@ — B, S, H) be a universal family and de-
note by (B, T") the associated etale groupoid of 3.10. We prove that this groupoid
is proper. Thus let (ag, fx,br) be a sequence in T' such that aj converges to
aop and by converges to bg. We must show that there is a fiber isomorphism
fo 1 Qay, — Qp, such that a suitable subsequence of fr DMG converges to fo.
To see this we assume first that the underlying marked nodal Riemann surface
associated to a desingularization of @), is stable. Then the same holds for Qy,
and we may assume w.l.o.g. that our universal unfolding has the form (72) as
constructed in the proof of Theorem 3.5 near ag and by. It then follows that
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(ak, fr, br) induces a sequence (a}, fy., b},) of fiber isomorphisms for the underly-
ing universal family (7' : Q' — B’, S}) of stable marked nodal Riemann surfaces
such that aj and b} converge to a;, and bf, respectively. By [4, Theorem 6.6],
the sequence f; DM-converges to a fiber isomorphism f : Q;S — Qgg. Since
Hpo fi, = Hp|Q,, , we find that f{j induces a fiber isomorphism fp : Qay — Qb,
and it follows from the definitions that fx DMG converges to fo. This proves
the assertion under the stability assumption for the underlying marked nodal
Riemann surface. If that does not hold, we choose an embedding of our uni-
versal family into another family (7' : Q' — B’,S., T, H') that is a universal
unfolding of each of its fibers and remains stable after discarding H’. Then the
existence of a DMG-convergent subsequence follows immediately from what we
have already proved. O

8 The Gromov topology

In this section we prove that the topology on the moduli space of (regular)
stable maps that is induced by the orbifold structure agrees with the topology
used elsewhere in the literature. To define convergence of a sequence in this
topology we need to recall the notion of deformation from [4, Definition 13.2].

8.1. Let ¥ be a compact oriented surface and v C ¥ be a disjoint union of
embedded circles. We denote by 3., the compact surface with boundary which
results by cutting open X along v. This implies that there is a local embedding

o:¥y— X

which maps int(3,) one to one onto ¥ \ v and maps 93, two to one onto 7.
One might call o the suture map and v the incision.

Definition 8.2. Let (¥',v') and (X,v) be nodal surfaces. A smooth map
¢: X'\ v — X is called a (v/,v)-deformation iff v C ¥’ \ v/ is a disjoint
union of embedded circles such that (where o : Efy, — ¥ is the suture map just
defined) we have

o ¢’ = {{o(1), dw2)} [{wl, o} € v} C v
e ¢ is a diffeomorphism from X'\ 4" onto X\ 7, where v := J(v \ ¢.1/).

e ¢oolint(X],) extends to a continuous surjective map ¥, — ¥ such that
the preimage of each nodal point in v is a component of 62;, and two
boundary components which map under o to the same component of ~’
map to a nodal pair {z,y} € v.

Each component of 7' is called a wvanishing cycle of the deformation ¢. A
sequence ¢y : (Xg\ vk, vk) — (3, v) of (v, v)-deformations is called monotypic
if (@)« is independent of k.

95



Definition 8.3. Let M be a complex manifold. A sequence (X, Sk, «, Vk, jk, Vk)
of configurations in M of type (g,n,d) is said to converge monotypically to
a configuration (X, s., v, j,v) of type (g,n,d) iff there is a monotypic sequence
Ok Xk \ vk — 2\ v of (v, v)-deformations satisfying the following conditions.

(Marked points) For i =1,...,n the sequence ¢p(sk,i) converges to s; in X.

(Complex structure) The sequence (¢r).jr of complex structures on X\ ~y
converges to j|(X\ ) in the C*° topology.

(Map) The sequence (¢y).v; = vj, o ¢ converges to v|(X \ 7) in the C*
topology on C*°(X\ v, M).

(Energy) For some (and hence every) pair of Riemannian metrics on 3 and M
we have

lim lim |d(ve o ¢ ")

‘2
e—0k—oo B:(v)

= O7
where B.(y) C ¥ denotes the e-neighborhood of v C Uv.

The sequence (X, Sk «, Vk, jk, V) is said to Gromov converge to (%, j, s, v, v)
if, after discarding finitely many terms, it is the disjoint union of finitely many
sequences which converge monotypically to (X, s, v, 4, v).

(%

Figure 2: Gromov convergence.

Theorem 8.4. Let (X, s4,v,5,v) be a stable map, (7 : Q — B, S, H,by) be a
universal unfolding, uo : X — Qp, be a desingularization with induced structures
Su, V, J, and v on X, and (Xk, Sk «, Vk, Jk, Vk) be a sequence of stable maps. Then
the following are equivalent.

(i) The sequence (B, Sk,«, Vi, jk, Vi) Gromov converges to (X, s«, v, j,v).

(ii) After discarding finitely many terms, there exist by, € B and desingular-
izations uy : Xy — Qp, nducing Sk, Vi, Jk, Uk such that by converges
to bo.

56



If (i) holds with a sequence of deformations ¢ : ¥\ vz — X then the sequence
ug in (i) can be chosen such that up (i) converges to the nodal set in Qp, and
up o ¢yt X\ Uv converges to up|(X\ Uv) in the C™ topology.

Proof. We prove (ii) implies (i). Let u : ¥ — Qp, be a desingularization.
Assume that b, converges to b and that wuy : ¥ — @, is a sequence of desin-
gularizations inducing (S «, Vg, jk, Uk). As in the proof of [4, Theorem 13.6]
there are maps ¥y, : Qp — Qp, and deformations ¢y : X \ 7 — X such that iy
agrees with a smooth trivialization away from the nodal set, ¥, is the identity,
and

U0 G = Py, 0 Uk : Bg \ Ve — Qby-

Assume w.l.o.g. that the sequence ¢y is monotypic so that there is a subset
~ C Uv such that ¢, : T\, — X\ is a diffeomorphism. As in [4] the sequence
or(sk,i) converges to s; in ¥ and the sequence (¢ )+jx of complex structures on
3\ v converges to j|(X\ ) in the C*° topology. Now 1/1b_kl oug = ug o ¢y, " S0

Hoy oug=Hougod,' =uvpo¢,".

Since vy, is the identity the left hand side (and hence also (¢x).vx = v © ¢, ')
converges to vo|(Zo \ ) in the C* topology on C*(X\ v, M).

We prove (i) implies (ii) under the additional hypothesis that the marked
nodal Riemann surface (X, s.,v,j) is stable. By the uniqueness of universal
unfoldings we may asssume that (m, Sy, H, by) is given by (72). By assumption,
the sequence (Xg, Sk «, Vi, ji) obtained by discarding the maps vy consists of
stable marked nodal Riemann surfaces and it DM-converges to (X, s«,v,j) as
in [4, Definition 13.3]. Hence Theorem 13.6 in [4] asserts that there exists a
sequence ay, € A converging to ap and, for sufficiently large k, desingularizations
wy : B — Py, inducing the structures s «, Vg, jr on Xg. By [4, Remark 13.9],
the desingularizations wy can be chosen such that the sequence

wpo¢y ' X\ Uy — P
converges to wo in the C'*° topology. Define hy, : P,, — M and hg : P,, — M by
hy o wg := vy, ho o wg := vg.

Since wy, o gb,?l converges to wo, the sequence ¢y o w,;l ) p;kl (with p as in 5.10)
converges to wy ' in the C°° topology on Q = P} . This implies that the
sequence
hi o pg,! = (vk 0 81) 0 (dr 0wy 0 o))
converges to vy o wy © = hg in the C° topology on . By definition of V", this
implies
by = (ak,ﬁk) evny' = B, ﬂk = hk|Fak S V(/llk

for k sufficiently large. Here we have also used the fact that hi|P, takes
values in V' for large k, by the (Energy) axiom and the standard compactness
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arguments for pseudoholomorphic curves (see [2, Chapter 4]). Since aj, converges
to ag and B o p;k1|8§2 converges to By := ho|Ta, = hol092, we deduce that by
converges to by := (ao, Bo). Thus we have proved that (i) implies (ii) under the
assumption that the marked nodal Riemann surface (¥, s, v, j) is stable.

We prove (i) implies (ii) in general. Suppose the sequence (X, Sk «, Vi, Jk, Vk)
Gromov converges to (X, s., v, j,v) and the underlying marked nodal Riemann
surface (3, s.,v,7) is not stable. Then we can add marked points to Xj and
3 such that the resulting sequence still Gromov converges and the augmented
marked nodal Riemann surface (%, s, t«, v, j) is stable. By what we have al-
ready proved, the augmented sequence (X, S, tk,«; Vi, Jk, Vi) satisfies (ii). Let
(ma : P — A,R.,T.,Ha,ao) be a universal unfolding of the augmented sta-
ble map. Removing the additional sections T, results in an unfolding that
is no longer universal but, by definition of universal, admits a morphism to
(m: Q — B,S., H,by). Hence the original sequence (X, Sk «, Vi, ji, Vk) also
satisfies (ii). This proves the theorem. O

9 Concluding remarks

It would be interesting to know to what extent the techniques developed in
this paper extend to the nonintegrable case. Since the linearized Cauchy—
Riemann operators D, are not complex linear in this case the resulting moduli
space will at best be a smooth (not a complex) orbifold. In the definition of
a universal unfolding we can at most expect the existence of a smooth mor-
phism (P, ¢) : 14 — wp. An analogue of the universal unfolding theorem (The-
orem 3.6) for the nonintegrable case will depend on an answer to the following
question.

Given an almost complex structure J on R?™ and a complex number z €
int(D) define the set

3 a J-holomorphic map
N, =< (&n,2) € H(SY,R*™)?| v: N, — R> in H°+1/2

st. {=voul,, n=voly,

where IV, is as in 5.13. It is easy to prove that this set is a smooth submanifold
of H*(S1,R?™) x H*(S! R®™) for every z. A natural question to ask is if the
disjoint union

N = U {z} x N}

z€int (D)

is a smooth submanifold of int(D) x H*(S, R?™) x H*(S1,R?>™). In Lemma 5.14
this was proved in the integrable case. However, we have examples of finite
dimensional analogues where this fails. On the other hand, we expect that the
Hadamard proof of the unstable manifold theorem carries over to the infinite
dimensional setting and shows that the A/, form a continuous family of smooth
submanifolds. This would give an alternative approach to the gluing theorem for
pseudoholomorphic curves. Moreover, one could then carry over the techniques
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of this paper to prove that, in the almost complex case, the regular stable maps
form a C° orbifold.
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