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3.1 Basics of Ergodic Theory

Definition 0.1 A dynamical system (X, ¢, u) is mixing if for any yu—absolutely
continuous measure p and all abservable f € L*(X,du) it holds:

lim p:(f) = u(f)-
Proposition 0.2 Mixing implies ergodicity.
Proof Let A be an invariant set modulo y, such that y(A) > 0. Then
o(f) = u(fys)/1(A) defines a p—absolutely continuous invariant measure
with p(A) = 1. If u is mixing, then
1=p(A) = p:(A) = lim p(A) = p(A).

t—o00
With Theorem 3.6 from the book, we can conclude that y is ergodic. U

Note that the reverse statement (ergodicity implies mixing) is not true.

3.2 Classical Koopmanism

Definition 0.3 The Koopman space of the dynamical system (X, ¢, u) is the
Hilbert space H = L?(X,du). On this space, the Koopman operators U' are
defined by

U'f=fogy.

In the following we assume that the Koopman space is separable.

Lemma 0.4 (Koopman Lemma) If H is separable, then U' is a strongly continu-
ous group of unitary operators on H.

Proof It has already been shown in the book that U’ is a group of isometries
on H. Since U'U~! = I, we have ran(U') = H and therefore U’ is unitary.
Since the map t — (f, U'g) is measurable and # is separable, it follows from
theorem 0.6 that  — U’ is strongly continuous. U

Definition 0.5 There exists a self-adjoint operator L on H, such that U* = e~ "L,

We call L the Liouvillean of the system.

Theorem 0.6 (Mean ergodic Theorem) Let U' = =4 be a strongly continu-
ous group of unitaries on a Hilbert space H, P the orthogonal projection on Ker(A).
Then we have for all f € ‘H

1 T
lim — [ U'fdt=Pf.
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Proof Since U’ is continuous, (f)r = # fOT U'fdt is well defined by the
Riemann integral. For all f € ran(A) and some g € D(A), we have:

U'f=U'Ag=isU'g.
Putting this into the integral, we get

. . ]. T . t . 1 T
PIAIT = Ji T fy e dt = fim, 7 (U0~ g =0
With ||(u)1 — (v)7|| < ||[u — ]| the above result holds for all f € ran(A) =
Ker(A)*. Note that f € Ker(A) implies (f)1 = f. Therefore

lim (f)7 = lim (Pf)r + lim (I - P)f)r = Pf. O

Theorem 0.7 (Koopman Ergodicity Criterion) A dynamical system is ergodic
if and only if 0 is a simple eigenvalue of its Liouvillean L.

Proof =: Let f € Ker(L). Then f is an invariant function in L!(X,du) and
by Theorem 3.6, we know that if y is ergodic, then f = u(f). And therefore
the dimension of Ker(L) is 1.

<: Assume now that Ker(L) is one-dimensional and let A be an invariant
set modulo y. So x4 € H is invariant and therefore x4 € Ker(L). Since
xa = u(A), it follows that u(A) € {0,1} and with Theorem 3.6 we can
conclude that y is ergodic. O

Theorem 0.8 (Koopman Mixing Criterion) A dynamical system is mixing if
and only if
w — limyeU' = (1, )1 (0.1)

Proof =:Set Hi4 :={g € H|g >0,u(g) =1}. Any g € H; is the Randon-
Nikodym derivative of some y—absolutely continuous probability p, so we
get for all f € L®(X,du)

(& U'f) = p:(f) = u(f) = (L, f). (0.2)

Because every g € H is a finite linear combination of elements in H;., this
holds for all g € H. Since the left and the right hand side of equation 0.2 are
‘H-continuous in f and uniformly in t and with the fact that L*® is dense in
‘H, equation 0.1 follows.

<: Suppose that p is a y —absolutely continuous probability and g its Randon-
Nikodym derivative. Assume that ¢ € H. With equation 0.1 we get

lim p+(f) = p(f)

for all f € L®. p;(f) is L' —continuous in ¢ and uniformly in ¢. So with the
fact that 7 is dense in L}, it follows that the system is mixing. U
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