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1 3.3 Preduals, normal states

Definition 1. Let M be a von Neumann algebra. Define M; = {M € M :
[|M]] < 1}

M is a weakly compact subset of B(H) which is weakly compact by Banach-
Alaoglu. Hence on M the weak and o-weak topology coincide. A proof can be
found herehttps://almostsuremath.com/2020/01/04/operator-topologies/|

Definition 2. Define M, as the space of all weakly continuous linear forms on
M which are continuous on Mj.

One can show that for all elements ¥ € M., the image of M; is a compact
subset in C which implies the norm continuity of ¥. Thus M, C M*, the
topological dual of M.

Proposition 1.
1. M, is a closed subset of M*
2. M is the dual of M.,

Proof. Idea: For the first part we show that for any converging sequence (f;,)nen C
M., for which a limit f € M* exists, f € M,. To show f € M, it is
sufficient to prove, that f is weakly continuous on M;. Choose a weakly
convergent sequence (A, )nen and show by using the triangle inequality that
|f(An) = f(A)] =0 (n— o0)

For the second statement remember that any surjective linear isometry on a
linear Banach space is an isomorphism.

First we show that the inclusion map

M= (M) A= A= (w— w(A))
is a linear isometry. Define the norm of A in the dual space as
|A]lau = sup |w(A)]

[lw]|=1
wEM,
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2 4.1 THE MODULAR OPERATORS Y. Wettstein R. Therezien

Note: This is just the natural operator norm.

One shows now that those norms are equal. Hence ¢ is a linear isometry.

For the surjectivity one choose ¢ € (M,)* and ¢' : H x H — C, (z,y) —
O(wg y|lm). Where wy ,, : B(H) — C, A (y, Az,) By the Riesz representation
theorem 34 € B(H) s.t. ¢'(x,y) = (y, Az) Yo,y € H

Next one shows that A € M” = M, which implies that ((4) = ¢’ for the A
given by Riesz, and that t(A) coincides with ¢ on all w € M, in of the form
W = Wy, for some z,y € H.

Yw € M, we can write w = tr(p-) . Using this we show

w = z Anwﬂmuyn

neN
Since ¢(A) coincides with ¢ on all w,, ,, they are the same. O
Two examples where given :
1. M=BH = M, =T(H)
2. M =L>(X,u) = M, =LYX,u)

Theorem 1. Sakai Theorem: A C*- Algebra is a von Neumann algebra if
and only if it is the dual of some Banach space.

Definition 3. A state on a von Neumann algebra is called normal if it is o-
weakly continuous.

Theorem 2. On a von Neumann algebra M and a state w the following are
equivalent:

1. w is normal

2.3p>0,peT(H) st tr(p) =1 and w(A) =tr(pA) VA € M

2 4.1 The modular operators

We have a pair (H,w), where M is a von Neumann algebra acting on some
Hilbert space and w a normal faithful state on #.

Definition 4. w is faithful on H if Vo € M, w(z*z) =0 = 2z =0.
We know consider the GNS (Gelfand-Naimard-Segal) representation of (#,w).

Definition 5. The GNS (Gelfand-Naimard-Segal) representation of (M,w) is
the triple (H,II, Q) with:

1. II is a morphism from H to B(H)
2. w(4) =< Q,U(A)Q >
3. TI(M)Q is dense in H.
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Notation: We identify M and M’ with TI(M) and TI(M’). This implies that
w(A) =< Q, AQ >.

Proposition 2. The vector Q is cyclic and separating for M and M’
A quick reminder,

e Q) is cyclic for M if Q, MQ, M2Q, ... span H. Or equivalently, that

MQ = {AM : A € M} is norm dense in H

e () is separating for M if VA € M such that AQ2 =0 then A =0
Proof. Let us first prove it for M:
e Cyclic: As by definition, we have M(Q is dense in H so £ is cyclic for M.

e Separating: If A € M is such that AQ = 0 then w(A*A) =< Q, A*AQ >=
0 but as w is faithful, this implies that A = 0.

Now we prove that it also holds on M’:

e Separating: If A’ € M’ and A’Q) = 0 then, using that A’ is in the com-
mutant:

A'BQ=BAQ=0BeM

Thus A’ vanishes on a dense subspace of H which implies that A’ = 0.
Thu  is separating for M’.

e Cyclic: Let P be the projection on MQ. Then P € M’ and (I — P)Q =0
as PIQ = IQ = Q with I € M the identity. Hence I — P as () is separating
in M and thus © is cyclic for M’ because P = I implies that M’ is dense.

O

Definition 6. We define the operators (which are anti-linear):

So : MO — MQ
AQ — A*Q

Fy: M'Q — M'Q
BQ — B*Q
Proposition 3. The operator Sy and Fy are closable and Sy = Fy, Fy = Sg-
We know put S = Sy = F} and F = Fy = S§.
Theorem 3. We have S = S~1.
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Proof. Let z € DomSx. We have:
< SpAQ, Sz > =< A*z, Sz > because S* = (F7)* = Fy and Fy = S5,
=< 2,50A"Q > as Sy anti-linear,
=< z,AQ) > by definition of Sj.
This means that S*z belongs to DomS§ € DomS™ because as we have

< SgAQ, 8%z >=< 2z, AQ >

so we can do < S§S*z, AQ >) and (S*)?z = z.
Let y € DomS and z € DomSx*, we have S x z € DomS* and

< 82,8y > =<y, (8%)%2 > by anti-linearity
=<y,z> as (§%)%z =2
Thus Sy € DomS™* = DomS and
S%y = S xSy = yas <y, (S*) %z >=<y,z >
Thus we have that S? = I on DomS which implies that S = S~1. O
Let us define A as A = F'S = §*S.

Theorem 4. There exists an anti-unitary operator J from H to H and an
(unbouded) invertible, positive operator A such that:

A=FS A '=8SFJ*=1
S=JAVZ=AT2]
F— JA-Y2 _ Al/27
JA" = A"
JA=A0=0
J is actually the polar decomposition of S:
S =J(5*8)'/?
Proof. We will prove only some of the equalities.
A =(FS)'=5"1F1 = SF.
S =JAY? = (8812 = ATV2
Let z € DomS. Then
x= 8% =JAVPATY2 ) = g%

and thus J2 = I.
Finally, note that SQ = FQ = Q by taking A = I € M and thus AQ = FSQ =
Q and similarly for J, JQ = Q. U
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Example:
If the state w was tracial, that is w(AB) = w(BA),VA, B, we would have

1S0AQ||2 = ||A % Q| =< A*Q, A*Q >

— w(A44")
=w(AxA)
= ||14Q|]”

Thus Sy would be an isometry and

S=J=F

A=1.
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