
HARMONIC ANALYSIS

1. Basic facts about Fourier transform

We denote the torus by Td := Rd/(2πZ)d with Lebesgue measure. For
f ∈ L1(Td) we define the Fourier transform for n ∈ Zd

f̂(n) := (2π)−d

∫
Td

f(x)e−ixn dx.

The inverse Fourier transform is defined for fn ∈ ℓ1(Zd) by

f̌(x) :=
∑
n∈Zd

fne
ixn.

Theorem 1 (Parseval theorem). Let f ∈ L2(Td), then f̂ ∈ ℓ2(Zd) and

∥f̂∥2ℓ2 = (2π)−d∥f∥2L2 .

Moreover, the Fourier transform is bijective.

Exercise 1. Give a proof of this result using the Stone-Weierstrass theorem.

Basic question in Harmonic Analysis: Can we get rates on the conver-
gence?

We claim that for any Lipschitz function f : T → C we have

|f̂(n)| ≤ |n|−1∥f∥Lip,

where ∥f∥Lip := supx ̸=y
|f(x)−f(y)|

|x−y| . This follows from writing

2πf̂(n) =
1

2

∫
T
e−inxf(x) + e−in(x+π/n)f(x+ π/n) dx

=
1

2

∫
T
(f(x)− f(x+ π/n))e−inx dx.

Exercise 2. Generalize the above argument to arbitrary dimensions!

More generally, let f be a Hölder function, i.e.

∥f∥Λα := sup
x ̸=y

|f(x)− f(y)|
|x− y|α

,

then f̂(n) = O(1/|n|α).
We define the continuous Fourier transform as

f̂(ξ) :=

∫
Rd

f(x)e−ixξ dξ

and also

f̌(ξ) :=

∫
Rd

f(x)eixξ dξ.

1
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Theorem 2 (Plancherel theorem). For any f ∈ L2(Rd), ∥f̂∥2 = (2π)d/2∥f∥2.
Moreover, f = (2π)−d ˇ̂f.Finally, f 7→ (2π)−d/2f̂ is an isometry of L2(Rd)
onto L2(Rd).

1.1. Schwartz functions and the space of tempered distributions.
We start by giving the definition of the Schwartz space

Definition 1.1. S is the space of all f ∈ C∞(Rd) for which each of the
following quantities

∥f∥m,n := sup
x∈Rd

⟨x⟩n
∑

|α|≤m

|∂αf(x)|

is finite.

It is complete metrizable space d(f, g) =
∑

m,n 2
−|(m,n)| ∥f−g∥m,n

1+∥f−g∥m,n
whose

locally convex topology is defined by finite intersections of open sets

Vf,m,n,ε := {g ∈ S; ∥f − g∥m,n ≤ ε}.
Thus, if fn → g in S then this is equivalent to having ∥fn − g∥m,n → 0 for
all m,n.

Definition 1.2. The set S ′ is the space of all continuous linear functionals
from S to C.

We can find a topology such that φj → φ in S ′ is equivalent to φj(f) →
φ(f) for every f ∈ S.
Definition 1.3. S ′ is a topological vector space for which a neighbourhood
base of φ ∈ S ′ is the collection of all finite intersections of sets

Vφ,f,ε := {ψ ∈ S ′ : |(φ− ψ)(f)| ≤ ε}.
Remark 1.1. A locally finite Borel measure µ is called tempered if there
exist C,N > 0 such that

µ{x ∈ Rd; |x| ≤ R} ≤ CRN as R→ ∞.

The set of tempered C∞ functions f with measure dµ = |f(x)|dx turns out
to be dense in S ′. Hence, the space S ′ got its name: The space of tempered
distributions.

Lemma 1.1. To any continuous linear transformation T : S → S, there is
an associated continuous linear transformation T ′ : S ′ → S ′ defined by

(T ′φ)(f) = φ(Tf).

Proof. By linearity, it suffices to show continuity at 0. Let V be a neigh-
bourhood of 0 in S ′. We must show there is a neighbourhood U of 0 ∈ S′

such that T ′(U) ⊂ V . There is ε > 0 and finitely many fj ∈ S such that
V ⊃ ∩n

j=1Vj where

Vj = {φ ∈ S ′; |φ(fj)| < ε}.
Define Uj := {ψ ∈ S ′; |ψ(Tfj)| < ε} and U := ∩jUj . If ψ ∈ U then
|T ′(ψ(fj))| = |ψ(Tfj)| < ε for each j so T ′(ψ) ∈ V. □



HARMONIC ANALYSIS 3

Theorem 3. The Fourier transform is a continuous homeomorphism from
S onto S and therefore also between S ′ and S ′.

Proof. We assume basic familiarity with the Fourier transform on S which
imply that it is bijective. To show continuity, we notice that

ξα∂βξ f̂ = (−i)|α|F(∂αx ((−ix)βf).

Moreover,

|ξα∂βξ f̂ | ≤
∫

Rd

⟨x⟩−d−1 dx sup
x
⟨x⟩d+1|∂αx (xβf)(x)|

This shows that ∥f̂∥k,k ≤ C∥f∥k,k+d+1. □

Every f ∈ Lp can be naturally associated with a tempered distribution
by defining

φf (g) =

∫
fg

We thus have that for δξ(f) = f(ξ) that

δ̂ξ(f) = δξ(f̂) = f̂(ξ) =

∫
Rd

f(x)e−ixξ dx

which justifies δ̂ξ = e−ixξ.

1.2. Convolution. Let f ∈ L1(T) and we may ask if f is equal to
∑

n∈Z f̂(n)e
inx,

that is whether

SNf(x) =
∑

|n|≤N

f̂(n)einx

converges to f . We compute

SNf(x) =
∑

|n|≤N

einx(2π)−1

∫ 2π

0
f(y)e−inydy

=
∑

|n|≤N

(2π)−1

∫ 2π

0
f(y)e−in(x−y)dy

= (2π)−1

∫ 2π

0
f(y)DN (x− y) dy,

where DN (x) =
∑

|n|≤N einx =
sin((N+ 1

2
)x)

sin(x/2) is the Dirichlet kernel.

The convergence of the Fourier series is therefore equivalent to the as-
ymptotic properties of a certain integral operator!

Using a suitable partitioning that we leave as an exercise, one readily
verifies that even though

∫
DN = 2π, the L1 norm diverges as N → ∞.

Wemight get our hopes up that the Dirichlet kernel is just an approximate
identity which would imply converges of the Fourier series in every Lp space
with p <∞. However,
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Exercise 3. There is c > 0 such that

∥DN∥L1 ≥ c log(N) for all N.

On Rd we define the convolution by

(f ∗ g)(x) =
∫

Rd

f(x− y)g(y) dy.

In addition one has Young’s inequality which states that for 1 + 1/r =
1/p+ 1/q

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.
Basic question in Harmonic Analysis: What is the sharpest constant in

this inequality? What are the optimizers?1

Analogously, one defines a convolution on the torus by setting

(f ∗ g)(x) = (2π)−d

∫
Td

f(x− y)g(y) dy.

If we want to convolve with a (finite) measure µ we replace g(y) dy by
dµ(y). The convolution of two measures is the measure

(µ ∗ ν)(E) := (µ× ν){(x, y);x+ y ∈ E}
such that ∫

fd(µ ∗ ν) =
∫ ∫

f(x+ y) dµ(x) dν(y).

One can even convolve two tempered distributions, under one constraint:
indeed let first φ ∈ S ′ and f ∈ S then

φ ∗ f(x) = φ(f(x− •))

is a C∞ function, e.g. δ
(n)
0 ∗ f(x) = f (n)(x). However, in general this is

not a Schwartz function, we therefore have to assume that ψ is compactly
supported2 and define

(φ ∗ ψ)(f) := ψ(φ ∗ f(−x)).
One application of convolutions are approximate identities

Definition 1.4. A sequence (φj)j is called an approximate identity if

•
∫
φj = 1

• ∥φj∥ ≤ C <∞
•
∫
|x|>δ |φj(x)| → 0 as j → ∞ for all δ > 0.

An examples are centered Gaussians whose variance tends to zero. In fact,
any normalized positive ϕ ∈ L1 naturally induces an approximate identity
by setting φj(x) = jdϕ(jx). Approximate identities have their name because
of the following property

Theorem 4.

1For Young’s inequality this has been studied by Beckner and Brascamp-Lieb.
2This means that ψ(f) = 0 for all f that are supported away from a certain compact

set
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For any f ∈ C0(Rd) we have f ∗ φj → f uniformly.

For any f ∈ Lp(Rd) we have f ∗ φj → f in Lp for p <∞.

1.3. Uniform convergence of Fourier series. While we know that for
f ∈ C0(Td) we get L2 convergence of the Fourier series, we may ask whether
for f ∈ C0(Td) we get uniform convergence. This is false by a very elegant
observation argument using the uniform boundedness principle.

Theorem 5. There exists f ∈ C0(T) such that (SNf(0)) diverges.

Proof. If false, then define ℓnf = Snf(0) ∈ C for every f ∈ C0(T). Also
ℓn : C0 → C is a bounded linear functional, since

ℓnf = (2π)−1

∫
f(y)Dn(−y) dy

and Dn ∈ L1. Banach-Steinhaus implies that if supn |ℓn(f)| < Cf for ev-
ery f , then supn ∥ℓn∥ < ∞. This is however false since ∥ℓn∥ → ∞ since
∥Dn∥L1 → ∞. □

The situation improves by assuming slightly more regularity.

Theorem 6. For any α ∈ (0, 1) and every f ∈ Λα, SNf → f uniformly as
N → ∞.

Moreover, there exists a constant Cα <∞ such that

∥SNf − f∥∞ ≤ CN−α log(N)∥f∥Λα .

Proof. Writing

SN (f)(x)− f(x) = (2π)−1

∫
(f(x− y)− f(x))DN (y) dy,

we can decompose this integral into

|SN (f)(x)−f(x)| ≤ C

∫
|y|<δ

|y|−1|f(x−y)−f(x)|dy+|
∫
|y|>δ

sin((N+1/2)y)g(y) dy|,

where g(y) = (f(x − y) − f(x))/ sin(y/2). Setting x = 0 for simplicity, the
first term is majorized by choosing δ = O(1/N) by∫

|y|≤δ
∥f∥Λα |y|α−1 dy = O(∥f∥Λαδα) = O(∥f∥ΛαN−α).

To estimate the second term, we observe that up to errors of order
O(N−α) it can be written using a substitution as∫

|y|>δ
sin((N + 1/2)y)(g(y)− g(y − π/(N + 1/2))) dy.

It remains to show that for |y| ≥ δ

|g(y)− g(y − π/(N + 1/2))| ≤ CN−α|y|−1.
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Let y′ = y−π/(N+1/2). Then, (C0−π)N−1 ≤ |y′| ≤ π+π/N. This implies
that using

g(y)−g(y′) = f(y)− f(0)

sin(y/2)
+
f(0)− f(y′)

sin(y′/2)
=
f(y)− f(y′)

sin(y/2)
+
( f(y′)− f(0)

sin(y/2)− sin(y′/2)

)
and Hölder continuity in the second line

|g(y)− g(y′)| ≤ |f(y)− f(y′)|| sin(y/2)|−1 + |f(y′)− f(0)| | sin(y/2)− sin(y′/2)|
| sin(y/2) sin(y′/2)|

≤ C
(
|y − y′|α|y|−1 + |y′|α |y − y′|

|yy′|

)
.

Finally, since |y − y′| ≲ |y − y′|αNα−1 the second term on the right is
majorized by the first term.

□

1.4. Lp convergence of Fourier series. We are now asking: Let f ∈ Lp

and p ∈ [1,∞], do we have ∥f − SN (f)∥p → 0 for all f? The convergence
fails for general f ∈ C(T). It also fails for p = 1,since convergence in L1

at least requires that supn ∥Snf∥ < ∞, but then by Banach-Steinhaus also
supn ∥Sn∥ < ∞. However, the operator norm of ∥Sn∥ = ∥Dn∥ → ∞ as
n→ ∞. Indeed, recall that by using a positive approximate identity ∥Snφj−
Dn∥Lp → 0. Thus, for p = 1 we have ∥Sn∥ ≥ ∥Dn∥L1 , since ∥φj∥L1 = 1, and
the converse inequality follows by Young.

To see this recall that

Snf(x) =

∫
Dn(x− y)f(y) dy.

where the first inequality follows from Young’s inequality and the limit since
Fn, the so-called Fejér kernel

Fn = (n+ 1)−1
n∑

i=0

Di =
sin((N + 1)/2x)2

(n+ 1) sin(x/2)2
,

is an approximate identity, since it is positive and integrates up to 1. In fact,
the Fejér kernels form an approximate identity (show this!). In particular,
this implies that

σN = (N + 1)−1
N∑

n=0

Snf

satisfy

Proposition 1.2. For any f ∈ C0(T) we have σNf → f uniformly as
N → ∞. For any p ∈ [1,∞) and any f ∈ Lp we have ∥σNf − f∥ → 0 as
N → ∞.

Since the convergence is true for p = 2 (Parseval), we are left with study-
ing p ∈ (1,∞) \ {2}.
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1.5. Lp convergence of the Fourier series.

Definition 1.5. A Banach lattice of measurable functions is a Banach space
X such that whenever g ∈ X, f is measurable and |f | ≤ |g| a.e., then f ∈ X
and ∥f∥X ≤ ∥g∥.

Examples of Banach lattices are the Lp spaces, but Sobolev spaces are
e.g. no Banach lattices in general.

Let P denote the set of trigonometric polynomials and define

Definition 1.6. We define the operator P on P whose Fourier transform
is the projection

P̂ f(n) =

{
f̂(n) n ≥ 0

0 n < 0.

An operator T on L2(T) satisfying

T̂ f(n) = anf̂(n)

with an a bounded sequence is called a Fourier multiplier operator and
defines itself a bounded linear operator.

It is closely related to the so-called discrete Hilbert transform Ĥf(n) =

−iSgn(n)f̂(n) such that

1

2
(I + iH)f = Pf − 1

2
f̂(0).

Thus, P extends to an Lp bounded operator if and only if H does.
We then have

Proposition 1.3. Let X ⊂ L1(T) be a Banach lattice and suppose that P is
dense in X. If P : P → P extends to a bounded linear operator P : X → X
then ∥Snf − f∥X → 0 as n→ ∞ for every f ∈ X.

One then shows that

Theorem 7. P and H extend to bounded linear operators on Lp(T) for
every p ∈ (1,∞).

Corollary 1.4. Let p ∈ (1,∞) then the Fourier series converges for f ∈
Lp(T) also in Lp(T).

2. Hardy-Littlewood Maximal function

We start by recalling basic properties.
The distribution function λf is defined as

λf (α) := µ{x ∈ X; |f(x)| > α}.
One then has for any measurable f : X → C and any p ∈ (0,∞)∫

X
|f |pdµ = p

∫ ∞

0
αp−1λf (α)dα.
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In addition one has Chebyshev’s inequality for any p ∈ (0,∞) and f ∈ Lp

λf (α) ≤ α−p∥f∥pp.

Definition 2.1. For each p ∈ [1,∞) we define Lp,∞ the weak Lp space of
all measurable f for which there is a constant C > 0 such that

λf (α) ≤ α−pCp.

The infimum of all such constants is defined to be ∥f∥p,∞. An example of

a function that is in the weak space but not the full space is |x|−d/p.
The above definition defines a quasi-norm in the sense that the triangle

inequality holds for some Cp <∞ such that

∥f + g∥p,∞ ≤ Cp(∥f∥p,∞ + ∥g∥p,∞).

For p ∈ (1,∞) there actually exists a genuine norm on this space.

Definition 2.2. An operator T is said to be of weak type (p, q) if it maps
Lp to Lq,∞ and satisfies

∥Tf∥q,∞∥ ≤ C∥f∥p.

Finally, we define a key object for our following studies

Definition 2.3. Let f ∈ L1
loc(R

d), we define the Hardy-Littlewood Maximal
Function

Mf(x) := sup
r>0

|Br(x)|−1

∫
Br(x)

|f(y)|dy.

We then have the following Theorem

Theorem 8. For each p ∈ (1,∞] there is C(p, d) <∞ such that ∥Mf∥p ≤
C∥f∥p. Moreover, for any f ∈ L1 and α > 0 we have

|{x;Mf(x) > α}| ≤ Cα−1∥f∥1.

However, M fails to map L1 to L1. In fact, ifMf ∈ L1 then f ≡ 0. To see
this, we observe that if

∫
Br(0)

|f | > 0, then for any x, we find
∫
B|x|+2R(x) |f | ≤∫

Br(0)
|f |. We deduce that

Mf(x) ≳ ⟨x⟩−d

which is not integrable.
In addition, we note that the bound ∥Mf∥∞ ≤ ∥f∥∞ is obvious. In fact,

we even have

lim
r→0

|Br(x)|−1

∫
Br(x)

f(y) dy = f(x)

by Lebesgue’s differentiation theorem, which implies Mf(x) ≥ |f(x)|. Our
approach to show Theorem ?? will be to show the L1 → L1,∞ bound and
then to use interpolation.

We have the Vitali covering Lemma
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Lemma 2.1. For each d ≥ 1, there is Cd <∞ such that for any measurable
E ⊂ Rd of finite measure and any collection of balls B such that

E ⊂
⋃
B∈B

B,

there is a collection B′ of disjoint elements of B such that

|E| ≤ Cd

∑
B′∈B′

|B′|.

The L1 → L1,∞ bound can then be deduced as follows.
Let f ∈ L1 and α > 0 be given. Define Eα := {x;Mf(x) > α}. Define B

to be the balls B satisfying

|B|−1

∫
B
|f | > α.

The union of all those contains Eα. Then using the Vitali covering Lemma,
we conclude

|Eα| ≤ Cd

∑
B′∈B′

|B′| ≤ Cd

∑
B′∈B′

α−1

∫
B′

|f | ≤ Cdα
−1∥f∥1.

We shall now turn to the proof of the covering Lemma

Proof. Choose K ⊂ E compact with |K| ≥ |E|/2. Choose a finite subcovert
B′′ ⊂ B that covers K. Write B′′ = {B1, B2, ...} ordering the balls so that
|Bj | ≥ |Bj+1|.We then define B′ as follows: Select B1. If BN is disjoint from
all previously selected one, we select it, otherwise we discard it. This way B′

has only pairwise disjoint elements. We find that for any Bm ∈ B′′ \B′ there
is B′ ∈ B′ such that Bm ⊂ (B′)∗ where (B′)∗ denotes the ball concentric
with B′ having three times as large a radius. Finally,

|K| ≤ |
⋃

B∈B′′

B| ≤ |
⋃

B′∈B′

(B′)∗| = 3d
∑
B′∈B′

|B′|.

□

The interpolation result we need is the Marcinkiewicz Interpolation The-
orem

Definition 2.4. An operator T is said to be sublinear if it satisfies |T (f +
g)| ≤ |Tf |+ |Tg|

Let p−1
θ = (1−θ)p−1

0 +θp−1
1 and q−1

θ = (1−θ)q−1
0 +θq−1

1 . The Marcinkiewiz
interpolation theorem then states

Theorem 9. Having, ∥Tf∥qj ,∞ ≤ C∥f∥pj , we conclude that

∥Tf∥qθ ≤ C̃∥f∥pθ .

The main advantage of the Marcinkiewicz theorem is that, unlike the
Riesz-Thorin theorem, it only requires weak estimates at the end-points.
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Proof. To keep it simple, we will just the proof the case that we need: Let
p0 = q0 = 1 and p1 = q1 = ∞. Suppose that

∥Tf∥∞ ≤ C1∥f∥∞, ∥Tf∥1,∞ ≤ C0∥f∥1
as well as |T (f + g)| ≤ C2(|Tf |+ |Tg|).

Given α > 0 we split f = g + h where h(x) = 0 if |f(x)| ≤ α/(2C1C2)
and h(x) = f(x) otherwise. Then ∥g∥∞ ≤ α/(2C1C2) so ∥Tg∥∞ ≤ α/(2C2).
This implies that

C2|Th|+ α/2 ≥ C2|Th|+ C2∥Tg∥∞ ≥ C2(|Th|+ |Tg|) ≥ |Tf |

Hence, if |Tf | ≥ α, then |Th| ≥ α/(2C2).
This implies by the monotonicity of measures, since λf (α) := µ{x ∈

X; |f(x)| > α} we find that

λTf (α) ≤ λTh(α/(2C2)).

This implies, using that ∥h∥p = p
∫∞
0 αp−1λh(α) dα and the definition of h

λTf (α) ≤ λTh(α/(2C2)) ≤ 2C2α
−1∥Th∥1,∞

≤ 2C0C2α
−1∥h∥1

= Cα−1

∫ ∞

0
λh(β)dβ

= Cα−1

∫ ∞

0
min(λf (β), λf (α/(2C1C2))) dβ

≤ .Cα−1

∫
α/(2C1C2)

λf (β) dβ + Cλf (α/(2C1C2)).

Thus, for any p ∈ (1,∞)

∥Tf∥pp = p

∫ ∞

0
αp−1λTf (α) dα

≤ C

∫ ∞

0
αp−1

(
α−1

∫ ∞

α/(2C1C2)
λf (β) dβ + Cλf (α/(2C1C2))

)
dα

= C

∫ ∞

0
λf (β)

∫ 2C1C2β

0
αp−2 dα dβ + C

∫ ∞

0
αp−1λf (α/(2C1C2)) dα

≤ C

∫ ∞

0
γp−1λf (γ) dγ.

□

3. Singular Integral Operators

Definition 3.1. A Calderon Zygmund kernel is a continuous function on
Rd × Rd \∆, where ∆ = {(x, y);x = y} is the diagonal such that

|K(x, y)| ≤ C|x− y|−d
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and there is δ ∈ (0, 1] such that whenever |y − y′| ≤ 1/2|x− y| then

|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ C|y − y′|δ|x− y|−d−δ.

Definition 3.2. A continuous linear operator T : D → D′ is associated to
a kernel K ∈ L1

loc(R
d×Rd \∆) if for every pair f, g ∈ D of disjoint support,

we have

⟨Tf, g⟩ =
∫ ∫

K(x, y)f(x)g(y) dy dx.

An operator has at most one kernel but a kernel does not uniquely define
an operator, e.g. K = 0 corresponds to both the identity and the first
derivative operator.

One then has

Theorem 10 (Calderon Zygmund). Suppose that for some q ∈ (1,∞) T is
a bounded linear operator on Lq(Rd) and T is assocaited with a CZ kernel.
Then T extends to a bounded linear operator for all q ∈ (1,∞) and is of
weak (1, 1) type, i.e.

∥Tf∥1,∞ ≤ C∥f∥1.

The essential step in the proof is the following result

Proposition 3.1. Under the assumptions of Theorem ??, the operator T is
of weak (1, 1) type.

We can now give the proof of Theorem ??

Proof. Using Marcinkiewicz interpolation we can conclude that T is bounded
for every p ∈ (1, q). If q = ∞ then we are good. If not, then we study the

transpose operator T ′ ∈ L(Lq′) defined by
∫
fT ′g =

∫
Tfg with kernel

K ′(x, y) = K(y, x). Applying the Proposition, T ′ is bounded for every r ∈
(1, q′). This however implies that T is bounded on all Lp with p ∈ (1,∞). □

To prove our Proposition, we need another tool that is commonly referred
to as the Calderon-Zygmund decomposition

Proposition 3.2. Let f ∈ L1(Rd) and α > 0. Then f can be written as
g+ b with ∥g∥∞ ≤ α and b =

∑
j bj with each bj supported on a dyadic cube

Qj
3and

• Qi ∩Qj = ∅ for i ̸= j.
•
∫
bj = 0

• ∥bj∥1 ≤ 2dα|Qj |
•
∑

j |Qj | ≤ α−1∥f∥1.
• ∥b∥1 + ∥g∥1 ≤ C∥f∥1.

We can now state the proof of Prop. ??.

3A cube of sidelength 2k for some k ∈ Z with vertices in Z2k
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Proof. Let |Tf(x)| > α then using the same notation as in the CZ decom-
position

|{x; |Tf(x)| > α}| ≤ |{x; |Tg(x)| > α/2}|+ |{x; |Tb(x)| > α/2}|.

We also have that by the CZ decomposition again.

∥g∥qq ≤ ∥g∥q−1
∞ ∥g∥1 ≤ Cαq−1∥f∥1.

Thus, by Chebyshev

|{x; |Tg(x)| > α/2}| ≤ 2qα−q∥Tf∥qq ≤ Cα−q∥g∥qq ≤ Cα−1∥f∥1.

This is the weak (1,1) boundedness for g, now we also need this for q. Let
Q∗

j denote the ball concentric with Qj whose radius is twice the diameter of
Qj .

We define the exceptional set

E =
⋃
j

Q∗
j ,

then using the CZ decomposition

|E| ≤ C
∑
j

|Qj | ≤ Cα−1∥f∥1.

This implies that

|{x; |Tb(x)| > α/2}| ≤ |E|+|{x /∈ E; |Tb(x)| > α/2}| ≤ |E|+2α−1∥Tb∥L1(Rd\E).

The term |E| has already been estimated two lines above. We now focus on
∥Tb∥L1(Rd\E) and use that

∥Tb∥L1(Rd\E) ≤
∑
j

∥Tbj∥L1(Rd\E) ≤
∑
j

∥Tbj∥L1(Rd\Q∗
j )
.

We now need an additional Lemma that shows that

∥Tbj∥ ≤ C∥bj∥.

This then allows us to show that∑
j

∥Tbj∥L1(Rd\Q∗
j )

≤ C
∑
j

∥bj∥L1 = C∥b∥1 ≤ C∥f∥1.

□

We now show (??). Let y0 denote the center of Qj , then since
∫
bj = 0

we have for x /∈ Q∗
j

Tbj(x) =

∫
(K(x, y)−K(x, y0))bj(y) dy.
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We conclude∫
x/∈Q∗

j

|Tbj(x)| dx =

∫
x/∈Q∗

j

|
∫
y∈Qj

(K(x, y)−K(x, y0))bj(y) dy|dx

=

∫
y∈Qj

∫
x/∈Q∗

j

|K(x, y)−K(x, y0)| dx|bj(y)| dy

≤ ∥bj∥1 sup
y∈Qj

∥K(•, y)−K(•, y0)∥L1(Rd\Q∗
j )
.

On the other hand, for ℓ the side-length of the cube Qj

|Tbj(x)| ≤ C|x− y0|−d−δ

∫
Qj

|y − y0|δ|bj(y)| dy ≤ C|x− y0|−d−δℓd∥bj∥1.

Using that for y ∈ Qj and x ∈ Q∗
j we have |x − y0| ≥ 2|y − y0| we have by

the properties of the CZ kernel

|K(x, y)−K(x, y0)| ≤ C|y − y0|δ|x− y0|−d−δ.

Integrating then, we find∫
Rd\Q∗

j

|x− y0|−d−δ dx ≤
∫
|x−y0|≥2ℓ

|x− y0|−d−δ dx = cℓ−δ

Thus, one finds

∥Tbj∥1 ≤ C∥bj∥1.

4. Homogeneous distributions

Let x ∈ Rd and r > 0 then

δrf(x) := f(rx).

This notation is extended to distributions by setting for ϕ ∈ S′

(δrϕ)(f) := r−dϕ(δ1/rf)

Checking for ϕ(f) =
∫
gf we have by the change of variables that (δrϕ)(f) =∫

(δrg)f.
A distribution ϕ is called homogeneous of degree γ if δrϕ = rγϕ for all

r > 0.
The Dirac distribution is homogeneous of degree −d in Rd. The principal

value on R defined by

ϕ(f) := lim
ε↓0

∫
|x|>ε

f(x)x−1dx

is homogeneous of degree −1.
It is easy to see that for any γ ∈ C if ϕ ∈ S′ is homogeneous of degree γ

then ϕ̂ is homogeneous of degree−d−γ. If ϕ is homogeneous of degree γ, then
∂αϕ is homogeneous of degree γ − |α|. However, log |x| is not homogeneous
on R2, but ∆ log |x| = cδ0 for some c ∈ R \ {0} and therefore homogeneous.

We start with the following result
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Exercise 4. If ϕ ∈ S′ is homogeneous and belongs to C∞(Rd \ {0}), then
ϕ̂ ∈ C∞(Rd \ {0}) as well.

The proof of this can be obtained from an approximation scheme that
rests on the following Lemma

Lemma 4.1. The Fourier transform of any compactly supported distribution
belongs to C∞.

Proof. Let ϕ be a compactly supported distribution. We choose a function
η ∈ C∞

c that is equal to one on the support of ϕ. Thus, ϕη = ϕ. By continuity
there is M and C such that

|ϕ(f)| = |ϕ(ηf)| ≤ C∥ηf∥CM .

This implies that

ϕ̂(f) = ϕ(f̂) = ϕ(ηf̂).

Writing e−ixξ =
∑∞

n=0
(−ixξ)n

n! we find

ϕ̂(f) =
∑
n

1

n!

∫
ϕ(η(−ixξ)n)f(ξ)dξ = ⟨ψ, f⟩

with ψ(ξ) =
∑

n ϕ(η(−ix)n)
ξn

n! an entire function. □

Distributions supported in a single point are particularly easy

Exercise 5. Let ϕ ∈ S′(Rd) supported in {0}, then for some m and coeffi-
cients aα

ϕ =
m∑

n=1

aα∂
αδ0.

Hint: Use continuity to show that ϕ(f) = 0 if ∂αf(0) = 0 for all 0 ≤ |α| ≤
m.

We find then

Theorem 11. The Fourier transform defines a continuous bijection between
all distributions that are homogeneous of degree 0 and smooth away from the
origin and distributions ϕ of the form

Cδ0 + pv(K) with K ∈ C∞(R \ {0}),
∫
Sd−1

K = 0,

where pv(K)(f) := limε↓0
∫
|x|>ε k(x)f(x) dx.

Proof. We use that we can write our distribution as ϕ = c +m where c is
a constant and m satisfies

∫
Sd−1 m = 0. The Fourier transform of m is a

distribution k which is a function h that is homogeneous of degree −d and
smooth on Rd \ {0}.

Let f be radial, then k(f) = m̂(f) = m(f̂) =
∫
mf̂ = 0. This implies that

h is radial.
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We can now define H = pv(h) which is homogeneous of degree −d. Thus,
k − H is homogeneous of degree −d and supported in {0}. Hence, it is a
multiple of δ0. □

This implies that

Corollary 4.2. If ϕ ∈ S′ is homogeneous of degree −d and belongs to
C∞(Rd\{0}), then the operator Tf = f ∗ϕ is a bounded operator on L2(Rd).

Proof. Its fourier transform ϕ̂ is homogeneous of degree 0 and belongs to

C∞(Rd \ {0}). Thus, ϕ̂ ∈ L∞. Then, since (̂ϕ ∗ f) = ϕ̂f̂ ∈ L2, the claim
follows. □

Thus, we have shown

Theorem 12. Let k ∈ C∞(Rd \ {0}) be homogeneous of degree −d and∫
Sd−1 k = 0 then for all p ∈ (1,∞)

∥pv(k) ∗ f∥p ≤ C∥f∥p
and the weak L1 bound holds as well.

Theorem 13. Let m ∈ C∞(Rd \ {0}) be homogeneous of degree zero. Then

the operator f 7→ F−1(f̂m) is a Calderon-Zygmund operator

Proof. We have Tf = F−1(f̂m) equals f ∗ F−1m where F−1m is homoge-
neous of degree −d and belongs to C∞(Rd \ {0}). Therefore F−1m(x − y)
defines a standard kernel. □


