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1 3.3 Preduals, normal states

Definition 1. Let M be a von Neumann algebra. Define M1 = {M ∈ M :
||M || ≤ 1}

M1 is a weakly compact subset of B(H) which is weakly compact by Banach-
Alaoglu. Hence on M1 the weak and σ-weak topology coincide. A proof can be
found here https://almostsuremath.com/2020/01/04/operator-topologies/.

Definition 2. Define M∗ as the space of all weakly continuous linear forms on
M which are continuous on M1.

One can show that for all elements Ψ ∈ M∗, the image of M1 is a compact
subset in C which implies the norm continuity of Ψ. Thus M∗ ⊂ M∗, the
topological dual of M.

Proposition 1.

1. M∗ is a closed subset of M∗

2. M is the dual of M∗

Proof. Idea: For the first part we show that for any converging sequence (fn)n∈N ⊂
M∗, for which a limit f ∈ M∗ exists, f ∈ M∗. To show f ∈ M∗ it is
sufficient to prove, that f is weakly continuous on M1. Choose a weakly
convergent sequence (An)n∈N and show by using the triangle inequality that
|f(An)− f(A)| = 0 (n → ∞)
For the second statement remember that any surjective linear isometry on a
linear Banach space is an isomorphism.
First we show that the inclusion map

ι : M → (M∗)
∗ A 7→ A = (ω 7→ ω(A))

is a linear isometry. Define the norm of A in the dual space as

||A||du = sup
||w||=1
ω∈M∗

|ω(A)|
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Note: This is just the natural operator norm.
One shows now that those norms are equal. Hence ι is a linear isometry.
For the surjectivity one choose ϕ ∈ (M∗)

∗ and ϕ′ : H × H → C, (x, y) 7→
ϕ(ωx,y|M). Where ωx,y : B(H) → C, A 7→ ⟨y,Ax, ⟩ By the Riesz representation
theorem ∃A ∈ B(H) s.t. ϕ′(x, y) = ⟨y,Ax⟩ ∀x, y ∈ H
Next one shows that A ∈ M′′ = M, which implies that ι(A) = ϕ′ for the A
given by Riesz, and that ι(A) coincides with ϕ on all ω ∈ M∗ in of the form
ω = ωx,y for some x, y ∈ H.
∀ω ∈ M∗ we can write ω = tr(ρ ·) . Using this we show

ω =
∑
n∈N

λnωxn,yn

Since ι(A) coincides with ϕ on all ωxn,yn they are the same.

Two examples where given :

1. M = BH ⇒ M∗ = T (H)

2. M = L∞(X,µ) ⇒ M∗ = L1(X,µ)

Theorem 1. Sakai Theorem: A C∗- Algebra is a von Neumann algebra if
and only if it is the dual of some Banach space.

Definition 3. A state on a von Neumann algebra is called normal if it is σ-
weakly continuous.

Theorem 2. On a von Neumann algebra M and a state ω the following are
equivalent:

1. ω is normal

2. ∃ρ > 0, ρ ∈ T (H) s.t. tr(ρ) = 1 and ω(A) = tr(ρA) ∀A ∈ M

2 4.1 The modular operators

We have a pair (H, ω), where M is a von Neumann algebra acting on some
Hilbert space and ω a normal faithful state on H.

Definition 4. ω is faithful on H if ∀x ∈ M , ω(x∗x) = 0 =⇒ x = 0.

We know consider the GNS (Gelfand-Naimard-Segal) representation of (H, ω).

Definition 5. The GNS (Gelfand-Naimard-Segal) representation of (M, ω) is
the triple (H,Π,Ω) with:

1. Π is a morphism from H to B(H)

2. ω(A) =< Ω,Π(A)Ω >

3. Π(M)Ω is dense in H.
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Notation: We identify M and M′ with Π(M) and Π(M′). This implies that
ω(A) =< Ω, AΩ >.

Proposition 2. The vector Ω is cyclic and separating for M and M′

A quick reminder,

• Ω is cyclic for M if Ω, MΩ, M2Ω, ... span H. Or equivalently, that

MΩ = {AM : A ∈ M} is norm dense in H

• Ω is separating for M if ∀A ∈ M such that AΩ = 0 then A = 0

Proof. Let us first prove it for M:

• Cyclic: As by definition, we have MΩ is dense in H so Ω is cyclic for M.

• Separating: If A ∈ M is such that AΩ = 0 then ω(A∗A) =< Ω, A∗AΩ >=
0 but as ω is faithful, this implies that A = 0.

Now we prove that it also holds on M′:

• Separating: If A′ ∈ M′ and A′Ω = 0 then, using that A′ is in the com-
mutant:

A′BΩ = BA′Ω = 0∀B ∈ M

Thus A′ vanishes on a dense subspace of H which implies that A′ = 0.
Thu Ω is separating for M′.

• Cyclic: Let P be the projection on MΩ. Then P ∈ M′ and (I −P )Ω = 0
as PIΩ = IΩ = Ω with I ∈ M the identity. Hence I−P as Ω is separating
inM and thus Ω is cyclic forM′ because P = I implies thatM′Ω is dense.

Definition 6. We define the operators (which are anti-linear):

S0 : MΩ → MΩ

AΩ → A∗Ω

F0 : M′Ω → M′Ω

BΩ → B∗Ω

Proposition 3. The operator S0 and F0 are closable and S0 = F ∗
0 , F0 = S∗

0 .

We know put S = S0 = F ∗
0 and F = F0 = S∗

0 .

Theorem 3. We have S = S−1.
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Proof. Let z ∈ DomS∗. We have:

< S0AΩ, S∗z > =< A∗z, S∗
0z > because S∗ = (F ∗

0 )
∗ = F0 and F0 = S∗

0 ,

=< z, S0A
∗Ω > as S0 anti-linear,

=< z,AΩ > by definition of S0.

This means that S∗z belongs to DomS∗
0 ∈ DomS∗ because as we have

< S0AΩ, S∗z >=< z,AΩ >

so we can do < S∗
0S

∗z,AΩ >) and (S∗)2z = z.
Let y ∈ DomS and z ∈ DomS∗, we have S ∗ z ∈ DomS∗ and

< S∗z, Sy > =< y, (S∗)2z > by anti-linearity

=< y, z > as (S∗)2z = z.

Thus Sy ∈ DomS∗∗ = DomS and

S2y = S ∗ ∗Sy = yas < y, (S∗)2z >=< y, z >

Thus we have that S2 = I on DomS which implies that S = S−1.

Let us define ∆ as ∆ = FS = S∗S.

Theorem 4. There exists an anti-unitary operator J from H to H and an
(unbouded) invertible, positive operator ∆ such that:

∆ = FS,∆−1 = SF, J2 = I

S = J∆1/2 = ∆−1/2J

F = J∆−1/2 = ∆1/2J

J∆it = ∆itJ

JΩ = ∆Ω = Ω

J is actually the polar decomposition of S:

S = J(S∗S)1/2

Proof. We will prove only some of the equalities.

∆−1 = (FS)−1 = S−1F−1 = SF.

S = J∆1/2 = (SS∗)1/2J = ∆−1/2J.

Let x ∈ DomS. Then

x = S2x = J∆1/2∆−1/2J = J2x.

and thus J2 = I.
Finally, note that SΩ = FΩ = Ω by taking A = I ∈ M and thus ∆Ω = FSΩ =
Ω and similarly for J , JΩ = Ω.
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Example:
If the state ω was tracial, that is ω(AB) = ω(BA),∀A,B, we would have

||S0AΩ||2 = ||A ∗ Ω||2 =< A∗Ω, A∗Ω >

= ω(AA∗)

= ω(A ∗A)

= ||AΩ||2

Thus S0 would be an isometry and

S = J = F

∆ = I.
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