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Abstract

The asymptotic behaviour of a finite energy pseudoholomorphic
strip with Lagrangian boundary conditions in a symplectic manifold
is determined by an eigenfunction of the linearized operator at the
(transverse) intersection.

Introduction

This paper deals with the asymptotic behaviour of pseudoholomorphic strips
in symplectic manifolds that satisfy Lagrangian boundary conditions. More
precisely, let (M, ω) be a symplectic manifold and L0, L1 ⊂ M be closed (not
necessarily compact) Lagrangian submanifolds that intersect transversally.
Fix a t-dependent family of almost complex structures Jt on M that are
compatible with ω. We consider smooth maps u : R + i[0, 1] → M that
satisfy the boundary value problem

∂su + Jt(u)∂tu = 0, u(R) ⊂ L0, u(R + i) ⊂ L1.

Such holomorphic strips were studied by Floer [7, 8] and he used them in his
definition of the Floer homology of Lagrangian intersections. The standard
theory of such holomorphic strips shows that if u has finite energy then the
limit

p = lim
s→∞

u(s, t)

exists and is an intersection point of L0 and L1.
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Our main result (Theorem B) asserts that the limit

v(t) = lim
s→∞

∂su(s, t)

‖∂su‖
∈ TpM, ‖∂su‖ :=

√∫ 1

0

|∂su(s, t)|2 dt,

exists and, for some λ > 0, satisfies the eigenvalue problem

Jt(p)∂tv − λv = 0, v(0) ∈ TpL0, v(1) ∈ TpL1.

It also asserts that there exists a constant c > 0 such that

lim
s→∞

eλs∂su(s, t) = cv(t)

for every t. The convergence is exponential and in the C∞ topology.
There are four problems concerning the asymptotic behaviour of pseudo-

holomorphic curves. The first two refer to symplectic geometry and the last
two to contact geometry.

(i) The asymptotic behaviour of a pseudoholomorphic cylinder twisted by a
symplectomorphism that converges to a symplectic fixed point.

(ii) The asymptotic behaviour of a pseudoholomorphic strip with Lagran-
gian boundary conditions that converges to an intersection point.

(iii) The asymptotic behaviour of a pseudoholomorphic plane that converges
to a closed characteristic, i.e. a closed integral curve of the Reeb vector
field.

(iv) The asymptotic behaviour of a pseudoholomorphic half plane with Leg-
endrian boundary conditions that converges to a characteristic chord,
i.e. an integral curve of the Reeb vector field connecting the Legendrian
submanifold to itself.

Problem (i) is relevant to the Floer homology of a symplectomorphism, (ii)
is relevant to the Floer homology of a pair of Lagrangian submanifolds, (iii)
is relevant to contact homology, and (iv) is relevant to the relative contact
homology of a Legendrian submanifold. Our results are directed primarily
at problem (ii). Problem (i) is a special case of (ii): use the diagonal and
the graph of the symplectomorphism as the two Lagrangian submanifolds.
However, although there is a strong similarity in the techniques used in the
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proofs, there seems to be no easy way to reduce any of the remaining problems
to (ii) or vice versa.

There are two facets to each of the above problems, namely the existence
of the limit and the asymptotic behaviour in terms of eigenvectors of the
linearized operator. To establish the latter is considerably harder than the
former. In (i) and (ii) the existence of the limit is an easy consequence of
Gromov compactness. The convergence is exponential, see for example [17]
for an exposition in the setting of problem (i). The existence of the limit
in the setting of (iii) was established by Hofer [12] and used in his proof of
the Weinstein conjecture in dimension three. The existence of the limit in
the setting of (iv) was established in [6] and used in the definition of the
Floer homology of a pair consisting of a Legendrian and a pre-Lagrangian
submanifold.

The finer asymptotic behaviour in terms of the eigenvalues was treated
by Hofer–Wysocki–Zehnder [13] in the case of problem (iii) and by Abbas [1]
in the case of problem (iv). Both papers only deal with three dimensional
contact manifolds. In Appendix E we explain in more detail the relation
between our results and those of Abbas [1].

Our result is inspired by the work of Vin de Silva [18] on the Floer ho-
mology for Lagrangian intersections of two embedded loops in a Riemann
surface. In this case De Silva gave a combinatorial description of the Floer
homology in terms of embedded half discs (lunes). To prove that his com-
binatorial description agrees with Floer’s definition of the Floer homology
groups one has to establish a one-to-one correspondence between de Silva’s
lunes and Floer’s holomorphic strips. The proof of this one-to-one correspon-
dence seems to require Theorem C below, which establishes the asymptotic
behaviour in dimension two. We emphasize that Theorem C, and hence the
one-to-one correspondence between lunes and holomorphic strips, is easy to
prove whenever the two embedded loops agree with straight lines in some
holomorphic coordinate chart near each intersection. However, the proof in
the general case is considerably harder and apparently requires the analysis
of the asymptotic behaviour carried out in this paper.

We view the combinatorial definition of the relative contact homology of
a Legendrian knot (see Chekanov [3] and Eliashberg [4]) as a contact anlogue
of de Silva’s combinatorial definition of the Floer homology on a Riemann
surface. See the as yet unpublished work of Eliashberg–Givental–Hofer [5]
for the analytic definition. The proof that the combinatorial and analytic
definitions agree again requires Theorem C.
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The present paper is organized as follows. In Section 1 we discuss holo-
morphic strips and state the main results. Theorem A about exponential
decay is well known. However, the proof uses similar techniques as that
of Theorem B and we include an exposition for the sake of completeness.
The proof of Theorem B is based on the technique developed by Agmon–
Nirenberg [2] for abstract differential operators of the form

D =
∂

∂s
+ A(s) + B(s),

where A(s) is an unbounded self-adjoint operator on a Hilbert space and
converges to A∞ as s tends to ∞ and B(s) is skew-adjoint and tends to zero
as s tends to ∞. Section 2 explains how the holomorphic strips fit into such
a framework, Section 3 discusses the technique of Agmon and Nirenberg, and
Section 4 gives the proofs of Theorems A and B.

To give a self contained exposition we have included several appendices.
They deal with differential inequalities of the form

∆w ≥ −cw(n+2)/n

for the Laplace operator in dimension n (Appendix A), with apriori esti-
mates for pseudoholomorphic curves (Appendix B), with L2 estimates for
the Cauchy–Riemann operator (Appendix C), and with the construction of
a convenient metric near a totally real submanifold (Appendix D). This
metric and the results of Appendix A are needed in the proof of the apriori
estimates in Appendix B. In turn, the apriori estimates are needed in the
proof of Theorem A. The L2 estimates in Appendix C are needed at various
places in the proofs of Theorems A and B. Appendix E explains an attempt
to reduce problem (iv) to our results.

1 Holomorphic strips

Throughout, M denotes a smooth manifold, {Jt}0≤t≤1 a smooth family of
almost complex structures on M , and L0 and L1 are closed (not necessarily
compact) transverse submanifolds of M such that L0 is totally real for J0

and L1 is totally real for J1. Whenever convenient, we write

J = J(t, p) = Jt(p).
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We shall assume throughout that the following holds at each intersection
point p ∈ L0 ∩ L1.

Hypothesis H. There is a nondegenerate skew form

TpM × TpM → R : (v, w) 7→ ωp(v, w)

that renders each of the subspaces TpL0 and TpL1 Lagrangian, i.e.

ωp(v, w) = 0 for (v, w) ∈ TpLt × TpLt, t = 0, 1,

and such that the form

TpM × TpM → R : (v, w) 7→ ωp(v, Jt(p)w)

is symmetric positive definite for 0 ≤ t ≤ 1.

For example, this is the case when ωp is the value at p of a symplectic form
on M , L0 amd L1 are Lagrangian submanifolds, and each Jt is compatible
with ω.

Consider the half strip

S := [0,∞) + i[0, 1] = {s + it | 0 ≤ s < ∞, 0 ≤ t ≤ 1}

and let
∂0S := [0,∞), ∂1S := [0,∞) + i.

We consider smooth maps u : S → M which are holomorphic in the sense
that they satisfy the Cauchy Riemann equations

∂su + Jt(u)∂tu = 0, (CR)

and satisfy the boundary conditions

u(∂0S) ⊂ L0, u(∂1S) ⊂ L1. (BC)

Theorem A. Assume M is compact and u satisfies (CR) and (BC). Then
the following are equivalent.

(I) u has finite energy:

E(u) :=

∫

S

|∂su|
2 < ∞.
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(II) The limits
p := lim

s→∞
u(s, t), 0 = lim

s→∞
∂su(s, t)

exist uniformly in t.

(III) ∂su decays exponentially in the C∞ topology, i.e. there are positive
constants ε and c1, c2, c3, . . . such that, for all s and k,

‖∂su‖Ck([s,∞)×[0,1]) ≤ cke
−εs.

Each condition (I-III) is independent of the choice of the Riemannian
metric used to express it. When (III) holds it follows from (CR) that ∂tu
and in fact all derivatives of u decay exponentially. In the setting of [17] the
equation contains an additional Hamiltonian perturbation; in that case the
convergence of the t-derivatives does not follows from (III). We introduce the
abbreviation

S = {u ∈ C∞(S, M) | u satisfies (CR), (BC), (I-III)}.

Theorem B. Assume u ∈ S is nonconstant. Then there exist an eigenvalue
λ > 0 and a nonzero eigenfunction v : [0, 1] → TpM such that

Jt(p)∂tv − λv = 0, v(0) ∈ TpL0, v(1) ∈ TpL1,

and
v(t) = lim

s→∞
eλs∂su(s, t).

The convergence is with all derivatives, uniform in t, and exponential. Thus
there exist a smooth function w : [0,∞)×[0, 1] → TpM and positive constants
δ and c0, c1, c2, . . . such that, for every s ≥ 0, every t ∈ [0, 1], and every
integer k ≥ 0,

u(s, t) = expp

(
−

1

λ
e−λsv(t) + w(s, t)

)
, ‖w‖Ck([s,∞)×[0,1]) ≤ cke

−(λ+δ)s.

In particular, there exist positive constants s0 and c such that, for every
s ≥ s0 and every t ∈ [0, 1],

1

c
e−λs ≤ |∂su(s, t)| ≤ ce−λs.
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Consider the special case where M = C, Jt = i, and p = 0. The tangent
spaces TpL0 and TpL1 are real lines through the origin. Let the angle from
TpL0 to TpL1 be ν0 ∈ (0, π). Then the eigenfunctions and eigenvalues of the
linearized operator have the form

v(t) = c0e
i(ν0−kπ)t, λ = kπ − ν0,

where c0 ∈ TpL0 ⊂ C, c0e
iν0 ∈ TpL1, and k ∈ Z. Every such v is an eigenfunc-

tion, however, only positive integers k can occur in a limiting eigenfunction.
We reformulate Theorem B in this case.

Theorem C. Let u : S → C be a holomorphic map which satisfies u(∂0S) ⊂
L0, u(∂1S) ⊂ L1, and

lim
s→∞

u(s, t) = lim
s→∞

∂su(s, t) = 0

uniformly in t. Then there exist a unique nonzero complex number c0, a
unique positive real number ν, and a δ > 0 such that

u(s + it) = c0e
−ν(s+it) + O(e−(ν+δ)s). (1)

These numbers satisfy c0 ∈ T0L0, c0e
iν0 ∈ T0L1, 0 < ν0 < π, and ν = kπ−ν0

for some positive integer k.

As a warmup we give a direct proof of this result in the (very special) case
where L0 = R and L1 = eiν0R are straight lines. The boundary conditions
assert that the function

v(s, t) := e−ν0(s+it)u(s, t)

extends to a holomorphic function from C+ := [0,∞)+ iR → C, still denoted
by v, such that

v(z + 2i) = v(z), v(z̄) = v̄(z).

Since v has period 2i there exists a holomorphic function w : D \ {0} → C,
where D := {ζ ∈ C | |ζ| ≤ 1}, such that

v(z) = w(e−πz)

for z ∈ C+. Since u is bounded it follows that

|w(ζ)| ≤ C|ζ|−ν0/π
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for all ζ ∈ D \ {0} and some constant C > 0. By the removable singularity
theorem, w extends to a holomorphic function on D. Hence there exist a
unique nonzero complex number c0 and a unique integer k > 0 such that

w(ζ) = c0ζ
k + O(|ζ|k+1).

Hence u(s, t) = eν0(s+it)w(e−π(s+it)) satisfies (1) with these constants c0, ν0,
k, and with δ = π.

The proof in the case of general transverse smooth curves L0 and L1 in C

is considerably harder. It is marginally easier than the general case handled
by Theorem B because a Riemann surface is Kähler. In the Kähler case with
J independent of t Appendix A can be simplified as indicated in Remark B.2.

2 The linearized Cauchy–Riemann operator

Because the strip S carries a prefered vector field ∂/∂s, the usual Cauchy-
Riemann equations (see [14]) take the special form (CR). Thus the left hand
side of (CR) can be viewed as a section of the pullback bundle u∗TM → S.
The Cauchy Riemann operator (i.e. the map which sends u to the left
hand side of (CR)) is thus a section of the vector bundle C∞(S, TM) →
C∞(S, M); the solutions of (CR) are the zeros of this section. Denote

B := {u ∈ C∞(S, M) | u satisfies (BC)}

and
E := {ξ ∈ C∞(S, TM) | π ◦ ξ ∈ B} ,

where π : TM → M is the projection. Thus E is a vector bundle over B with
fibre1 Eu := C∞(u∗TM). The tangent space TuB is the set of vector fields
ξ ∈ C∞(u∗TM) that satisfy

ξ(s, 0) ∈ Tu(s,0)L0, ξ(s, 1) ∈ Tu(s,1)L1. (2)

It is a general principle that the derivative of a section of a vector bundle
at a zero u of that section gives a well defined linear map from the tangent
space to the base at u to the fiber over u. In the case at hand this derivative
is the linearized Cauchy Riemann operator Du : TuB → Eu, given by

Duξ = ∇sξ + (∇ξJt(u))∂tu + Jt(u)∇tξ. (3)

1For a vector bundle E → B we denote by C∞(E) the space of sections.
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Because u satisfies (CR), this operator is independent of the choice of the
connection. Because u satisfies (BC) we have ∂su ∈ TuB and Du∂su = 0. In
the following lemma the reader is cautioned to distinquish between the value
J |t=0 of J when t = 0 and the standard complex structure J0 on R2n = Cn.
We denote by ω0 the standard symplectic form on R2n.

Lemma 2.1. There is a neighborhood U of p in M and a local trivialization

[0, 1] × U × R
2n → TM : (t, q, v) 7→ Φt(q)v ∈ TqM

such that for (t, q) ∈ [0, 1] × U we have

(i) Jt(q)Φt(q) = Φt(q)J0;

(ii) Φt(q)(R
n × {0}) = TqLt for t = 0, 1;

(iii) ωp(Φt(p)v, Φt(p)w) = ω0(v, w) for v, w ∈ R2n.

Proof. Choose a smooth path {Λt}0≤t≤1 of Lagrangian subspaces of (TpM, ωp)
such that

Λ0 = TpL0, Λ1 = TpL1.

Now choose smooth functions ei : [0, 1] → TpM , i = 1, . . . , n, such that, for
every t ∈ [0, 1], the vectors e1(t), . . . , en(t) form an orthonormal basis of Λt

with respect to the inner product ωp(·, Jt(p)·). Define

ei+n(t) := Jt(p)ei(t)

for i = 1, . . . , n and t ∈ [0, 1]. Then the linear map Φ(t) : R2n → TpM
defined by

Φ(t)v :=

2n∑

i=1

viei(t)

for v = (v1, . . . , v2n) ∈ R2n identifies Rn × {0} with Λt, J0 with Jt(p), and
ω0 with ωp. Now choose trivializations of TL0 and TL1 near p that agree
with the given isomorphisms Rn → Λt for t = 0 and t = 1, respectively.
Next extend these to trivializations of TL0M and TL1M that identify J0 and
J1, respectively, with the standard complex structure on R

2n and agree with
Φ(t) for t = 0, 1. Finally extend the trivializations of TL0M and TL1M to a
smooth family {Φt}0≤t≤1 of trivialization of TM over a neighbourhood of p
such that Φt identifies Jt with the standard complex structure on R2n and
agrees with Φ(t) at p.
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Assume part II of Theorem A and let U ⊂ M be as in Lemma 2.1. Fix
u ∈ S and assume without loss of generality that u(s, t) ∈ U for all s and t.
Define the function S : [0,∞) × [0, 1] → R2n×2n by the condition that

Φt(u)
(
∂sξ + J0∂tξ + Sξ

)
= Du

(
Φt(u)ξ

)
(4)

holds for every smooth function ξ : [0,∞) × [0, 1] → R2n. Here the right
hand side of (4) is defined by substituting Φt(u)ξ for ξ in (3). Define S∞ :
[0, 1] → R2n×2n by

Φt(p)S∞(t) := Jt(p)∂tΦt(p). (5)

Lemma 2.2. In this notation the following holds. The matrix S∞(t) is sym-
metric for every t and there exists a constant c > 0 such that

‖S(s, t) − S∞(t)‖ ≤ c
(
|∂su(s, t)| + d(u(s, t), p)

)
(6)

for every s ≥ 0 and every t ∈ [0, 1]. Moreover, if u satisfies a uniform
Ck-bound for some integer k ≥ 1, then there exists a constant ck > 0 such
that

‖S − S∞‖Ck([s,∞)×[0,1]) ≤ c
(
‖∂su‖Ck([s,∞)×[0,1]) + sup

s′≥s,0≤t≤1
d(u(s′, t), p)

)
(7)

for every s ≥ 0.

Proof. By (i) and (iii) in Lemma 2.1, we have

ω0(v, J0S∞(t)w) = ωp(Φt(p)v, Φt(p)J0S∞(t)w)

= ωp(Φt(p)v, Jt(p)Φt(p)S∞(t)w)

= −ωp(Φt(p)v, ∂tΦt(p)w)

= ωp(∂tΦt(p)v, Φt(p)w)

= −ωp(Jt(p)Φt(p)S∞(t)v, Φt(p)w)

= ωp(Φt(p)S∞(t)v, Jt(p)Φt(p)w)

= ωp(Φt(p)S∞(t)v, Φt(p)J0w)

= ω0(S∞(t)v, J0w)

for v, w ∈ R
2n. Hence S∞(t) is a symmetric matrix for every t. The inequal-

ity (6) follows from the identity

Φt(u)Sv = ∇s(Φt(u)v) + Jt(u)∇t(Φt(u)v) +
(
∇Φt(u)vJt(u)

)
∂tu.
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For k ≥ 1 the estimate (7) follows by differentiating this identity. In partic-
ular,

Φt(u)(∂sS)v = ∇s(Φt(u)Sv) −
(
∇sΦt(u)

)
Sv

= ∇s∇s(Φt(u)v) + ∇s

(
Jt(u)∇t(Φt(u)v)

)

+∇s

((
∇Φt(u)vJt(u)

)
∂tu

)
−

(
∇sΦt(u)

)
Sv.

Since ∇s∂tu = ∇s(J∂su) =
(
∇sJ

)
∂su+J∇s∂su, this implies (7) for k = 1.

Consider the Hilbert spaces

H := L2([0, 1], R2n)

and
V :=

{
ξ ∈ W 1,2([0, 1], R2n) | ξ(0), ξ(1) ∈ R

n × {0}
}

.

Let A(s) : V → H and A∞ : V → H be defined by

A(s) := J0∂t +
1

2

(
S(s, t) + S(s, t)T

)
, A∞ := J0∂t + S∞, (8)

These operators are self-adjoint, as unbounded linear operators on H. Define
B(s) : H → H by

B(s) :=
1

2

(
S(s, t) − S(s, t)T

)
. (9)

Lemma 2.3. Continue to assume (II) in Theorem A and use the notation
introduced in equations (4), (5), (8), and (9). Then A(s) − A∞, Ȧ(s) and
B(s) are bounded linear operators on H, A∞ : V → H is bijective, and there
exists a constant c > 0 such that, for every s ≥ 0,

‖A(s) − A∞‖L(H) + ‖B(s)‖L(H) ≤ c sup
0≤t≤1

(
|∂su(s, t)| + d(u(s, t), p)

)
, (10)

‖Ȧ(s)‖L(H) ≤ c sup
0≤t≤1

(
|∇s∂su(s, t)| + |∂su(s, t)| + d(u(s, t), p)

)
. (11)

Proof. The inequalities (10) and (11) follow immediately from Lemma 2.2.
We prove that A∞ is injective. Let ξ ∈ V such that A∞ξ = 0. Then the
function [0, 1] → TpM : t 7→ Φt(p)ξ(t) satisfies

Φ0(p)ξ(0) ∈ TpL0, Φ1(p)ξ(1) ∈ TpL1
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and

∂t(Φt(p)ξ(t)) = Φt(p)∂tξ(t) − Jt(p)Φt(p)S∞(t)ξ(t)

= Φt(p) (∂tξ(t) − J0S∞(t)ξ(t))

= 0.

Since L0 and L1 intersect transversally at p it follows that ξ = 0 as claimed.
We prove that A∞ is surjective. Let Ψ∞ : [0, 1] × [0, 1] → Sp(2n) be the

fundamental solution of the operator J0∂t + S∞, i.e.

J0∂tΨ∞(t, t′) + S∞(t)Ψ∞(t, t′) = 0, Ψ∞(t, t) = 1l.

Denote Λ0 := Rn × {0}. Since A∞ is injective the map

Λ0 × Λ0 → R
2n : (ξ0, ξ1) 7→ ξ1 − Ψ∞(1, 0)ξ0

is bijective. Given η ∈ H define (ξ0, ξ1) ∈ Λ0 × Λ0 by

ξ1 − Ψ∞(1, 0)ξ0 := −

∫ 1

0

J0Ψ∞(1, t′)η(t′) dt′.

Define ξ : [0, 1] → R2n by

ξ(t) := Ψ∞(t, 0)ξ0 −

∫ t

0

J0Ψ∞(t, t′)η(t′) dt′.

Then ξ ∈ V and A∞ξ = η.

3 Operators on Hilbert spaces

Let V and H be separable Hilbert spaces such that

V ⊂ H.

Suppose that V is a dense subset of H and that the inclusion V ↪→ H is a
compact linear operator. Assume without loss of generality that

‖ξ‖H ≤ ‖ξ‖V

for every ξ ∈ V . Throughout we denote by 〈·, ·〉 the inner product on H and
by

‖·‖ = ‖·‖H
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the norm on H. (We never use the inner product or the norm on V .) Let
L(V, H) denote the space of bounded linear operators from V to H and L(H)
denote the space of bounded linear operators from H to itself. Throughout
this section let A∞ ∈ L(V, H), let [0,∞) → L(V, H) : s 7→ A(s) be a
continuously differentiable function, and let [0,∞) → L(H) : s 7→ B(s) be
a continuous function. We shall denote by Ȧ(s) the derivative of A(s) with
respect to s. We impose the following conditions.

(a) A(s) is symmetric for every s, i.e.

〈A(s)ξ, η〉 = 〈ξ, A(s)η〉

for ξ, η ∈ V . Moreover, the operators A(s) − A∞ and Ȧ(s) extend to
bounded linear operators on H, A∞ : V → H is bijective, and

lim
s→∞

‖A(s) − A∞‖ = lim
s→∞

‖Ȧ(s)‖ = 0,

where ‖ · ‖ denotes the operator norm on L(H).

(b) B(s) is skew-symmetric for every s, i.e.

〈ξ, B(s)η〉 = −〈B(s)ξ, η〉

for ξ, η ∈ H, and
lim
s→∞

‖B(s)‖ = 0.

Lemma 3.1. Assume (a) and (b) and let ξ : [0,∞) → H and η : [0,∞) → H
be continuously differentiable functions. Suppose ξ(s) ∈ V and

ξ̇(s) + A(s)ξ(s) + B(s)ξ(s) = η(s) (12)

for every s ≥ 0. Suppose further that there exist positive constants C and ε
such that

‖η(s)‖ + ‖η̇(s)‖ ≤ Ce−εs (13)

for every s ≥ 0. Then there exist positive constants c and δ such that

‖ξ(s)‖ ≤ ce−δs

for every s ≥ 0.
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Proof. We suppress the argument s whenever convenient. Consider the func-
tion

α(s) :=
1

2
‖ξ(s)‖2 .

Since B(s) is skew-symmetric it follows that

α̇ = 〈ξ, ξ̇〉 = 〈ξ, η − Aξ〉

and hence

α̈ = 〈ξ̇, η − 2Aξ〉 + 〈ξ, η̇ − Ȧξ〉

= 2‖Aξ‖2 + ‖η‖2 − 〈Aξ, 3η〉 − 〈Bξ, η〉+ 〈2Bξ, Aξ〉+ 〈ξ, η̇ − Ȧξ〉

≥ ‖Aξ‖2 −
5

2
‖Bξ‖2 − 4‖η‖2 + 〈ξ, η̇ − Ȧξ〉 (14)

≥ ‖Aξ‖2 −

(
5

2
‖B‖2 + ‖Ȧ‖

)
‖ξ‖2 − 4‖η‖2 + 〈ξ, η̇〉.

Here ‖B‖ and ‖Ȧ‖ are understood as the operator norms on L(H). By (a),
there exists a constant δ ∈ (0, ε) such that δ ≤ 1/2 and

‖A∞v‖ ≥ 3δ ‖v‖

for every v ∈ V . By (a) and (b), there exists a constant s0 > 0 such that

5

2
‖B(s)‖2 + ‖Ȧ(s)‖ ≤ δ2, ‖A(s) − A∞‖ ≤ δ

for every s ≥ s0. Hence

‖A(s)v‖ ≥ ‖A∞v‖ − ‖(A(s) − A∞)v‖ ≥ 2δ‖v‖

for s ≥ s0 and v ∈ V . Hence, by (14) and (13), we have

α̈(s) ≥ ‖A(s)ξ(s)‖2 − δ2‖ξ(s)‖2 − 4‖η(s)‖2 − 〈ξ(s), η̇(s)〉

≥ 3δ2‖ξ(s)‖2 − 4‖η(s)‖2 − 〈ξ(s), η̇(s)〉

≥ 2δ2‖ξ(s)‖2 − 4‖η(s)‖2 −
1

δ2
‖η̇(s)‖2

≥ 2δ2‖ξ(s)‖2 −
1

δ2

(
‖η(s)‖2 + ‖η̇(s)‖2

)

≥ 2δ2‖ξ(s)‖2 −
C2

δ2
e−2εs

= (2δ)2α(s) − c0e
−2εs

14



for s ≥ s0, where c0 := C2/δ2. Consider the function

β(s) := α(s) +
c0e

−2εs

(2ε)2 − (2δ)2
.

This function satisfies

β̈(s) = α̈(s) +
c0(2ε)

2e−2εs

(2ε)2 − (2δ)2

≥ (2δ)2α(s) +
c0(2ε)

2e−2εs

(2ε)2 − (2δ)2
− c0e

−2εs (15)

= (2δ)2β(s)

for s ≥ s0. We prove that

β̇(s) + 2δβ(s) ≤ 0 (16)

for every s ≥ s0. Suppose, otherwise, that β̇(s1) + 2δβ(s1) > 0 for some
s1 ≥ s0. Then, by (15),

β̇(s) + 2δβ(s) ≥ e2δsc1

for every s ≥ s1 and some positive constant c1. This implies

d

ds
e2δsβ(s) ≥ e4δsc1

for s ≥ s1. Integrating this inequality gives β(s) ≥ e2δsc2−c3 for every s ≥ s1

and some positive constants c2 and c3. This contradicts our assumption that
‖ξ(s)‖ does not diverge to ∞ as s tends to infinity. Thus we have proved (16).
Write this inequality in the form

d

ds
e2δsβ(s) ≤ 0.

With c4 := eδs0
√

2β(s0) it follows that

‖ξ(s)‖ ≤
√

2α(s) ≤
√

2β(s) ≤ c4e
−δs

for s ≥ s0. This proves the lemma.
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Remark 3.2. Assume the situation of Lemma 3.1 with η = 0 and C = 0.
Then the inequality (16) has the form

〈ξ(s), A(s)ξ(s)〉 ≥ δ ‖ξ(s)‖2 (17)

for s ≥ s0.

The next lemma is a simplified form of a theorem by Agmon and Niren-
berg [2]. They used this technique to establish unique continuation for solu-
tions of elliptic and parabolic partial differential equations.

Lemma 3.3 (Agmon–Nirenberg). Assume that A, B, and ξ satisfy the
hypotheses of Lemma 3.1 with η = 0 and that ξ is nonconstant. Then ξ(s) 6= 0
for every s ≥ 0 and the functions

v(s) :=
ξ(s)

‖ξ(s)‖
, λ(s) := 〈v(s), A(s)v(s)〉 (18)

satisfy

λ̇(s) ≤ ‖B(s)‖2 + ‖Ȧ(s)‖ − ‖A(s)v(s) − λ(s)v(s)‖2 . (19)

Moreover, if

N := λ(0) +

∫ ∞

0

(
‖B(s)‖2 + ‖Ȧ(s)‖

)
ds < ∞

then
‖ξ(s)‖ ≥ e−Ns ‖ξ(0)‖

for every s ≥ 0.

Proof. The formula (18) defines functions v : Ω → V and λ : Ω → R, where

Ω := {s ≥ 0 | ξ(s) 6= 0} .

In the following we suppress the argument s. The derivative of v is given by

v̇ = (λ − A)v − Bv.

Hence

λ̇ = 2〈v̇, Av〉 + 〈v, Ȧv〉

= 2〈λv − Av − Bv, Av〉 + 〈v, Ȧv〉

= −2‖λv − Av‖2 + 2〈Bv, λv − Av〉 + 〈v, Ȧv〉

≤ ‖B‖2 + ‖Ȧ‖ − ‖λv − Av‖2.

Thus we have proved (19) for s ∈ Ω.
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Next we prove that Ω = [0,∞). Following [2] we consider the function
γ : Ω → R given by

γ(s) := log ‖ξ(s)‖.

Its derivative is γ̇ = −λ and hence, by (19),

γ̈(s) ≥ −‖B(s)‖2 − ‖Ȧ(s)‖. (20)

Since ξ is nonconstant, Ω 6= ∅. Let s1 ∈ Ω, suppose by contradiction that
Ω 6= [0,∞), and choose a real number s2 ≥ 0 such that s2 /∈ Ω. Choose c > 0
such that ‖B(s)‖2 +‖Ȧ(s)‖ ≤ c for every s in the interval between s1 and s2.
Assume first that s2 > s1. Then s2 may be chosen such that [s1, s2) ⊂ Ω.
By (20), we have

γ̇(s) = γ̇(s1) +

∫ s

s1

γ̈ ≥ γ̇(s1) − c(s2 − s1) =: −c′

and hence γ(s) = γ(s1) +
∫ s

s1
γ̇ ≥ γ(s1) − c′(s2 − s1) for s1 ≤ s < s2. This

implies that ‖ξ(s)‖ = eγ(s) does not converge to zero as s tends to s2. Hence
s2 ∈ Ω in contradiction to our assumption. Now suppose s2 < s1. Then s2

may be chosen such that (s2, s1] ⊂ Ω. By (20), we have

γ̇(s) = γ̇(s1) −

∫ s1

s

γ̈ ≤ γ̇(s1) + c(s1 − s2) =: c′′

and hence γ(s) = γ(s1) −
∫ s1

s
γ̇ ≥ γ(s1) − c′′(s1 − s2) for s2 < s ≤ s1. It

follows again that ‖ξ(s)‖ = eγ(s) does not converge to zero as s tends to s2

and so s2 ∈ Ω. Thus we have proved that Ω = [0,∞). Now suppose that

N = −γ̇(0) +

∫ ∞

0

(
‖B(s)‖2 + ‖Ȧ(s)‖

)
ds < ∞.

Then, by (20),

γ̇(s) = γ̇(0) +

∫ s

0

γ̈(σ) dσ ≥ −N

and hence γ(s) ≥ γ(0) − Ns for every s ≥ 0. This implies

‖ξ(s)‖ = eγ(s) ≥ eγ(0)e−Ns = e−Ns ‖ξ(0)‖

for every s ≥ 0.
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Lemma 3.4. Assume that A, B, ξ, v, λ satisfy the hypotheses of Lemma 3.3,
let δ be the constant of Lemma 3.1, and N be the constant of Lemma 3.3.
Assume further that

∫ ∞

0

(
‖A(s) − A∞‖ + ‖B(s)‖

)
ds < ∞.

Then the limits
λ∞ = lim

s→∞
λ(s), v∞ = lim

s→∞
v(s)

exist (the latter convergence is in H), δ ≤ λ∞ ≤ N , v∞ ∈ V , and

A∞v∞ = λ∞v∞.

Proof. Consider the function

µ(s) := λ(s) +

∫ ∞

s

(
‖B‖2 + ‖Ȧ‖

)
. (21)

By (17), we have

µ(0) = N, µ(s) ≥ λ(s) ≥ δ for s ≥ s0.

Since µ̇(s) = λ̇(s) − ‖B(s)‖2 − ‖Ȧ(s)‖ it follows from (19) that

µ̇(s) + ‖A(s)v(s) − λ(s)v(s)‖2 ≤ 0 (22)

for every s ≥ 0. Hence µ(s) converges to a positive real number

λ∞ := lim
s→∞

µ(s) = lim
s→∞

λ(s). (23)

Since µ(0) = N and µ(s) ≥ δ for every s ≥ s0 we have

δ ≤ λ∞ ≤ N.

We prove that λ∞ is an eigenvalue of A∞. Suppose, otherwise, that the
operator A∞ − λ∞ : V → H is injective. The inclusion V ↪→ H is a compact
operator and A∞ is bijective, and so A∞ − λ∞ is a Fredholm operator of
index zero. Hence A∞ − λ∞ is bijective and hence, by the open mapping
theorem, there exists a constant c > 0 such that, for every η ∈ V ,

‖η‖ ≤ 3c‖A∞η − λ∞η‖.
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Choose s∞ ≥ 0 such that

‖A(s) − A∞‖ ≤ c, |λ(s) − λ∞| ≤ c

for s ≥ s∞. Then

1 ≤ c ‖A(s)v(s) − λ(s)v(s)‖

and, by (22), µ̇(s) ≤ −1/c2 for s ≥ s∞. This contradicts the existence of the
limit (23). Thus we have proved that λ∞ is an eigenvalue of A∞. Next we
prove that

lim
s→∞

σ(s) = 0, σ(s) :=
∥∥v(s) − λ∞A∞

−1v(s)
∥∥2

. (24)

Since 〈v, v̇〉 = 0, the function σ has a bounded derivative

σ̇ = 2λ∞〈λ∞A∞
−1v − 2v, A∞

−1v̇〉.

Now suppose, by contradiction, that σ(s) does not converge to zero. Then
there exists a sequence sν → ∞ and a constant ε > 0 such that σ(sν) > 3ε.
Since |σ̇| is uniformly bounded, say by some constant c > 0, we have

sν − ε/c ≤ s ≤ sν + ε/c =⇒ σ(s) ≥ 2ε.

Hence

‖A∞v(s) − λ∞v(s)‖2 ≥ 2ε/‖A∞
−1‖2

for s ∈ [sν − ε/c, sν + ε/c]. Since ‖A(s) − A∞‖ and |λ(s) − λ∞| converge to
zero as s → ∞, it follows that

‖A(s)v(s) − λ(s)v(s)‖2 ≥ ε/‖A∞
−1‖2

for s ∈ [sν − ε/c, sν + ε/c] and ν sufficiently large. Hence it follows from (22)
that µ(s) diverges to −∞ as s → ∞. This contradicts (23). Thus we have
proved (24). Let

E := ker(A∞ − λ∞)

and denote by P : H → E the orthogonal projection. Then there exists a
constant c > 0 such that, for every η ∈ H,

‖η − Pη‖ ≤ c
∥∥η − λ∞A∞

−1η
∥∥ .
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Hence, by (24),

lim
s→∞

‖v(s) − Pv(s)‖ = 0, lim
s→∞

‖Pv(s)‖ = lim
s→∞

〈v(s), P v(s)〉 = 1. (25)

Now

P ξ̇(s) = −λ∞Pξ(s) + f(s), f(s) := P (A∞ − A(s) − B(s))ξ(s). (26)

By (25), there exists a constant s1 > 0 such that ‖ξ(s)‖ ≤ 2‖Pξ(s)‖ for
s ≥ s1 and hence

‖f(s)‖ ≤ 2 (‖A∞ − A(s)‖ + ‖B(s)‖) ‖Pξ(s)‖ (27)

for s ≥ s1. Consider the function

w(s) :=
Pξ(s)

‖Pξ(s)‖
=

Pv(s)

‖Pv(s)‖
.

By (26), its derivative is

ẇ =
P ξ̇

‖Pξ‖
−

〈
P ξ̇

‖Pξ‖
, w

〉
w =

f

‖Pξ‖
−

〈
f

‖Pξ‖
, w

〉
w.

By (27), the derivative ẇ is integrable. Hence w(s) converges to an element
v∞ ∈ E of norm one. Hence, by (25),

v∞ = lim
s→∞

w(s) = lim
s→∞

Pv(s) = lim
s→∞

v(s).

This proves the lemma.

Lemma 3.5. Assume the situation of Lemma 3.4 and suppose that
∫ ∞

0

∫ ∞

s

(
‖B(σ)‖2 + ‖Ȧ(σ)‖

)
dσds < ∞.

Then λ − λ∞ is integrable,

lim
s→∞

eλ∞s ‖ξ(s)‖ = c∞ := e
R

∞

0
(λ∞−λ) ‖ξ(0)‖ , (28)

and
∥∥ξ(s) − e−λ∞sc∞v∞

∥∥ = o(e−λ∞s) (29)

as s tends to ∞.
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Proof. Consider the function

ρ(s) :=
1

2
‖v(s) − Pv(s)‖2 .

Its derivative is

ρ̇ = 〈v − Pv, v̇〉

= 〈v − Pv, λv − Av − Bv〉

= 〈−Pv, λv − Av − Bv〉

= (λ∞ − λ)〈Pv, v〉+ 〈Pv, Av − A∞v + Bv〉

≤ ‖A − A∞‖ + ‖B‖ − (λ − λ∞)〈Pv, v〉

≤ g − f〈v, Pv〉,

where
f := µ − λ∞,

µ is given by (21), and

g(s) := ‖A(s) − A∞‖ + ‖B(s)‖ +

∫ ∞

s

(
‖B‖2 + ‖Ȧ‖

)
. (30)

By (25), there exists a positive real number s2 such that 〈v(s), P v(s)〉 ≥ 1/2
for every s ≥ s2. Moreover, since µ is decreasing with limit λ∞, it follows
that f is positive. Hence, for s′ ≥ s ≥ s2,

∫ s′

s

f ≤ 2

∫ s′

s

f〈v, Pv〉 ≤ 2

∫ s′

s

(g − ρ̇) ≤ 2

(
ρ(s) +

∫ ∞

s

g

)
. (31)

Since g is integrable it follows that f is integrable. By assumption and (21),
µ − λ is integrable, and hence so is λ∞ − λ = µ − λ − f . Next we observe
that the function c(s) := eλ∞s ‖ξ(s)‖ satisfies the differential equation

ċ(s) = λ∞c(s) − eλ∞s 〈ξ(s), A(s)ξ(s)〉

‖ξ(s)‖
= (λ∞ − λ(s))c(s).

Hence

c(s) = eλ∞s ‖ξ(s)‖ = e
R s
0 (λ∞−λ)‖ξ(0)‖ (32)

and hence c(s) converges to c∞ as s tends to ∞. This proves (28). To
prove (29) note that

lim
s→∞

eλ∞sξ(s) = lim
s→∞

c(s)v(s) = c∞v∞,

where the convergence is in H.
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Lemma 3.6. Assume the situation of Lemma 3.5 and suppose that there
exist positive constants C and ε such that

‖A(s) − A∞‖ + ‖B(s)‖ + ‖Ȧ(s)‖ + ‖Ḃ(s)‖ ≤ Ce−εs. (33)

Then there exist positive constants c and δ such that

∥∥ξ(s) − e−λ∞sc∞v∞
∥∥ ≤ ce−(λ∞+δ)s.

Proof. Since A∞ − λ∞ : V → H is a Fredholm operator its kernel E is
finite dimensional. Think of E as a subspace of H and denote its orthogonal
complement by

H1 := E⊥, V1 := V ∩ H1.

As above, let P : H → E denote the orthogonal projection and consider the
operators A1(s) : V1 → H1 and B1(s) : H1 → H1 defined by

A1(s) := (1l − P )A(s)(1l − P ) − λ∞, B1(s) := (1l − P )B(s)(1l − P ).

Define ξ1 : [0,∞) → V1 and η1 : [0,∞) → H1 by

ξ1(s) := eλ∞s(1l − P )ξ(s),

and

η1(s) := eλ∞s(1l − P )(A(s) + B(s))Pξ(s).

Then ξ1 and η1 are continuously differentiable as functions from [0,∞) to H1

and

ξ̇1 + A1ξ1 + B1ξ1 + η1 = 0.

The derivative of η1 is

η̇1(s) = eλ∞s(1l − P )(Ȧ(s) + Ḃ(s))Pξ(s)

− eλ∞s(1l − P )(A(s) + B(s))P (A(s) − λ∞ + B(s))ξ(s)

= eλ∞s(1l − P )(Ȧ(s) + Ḃ(s))Pξ(s)

− eλ∞s(1l − P )(A(s) − A∞ + B(s))P (A(s) − A∞ + B(s))ξ(s).

Hence, by (28) and (33), there is a constant C ′ > 0 such that, for every s ≥ 0,

‖η1(s)‖ + ‖η̇1(s)‖ ≤ C ′e−εs.
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Hence ξ1 and η1 satisfy the hypotheses of Lemma 3.1. Hence there exist
constants c > 0 and δ ∈ (0, ε) such that, for every s ≥ 0,

‖v(s) − Pv(s)‖ =
‖ξ1(s)‖

eλ∞s‖ξ(s)‖
≤ ce−δs. (34)

Moreover, it follows from (27) and (33) that there exist positive constants c′

and s′ such that, for every s ≥ s′,

∥∥∥∥
Pξ(s)

‖Pξ(s)‖
− v∞

∥∥∥∥ = ‖w(s) − v∞‖ ≤

∫ ∞

s

‖ẇ‖ ≤ c′e−εs.

Hence

‖v(s) − v∞‖ ≤ ‖v(s) − Pv(s)‖ +

∥∥∥∥Pv(s) −
Pv(s)

‖Pv(s)‖

∥∥∥∥ +

∥∥∥∥
Pv(s)

‖Pv(s)‖
− v∞

∥∥∥∥

= ‖v(s) − Pv(s)‖ + 1 − ‖Pv(s)‖+

∥∥∥∥
Pξ(s)

‖Pξ(s)‖
− v∞

∥∥∥∥

≤ 2‖v(s) − Pv(s)‖ +

∥∥∥∥
Pξ(s)

‖Pξ(s)‖
− v∞

∥∥∥∥
≤ (2c + c′)e−δs

for every s ≥ s′. Now let g : [0,∞) → [0,∞) be given by (30). Then, by (33),
there is a constant c′′ > 0 such that, for every s ≥ 0,

∫ ∞

s

g(s) ds ≤ c′′e−εs.

By (31) and (34), there is a constant c′′′ > 0 such that, for every s ≥ 0,

∫ ∞

s

(µ − λ∞) =

∫ ∞

s

f ≤ ‖v(s) − Pv(s)‖2 + 2

∫ ∞

s

g ≤ c′′′e−δs.

By (21) and (33), there is a constant c′′′′ > 0 such that, for every s ≥ 0,

∫ ∞

s

|λ − λ∞| ≤

∫ ∞

s

|λ − µ| +

∫ ∞

s

|µ − λ∞| ≤ c′′′′e−δs.

By (32), c(s) = eλ∞s‖ξ(s)‖ converges exponentially to c∞ and hence the
function eλ∞sξ(s) = c(s)v(s) converges exponentially to c∞v∞.

23



4 Proofs of Theorems A and B

Proof of Theorem A. It is immediate that (III) implies (I); in fact, if u sat-
isfies (III) then

E(u) ≤
c

ε
.

We prove that (I) implies (II). Assume, by contradiction, that there exist
sequences sν → ∞ and tν ∈ [0, 1] and a constant δ > 0 such that

|∂su(sν, tν)| ≥ δ (35)

for every ν. Consider the sequence

uν(s, t) := u(sν + s, t).

By (I) and Lemma B.3, there exist constants s0 > 0 and c1 > 0 such that,
for every s ∈ R and every t ∈ [0, 1],

s ≥ s0 =⇒ |∂su(s, t)| ≤ c1.

Hence, by Lemma C.3, there exist constants ν0 > 0 and c2 > 0 such that

ν ≥ ν0 =⇒ ‖uν‖C2([−1,1]×[0,1]) ≤ c2.

By the Arzéla-Ascoli theorem, uν has a C1-convergent subsequence, still
denoted by uν. Since E(u) = 0, the limit function is independent of the
s-variable. Hence

lim
ν→∞

‖∂suν‖C0([−1,1]×[0,1]) = 0.

This contradicts (35). Thus we have proved that the second limit in (II)
exists. Since ∂su+Jt(u)∂tu = 0 it follows that ∂tu converges to zero uniformly.

Hence the length function s 7→
∫ 1

0
|∂tu(s, t)| dt converges to zero. Hence it

follows from the boundary condition that u(s, t) converges to an intersection
point of L0 and L1 as s tends to ∞. This proves (II).

Before proving (II) implies (III) we first prove that (II) implies

lim
s→∞

‖∂su‖Ck([s,∞)×[0,1]) = 0 (36)

for every k. If (II) holds then sups,t |∂su(s, t)| < ∞. Hence, by Lemma C.3
and the fact that J is independent of s, it follows that, for every k,

‖∂su‖Ck([0,∞)×[0,1]) < ∞.
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Now suppose, by contradiction, that there exist a δ > 0, an integer k ≥ 0,
and a sequence sν → ∞ such that

‖∂su‖Ck([sν−1,sν+1]×[0,1]) ≥ δ.

Since ∂su satisfies a uniform Ck+1-bound, it follows that the sequence

ξν(s, t) := ∂su(s + sν, t)

has a Ck-convergent subsequence. Since ∂su converges to zero in the sup-
norm the limit is zero. Hence the subsequence of ξν converges to zero in the
Ck-norm, a contradiction. Thus we have proved (36).

We prove that (II) implies (III). If (II) holds we may assume, without
loss of generality, that u(s, t) ∈ U for every s ≥ 0 and every t ∈ [0, 1], where
U ⊂ M is the neighbourhood of p introduced in Lemma 2.1. For q ∈ U and
t ∈ [0, 1] let Φt(q) : R2n → TqM be the trivialization of Lemma 2.1 and, for
s ≥ 0 and 0 ≤ t ≤ 1, define ξ(s, t) ∈ R

2n by

ξ(s, t) := Φt((u(s, t))−1∂su(s, t). (37)

Since Du∂su = 0, it follows from (4) that

∂sξ + J0∂tξ + Sξ = 0. (38)

Define ξ : [0,∞) → V by ξ(s)(t) := ξ(s, t). This function is smooth and,
by (38), it satisfies

ξ̇(s) + A(s)ξ(s) + B(s)ξ(s) = 0, (39)

where A(s) and B(s) are defined by (8) and (9). By (36) and Lemma 2.3, A(s)
and B(s) satisfy the hypotheses of Lemma 3.1. Hence there exist positive
constants c0 and ε such that, for every s ≥ 0,

∫ 1

0

|ξ(s, t)|2 dt ≤ c0e
−2εs. (40)

Now consider the equation (38). By Lemma C.1, there exist, for each integer
k ≥ 0, constants ck and c′k such that, for every s ≥ 1,

‖ξ‖W k,2([s,∞)×[0,1]) ≤ ck

(
‖Sξ‖W k−1,2([s−1,∞)×[0,1]) + ‖ξ‖W k−1,2([s−1,∞)×[0,1])

)

≤ c′k ‖ξ‖W k−1,2([s−1,∞)×[0,1]) .
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Here the last inequality uses the fact that, by (36) and Lemma 2.2, the
function S satisfies a uniform Ck−1-bound. Hence, by induction,

‖ξ‖W k,2([s,∞)×[0,1]) ≤ c′′k ‖ξ‖L2([s−k,∞)×[0,1]) ≤ c′′k

√
c0

2ε
e−ε(s−k)

for s ≥ s0+k. The last inequality follows from (40). Combining this with (36)
we obtain that ∂su = Φt(u)ξ converges to zero exponentially in the C∞

topology, as required.

Proof of Theorem B. Let u ∈ S be nonconstant and continue the notation
of the proof of Theorem A. In particular, ξ(s, t) ∈ R

2n is defined by (37) and
satisfies (38), (39), and (40). By (III) in Theorem A and Lemma 2.3, the
operators A(s) and B(s) satisfy the hypotheses of Lemma 3.6. Hence there
exist an eigenvalue λ∞ > 0, a nonzero eigenfunction v∞ ∈ ker(A∞ − λ∞),
and constants c > 0 and δ ∈ (0, ε) such that, for every s ≥ 0,

∫ 1

0

∣∣eλ∞sξ(s, t) − v∞(t)
∣∣2 dt ≤ ce−2δs. (41)

Abbreviate

ζ(s, t) := eλ∞sξ(s, t) − v∞(t). (42)

We prove by induction that, for every integer k ≥ 0, there exists a constant
ck > 0 such that, for every s ≥ 0,

‖ζ‖W k,2([s,∞)×[0,1]) ≤ cke
−δs. (43)

For k = 0 this follows from (41). Assume, by induction, that (43) has been
established for some integer k ≥ 0. Note that ζ satisfies the partial differential
equation

∂sζ + J0∂tζ = η,

where

η(s, t) := eλ∞s(S∞(t) − S(s, t))ξ(s, t) − (S∞(t) − λ∞)ζ(s, t),

and the boundary condition

ζ(s, 0), ζ(s, 1) ∈ R
n × {0}.
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By (III) in Theorem A and (7) in Lemma 2.2, there exists a constant c′k > 0
such that

‖S − S∞‖Ck([s,∞)×[0,1]) ≤ c′ke
−δs

for every s ≥ 0. Hence it follows from the induction hypothesis that

‖η‖W k,2([s,∞)×[0,1]) ≤ c′′ke
−δs

for every s ≥ 0 and some constant c′′k. Hence it follows from Lemma C.1
that (43) holds with k replaced by k + 1.

With (43) established, it follows from the Sobolev embedding theorem
that eλ∞sξ(s, t) converges uniformly and exponentially with all derivatives
to v∞(t) as s tends to ∞. Consider the function u in t-dependent local
coordinates ϕt : U → R2n near p such that

ϕt(p) = 0, dϕt(p) = Φt(p)−1.

Then the matrix function Ψt : U → R2n×2n, defined by

Ψt(q) := dϕt(q)Φt(q),

satisfies Ψt(p) = 1l. Moreover, ∂s(ϕt ◦ u) = Ψt(u)ξ and hence, by (42),

∂sϕt(u(s, t)) = e−λ∞sv∞(t) + R(s, t), (44)

and hence

ϕt(u(s, t)) = −
1

λ∞

e−λ∞sv∞(t) −

∫ ∞

s

R(σ, t) dσ, (45)

where

R(s, t) := e−λ∞sΨt(u(s, t))ζ(s, t) + e−λ∞s (Ψt(u(s, t)) − 1l) v∞(t).

It follows from (III) in Theorem A and (43) that, for every integer k ≥ 0,
there exists a constant ck > 0 such that, for every s ≥ 0,

‖R‖Ck([s,∞)×[0,1]) ≤ cke
−(λ∞+δ)s. (46)

Since v∞ is a nonzero eigenfunction of A∞ it follows from (44) that v∞(t) 6= 0
for all t. Hence there exist positive constants c and s0 such that

1

c
e−λ∞s ≤ |∂su(s, t)| ≤ ceλ∞s

for s ≥ s0. Now take

λ := λ∞, v(t) := Φt(p)v∞(t).

Then it follows from (45) and (46) that u has the required asymptotic be-
haviour. This proves Theorem B.
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A The Heinz trick

Let

∆ =
∂2

∂x1
2

+ · · ·+
∂2

∂xn
2

denote the standard Laplacian on Rn. We write

Br(x) = {ξ ∈ R
n | |ξ − x| < r}

and abbreviate Br = Br(0). The following Lemma is a generalization of the
mean value inequality for subharmonic functions. A version of this estimate
was proved by Uhlenbeck [19] and used for the proof of the removable singu-
larity theorem for Yang-Mills connections. The proof below uses a classical
trick by E. Heinz, which was explained to us by Mario Micallef. The second
author used a similar inequality in [16]

Lemma A.1. For every λ > 1 there exists a constant µ = µ(λ, n) > 0 such
that the following holds. If w : Br → R is a bounded C2-function that satisfies
the inequalities

∆w ≥ −a − bw(n+2)/n, w ≥ 0,

∫

Br

w <
µ

bn/2
(47)

for some constants a ≥ 0 and b ≥ 0 then

w(0) ≤
ar2

2n + 4
+

λ

Vol(Br)

∫

Br

w. (48)

Remark A.2. If b = 0 then the last condition in (47) is vacuous and (48)
holds with λ = 1. In this case the inequality is sharp, i.e. in (48) equality
holds with λ = 1 whenever ∆w = −a. (See Step 1 of the proof.)

Remark A.3. The proof shows that the constant µ can be chosen as

µ = (2n + 4)n/2(1 − δ)δ(n2+3n+2)/2Vol(B1),

where δ ∈ (0, 1) is given by λ = (1− δ)−n−1. In particular, with δ = 1/2 and
n = 2,

λ = 8, µ =
π

16
.
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Proof of Lemma A.1. The proof consists of five steps.

Step 1: The lemma holds with b = 0.

In this case the third inequality in (47) is automatically satisfied and (48)
with λ = 1 is the mean value inequality for the subharmonic function

w̃(x) := w(x) +
a|x|2

2n
.

Step 2: It suffices to prove the lemma for r = 1.

Suppose that w : Br → R satisfies (47) and define w̃ : B1 → R and ã, b̃ ∈ R by

w̃(z) := w(rz), ã := ar2, b̃ := br2.

Then
∆w̃ ≥ −ã − b̃w̃(n+2)/n

and ∫

B1

w̃ =
1

rn

∫

Br

w ≤
µ

rnbn/2
=

µ

b̃n/2
.

Hence, assuming the lemma for r = 1, we obtain

w(0) = w̃(0) ≤
ã

2n + 4
+

λ

Vol(B1)

∫

B1

w̃ =
ar2

2n + 4
+

λ

Vol(Br)

∫

Br

w.

Step 3: It suffices to prove the lemma for b = 1.

Suppose that w : Br → R satisfies (47) and define w̃ : B1 → R and ã ∈ R by

w̃(z) := bn/2w(z), ã := bn/2a.

Then
∆w̃ ≥ −ã − w̃(n+2)/n

and ∫

Br

w̃ = bn/2

∫

Br

w ≤ µ.

Hence, assuming the lemma for b = 1, we obtain

w(0) = b−n/2w̃(0) ≤
b−n/2ã

2n + 4
+

b−n/2λ

Vol(Br)

∫

Br

w̃ =
a

2n + 4
+

λ

Vol(Br)

∫

Br

w.
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Step 4 (The Heinz trick): Assume b = r = 1 and define f : [0, 1] → R by

f(ρ) = (1 − ρ)n sup
Bρ

w

for 0 ≤ ρ ≤ 1. Since f(1) = 0 and f is nonegative, there exist ρ∗ ∈ [0, 1) and
x∗ ∈ Bρ∗ such that

f(ρ∗) = max
0≤ρ≤1

f(ρ), c := w(x∗) = sup
Bρ∗

w.

Denote
ε := (1 − δ)(1 − ρ∗).

Then, for 0 ≤ ρ ≤ ε,

c ≤
aρ2

2n + 4
+

c(n+2)/nρ2

(2n + 4)δn+2
+

1

ρnVol(B1)

∫

B1

w. (49)

To see this, note first that

sup
Bε(x∗)

w ≤ sup
Bρ∗+ε

w =
f(ρ∗ + ε)

(1 − ρ∗ − ε)n
=

f(ρ∗ + ε)

δn(1 − ρ∗)n
≤

f(ρ∗)

δn(1 − ρ∗)n
=

c

δn
.

Hence

∆w ≥ −a − w(n+2)/n ≥ −a −
c(n+2)/n

δn+2

in Bε(x
∗) and so (49) follows from Step 1 with r = ρ ≤ ε and a replaced by

a + c(n+2)/nδ−n−2.

Step 5: The lemma holds for r = 1 and b = 1.

If (2n + 4)c ≤ a then w(0) ≤ c ≤ a/(2n + 4) and this implies (48). Hence we
may assume that

a ≤ (2n + 4)c.

Next we prove that

c2/nε2

(2n + 4)δn+2
< δ. (50)

Suppose otherwise that ε2 ≥ (2n+4)δn+3/c2/n. Then, in (49), we can choose

ρ :=

√
(2n + 4)δn+3

c2/n
≤ ε
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and obtain

c ≤
aρ2

2n + 4
+

c(n+2)/nρ2

(2n + 4)δn+2
+

1

ρnVol(B1)

∫

B1

w

=
aδn+3

c2/n
+ δc +

(
c2/n

(2n + 4)δn+3

)n/2
1

Vol(B1)

∫

B1

w

≤
(2n + 4)δn+3c

c2/n
+ δc +

(
c2/n

(2n + 4)δn+3

)n/2
1

Vol(B1)

∫

B1

w

≤ (1 − δ)2c + δc + c

(
1

(2n + 4)δn+3

)n/2
1

Vol(B1)

∫

B1

w

= c − δ(1 − δ)c + c

(
1

(2n + 4)δn+3

)n/2
1

Vol(B1)

∫

B1

w.

Here the third inequality uses a ≤ (2n+4)c and the fourth inequality follows
from the fact that (2n + 4)δn+3/c2/n ≤ ε2 ≤ (1 − δ)2. It follows that

δ(1 − δ)
(
(2n + 4)δn+3

)n/2
Vol(B1) ≤

∫

B1

w.

But the left hand side equals µ (see Remark A.3) and so this contradicts (47).
Hence (50) must have been true.

Now consider (49) with ρ = ε to obtain

c ≤
aε2

2n + 4
+

c(n+2)/nε2

(2n + 4)δn+2
+

1

εnVol(B1)

∫

B1

w

≤
a(1 − δ)n+2

(2n + 4)εn
+ δc +

1

εnVol(B1)

∫

B1

w.

The last inequality uses ε ≤ 1 − δ and (50). Multiplying by εn gives

(1 − δ)cεn ≤
a(1 − δ)n+2

2n + 4
+

1

Vol(B1)

∫

B1

w.

Hence

w(0) = f(0) ≤ f(ρ∗) = (1− ρ∗)nc =
cεn

(1 − δ)n
≤

a

2n + 4
+

(1 − δ)−n−1

Vol(B1)

∫

B1

w.

This proves the lemma in the case r = b = 1.
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B Apriori estimates

Throughout this section (M, g) is a closed Riemannian manifold and L ⊂ M
is a closed submanifold. Denote by J (M, L) the space of all almost complex
structures on M for which L is totally real. Denote

H = {z ∈ C | Im z ≥ 0}, Hr(z0) := {z ∈ H | |z − z0| < r}.

Note that πr2/2 ≤ area(Hr(z0)) ≤ πr2.

Lemma B.1. For every J ∈ J (M, L) there exist constants δ > 0 and c > 0
such that the following holds for every r > 0, every z0 ∈ H, and every smooth
map u : Hr(z0) → M . If u satisfies the boundary value problem

∂su + J(u)∂tu = 0, u(Hr(z0) ∩ R) ⊂ L,

then
∫

Hr(z0)

|∂su|
2 < δ =⇒ |∂su(z0)|

2 ≤
c

r2

∫

Hr(z0)

|∂su|
2.

Proof. The assertion is independent of the choice of the metric. Hence we
may assume that g satisfies the conditions (i), (ii), and (iii) of Lemma D.1.
Let ∇ denote the Levi-Civita connection of g and R ∈ Ω2(End(TM)) denote
the curvature tensor. Abbreviate

ξ := ∂su, η := ∂tu, w :=
1

2
|ξ|2 =

1

2
|η|2 ,

and ∆ := ∂s
2 +∂t

2. (That |ξ| = |η| follows from condition (i) in Lemma D.1.)
Then

∆w = |∇sξ|
2 + |∇tξ|

2 + 〈ξ,∇s∇sξ + ∇t∇tξ〉.

Since ∇sη = ∇tξ we have

∇sξ + ∇tη = ∇t(Jξ) −∇s(Jη) = (∇ηJ)ξ − (∇ξJ)η,

hence

∇s∇sξ + ∇t∇tξ = ∇s(∇sξ + ∇tη) + ∇t∇sη −∇s∇tη

= ∇s((∇ηJ)ξ − (∇ξJ)η) − R(ξ, η)η,
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and hence

∆w = |∇sξ|
2 + |∇tξ|

2 − 〈R(ξ, η)η, ξ〉+ κ. (51)

The error term κ is

κ = 〈ξ,∇s((∇ηJ)ξ − (∇ξJ)η)〉

= 〈ξ, (∇ηJ)∇sξ − (∇ξJ)∇sη)〉 + 〈ξ, (∇s(∇ηJ))ξ − (∇s(∇ξJ)η)〉.

There exists a constant c = c(M, J, g) > 0 such that

|∇s(∇ηJ)| ≤ c
(
|ξ|2 + |∇tξ|

)
, |∇s(∇ξJ)| ≤ c

(
|ξ|2 + |∇sξ|

)
.

Hence there exists a constant c′ = c′(M, J, g) > 0 such that

κ ≥ −c′ |ξ|4 − c′ |ξ|2 |∇sξ| − c′ |ξ|2 |∇tξ|

≥ −
1

2
|∇sξ|

2 −
1

2
|∇tξ|

2 − c′(1 + c′) |ξ|4 .

By (51), there exists a constant c′′ = c′′(M, J, g) > 0 such that

∆w ≥ −c′′ |ξ|4 /4 = −c′′w2.

Now the normal derivative of w on Hr(z0) ∩ R is zero:

∂tw(s, 0) = 〈ξ(s, 0),∇tξ(s, 0)〉

= 〈ξ(s, 0),∇sη(s, 0)〉

= 〈ξ(s, 0),∇s(J(u(s, 0))ξ(s, 0))〉

= 〈ξ(s, 0), J(u(s, 0))∇sξ(s, 0)〉

= 0.

The penultimate equality uses the fact that ∇ξJ(u) is skew-symmetric with
respect to g. This follows from condition (i) of Lemma D.1. The last equal-
ity uses conditions (ii) and (iii) of Lemma D.1. Namely, since L is totally
geodesic we have ∇sξ(s, 0) ∈ Tu(s,0)L and hence, by (ii), J(u(s, 0))∇sξ(s, 0) is
orthogonal to Tu(s,0)L. It follows that w extends by reflection to a twice con-
tinuously differentiable function on the open disc Br(z0) := {z ∈ C | |z−z0| <
r}. The extended function will still be denoted by w. It satisfies w(z̄) = w(z)
and ∆w ≥ −c′′w2. Hence the assertion follows from Lemma A.1.
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Remark B.2. If (M, J, g) is a Kähler manifold then the error term κ in
equation (51) vanishes. If, in addition, the curvature is negative then w is
subharmonic and Lemma A.1 is not required.

Next we want to allow for J to depend on both z = s+it and u. Following
Gromov [10] we do this by introducing an almost complex structure on the
product H × M . In our application we do not need the vector fields X and
Y below.

Let {Jz}z∈H be a smooth family of almost complex structures on M that
has compact support in the sense that there exist a constant R > 0 and an
almost complex structure J∞ on M such that Jz = J∞ for |z| ≥ R. We
assume that Jz ∈ J (M, L) for every z ∈ R.

Lemma B.3. Under these hypotheses there exist constants δ > 0 and c > 0
such that the following holds for every r ∈ (0, δ), every z0 ∈ H, and every
smooth map u : Hr(z0) → M . If u satisfies the boundary value problem

∂su + Js,t(u)∂tu = 0, u(s, 0) ∈ L, (52)

then
∫

Hr(z0)

|∂su|
2 < δ =⇒ |∂su(z0)|

2 ≤ c

(
1 +

1

r2

∫

Hr(z0)

|∂su|
2

)
.

Proof. Denote
M̃ := H × M, L̃ := R × L,

and consider the almost complex structure J̃ on M̃ given by

J̃ =




0 −1 0
1 0 0
0 0 J


 .

Then L̃ is a totally real submanifold of (M̃, J̃) and u satisfies (52) if and only

if the function ũ : Hr(z0) → M̃ , defined by

ũ(s, t) := (s, t, u(s, t))

is a J̃-holomorphic curve in M̃ with boundary values in L̃.
Lemma B.1 does not immediately apply in the present situation as M̃

is not compact. However, we may argue as follows. It suffices to prove
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the lemma under the additional hypothesis that |z0| ≤ R + 1. Namely, if
|z0| > R+1 replace z0 by z1, where |z1| = R+1 and u by u1(z) = u(z+z0−z1).

Now M̃ ∩ (BR+1(0) × M) may be identified with an open subset of a closed

manifold and L̃ ∩ (BR+1(0) × M) and J̃ may be extended.
Now we can apply Lemma B.1, i.e. there exist constants δ > 0 and c > 0

such that the conclusion of Lemma B.1 holds with M , L, and J replaced by
M̃ , L̃, and J̃ , and with the product metric on M̃ . Note that

|∂sũ(s, t)|2 = 1 + |∂su(s, t)|2 .

Assume

r <

√
δ

2π
,

∫

Hr(z0)

|∂su|
2 <

δ

2
.

Then ∫

Hr(z0)

|∂sũ|
2 ≤ πr2 +

∫

Hr(z0)

|∂su|
2 < δ.

Hence, by Lemma B.1,

|∂su(z0)|
2 ≤ |∂sũ(z0)|

2

≤
c

r2

∫

Hr(z0)

|∂sũ|
2

≤
c

π
+

c

r2

∫

Hr(z0)

|∂su|
2 .

This proves the lemma.

C Elliptic bootstrapping

In this section we shall prove that a uniform bound on the first derivatives
of u gives rise to uniform bounds on the higher derivatives whenever u is a
solution of (52). The proof uses the L2-estimate for the Laplace operator.
Throughout Ω denotes a bounded open subset of H. Note that Ω ∩ R may
be nonempty. Let

J0 :=

(
0 −1l
1l 0

)
∈ R

2n×2n

denote the standard complex structure.
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We consider the Cauchy-Riemann operator

∂̄ξ = ∂sξ + J0∂tξ

for smooth functions ξ : Ω → R2n that satisfy the Lagrangian boundary
condition

ξ(s, 0) ∈ R
n × {0} (53)

for all s ∈ R such that (s, 0) ∈ Ω.

Lemma C.1. Let Ω, Ω′ be bounded open subsets of H such that Ω̄ ⊂ Ω′.
Then, for every integer k ≥ 0, there exists a constant c = c(k, Ω, Ω′) > 0
such that

‖ξ‖W k+1,2(Ω) ≤ c
(∥∥∂̄ξ

∥∥
W k,2(Ω′)

+ ‖ξ‖W k,2(Ω′)

)
(54)

for every smooth function ξ : Ω′ → R2n that satisfies (53).

Proof. Assume first that ξ has compact support in Ω′. Then it follows from
the boundary condition and integration by parts that

∫

Ω′

∣∣∂̄ξ
∣∣2 =

∫

Ω′

(
|∂sξ|

2 + |∂tξ|
2 + 2〈∂sξ, J0∂tξ〉

)

=

∫

Ω′

(
|∂sξ|

2 + |∂tξ|
2 + 〈∂sξ, J0∂tξ〉 − 〈ξ, J0∂s∂tξ〉

)

=

∫

Ω′

(
|∂sξ|

2 + |∂tξ|
2 + 〈∂sξ, J0∂tξ〉 + 〈∂tξ, J0∂sξ〉

)

=

∫

Ω′

(
|∂sξ|

2 + |∂tξ|
2) .

Hence, by Poincaré’s inequality, there exists a constant c1 = c1(Ω
′) > 0 such

that
‖ξ‖W 1,2(Ω′) ≤ c2 ‖∂sξ + J0∂tξ‖L2(Ω′)

for every smooth function ξ : Ω′ → R2n with compact support that satis-
fies (53). If ξ does not have compact support choose a smooth cutoff func-
tion β : Ω′ → R with compact support such that β = 1 on Ω, and apply the
previous inequality to βξ to obtain (54) for k = 0. Assume, by induction,
that (54) has been established for some integer k ≥ 0. Then (54) with k
replaced by k + 1 follows by applying (54) to the function ∂sξ.
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Next we shall consider the Laplace operator

∆ =
∂2

∂s2
+

∂2

∂t2

for smooth functions u : Ω → R that satisfy either the Dirichlet boundary
conditions

u(s, 0) = 0 (55)

for all s ∈ R such that (s, 0) ∈ Ω or the Neumann boundary condition

∂tu(s, 0) = 0 (56)

for all s ∈ R such that (s, 0) ∈ Ω.

Lemma C.2. Let Ω, Ω′′ be bounded open subsets of H such that Ω̄ ⊂ Ω′′.
Then, for every integer k ≥ 0, there exists a constant c = c(k, Ω, Ω′′) > 0
such that

‖u‖W k+2,2(Ω) ≤ c
(
‖∆u‖W k,2(Ω′′) + ‖u‖W k+1,2(Ω′′)

)

for every smooth function u : Ω′ → R that satisfies either (55) or (56).

Proof. Choose an open set Ω′ ⊂ H such that Ω̄ ⊂ Ω′ and Ω̄′ ⊂ Ω′′. Denote

∂ := ∂s − J0∂t.

By Lemma C.1, there exist constants c′ and c′′ such that

‖ξ‖W k+2,2(Ω) ≤ c′
(∥∥∂̄ξ

∥∥
W k+1,2(Ω′)

+ ‖ξ‖W k+1,2(Ω′)

)
,

‖η‖W k+1,2(Ω′) ≤ c′′
(
‖∂η‖W k,2(Ω′′) + ‖η‖W k,2(Ω′′)

)

for all smooth functions ξ : Ω′ → R2 and η : Ω′′ → R2 that satisfy the
boundary condition (53). Now suppose that u, v : Ω′′ → R are smooth
functions such that v satisfies the Dirichlet boundary condition and u satisfies
the Neumann boundary condition, i.e.

∂tu(s, 0) = v(s, 0) = 0

for s ∈ R such that (s, 0) ∈ Ω′′. Then

ξ := (u, v) : Ω′′ → R
2
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satisfies the Lagrangian boundary condition (53) and so does the function
η := ∂̄ξ. Since ∆ = ∂∂̄ it follows that

‖ξ‖W k+2,2(Ω) ≤ c′
(∥∥∂̄ξ

∥∥
W k+1,2(Ω′)

+ ‖ξ‖W k+1,2(Ω′)

)

≤ c′
(
c′′ ‖∆ξ‖W k,2(Ω′′) + (1 + c′′) ‖ξ‖W k+1,2(Ω′′)

)
.

This proves the lemma.

Lemma C.3. Let Ω, Ω′ be bounded open subsets of H such that Ω̄ ⊂ Ω′.
Let M , L, {Jz}z∈Ω′, be as in the hypotheses of Lemma B.3. Then, for
every integer k ≥ 0 and every constant c1 > 0, there exists a constant
ck = ck(c1, Ω, Ω′) > 0 such that the following holds for every smooth map
u : Ω′ → M . If u satisfies the boundary value problem (52) then

sup
Ω′

|∂su| ≤ c1 =⇒ ‖u‖Ck(Ω) ≤ ck

Proof. Let 2n = dim M and n = dim L. Cover M by finitely many coor-
dinate charts that identify L with Rn × {0} ⊂ Rn and identify J with the
standard complex structure J0 : R2n → R2n on Rn × {0} ∼= L. (Do this
by choosing any coordinates x1, . . . , xn on L and using exponential normal
coordinates y1, . . . , yn with ∂/∂yi = J∂/∂xi.) Choose δ > 0 such that

z0 ∈ Ω =⇒ Hδ(z0) ⊂ Ω′

and that, for every p ∈ M , there exists a coordinate chart as above that
contains the closed ball of radius δc1 about p.

Now let u : Ω′ → M be a solution of (52) such that

sup
Ω′

|∂su| ≤ c1

and fix a point z0 ∈ Ω. Then d(u(z0), u(z)) ≤ c1δ for every z ∈ Hδ(z0).
Hence there is a coordinate chart as above that contains u(Hδ(z0)). Write
u : Hδ(z0) → U ⊂ R2n for the map u in this coordinate chart. Then

∂su + J(s, t, u)∂tu = 0, (57)

u(s, 0) ∈ R
n × {0}. (58)
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We prove by induction that, for every k, there exists a constant ck, indepen-
dent of u, such that

‖u‖W k,2(Hδ/k(z0))
≤ ck. (59)

Abbreviate J = J(s, t, u(s, t)) and think of this as a functions of s and t.
Then, by (57),

(∂s − J∂t)(∂su + J∂tu) = 0

and hence

∆u = (∂sJ)∂tu − (∂tJ)∂su. (60)

Write u = (u1, u2) where ui : Hδ(z0) → Rn for i = 1, 2. Then, by (58),
u2(s, 0) = 0 and hence

∂tu1(s, 0) = −∂su2(s, 0) = 0,

i.e. u1 satisfies the Neumann boundary condition and u2 satisfies the Dirichlet
boundary condition. Hence it follows from Lemma C.2 that for every integer
k ≥ 1 there exists a constant c′k+1 such that

‖u‖W k+1,2(Hδ/(k+1)(z0))
≤ c′k+1

(
‖∆u‖W k−1,2(Hδ/k(z0)) + ‖u‖W k,2(Hδ/k(z0))

)
. (61)

By assumption there exists a constant c′1, depending only on c1 and the choice
of the coordinate charts, such that

‖u‖C1(Hδ(z0)) ≤ c′1.

Hence it follows from (61) with k = 1 and (60) that (59) holds with k = 2.
Now the formula (60) shows that the W 2,2-bound on u together with the
C1-bound implies a W 1,2-bound on ∆u in the domain Hδ/2(z0). Hence it
follows from (61) with k = 2 that (59) holds with k = 3. Now suppose,
by induction, that (59) has been established for k ≥ 3. Then, by (60), ∆u
satisfies a W k−1,2-bound in the domain Hδ/k(z0) and hence, by (61), u satisfies
a W k+1,2-bound in Hδ/(k+1)(z0). This proves (59). With (59) established, the
assertion of the lemma follows from the Sobolev inequality

‖u‖C0(Hr(z0)) ≤ c0(r) ‖u‖W 2,2(Hr(z0))

for some constant c0(r) and every smooth function u : Hr(z0) → R2n.
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D A convenient metric

The following lemma appeared in the Diploma thesis of Urs Frauenfelder [9].
We give a proof for the convenience of the reader.

Lemma D.1 (Urs Frauenfelder). Let (M, J) be an almost complex man-
ifold and L ⊂ M be a totally real submanifold with 2 dim L = dim M . Then
there exists a Riemannian metric g on M such that

(i) g(J(p)v, J(p)w) = g(v, w) for p ∈ M and v, w ∈ TpM ,

(ii) J(p)TpL is the orthogonal complement of TpL for every p ∈ L,

(iii) L is totally geodesic with respect to g.

Proof. Choose coordinates x1, . . . , xn on L and extend these to coordinates
x1, . . . , xn, y1, . . . , yn on M such that

J
∂

∂xi

=
∂

∂yi

, i = 1, . . . , n,

on L. Write a metric in these coordinates in the form

g(x, y) =

(
a(x, y) b(x, y)T

b(x, y) c(x, y)

)
,

where a(x, y) = a(x, y)T , b(x, y), and c(x, y) = c(x, y)T are real n × n-
matrices. Such a metric satisfies (i), (ii), and (iii) if and only if

a(x, 0) = c(x, 0), b(x, 0) = 0, ∂n+ia(x, 0) = 0, (62)

for i = 1, . . . , n. The set of metrics that satisfy (62) is invariant under convex
combinations and under multiplication by cutoff functions β = β(x, y) that
satisfy

∂n+iβ(x, 0) = 0.

This condition on the cutoff function is intrinsic. It asserts that

q ∈ L, v ∈ TqL =⇒ dβ(q)J(q)v = 0. (63)

Hence the result follows by choosing local metrics that satisfy (62) and patch-
ing with a partition of unity consisting of finitely many cutoff functions that
satisfy (63).
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E Applications to contact geometry

Let M be a 2n+1-dimensional oriented manifold and α ∈ Ω1(M) be a contact
form, i.e.

α ∧ (dα)n > 0.

The Reeb vector field Y of α is defined by

ι(Y )α = 1, ι(Y )dα = 0.

We denote by ϕ : R × M → M the Reeb flow and write ϕτ (p) := ϕ(τ, p)
whenever convenient. Let L ⊂ M be a closed Legendrian submanifold, i.e.
α|TL = 0 and L has dimension n. A characteristic chord is a pair (T, γ),
where γ : [0, 1] → M is a smooth curve and T > 0 is a real number such that

γ̇(t) = T Y (γ(t)), γ(0) ∈ L, γ(1) ∈ L.

In particular, γ(t) = ϕ(tT, γ(0)) for 0 ≤ t ≤ 1. We allow the possibility
that the image of the characteristic chord lies on a periodic orbit of the
Reeb flow and hence γ may not be injective. Call the characteristic chord
nondegenerate if ϕ : R × L → M is transverse to L at the point (T, γ(0)).

Now suppose that J : TM → TM is an endomorphism such that

α ◦ J = 0, JY = 0, J2 = αY − 1l,

and the formula

〈v, w〉 := dα(v, Jw) + α(v)α(w) (64)

defines a Riemannian metric on M . In particular, J maps the kernel of α to
itself and its restriction to the kernel of α is an almost complex structure that
is compatible with the symplectic form dα. As in Section 1 let us denote the
half strip by S = [0,∞)× [0, 1]. We consider the partial differential equation

∂su − α(∂su)Y (u) + J(u) (∂tu − α(∂tu)Y (u)) = 0,
∂sα(∂su) + ∂tα(∂tu) = 0,

(65)

for smooth functions u : S → M that satisfy the boundary condition

u(s, 0) ∈ L, u(s, 1) ∈ L, (66)

for s ≥ 0.
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Remark E.1. The solutions of (65) and (66) correspond to pseudoholomor-
phic curves in the symplectization as follows. Consider the symplectic man-
ifold (M̃, ω̃) defined by

M̃ := R × M, ω̃ := d(eθα),

where θ denotes the R-coordinate. Then L̃ := R × L is a Lagrangian sub-
manifold of M̃ and the automorphism J̃ : TM̃ → TM̃ defined by

J̃(θ̂, v) := (−α(v), Jv + θ̂Y )

is an almost complex structure on M̃ that is compatible with ω̃. The corre-
sponding Riemannian metric on M̃ = R×M is eθ times the product metric,
where the metric on M is given by (64). Now u : S → M satisfies (65)
and (66) if and only if there exists a smooth function θ : S → R such that

the function ũ : S → M̃ , defined by

ũ(s, t) := (θ(s, t), u(s, t))

is a J̃-holomorphic curve in M̃ with boundary values in L̃. The function θ
is determined by the equations

∂sθ = α(∂tu), ∂tθ = −α(∂su) (67)

up to an additive constant.

Lemma E.2. Assume M is compact and that all characteristic chords (T, γ)
are nondegenerate. Let u : S → M be a solution of (65) and (66) such that

lim
s→∞

θ(s, t) = ∞, 0 < E0(u) < ∞,

where θ : S → R satisfies (67) and

E0(u) =

∫
u∗dα =

∫ 1

0

∫ ∞

0

|∂su − α(∂su)Y (u)|2 dsdt.

Then there exists a characteristic chord (T, γ) such that

lim
s→∞

u(s, t) = γ(t), lim
s→∞

α(∂tu(s, t)) = T. (68)

The limits are uniform in t.
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Proof. By [6, Theorem 5.9] (the numbering refers to the first draft), every
sequence sν → ∞ has a subsequence sνi

such that (α(∂tu(sνi
, ·)), u(sνi

, ·))
converges uniformly to a characteristic chord (T, γ). By nondegeneracy, char-
acteristic chords are isolated. Hence the limit is independent of the sequence
sν and of the subsequence sνi

.

Fix a nondegenerate characteristic chord (T, γ) and a function u : S → M
that satisfies (68). It is convenient to introduce the following coordinates in
a sufficiently small neighbourhood U of the image of γ. Choose a local
submanifold M̄ ⊂ M of dimension 2n such that

p̄ := γ(0) ∈ M̄, Tp̄M̄ = ker α,

and the Reeb flow defines an open immersion

ϕ : (−ε, T + ε) × M̄ → U

onto an open neighbourhood U of γ([0, 1]). The manifold M̄ carries an exact
symplectic form

ω̄ := dᾱ, ᾱ := α|M̄ .

If M̄ is chosen as a sufficiently small slice that is transverse to γ then there are
two unique Lagrangian submanifolds L̄0, L̄1 ⊂ M̄ and two smooth functions

τ0 : L̄0 → R, τ1 : L̄1 → R

such that ϕτ0(q̄)(q̄) ∈ U ∩ L for q̄ ∈ L̄0, ϕτ1(q̄)(q̄) ∈ U ∩ L for q̄ ∈ L̄1, and

τ0(p̄) = 0, τ1(p̄) = T.

Since γ is nondegenerate, these Lagrangian submanifolds intersect trans-
versally at p̄ ∈ L̄0 ∩ L̄1 and they do not intersect in any other point. For
τ ∈ (−ε, T + ε) define the almost complex structure J̄τ = J̄(τ, ·) on M̄ by

dϕτ (q̄)
(
J̄τ (q̄)v̄ − α(J̄τ(q̄)v̄)Y (q̄)

)
= J(ϕτ (q̄))dϕτ(q̄)v̄ (69)

for v̄ ∈ Tq̄M̄ . Then J̄τ is compatible with ω̄ for every τ . Let us now assume
that u(s, t) ∈ U for every s + it ∈ S and define ū : S → M̄ and τ : S → R

by the condition that ū(s, t) → p̄ and τ(s, t) → tT as s tends to ∞ and

ϕ(τ(s, t), ū(s, t)) = u(s, t) (70)

for s ≥ 0 and 0 ≤ t ≤ 1.
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Lemma E.3. If u satisfies (65) and (66) then

∂sū + J̄(τ, ū)∂tū = 0, ∆τ + ∂sᾱ(∂sū) + ∂tᾱ(∂tū) = 0, (71)

where ∆ := ∂s
2 + ∂t

2, and, for every s ≥ 0,

ū(s, t) ∈ L̄t, τ(s, t) = τt(ū(s, t)), t = 0, 1. (72)

Proof. Differentiate (70) to obtain

∂su = dϕτ (ū)∂sū + (∂sτ)Y (u),

hence

α(∂su) = α(∂sū) + ∂sτ, (73)

and hence

∂su − α(∂su)Y (u) = dϕτ(ū) (∂sū − α(∂sū)Y (ū)) .

Similar identities hold with s replaced by t. Hence, by (69),

0 = ∂su − α(∂su)Y (u) + J(u)(∂tu − α(∂tu)Y (u))

= dϕτ (ū) (∂sū − α(∂sū)Y (ū)) + J(ϕτ (ū))dϕτ (ū)∂tū

= dϕτ (ū)
(
∂sū − α(∂sū)Y (ū) + J̄τ (ū)∂tū − α(J̄τ (ū)∂tū)Y (ū)

)

= dϕτ (ū)
(
∂sū + J̄τ (ū)∂tū

)
− α

(
∂sū + J̄τ (ū)∂tū

)
Y (ϕτ (ū)).

Since Y (ϕτ (p̄)) is not contained in the image of Tp̄M̄ under the differential
dϕτ (p̄), it follows that ∂sū + J̄τ (ū)∂tū = 0. This proves the first equation
in (71) and the second equation follows from (73). The boundary condi-
tion (72) follows directly from the definitions. This proves the lemma.

The first equation in (71) differs from (CR) in that τ depends on s. In the
special case where J is invariant under the Reeb flow, J̄τ is independent of τ
and hence the asymptotic behaviour of ū follows directly from Theorem B.
The asymptotic behaviour of τ can then be deduced from the second equation
in (71). In this special case the results of Abbas [1] follow from ours. We
believe that in general the results of [1] can be derived (and extended to higher
dimensions) by allowing J to depend on s and using elliptic bootstrapping
arguments for the two equations in (71).
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In the case of a Legendrian knot the contact form and the Reeb vector
field are given by

α = dz − y dx, Y =
∂

∂z
.

Consider the endomorphism J : TR3 → TR3 defined by

J
∂

∂x
=

∂

∂y
, J

∂

∂y
= −

∂

∂x
− y

∂

∂z
, J

∂

∂z
= 0.

Then the equations (65) have the form

∂su − ∂tv = 0, ∂sv + ∂tu = 0, ∆w = 0. (74)

Here we read (u, v, w) for u in (65), (u, v) for ū in (71), and w for τ in (71).
The slice M̄ is the (x, y)-plane and so τ = z. The boundary condition (66)
has the form

(u(s, 0), v(s, 0), w(s, 0)) ∈ L, (u(s, 1), v(s, 1), w(s, 1)) ∈ L, (75)

where L ⊂ R3 is a Legendrian knot. Every Legendrian knot L ⊂ R3 projects
to an immersed curve L̄ in the (x, y)-plane and the characteristic chords
correspond to the self-intersections of L̄. They are nondegenerate if and only
if L̄ has transverse self-intersections. In this case we can apply Theorem C
to derive the asymptotic behaviour for the map (u, v) and use the Dirichlet
boundary value problem to deduce the asymptotic behaviour for w.
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Poincaré, Analyse Nonlinéaire 13 (1996), 337–379.

[14] Dusa McDuff and Dietmar Salamon, J-holomorphic Curves and Quantum

Cohomology, AMS University Lecture Series 6, 1994.

[15] Yong-Geun Oh, Removal of Boundary Singularities of Pseudo-holomorphic
curves with Lagrangian boundary conditions, Comm. Pure Appl. Math. 45

(1992), 121–139.

[16] Dietmar Salamon, Morse theory, the Conley index and Floer homology, Bul-

letin L.M.S. 22 (1990), 113–140.

[17] Dietmar Salamon, Lectures on Floer Homology, Lecture Notes for the
IAS/PCMI Graduate Summer School on Symplectic Geometry and Topology,

46



December 1997. In Symplectic Geometry and Topology, edited by Y. Eliash-
berg and L. Traynor, IAS/Park City Mathematics series, Vol 7, 1999, pp.
143–230.

[18] Vin De Silva, Products in the symplectic Floer homology of Lagrangian inter-

sections, PhD thesis, Oxford, 1998.

[19] Karen Uhlenbeck, Removable singularities in Yang-Mills fields, Comm. Math.

Phys. 83 (1982), 11–29.

47


