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1 (C*-dynamical systems (Gaia Torresani)

[Pag 159-160, [2]] Physical theories consist essentially of two elements, a kine-
matical structure describing the instantaneous states and observables of
the system, and a dynamical rule describing the change of these states and
observables with time. In the classical mechanics of point particles a state is
represented by a point in a differentiable manifold and the observables by func-
tions over the manifold. In the quantum mechanics of systems with a finite
number of degrees of freedom the states are given by rays in a Hilbert
space and the observables by operators acting on the space. For particle sys-
tems with an infinite number of degrees of freedom we intend to identify
the states with states over appropriate algebras of fields, or operators. In
each of these examples the dynamical description of the system is given by a
flow, a one-parameter group of automorphisms of the underlying kine-
matical structure, which represents the motion of the system with time. In
classical mechanics one has a group of diffeomorphisms, in quantum mechan-
ics a group of unitary operators on the Hilbert space, and for systems
with an infinite number of degrees of freedom a group of automorphisms of
the algebra of observables.

One-parameter semigroups will be used in the study the time evolution of Open
Quantum Systems.

The general problem is to study the differential equation

dAt
The A corresponds to an observable, or state, of the system and will be rep-
resented by an element of some suitable space X. The function t — A; € X
describes the motion of A and S is an operator on X, which generates the in-
finitesimal change of A. Formally, the solution of the differential equation is
Ay = UgA, where Uy = exptS and the problem is to give a meaning to the
exponential. Independently of the manner in which this is done one expects
U; to have the property that Uy is the identity and that U;Us = U;,s and so
we seek solutions of this nature. There are, however, many different possible
types of continuity of ¢ — U; and this leads to a structural hierarchy. We



examine uniform, strong, and ¢ weak continuity.

Note: [Page 228 [2]] the concept of a o weakly continuous group, of an algebra 4l
is only defined when 4l: has a predual. But in this case 4l: is automatically a von
Neumann algebra by Sakai’s theorem. Moreover, one may demonstrate (see Ex-
ample 3.2.36 in [2]) that a strongly continuous group, of x-automorphisms of a
von Neumann algebra 9t is automatically uniformly continuous. Then strongly
continuous groups are appropriate to C*-algebras, o-weakly continuous to von
Neumann algebras, and uniformly continuous groups to both structures.

On this talk we will focus on strongly continuous groups of C*-algebras. We
start by stating some general facts of the theory of strongly continuous one-
parameter semigroups.

Definition 1.1. Let {A(t)},~, be a family of bounded linear operators defined
on a Banach space B. We say that {A(t)},-, is a strongly continuous semigroup
or Cy semigroup if

1. A(0)=1
2. A(t+s) = A(t)A(s) for any s,t = 0.

3. A(t)p is continuous as a function of t on [0, 00), with respect to the norm
of B, for all ¢ € B.

Note: A semigroup A(t) is defined only for ¢ > 0, a group is defined for ¢ € R.

Remark: The third property is equivalent to the continuity in 0% with respect
to the norm of B, that is |A(t)e — | — 0 for ¢t — 0F.

Proof. One direction is obvious. We prove that the continuity in 0% implies (3).
Let t,h >0

JA(t + h)p — Alt)pl < [AD®)|[A(R)z — 2 < Me*"[A(h)z — x|

where we have used property (a) of Proposition 1, (that we will present later).
If h < 0 the proof is analogous. O

We are now ready to give the definition of C* dynamical system.

Recall: A #-morphism between two C*—algebras 4 and s is a mapping
7 ;3 — s such that, for A, Be il and o, 5 € C:

o 7(aA + B) = an(A) + fr(B),
e 7(AB) = n(A)w(B),
o (A*) =7(A)*.

A s-automorphism of a C*-algebra 4 is a #-morphism 7 : Y — $, that is
bijective.



Definition 1.2. A C*-dynamical system is a pair (4, 7%) where 4 is a C*-
algebra with a unit and ¢ a strongly continuous group of *-automorphisms of
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Remark: Strong continuity means that ¢ — 7¢(A) is continuous with respect to
the norm topology of l.

Remark: Since 78((z — A)™!) = (2 — 71(A))~}, a *-automorphism 7° preserves
the spectrum. Furthermore, we recall that it is norm continuous and since it
is also invertible, it is isometric, i.e. |7:(A)| = ||A| VA € 4 [Corollary 2.3.4 in [2]].

We investigate some properties of one parameter semigorup and introduce
the concept of infinitesimal generator. We will later apply this results to C*
dynamical systems.

Definition 1.3. The infinitesimal generator of the Cy semigroup {A(t)}t=0 on
Banach space B, is the linear operator (S,D) defined by

D= {gp € B| lim M@ exists in B} (1)
t—0+ t
AR -1
= lim ——— D. 2
Sp = lim ———¢, pe (2)

Proposition 1.4 (Theorems 2.2-2.6 in [3] and proposition 6.4 in [1]). Let
{A(t)}+=0 be a Cy semigroup on Banach space B of generator A. Then

a) There exist w € R and M > 1 such that A(t) < Me*“t, for allt = 0.

b) For anyt > 0,p € B, we have lim;,_,g+ 1/t th A(r)edr = A(t)p.

¢) For anyt = 0,9 € B, we have S(t) A(T)pdr € D and
t
S (J A(T)d’]’) =A(t)p — (3)
0

d) For anyt = 0, A(t) : D — D and if ¢ € D,t — A(t)y is in C1([0,0))
and

%A(t)w — SA(t)p = A(t)Sp, t=0 (4)

e) The generator S is closed with dense domain D.

f) If {A1(t) }i=0 and {Aa(t)}i=0 are two Cy semigroups with the same gener-
ator S, then Aq(t) = As(t).

Proof. a) Recall that the Bancah Steinhaus theorem says that if X is a Banach
space, Y a normed vector space and B(X,Y) the space of continuous linear op-
erators between X and Y and F < B(X,Y) then (suppep [|T(2)[y < o0, Va e



X) = (suprep,jz)<1 | T (@) |y = suprer [T] B(x,y) < ©). By the right continu-
ity at 0 and the Banach Steinhaus theorem we have that there exists € > 0,
M > 1 such that |A(t)| < M if t € [0,e]. For every ¢t > there exists n € N and
0 < § < € such that ¢t = d + ne, then by property 2 of Cy semigroups,

[A®)| = |A@)A(e)"| < M"™*' < MM"Y® = Me**

where w =InM/e > 0.

b) Follows from continuity of ¢t — A(t)ep.

c) For ¢ € B,t > 0 and any € > 0, by applying the definition of infinitesiaml
generator, we have

Al —T [ 1
Jim HE L [ A(r)pdr = lim 2 | (A(©)A() - A))pdr
1 t 1 t+e 1 t
= EIE(% - L (A(e+ 1) — A(7))pdr = Elirgl+ - ] A(T)pdr — R Jo A(T)pdr
1 t+e 1 (¢
—lim - | A4 R — A(t)p —
Jim 2 [ Amypdr = [ Am)pir = Ap -

where we have used property (2) and (3) of the Cp semigroup and point (b).
d) Let t = 0, € D, we have that:
. Ale) -1 . Ae) -1

51—1}61* € A(t)(p B 51—1>%1+ A(t) €
which proves A(t)p € D and SA(t) = A(t)S. By property (2) of Cy semigroup
and the above consideration, the function ¢t — A(t)¢ has a right derivative that
is continuous on [0, 00). This implies continuous differentiability on [0, ).
e) Let ¢ € B, let p. = 1 Sg A(T)pdr. By point (¢) ¢ € D, furthermore
lim, g+ we = ¢ by point (b) which proves that D is dense.
Let {¢n}nen be a sequence in D such that ¢, — ¢ and Sp, — 1, for some
», 1 € B. For any n € N, integrating the expression in (d) implies that

¢
At)on — on = J A(T)Spndr
0

by letting n — 00, we get A(t)p —p = SS A(7)vdr, therefore by part (b)
1
lim - (A()p — ¢) =
Jim (A —¢) =9

then ¢ € D, and ¢ = Sp.
f) For ¢ € D, t > 0, we define ¢(7) = A1(t — 7)A3(7)p for 7 € [0, T]. Thanks
to (d) we can differentiate and we get:

%1/1(7’) =—A1(t—7)SAs (1) + A1(t — 7)SA2(T)p =0

then (t) = ¥(0), which says that Ay (t)p = Aa(t)p, then by density of D and
due to the fact that A;(t), Ax(t) are bounded, we have that A;(t) = As(t). O



Proposition 1.5. Let {A(t)}s>0 be a one parameter semigroup of bounded lin-
ear operators Sy € L(B) of a Banach space B. The following conditions are
equivalent:

1. Ay is uniformly continuous i.e., limy_q |A; — I| = 0;
2. it has a bounded generator S, i.e., lims_,q [|(A: — I)/t — S|| = 0;
3. there is a bounded operator S € L(B) such that Ay =Y _, 8™,

n=>0 n!
If these conditions are fulfilled then A; extends to a uniformly continuous one
parameter group satisfying | A.| < e!!1SI.

Proof. See proposition 3.1.1. in [2] O

We now give a characterization of the generator of strongly continuous one
parameter groups of *—automorphisms of a C*-algebra. We begin by introduc-
ing the concept of *—derivation.

Definition 1.6. Let i be a - algebra and © < . A linear operator § : © — il
18 called a *-derivation if

a) © is a =-subalgebra of L.
b) 6(AB) =6(A)B + AS(B) for all A,Be®D.
c) 0(A*) =6(A)* for all AeD.

Observation: The unit 1 € D(§) (Corollary 3.2.30 in [2]) then 6(1) = 0
because §(1) = 6(1%) = 25(1). Derivations arise as infinitesimal generators of
strongly continuous groups {7 }+cr of #-automorphisms of a C* algebra . The

two defining properties originate by differentiation of the relations 74(A*) =
T¢(A)* and 7 (AB) = (A)7(B) for A, B € il

*) * % "
i AT = AT (A - A
t—0 t t—0 t
* =1 * N .
= lim A* =1 A:(S(A):(S(A)
t—0 t—0
and
i tAB) = AB . m(A)n(B) — AB
t—0 t 150 P
= }lm t IAB _ }ir% 7 (A)7(B) — Tt(AiB +1(A)B - AB
o §(AB) = lim A(T(B) ~B) | m(4)B ~ AB
t—0 t t
. y — 1 =1
:thmTt(A) B+ ; A)B=A4B)+46(A)B



The domain © of the infinitesimal generator § is contained in 4, hence it is a
x—subalgebra of {{. We have proved that the generator of a dynamical group is
a derivation.

We can characterize infinitesiaml generators by exponentiating them in a suit-
able form. We begin with a result which characterizes the generator S of a
semigroup of contractions by properties of its resolvent. The algorithm e!* =
lim,, (1 — tz/n)~™ for the numerical exponential can be extended to an op-
erator relation if the ”resolvent” (I — tS/n)~™ has suitable properties. The
definition of the resolvent of a closed operator S requires two pieces of informa-
tion. Firstly, one must know that the range of (1 — tS/n) is equal to the whole
space in order that (1 — ¢S/n)~! should be everywhere defined and, secondly,
one needs a bound on |(I —tS/n)~"|.

The Hille-Yosida theorem characterizes generators by properties of their re-
solvents.

Theorem 1.7 (Hille Yosida). Let S be an operator on the Banach space B.
The following conditions are equivalent:

1. S is the infinitesimal generator of a strongly continuous semigroup of con-
tractions U(t),>;

2. S is densely defined in B and closed. For o = 0
I(I = aS)e| = lgll, for e D(S) ()
and for some a > 0,

Ran(I — aS) = B. (6)

If these conditions are satisfied then the semigroup is defined in terms of S by
either of the limits

Uip = lin%)exp{tS(I —e8) e = lirrolo(l —tS/n) " .

where the exponential of the bounded operator is defined by power series expan-
sion, @ € B.

Proof. (1) = (2) If S is the infinitesimal generator of a strongly continuous
semigroup then it is closed and its domain D(S) is dense in B. Let A > 0 and
x € B, let

0
R,\m:J e MU (t)xdt.
0

by continuity of ¢ — U(t)x and uniformly boundedness (we are dealing with
contractions) the integral exists as an improper Rienmann integral and defines
a bounded linear operator Ry that satisfies:

0
_ 1
H&M<L€AWWWW<XML



Let A > 0, then

h)y—1 “
Ul f)L Ryx = *j MU+ h)x — U(t)x)dt
1 Q0 0 0
= Ef e NN () adt — J- e MU (t)xdt
h 0
VS oA [h s
=— MUdt — — | e MU(t)xdt — ff MU (t)adt
hJo 0 0

Ah 1 0 €>‘h h

= J e MU zdt — — | e MU(t)zdt
h 0 hJo

As h — 07, the right hand side converges to ARyz — z. This implies that for

every € Band A > 0 Ryx € D(S) and SRy = ARy — I, which is the same as

(M —=9)Ry\ =1.

For x € D(S) we have

0 o0
R)\Sz = f e MU (t)Sxdt = J e MSU (t)adt
0 . 0
=S ( f e’\tU(t):z:dt) = SRyz
0

where we used that the infinitesimal generator commutes with the elements of
the semigroup and closeness of S. Finally we have that Ry(A — S)z = z for
x € D(S). Thus Ry = (A — S)~! and is therefore well defined for every A > 0
and satisfies (A — S)7'z| = |Raz| < |z| = [(AM — S)z| = AJz| . Now
if we let @ = 1/ we get that Ran(I — «S) = B because it is invertible and
(I - aS)e] > Jl.

(2) = (1) Condition 2 implies that (I —S)~! is bounded strongly continuous
and (I —eS)7 Y| <1 (by putting ¢ = 1 in (5)) for ¢ = ap such that Ran(I —
€S) = B. The series (I —aS)™! =23 (“_ao’o)n (I — apS)~ "1 establishes
that Ran(I —eS) = B for all € > 0.

We define S. = S(I —eS)~! and notice that S, = —e~1(I — (I —&S)~!), then

tE_l n o
i —esymi <

n:

lexp(tS.}] < exp{—t=""} ]

n=0

for t = 0. Thus U7 = exp{tS.} are uniformly continuous contraction semigroup.
Moreover the bounded operators S. and S5 commute, and for ¢ € D(S)

1
d —S
|Ufe = Ul = JO e S 150

1
_kf”%“ﬂ&@—&wm<ﬂ@~&w
0

for all t > 0. Note that if p € D(S) then |[(I—eS) tp—p| = ¢|(I—eS)"1S¢| <
| Sp|. Then the uniformly bounded family of operators (I —&S)~! converges



strongly to the identity on the dense set D(S). Then from the relation

(S: — S)p = (I —eS)~t — I)Sp we have that Sc¢ converges in norm to S¢
for all ¢ € D(S). By previous inequality, we have that {Ufp}.>0 is uniformly
norm convergent for ¢ in compacts and for ¢ € D(S). By uniform boundedness
[Ug] < 1, we conclude that {Uf}.>0 converges strongly on D(S) uniformly
for ¢ in compacts. If we denote U = {U;}+>0 the strong limit it immediately
follows that U is a strongly continuous semigroup of contractions (by triangular
inequality). It is left to prove that the infinitesimal generator of {U;}i>¢ is in
fact S. We see that

g __ t
M = EJ UsS.xds
t t Jo

for all x € B. But if ¢ € D(S) we obtain the relation

_ t
U —De = EJ’ UsSpds
t tJs

by strong limits. Therefore

'w _ SQDH < sup (U — 1Sy

0<s<t

and it follows from the strong continuity of U that its generator S’ is an extension
of S. But this implies that (I — aS’)™! is an extension of (I — aS)~! for all
«. However, the latter operator is everywhere defined than we must have that
S'=S. O

Proposition 1.8. Let i be a C*-algebra with a unit. A densely defined, closed
operator & on L generates a strongly continuous group of =-automorphism of U
if and only if:

1. 0 is a =-derivation, and
2. Ran(Id + X\6) = A for all A € R\{0}, and
3. A+ X6(A)|| = |A| for all X e R and A € D(9).

Proof. = Assume that ¢ is the generator of a strongly continuous one parameter
group 7y of x-automorphisms of {{. We already proved that ¢ is a *-derivation.
Since 7 are isometries we can apply Hille-Yosida theorem to +d and conditions
2) and 3) are implied.
< Now assume that (1), (2), (3) hold and we prove that § generates a strongly
continuous group of #-automorphisms of . The group generated by § is a
strongly continuous one-parameter group 7; of isometries by Hille-Yosida. We
know that (1) implies that 1 € D(J) and 6(1) = 0, then 7(1) = 1, 7 is an
s-automorphism (by Corollary 3.2.12 in [2]) .

O



If the C*-algebra acts on a Hilbert space H then a dynamical group 7¢ can
be constructed (see Example 3.2.14) from a group of unitary operators U; on
H:

’Tt(A) = UtAUt*.

Such #-automorphisms are called spatial.

Theorem 1.9 (Stone’s theorem). Let {U,}ier a strongly continuous unitary one
parameter group. Then there exists a unique (not necessarily bounded) operator

A:D(A) ¢ H — H that is self adjoint on D(A) and such that
Uy =e" VteR.

Ezample: (Finite quantum system).

Consider the quantum system with a finite number of degrees of freedom de-
termined by the Hilbert space H and by the self-adjoint operator H. On the
C*-algebra 4 = B(H) the dynamics is given by

7i(A) = e AeHH, (7

The group 7; is strongly continuous if and only if H is bounded.
In fact, let H be bounded, then there exists M > |H|, we have that

2,

n=0

(itH)™

itH || _
Jei*H | - -

itH)"
Z( )

otM
n!

N

~x

n=0
and analogously with the minus. Then for every A € H,

HTt(A) _ IAH _ ”eitHAe—itH _ AH _ HeitHAe—itH _ eitHA + eitHA _ AH
< [ Ae T — A] 4 |7 A - A
< e™M|AemH Al 4 |l H A~ A

by taking the limit ¢ — 0 we have that [|e®# A — A|, | Ae~" — A| — 0 and then
we have proven strong continuity.

Conversely, assume that H is unbounded (which means that its spectrum is
unbounded). Denote with Fg the spectral family of H (a spectral family is
a family {F\} of orthogonal projectors onto the space generated by the eigen-
vectors corresponding to eigenvalues that are less or equal than ). Let ¢ > 0,
0 > 0; we can choose a real number a and a sequence {a,},>0 < R such that
the intervals I, = [an,a, + a] are disjoint and Ep(I,,)H is non empty, and

sup [efl@n )t g > 9 5 |ee —1] < 1/2
for all |t| < e. Now choose unit vectors ¢,, € Eg (I,)H and define V by

Vip = > Pn(thnin, ¥).

n=0



One has |V|| =1 and

(ei(an—a,,,+1)t _ 1)wn
= (V) = V)hpy1 — (€itH - eia"‘t)1/)n(¢n+17 67“H¢n+1)

_emntwn(wn-kla (e_itH - e_an'+1t)wn+l)

and hence
2< |n(V)=V|+1+4§

for all |¢t| < e, which is a contradiction. Then H must be bounded.
In general, an everywhere defined derivation of a C*-dynamical system is bounded
[Corollary 3.2.23 in [2]].

A consequence of this is that if 74 is strongly continuous it is also uniformly
continuous and its generator is the bounded #-derivation §(A) = i[H, A] ([,] is
the commutator).

2 Wr-dynamical systems (Luca Giudici)

This part about W*-dynamical systems follows [1].

Definition 2.1 (W*-dynamical system). Let H be a Hilbert space and M <
B(H) a von Neumann algebra. A o-weakly continuous group of x-automorphism
of M is a group homomorphism

T:teRw— 1t e Aut(M)
such that for any A € M the map
teRw— 7'(A) e M
s continuous w.r.t. the o-weak topology on M. This is equivalent to the map
teRw— tr(t'(A)T) e R

being continuous for any trace class operator T € T(H). We call (M,7%) a
W*-dynamical system.

There is a similar proposition charaterising o-weakly continuous groups of
x-automorphisms of a von Neumann algebra in terms of a =-derivations as for
strongly continuous groups of #-automorphisms of a C*-algebra, for which the
proof is analogous.

Proposition 2.2. Let M < B(H) be a von Neumann algebra and 6 : D(6) — M
be a o-weakly densely define closed linear operator. Then 7t = e, t € R,
defines a o-weakly continuous group =-automorphisms of M if and onyl if the
the following three statements hold

10



(i) 0 is =-derivation and 1 € D(9).
(i1) R(id + X\0) = M for all X € R\{0}.
(iii) ||A+ Xo(A)|| =||All for all \e R and A € D(9).
Let’s turn our attention to a first simple example.

Example 2.3 (Heisenberg equation). Consider the von Neumann algebra M =
B(H) and consider the evolution of a observable A € B(H) under the Heisenberg
equation

{ 0:Ar =i [H,At], H = H*:H — H linear (possibly unbounded)
Ag = A.

with the solution A; = e Ae="H  Define
TH(A) = e Ae™" | Ae M.

We now claim that Tt is a o-weakly continuous group of %-automorphisms of
M. We check:

o 7! is x-automorphism: Fiz A,B e M and )\ € C then we have

—_ Tt(A + )\B) — eitH(A + )\B)e—itH — eitHAe—itH + )\eitHBe—itH _
Tt(A) + ATH(B).

_ Tt(AB) — eitH ABe—1tH — itH ppo—itH  itH po—itH _ Tt(A)Tt(B),

— Since (e"H)* = ¢=itH* — ¢=itH 45 H s self adjoint, we find:

Tt(A*) — eitHA*e—itH — (e—itH>*A*(€itH>* _ (eitHAe—itH)* _ Tt(A)*.

— Note that 777 (A) = 7'771(A) = A. So 7' is a *-automorphism.

t

o t — 7! is a group homomorphism: Clearly we have 7°(A) = A and so

70 = id. Moreover we can check that
Tt+s(A) _ ei(tJrs)HAefi(tJrs)H _ 6iitH62'5;HA€71'5HefitH _ eitHTS(A)eiitH _ TtTS(A).
Thus 7'+ = 7t75. So t — 7t is a group homomorphism.
e Note that for unit vectors ®, V¥ € H we have by Cauchy-Schwarz inequality
(@, 7' (A)T)] = (@, e T A~ W)
_ |<e_itH(I), Ae_itH\I/N
le=* @[ Ae " w||

le=* I @lIAlle= I w]
[[Al

N INN

11



This shows that t — (®,7t(A)V) is uniformly bounded by | A|| and therefor
is a continuous map. Let T € T (H) be a trace class operator. We can write
T =3, Ml Py, )Wy, for some unit vectors ®,,V,, € H and Y, |\,| < 0.
Then by the above the map

t tr(TH(A)T) = Y A @, THA)T,,)

is continuous, as it is the limt of a uniform convergent seqeunce of con-
tinuous functions.

2.1 Interlude to spectral theory of bounded derivations

We will follow the exposition presented in [2]. For 7! a o-weakly continuous
group of *-automorphisms of a von Neumann algebra, we define for any f €
LY(R)

T(f) = JR dtf(t)rt.

It can be checked that
T(f = g) =7(f)r(9)-

Definition 2.4 (Spectrum of one-parameter families). Let M be a von Neu-
mann algebra and ™' a o-weakly continuous group of *-automorphisms of M
such that ||t < M for all t € R.

e For any subset Y < M we define
Ty ={fe L'R)|r(f)A=0VAe Y}.

This is a *-ideal in L'(R).

o The spectrum of Y is given by
or(¥) = {keRIf(k) =0 Vf e T3},

where f is the Fourier transform of f.

e The spectrum of T is given by
o(1) =0.(M)

and the spectral subspace to a subset E < R is defined by

M (E) = [Ae Mo, (4) < E}.

We now consider some elementary properties of the spectrum of a element.

Lemma 2.5. Let 7° be a uniformly bounded o-weakly continuous group of -
automorphisms of M. Then for all A, B e M, f e L*(R) it holds that:

12



(i) o-(TtA) = 0.(A) for all t € R.
(ii) or(aA+ B) c 0,(4) uo,(B).
(iii) or(7(f)A) € supp(f) N o+ (A).

(iv) If f1, f2 € L*(R) and f1 = fo in a neighbourhood of or(A), then
T(f1)A = 7(f2)A.

Proof. (i) We have for fi(s) = f(s—1t)
T(f)T'A = stf(S)TSTtA
= stf(8)75+tA

= stft(s)TsA
= 7(fr)A.

Now, the Fourier transform of f; is given by ft(k) = e*ktf(k'). Hence we
find:

keo,(rtA) «— VfeL'(R) with 7(f)r"A=0: f(k)=0

«— VfeL'(R) with 7(f)A=0: fi(k)=0
< keo,(A).

(ii) By linearity of the Fourier transform and linearity of 7 we find o, (e A) =
o-(A). So assume o = 1. If now k ¢ o,(A) U 0, (B), we find f,g e L'(R)
with 7(f)A = 0 and 7(g)B = 0 such that f(k) = g(k) = 1. Now for f =g
we have that 7(f = g)(A + B) = 0 and thus by the convolution theorem!
that (f * g)* (k) = f(k)g(k) = 1. Hence, k ¢ o, (A + B).

(iii) If 7(9)A = 0 we have 7(g)7(f)A = 7(f)7(9)A = 0 and hence o,(7(f)A) <
o-(A). On the other hand, if § vanishes on supp(f) the f+g =0, thus we

have 7(g)7(f)A = 7(f * g)A = 0. Hence, o,(7(f)A) < supp(f).

(iv) Set g = f1 — fo. We must show 7(9)A = 0. Since g vanishes on a
neighbourhood of o(A) we have by (iii) that

o7(1(9)A) < supp(g) N o, (4) = &.
Hence, 7(g)A = 0.

Now let us turn to some properties of the spectral subspaces.

1We have by the convolution theorem that (f % )" = f§.
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Lemma 2.6. Let 7¢ be a uniformly bounded o-weakly continuous group of -
automorphisms of M. Then for all E < R it holds that

(i) MJ(E) € M7 (E) where MJ(E) is the o-weakly closed linear span of

elements of the form 7(f)A with supp(f) € E.
(ii) T"TMJ(E) = MJ(E) and 7" MT(E) = M™(E).
(iii) If E is closed, then
MT(E) ={Ae M|o.(Ac E}.

(iv) If E is open, then

M (E) = M§(E) = \/{M" (K)|K € E compact},
where \/ denotes the o-closed linear span.

(v) If E is closed and N ranges over the open neigbourhoods of 0 € R then

M (E) = [\ MG(E + N).
N

The next proposition charaterises the spectrum of o-weakly continuous group
of #-automorphisms in terms of the spectrum of its generator 94, i.e.

a(8) = C\p(9),
where p(0) = {\ € C|A\id — ¢ is invertible.}

Proposition 2.7. Let 7t be a o-weakly continuous uniformly bounded group of

s-automorphism in a von Neumann algebra M with generator 6, i.e. Tt = et?.
Then TFAE:

(i) ko € o(T).
(ii) For any neigbourhood E 3 kg it holds that MJ(E) # {0}.

(i1i) For all € > 0 and all compacts sets K € R there is a compact neighbour-
hood E 3 ko such that M™(E) # {0} and

I7°A — e ™Al < <] A]
forall Ae M™(E) and te K.

(iv) Thereis a sequence of elements A, € M such that | Ao || = 1 and uniformly
for t in compacts

lim ||7' A, — e ™A, | = 0.

a—00

(v) For all f € LY(R) it holds that | f(ko)| < ||7(f)]|-
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(vi) —ikg € 0(0), i.e. o(§) = —io(T).

Recall that a operator U € B(H) is unitary if U*U = UU* = id. Recall
again Stone’s theorem.

Theorem 2.8 (Stone). Let t — U; € B(H) be a strongly continuous group
of unitary operators. Then exists a unique (possibly unbounded) operator H :
D(H) — H, which is self-adjoint on D(H) and such that

Vt=0:U, = et

The domain of H is given by

lim
t—0

D@U—{@eﬂ ;

SUEU PR

We can reformulate this in terms of the projection-valued measure P asso-
ciated to the self-adjoint operator H by the spectral theorem, i.e.

H:LMW%)

Recall that for a measurable-function g : R — C we can write

o(4) = ng<k>dP<k>.

And so by Stone’s theorem we have the strongly continuous group of unitary
operators t — U € B(H) given by

m:fwwmm
R
The next proposition gives a result on the spectrum of so-called spatial groups

of x-automorphisms.

Proposition 2.9. Let t — U, € B(H) be a strongly continuous group of unitary
operators and 7t (A) = U, AUF the o-weakly continuous group of x-automorphism
generated by U. Let

m:fﬁ%ﬂ@

R

be the spectral decomposition of U. Then TFAE for any A € B(H) and ke R
(i) 0-(A) < [k, x0)
(i1) AP([k,0))H < P([k + j,0))H for any j € R.

In particular, we find for von Neumann algebra M and all t € R.

M ([t 0))H = M ([t, 0)) P([0, 0))H < P([t, 0))H.
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Theorem 2.10 (Borchers-Arveson). Let 7t be a o-weakly continuous group of *-
automorphisms of a von Neumann algebra M < B(H). The following conditions
are equivalent:

(i) There is a strongly continuous group of unitary operators Uy € B(H) with
nonnegative spectrum (that is in Stone’s theorem H is positive) such that

TH(A) = U, AU}

(i) There is a strongly continuous group of unitary operators Uy € M with

nonnegative spectrum (that is in Stone’s theorem H is positive) such that
Tt<A) = UtAUt*.

(i) (Vyer M7 ([t,90))H = {0},
Proof. e (ii) = (i) is clear.

e For (i) = (iii) we leverage that if P is the projection-valued measure
associated to U then P([t,00)) =1 for all ¢ < 0 and so clearly

() Pt )M = {0}

teR

By the proposition above we have that
M ([t, 0))H = M ([t,0)) P([0,0))H < P([t,%0))H
and so (#i7) follows.

e For (i) = (i) The idea is to set Q; = (),_, M7 ([s,0))H and
show that there is a unique projection-valued measure P on R such that
P([t,0)) = Q; for all ¢ and then define

Uy = J e "kap(k).
This then gives us the searched for unitary group.

O

The intersting corllary to this theorem will give a characterisation of bounded
derivations of a von Neumann algebra in terms of a ”Hamiltonian”.

Corollary 2.11. Let § be an everywhere defined bounded derivation of a von
Neumann algebra M. Then exists H = H* € M with |H| < @ and such that
0(A) =i[H, A].

I will give the idea of the proof.
Proof. We define
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This is then a continuous group of *-automorphisms. The next step is to show
that M7 ([t,00)) = {0} for all ¢t > ||0]|. So by the Borchers-Arveson theorem the
result follows that we have a strongly continuous unitary group U; in M such
that

Tt(A) = UtAUt*.

By Stone’s theorem there is a self-adjoint operator H such that
Ut — eitH

and hence, by differentiating with respect to ¢ we get the result. O
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