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Chapter 1

Introduction

Morse theory is a rather simple but powerful tool that allows to recover the structure
of a smooth manifold M through the study of a single smooth function f : M ! R.
A well-known example of such a set-up is the height function f on the torus T2

shown in Figure 1.1.

f

z

Figure 1.1: The height function on T2.

A first key result shows that it is possible to construct a CW-complex structure
on M , as shown in Figure 1.2, analysing the sub-level sets Sc = f�1({x  c}) of f .

? ! 'hpy • ! 'hpy

,! 'hpy ! 'hpy

Figure 1.2: Sub-level sets of f and homotopic equivalent cells forming a CW decom-
position of T2.
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Chapter 1. Introduction

However, the tool that we will use in this work is the one of Morse homology.
Under suitable conditions, it is possible to associate a chain complex to M , and
thus a homology, looking at the critical points of f and how they relate to each
other.

The second key theory that will be used in this work is spectral sequences. Spectral
sequences are a broad argument (generalised to category theory), but for the purpose
of this work they are an algebraic construct associated to chain complexes that allow
to recover the homology of the original chain based on the homology on subspaces
of the chain elements.
The homology of a direct sum is the direct sum of the homologies – or, more

formally, given a chain complex

. . . �!
dM

i=1

An+1,i
↵n+1���!

dM

i=1

An,i

↵n�!
dM

i=1

An�1,i �! . . .

such that ↵k(Ak,i) ✓ Ak�1,i, then

H⇤

 
dM

i=1

A⇤,i

!
=

dM

i=1

H⇤(A⇤,i). (?)

But this is not the case in the situation where we just have a filtration

. . . �!
d[

i=1

An+1,i
↵n+1���!

d[

i=1

An,i

↵n�!
d[

i=1

An�1,i �! . . . (??)

satisfying the same condition ↵k(Ak,i) ✓ Ak�1,i. Spectral sequences are the “correct”
generalisation of property (?) to (??).
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Chapter 2

Homological algebra
a

The aim of this chapter is to introduce the few results and definitions that will be
used further on in the text.

2.1 Chains

Definition 2.1 (Chain complexes and homology groups). A chain complex (C⇤, @)
is a sequence C⇤ = (Cn)n of abelian groups with associated homomorphisms

· · · �! Cn+1
@n+1���! Cn · · · �! C1

@1�! C0
@0�! 0

such that @n�1@n = 0 for all n. We define the nth
homology group of the chain

complex to be the quotient

Hn(C⇤) = ker(@n)/im(@n+1). (2.1)

The elements of ker(@n) are called cycles and the elements of im(@n+1) boundaries.
Two cycles representing the same homology class im(@n+1) are said to be homologous.

Chain complex of R-modulesb are the objects of a category Ch
R
. The relative

morphisms are chain maps.

Definition 2.2 (Chain maps). Let (A⇤, @) and (B⇤, d) be two chain complexes. A
chain map is a sequence f⇤ of homomorphisms fn : An ! Bn such that f⇤ commutes
with the boundary operator, i.e. dn � fn = fn�1 � @n for all n. On a diagram this
means that

· · · An+1 An An�1 · · ·

· · · Bn+1 Bn Bn�1 · · ·

@n+1

fn+1

@n

fn fn�1

dn+1 dn

(2.2)

every cell commutes.

Lemma 2.3. Chain maps send cycles to cycles and boundaries to boundaries. They

thus induce a map on the homology.

a
For this chapter, where not stated di↵erently, the information are taken form [6, Section 2.1].

bR can be any commutative ring, for R 6= Z one just have to slightly modify Definition 2.1.
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Chapter 2. Homological algebra

Proof. If a 2 An such that @n(a) = 0 then dn(fn(a)) = fn�1(@n(a)) = 0 so the
image of a cycle is again a cycle.
Say instead a = @n+1(b) then fn(a) = fn(@n+1(b)) = dn+1(fn+1(b)) so the image of

boundary is still a boundary.
Therefore the maps

f̃⇤ : H⇤(A⇤) ! H⇤(B⇤)

[a] 7! [f⇤(a)]

are well-defined. ⌅

2.1.1 Exact sequences

Definition 2.4 (Exact sequence). Let (↵i)i be a sequence of homomorphisms of the
from

. . . �! An+1
↵n+1���! An

↵n�! An�1 �! . . . .

(↵i)i is said to be exact if im(↵i+1) = ker(↵i) for all i.

Remark 2.5.

1. Since the condition im(↵i+1) = ker(↵i) implies ↵i↵i+1 = 0, an exact sequence
defines a chain complex.

2. 0 �! A
↵�! B is exact , ↵ is injective.

3. A
↵�! B �! 0 is exact , ↵ is surjective.

4. 0 �! A
↵�! B �! 0 is exact , ↵ is bijective.

5. 0 �! A
↵�! B

��! C �! 0 is exact, ↵ is injective, � surjective and im(↵) = ker(�).

A sequence of the form of point 5 is called short exact sequence.

Definition 2.6 (Splitting sequence). cWe say that a short exact sequence

0 �! A
↵�! B

��! C �! 0

splits if there exists a right inverse ⇠ : C �! B to �, i.e. �⇠ = idC . We call ⇠ splitting
map.

Proposition 2.7. If a short exact sequence 0 �! A
↵�! B

��! C �! 0 splits, then

B ⇠= A� C.

c
This last part of Section 2.1.1 is due to [8, Lecture 12].
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2.2. Simplicial and singular homology

Proof. Let ⇠ be a splitting map. Let b 2 B then �(b) 2 C. Since

�(b� ⇠�(b)) = �(b)� �⇠|{z}
id

(�(b)) = 0,

b� ⇠�(b) 2 ker �. Using exactness we get an a 2 A such that ↵(a) = b� ⇠�(b), i.e.
b = ⇠�b + ↵a. But this means that B = im↵ + im⇠. For an element x 2 im↵ \ im⇠
for which x = ↵(a) = ⇠(c). �(x) = �↵(a) = 0 using exactness and �(x) = �⇠(c) = c
imply that x = ⇠(c) = ⇠(0) = 0, i.e. im↵\ im⇠ = ;. We have shown B = im↵� im⇠.
The first isomorphism theorem leads to conclusion. ⌅

A splitting sequence, is therefore a sequence which is composed in the “simplest
possible way”. We will use these concepts for stating Theorem 2.32 (The Universal
Coe�cients Theorem) in Section 2.4.

2.2 Simplicial and singular homology

Definition 2.8 (n-simplex). The n-simplex in Rm is the smallest convex set con-
taining n + 1 points v0, . . . , vn that do not lay in a hyperplane of dimension less
than n. We denote this simplex by [v0, . . . , vn] and the points v0, . . . , vn are called
the vertices of the simplex.
Deleting one of the n+1 vertices of a n-simplex, say vi, generates a (n�1)-simplex

denoted by [v0, . . . , v̂i, . . . , vn] called a face of [v0, . . . , vn].

The order of the vertices does play a role in homology and we adopt the convention
that the vertices of any sub-simplex spanned by a subset of vertices (e.g. a face), will

always be ordered according to their order in the larger simplex.

Example 2.9. The standard n-simplex is

�n =

(
(t0, . . . , tn) 2 Rn+1|

X

i

ti = 1, 0  ti 8i
)

where the edges are simply the standard basis ei. The union of the faces of �n is
the boundary of �n written @�n. We call open simplex �̊n = �n� @�n the interior
of �n.

Definition 2.10 (�-complex). A �-complex structure on a space X is a collection
of maps �↵ : �n ! X, with n dependent on ↵, such that

1. The restriction �↵|�n is injective.

2. Each restriction of �↵ to a face of �n is one of the maps �� : �n�1 ! X. Here
we identify the face of �n with �n�1 by the canonical linear homeomorphism
between them that preserves the ordering of the vertices.

3. A set A ✓ X is open if and only if ��1
↵
(A) is open in �n for each �↵.

5



Chapter 2. Homological algebra

Definition 2.11. We denote by�n(X) the free abelian group with basis the open n-
simplices en

↵
of X. Elements of �n(X) have the from of finite formal sums

P
↵
n↵en↵

with n↵ 2 Z and are called n-chains. We may write
P

↵
n↵en↵ =

P
↵
n↵�↵ with

�↵ : �n ! X the characteristic map of en
↵
.

The boundary of the n-simplex [v0, . . . , vn] consists in many (n�1)-simplices that
we might wish just sum up to form the boundary. However inserting alternating
signs and leting

@n[v0, . . . , vn] =
X

i

(�1)i[v0, . . . , v̂i, . . . , vn]

be the boundary of [v0, . . . , vn] leads to better results.

Definition 2.12 (Boundary maps). We define for a general �-complex on X the
di↵erential @n as the boundary homomorphism defined by its action on the basis
elements

@n : �n(X) �! �n�1(X)

�↵ 7�! @n(�↵) =
X

i

(�1)i�↵|[v0,...,v̂i,...,vn]

Lemma 2.13. In the sequence

�n(X)
@n�! �n�1(X)

@n�1���! �n�2(X)

we have that @n�1@n = 0

Proof. We need to show that im(@n) ✓ ker(@n�1). To that end we have

@n�1@n(�) = @n�1

X

i

(�1)i�|[v0,...,v̂i,...,vn]

=
X

j<i

(�1)i(�1)j�|[v0,...,v̂j ,...,v̂i,...,vn] +
X

ij

(�1)i(�1)j�|[v0,...,v̂i,...,v̂j ,...,vn]

}
=
X

j<i

(�1)i(�1)j�|[v0,...,v̂j ,...,v̂i,...,vn] +
X

i<j

(�1)i(�1)j+1�|[v0,...,v̂i,...,v̂j ,...,vn]

=
X

j<i

(�1)i(�1)j�|[v0,...,v̂j ,...,v̂i,...,vn] �
X

i<j

(�1)i(�1)j�|[v0,...,v̂i,...,v̂j ,...,vn] = 0.

Where in } we used that delete index j � i when index i was already deleted is as
delete index j + 1 in the original setting. ⌅
Remark 2.14. Lemma 2.13 states that �n(X) defines a chain complex. We will
denote this nth

simplicial homology group of X as H�
n
(X).

2.2.1 Singular homology

In Definition 2.10 we have introduced the notion of �-complex. This involved maps
�↵ which had to fulfil three di↵erent conditions that made the embedding of the
standard n-simplex (very) “nice”. We can loosen up this additional condition by
just requiring continuity and we get the singular complex.

6



2.3. Spectral Sequences

Definition 2.15 (Singular-complex). A singular n-simplex on a space X is a con-
tinuous map �↵ : �n ! X. A singular n-complex is a collection of such maps.
We call n-chains the elements of the free abelian group generated by the singular

n-simplices, i.e. elements of the form
P

i2Z ni�i with ni 2 Z and �i : �n ! X. We
denote this group by Cn(X).

The boundary maps for the singular complexes is defined exactly as in Definition
2.12.

Definition 2.16 (Singular-homology groups). The n-singular homology groups of
X is the quotient group

Hn = ker(@n)/im(@n+1)

where @n : Cn(X) ! Cn�1(X) is the boundary map.

The same proof as presented for Lemma 2.13 applied instead to Cn(X) shows that
Definition 2.16 is indeed well-defined.

Remark 2.17. One can easily see from Definition 2.15 and Definition 2.16 that
homeomorphic spaces have isomorphic singular homology groupsd. This is not the
case for simplicial homology. The embedding conditions happen to be too strict. Sin-
gular homology behaves even better, since it’s invariant under homotopy equivalence
[3, Proposition 6.3].

Singular homology is therefore the tool we want to use for analysing the structure
of the spaces of our interest, nevertheless one can show (see [6, Section “Singular
Homology”]) singular homology is just a special case of simplicial homology.
We point to any book on Algebraic Topology (e.g. [3] or [6]) for a vast outlook on

properties and application of singular homology.

2.3 Spectral Sequences

We will mainly follow the path delineated in [11] and [7]e.

Definition 2.18 (Spectral sequence). A spectral sequence (E, d) is a sequence of
bigraded groups, i.e. a sequence E = (Er)r whose elements are a family of doubly
indexed groups Er = {Er

p,q
: p, q 2 Z} together with a sequence of maps d = (dr)r

such that:

• dr : Er ! Er and more precisely dr : Er

p,q
! Er

p�r,q+r�1

• dr � dr ⌘ 0

• Er+1 = ker(dr)/im(dr)

d
The proof is basically composing the homeomorphism with any � and show that everything is

fine.
e
Since [4] was also one of the reading during the writing of this part, some ideas might also come

from this source.
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Chapter 2. Homological algebra

Definition 2.19 (Limit of a spectral sequence). A spectral sequence (Er)r is con-
vergent if it is eventually stationary, i.e. it exists a N 2 N such that

8r � N, 8p, q 2 Z : Er

p,q
= EN

p,q
.

We denote EN

p,q
= E1

p,q
and write Er ! E1. E1 is called the limit of the sequence.

2.3.1 Exact couples

Definition 2.20 (Exact couple). An exact couple is an exact triangle of groups A
and E with maps i, j, k of the form

A A

E

i

j

k

(2.3)

In this case exactness means that the image of each map is the kernel of the following.

Given an exact couple as in (2.3) we define

d = j � k : E �! E

where d2 = jkjk = 0 due to jk = 0 because of the exactness assumption of (2.3).

Definition 2.21 (Derived couple). Considering an exact couple as in Definition
2.20 we obtain a derived couple

i(A) i(A)

H(E; d)

i
0

j
0

k
0

(2.4)

Where

• i0 = i|i(A)

• H(E; d) = ker(d)/im(d) is well-defined as homology group as in (2.1) because
of d2 = 0.

• j0(i(a)) = [j(a)] for all a 2 A is well-defined since

– d(j(a)) = jkj(a) = 0 8a 2 A due to exactness of (2.3)

– if a1, a2 2 A are such that i(a1) = i(a2) then i(a1 � a2) = 0 and so
a1�a2 2 ker(i) = im(j). Therefore j(a1)� j(a2) 2 im(jk) = im(d) which
means [j(a1)] = [j(a2)].

• k0[e] = k(e) which is well-defined since

– [e] 2 H(E; d) implies e 2 ker(d) so jk(e) = d(e) = 0 so e 2 ker(j) = im(i).

– [e1] = [e2] implies e1 � e2 2 im(d) ✓ im(j) = ker(k) so k(e1) = k(e2).

8



2.3. Spectral Sequences

Lemma 2.22. The derived couple of an exact couple is also exact.

Proof. We have to prove 6 things

ker(j0) ◆ im(i0): for ia 2 i(A) we have j0i0ia = [j(i(a))] = 0 since ia 2 im(i) = ker(j)

ker(j0) ✓ im(i0): if ia 2 ker(j0) then 0 = j0ia = [ja] so ja 2 im(d) which implies that
9e 2 E such that ja = de = jke. But this means a � ke 2 ker(j) = im(i) so
9b 2 A such that ib = a�ke. Applying i on both sides we get i2b = ia�ike = ia
so ia 2 im(i2) = im(i0)

ker(k0) ◆ im(j0): for ia 2 i(A) we have k0j0ia = k0[ja] = kja = 0 since im(j) = ker(k).

ker(k0) ✓ im(j0): if 0 = k[e] = ke then e 2 ker(k) = im(j) so 9a 2 A such that
e = ja and thus [e] = [ja] = j0ia 2 im(j0)

ker(i0) ◆ im(k0): i0k0[e] = ike = 0 since im(k) = ker(i)

ker(i0) ✓ im(k0): if 0 = i0(i(a)) = i2a ia 2 ker(i) = im(k) so 9e 2 E such that
ia = ke = k[e] 2 im(k0).

⌅

Remark 2.23. Let

A A

E

i

j

k

be an exact couple. Then if i is an inclusion map we have that 0 = ker(i) = im(k)
so k ⌘ 0 and therefore d ⌘ 0. The derived couple of this exact couple is the exact
couple itself.

Definition 2.24 (Filtration). Let (C⇤, d) be a chain complex. A filtration for (C⇤, d)
is a finite sequence of abelian groups for each Ck:

0 = F�1,k ✓ F0,k ✓ F1,k ✓ · · · ✓ Fn,k = Ck (2.5)

such that the boundary map respects the filtration: d(Fp,k) ✓ Fp,k�1. If (C⇤, d) has
a filtration we call it a filtered chain complex.

Lemma 2.25. Let (C⇤, d) be a filtered chain complex as in (2.5). Then

0 �! Fp�1,k
◆�! Fp,k

q�! Fp,k/Fp�1,k �! 0

is a short exact sequence for every p and k.

Proof. The fact that ◆ is injective and q is surjective follows directly from the
definitions. Further ker(q) = Fp�1,k = im(◆). ⌅

9



Chapter 2. Homological algebra

2.3.2 Construction of a spectral sequence for filtered chain

complexes

We consider a chain complex (C⇤, d) which is filtered as in (2.5). Define further

Fp,k = 0 8 p < 0

Fp,k = Ck 8 p > n. (2.6)

and

E0
p,q

= E0
p,k�p

=
M

s

Fs,k/Fs�1,k. (2.7)

Because the boundary map respects the filtration, the homology groups

Hk(Fp,k) =
ker(d : Fp,k ! Fp,k�1)

im(d : Fp,k+1 ! Fp,k)

are well-defined and we have a situation as in Figure 2.1 where d0 is the induced
map by d on the quotients E0

p,q
.

q
...

...
... . .

.

2 E0
0,2 E0

1,2 E0
2,2 · · ·

1 E0
0,1 E0

1,1 E0
2,1 · · ·

0 E0
0,0 E0

1,0 E0
2,0 · · ·

0 1 2 p

d0

d0

d0

d0

d0

d0

Figure 2.1: The E0
p,q

groups on the Z�0 ⇥ Z�0 plane.

One might notice that defining ĩ1 = ◆ : Hk(Fp�1,k) ! Hk(Fp,k), j̃1 = q : Hk(Fp,k) ! Hk(E0
p,k�p

)

and ̃1 = ◆ : Hk(E0
p,k�p

) ! Hk�1(Fp�1,k�1) these maps extend to the following exact
couple

A1 =
L

p
Hk(Fp�1,k)

L
p
Hk(Fp,k) = A1

Hk(
L

p
E0

p,k�p
) =

L
p
E1

p,k�p

i
1

j
1


1

(2.8)

where we might define E1 =
L

p
E1

p,k�p
= Hk(

L
p
E0

p,k�p
) since the homology of the

direct sum is the direct sum of the homologies: in particular we define

E1
p,q

= Hk(E
0
p,q
) =

ker(d0 : E0
p,q

! E0
p,q�1)

im(d0 : E0
p,q+1 ! E0

p,q
)
. (2.9)

10



2.3. Spectral Sequences

To compute the derived exact couple of (4.27) we need the map

d1 = j1 � k1 : E1
p,q

= E1
p,k�p

! E1
p�1,(k�1)�(p�1) = E1

p�1,q

remembering that the k1 map reduces the coe�cient k by one. Finally the derived
exact couple is

A2 A2

Hk(E1, d1) = E2

i
2

j
2


2

(2.10)

where the groups A2 and E2 are defined as in Definition 2.21.
One might now define successively Er groups using the maps dr : jr�kr : Er

p,q
! Er

p�r,q+r�1

as done above with the case r = 2:

Er+1
p,q

= Hk(E
r

p,q
) =

ker(dr : Er

p,q
! Er

p�r,q+r�1)

im(dr : Er

p+r,q�r+1 ! Er
p,q
)

(2.11)

In Figure 2.2 we see the Er

p,q
groups and dr.

q
. . .

...
...

... . .
.

i+ r � 1 · · · Er

j�r,i+r�1

... . .
. · · ·

... · · · · · · · · · · · · · · ·

i · · · · · · · · · Er

i,j
· · ·

... · · · · · · · · · · · · · · ·

· · · j � r · · · j p

d r

Figure 2.2: Two Er

p,q
groups and the dr maps between them on the Z�0⇥Z�0 plane.

Proposition 2.26 (Convergence). A filtered chain complex (C⇤, d) has an associated

spectral sequence which is eventually stationary.

Proof. Because with (2.6) we assumed Fp,k = 0 for all p < 0 and Fp,k = Ck for all
p � n, we have that

E0
p,q

= E0
p,k�p

= Fp,k/Fp�1,k = Ck/Ck = 0 8p � n+ 1

E0
p,q

= E0
p,k�p

= 0/0 = 0 8p < 0. (2.12)

and this must also hold for all Er

p,q
, r � 0, because of the recurrent definition of the

Er as in (2.11).

11



Chapter 2. Homological algebra

Since the boundary maps dr : Er

p,q
! Er

p�r,q+r�1 “go left r cells and up r�1 cells”,
for r big enough (in particular r � n + 1) all dr maps are of the type dr : Er

p,q
! 0

or dr : 0 ! Er

p,q
or just trivial 0 maps. This implies that Er

p,q
is independent of r

for r big enough, since by the argument above in (2.11) we would either have a 0/0
quotient or Er+1

p,q
= Er

p,q
/0. ⌅

Recall now that

A1
k
=
M

p2Z

Hk(Fp�1,k) =
n�1M

p�0

Hk(Fp�1,k)�
M

p�n

H(Ck).

So the image of A1
k
under in is

inA1
k
=

n�1M

p�0

in(Hk(Fp�1,k))�
M

p�n

in(Hk(C⇤)).

Lemma 2.27. For a given k define Gs = im(in : H(Fs,k) ! Hk(C⇤)). Then the

subsequent quotients
L

s
(Gs/Gs�1) are isomorphic to Hk(C⇤):

M

s

(Gs/Gs�1) ⇠= Hk(C⇤)

where for a given k we define Gs = im(in : H(Fs,k) ! Hk(C⇤)).

Proof. By definition of i1 in (4.27) we have ik = ◆ : H(Fp�1,k) ! Hk(Fp,k), but
(2.6) means Fp�1,k = Fp,k for p > n+ 1, so ik = id for those p. Further Fp,k = 0 for
p < 0. Fix now a k, then the given equation becomes

M

s

(Gs/Gs�1) =
M

s<0

im(in : Hk(Fs,k) ! Hk(C⇤))

im(in : Hk(Fs�1,k) ! Hk(C⇤))
�

M

0sn+2

im(in : Hk(Fs,k) ! Hk(C⇤))

im(in : Hk(Fs�1,k) ! Hk(C⇤))
�

M

n+2<s

im(in : Hk(Fs,k) ! Hk(C⇤))

im(in : Hk(Fs�1,k) ! Hk(C⇤))

=
M

0sn+2

im(in : Hk(Fs,k) ! Hk(C⇤))

im(in : Hk(Fs�1,k) ! Hk(C⇤))
(2.13)

since both the first direct sum sums 0/0 groups while the third sumsH(Fs,k)/H(Fs,k) = 0
groups. Finally (2.13) evolves into

M

0sn+1

im(in : Hk(Fs,k) ! Hk(C⇤))

im(in : Hk(Fs�1,k) ! Hk(C⇤))
=

Hk(F0,k)

0
� Hk(F1,k)

Hk(F0,k)
� · · · Hk(Fn+1,k)

Hk(Fn,k)

(2.6)⇠= Hk(C⇤)

⌅
Lemma 2.28. The Er

groups are subsequent quotients of the form

Er

p,r�p
=
M

p

(Gs/Gs�1) (2.14)

where for a given k we define Gs = im(in : Hk(Fs,k) ! Hk(C⇤)).

12



2.4. Universal coefficient theorem

Proof (reference). This is shown at the end of [7, Section 5.1] ⇤
The two lemmas we just proved immediately lead to the following theorem.

Theorem 2.29 (Spectral Sequence limit formula). For filtered chain complex (C⇤, d)
with associated spectral sequence Er ! E1

the homology groups Hk(C⇤) are given

by

Hk(C⇤) ⇠=
M

p

E1
p,k�p

. (2.15)

We will write Er ◆ Hk(C⇤).

Proof. Proposition 2.26 implies the convergence of the associated spectral se-
quence. Lemma 2.27 and Lemma 2.28 lead to the desired equivalence. ⌅

2.4 Universal coe�cient theorem

We introduce in this section the concept of homology with coe�cient in any abelian
group. Consequence of this new concept is Theorem 2.32 (The Universal Coe�cients
Theorem) which we will use to simplify interpretation and computations further on
(see Section 4.3).

Definition 2.30 (Homology with coe�cients in a general abelian group). Let X

be a topological space and A an abelian group. We define C⇤(X;A)
(def)
= C⇤(X)⌦A

where C⇤(X) the singular chain complexes.
The n-th singular homology of X with coe�cients in A is then

Hn(X;A)
(def)
= Hn(C⇤(X;A))

Remark 2.31. Since for A abelian

Z⌦ A ! A

m⌦ a 7! ma

is an isomorphism. So forA = Z we recover the normal singular homology:Hn(X;Z) = Hn(X).

Theorem 2.32 (The Universal Coe�cients Theorem). Let X be a topological space

and let A be an abelian group. Then for every n 2 N0 there is an exact sequence

0 Hn(X)⌦ A Hn(X;A) Tor(Hn�1(X), A) 0!

where !([c]⌦ a) = [c⌦ a]. Moreover this sequence splits and therefore

Hn�1(X;A) ⇠= Hn(X)⌦ A� Tor(Hn�1(X), A) (2.16)

Proof (reference). This is Theorem 25.10 in [8, Lecture 25] ⇤
Corollary 2.33. We will mostly be interested in A = Z,F2 which are luckily torsion
free. Therefore (2.16) becomes

Hn�1(X;Z) ⇠= Hn(X)⌦ Z ⇠= Hn(X)

Hn�1(X;F2) ⇠= Hn(X)⌦ F2.
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Chapter 3

Morse homology
a

We will implicitly assume that every mentioned manifold or function is smooth.

3.1 Morse functions

Definition 3.1 (Critical point). Let M be a manifold and f : M ! R a function.
A critical point of f is a point c 2 M such that (Df)c = 0.
A critical point c is said to be non degenerate if the Hessian of f is non singular at
that point:

detHc(f) = det

✓
@2f

@xi@xj

(c)

◆

i,j

6= 0

for some local coordinate (x`)`. A critical point c which is not non-degenerate is
said to be degenerate.

We are now ready to define Morse functions.

Definition 3.2 (Morse function). Let M be a manifold and f : M ! R a function.
We call f a Morse function if all its critical point are nondegenerate.

Example 3.3 (Height function on S2). Consider S2 ✓ R3 and the function

h : S2 ! R
(x, y, z) 7�! z

then the critical point of h are the point where the (df) has zero rank. Considering
�(x, y, z) = (x, y) to be the coordinate chart on {z > 0} \ S2 we have:

Dh̃|(x,y) = h � ��1|(x,y) =
1p

1� x2 � y2
(x, y)

has rank 0 only if x = y = 0 so the only critical point on S2 \ {z > 0} is (0, 0, 1).
Analogous we find (0, 0,�1) to be the only other critical point. The matrix associated
to (d2h̃) at (0, 0) is

 
1�y

2

(1�x2�y2)3/2
xy

(1�x2�y2)3/2
xy

(1�x2�y2)3/2
1�x

2

(1�x2�y2)3/2

!

(0,0)

=

✓
1 0
0 1

◆

which is non degenerate so h is a Morse function.

a
For this chapter, where not stated di↵erently, the information are taken form [1, Chapters 1-4].
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Chapter 3. Morse homology

The following lemma will play a crucial role in defining Morse complexes.

Lemma 3.4 (Morse lemma). Let c be a nondegenerate critical point of the function

f : M ! R. Then there exist a neighbourhood ⌦(c) of c and a di↵eomorphism

' : (⌦(c), c) ! (Uh(c), 0) such that

f � '�1(c, . . . , xn) = f(c)�
iX

j=1

x2
j
+

nX

j=i+1

x2
j

Such charts are called Morse charts. We define Ind(c)
(def)
= i to be the index of the

critical point c.

Proof. The key idea of the proof is use Taylor expansion and the implicit function
theorem.
Since it is a statement about a local property we can without loss of generality

assume M = Rn and c = 0. Further, by change of basis, we assume (Df)0 to be
diagonal. For n = 1, Taylor expansion of f at 0 gives

f(x) = f(0) + 0 + 1
2f

00(0)x2 + "(x)x2 = f(0)± ax2(1 + "(x))

with " smooth and a 2 R>0. Since '(x) = x
p

a(1 + "(x) has '0(0) =
p
a > 0 it’s

locally a di↵eomorphism (by the implicit function theorem) and the statement holds
by x1 = '(x).
We proceed by induction on n. Let Rn = R ⇥ Rn�1 with elements (x, y). Letting
f(x, y) = fy(x) we can express f as Taylor expansion of fy by keeping y fixed:

f(0, 0) = fy(0) + f 0
y
(0)x+ 1

2f
00
y
(0)x2 + "(x, y)x2

Since f is Morse and thus (Df)0 non degenerate f 00
y
(0) is non zero since if zero

the first column would be a zero column and so (D2f)0 degenerate. Assume now
f 0
y
(0) = 0 then (x1, y1)'(x, y) = (x

p
a(1 + "(x, y), 1) as in the case n = 1 leads to

f � '�1(x1, y1) = ±x2
1 + f(0, y) and we can conclude by induction. If f 0

y
(0) 6= 0 we

can compose the chosen coordinate chart with a di↵eomorphism making f 0
y
(0) = 0

but keeping (d2f)0 fix. This is done by applying the inverse function theoremb to
the solutions (x, y) to @f

@x
= 0 obtaining x = '(y) with (D')0 = 0 and then shift

(x, y) ! (x+ '(y), y). ⌅

Therefore for c 2 Crit(f) we define ⌦(c) ✓ M to be the image under the di↵eo-
morphism h given by the Morse lemma of an open Uh(c) ✓ Rn.

Corollary 3.5. The critical points of a function on M are isolated. In particular, a
Morse function on a compact manifold has only finitely many critical points.

Remark 3.6. Using the definition in Lemma 3.4 we notice that:

1. A local maximum of f is a critical point of index 0.

b @2f
@x2 (0, 0) 6= 0 since f Morse.

16



3.2. Pseduo-Gradients

2. A local minimum of f is a critical point of index n, the dimension of the
manifold.

3. An index 1 critical point of a function on a two dimensional submanifold of
R3 is a saddle point.

We have now the tools to test whether a function is Morse or not. But do Morse
functions exist at all on any manifold? The following theorem answers very satis-
factorily this question.

Theorem 3.7 (Existence and Abundance of Morse Functions). Let M be a compact

manifold. The set of Morse function on M is a dense open subset of C1(M).

Proof (reference). This is Theorem 1.2.5 in [1, Page 12]. ⇤

3.2 Pseduo-Gradients

Morse functions are one of the two very important tools we need in Morse theory.
We will introduce here the second one.

Definition 3.8 (Pseudo-gradient). Let f : M ! R a Morse function. A pseudo-

gradient adapted to f is a vector field X : M ! TM on M such that the following
holdsc

1. We have (Df)x(Xx)  0, with equality if and only if x is a critical point.

2. In a Morse chart in the neighbourhood of a critical point, X coincides with
the negative gradient for the canonical metric on Rn.

Remark 3.9 (Metrics). If (M,m) is a Riemann manifold then we can define the
gradient of f as the unique function rxf such that for every Y 2 TxM

m(rf, Y ) = (df)xY.

Since every manifold admits a riemannian metric we will often interchange rf and
df where one notation is more intuitive.
On the other hand a metric m immediately defines a gradient of f and so a vector

field, thus providing f and X or f and m is equivalent.

Definition 3.10 (Stable and unstable manifolds). Let f : M ! R a function and
c a critical point. Let X be a pseudo gradient and denote by 't its flowd. Then we
define its stable manifold to be

W s(c) =
n
x 2 M | lim

t!1
't(x) = c

o

and conversely its unstable manifold to be

W u(c) =

⇢
x 2 M | lim

t!�1
't(x) = c

�
.

c
We use the following notation: for x 2 M we denote X(x) = (x,Xx) with Xx 2 TxM .

d
Recall that given a smooth F : (�", ")⇥M ! M such that Fs(x) = F (s, x) is a di↵eomorphism

and F0 = idM , then
@Fx
@s |s=0 defines a vector field and vice versa. We denote 's

the F (s, ·) such
that

@Fx
@s |s=0 = X(x) and call it flow of X.
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Chapter 3. Morse homology

On submanifolds of Rn this two manifolds W s(c) andW u(c) have a very geometric
interpretation. If the pseudo gradient is the vector field of a force, we can imagine
W s(c) to be the set of points that “fall down to c” under this force. On the other
hand W u(c) can be thought to be the set of point that “pushed away from c” under
this force.

Theorem 3.11 (Dimensions). The stable and unstable manifolds of the critical point

c are submanifolds of M that are di↵eomorphic to open disks. Moreover, we have

dimW u(c) = codimW s(c) = Ind(c).

Proof. Away from a critical point c the stable manifold is the image of the em-
bedding (x, s) 7! 's(x) and in the neighbourhood ⌦(c) it is the image of the locus
where the quadratic form associated to f in c is positive. Thus the stable manifold
is di↵eomorphic to a disk of dimension n�Ind(c) and likewise the unstable manifold
is di↵eomorphic to a disk of dimension Ind(c).
For a more detailed proof we point to [1, Section 2.1.d]. ⌅

We can again ask ourself if a pseudo-gradient exist for any Morse function. The
answer is yes as well.

Theorem 3.12 (Existence of Pseudo-Gradient). Let M be a manifold and f be a

Morse function on it. Then there exist a pseudo-gradient adapted to f on M .

Proof (reference). This is Section 2.1.c in [1, Page 26]. ⇤

The following is a technical lemma that we will need to prove a key theorem
further on.

Lemma 3.13. If f : M ! R is a Morse function on a finite dimensional compact

smooth M , and p 2 Crit(f), then there exist

Es : T s

p
M ! W s

p
(')

Eu : T u

p
M ! W u

p
(')

homeomorphisms onto their images.

Proof (reference). This is Lemma 4.20 in [2, Page 115] ⇤

3.2.1 The Smale condition and its consequences

Definition 3.14 (Trasversality). Let M be a manifold and Q1, Q2 ⇢ M be two
submanifolds. We say that Q1, and Q2 are transverse submanifolds, noted Q1 t Q2,
if

TqQ1 + TqQ2 = TqM 8q 2 Q1 \Q2.

A function f : M ! N is transversal to Z ✓ N , f t Z, if (Df)x(TxM)+(D◆)z(TzZ) = TyN
where ◆ : Z ! N is the usual inclusion map.

18



3.2. Pseduo-Gradients

The visual interpretation of transversality in Rn is that the two submanifolds
should not be tangent at any point in the intersection.

Definition 3.15 (Smale condition). We say that a pseudo-gradient adapted to f
satisfies the smale condition if all stable and unstable manifolds of the critical points
of f meet transversally, i.e.

W u(a) t W s(b) 8a, b 2 Crit(f) (3.1)

It is usual to call (f,X) a Morse-Smale pair if X is a pseudo-gradient, adapted to
the Morse function f , satisfying the Smale condition.

The following proposition states that if you perturb any pseudo-gradient that
satisfies the Smale condition then the resulting gradient will still satisfy the condition
as well.

Proposition 3.16. Let f : M ! R be a Morse function and let X be a pseudo-

gradient field adapted to f that has the Smale property. Every vector field X̃ su�-

ciently close to X (in the C1
sense) is an adapted pseudo-gradient field that still has

the Smale property. Moreover, we have

(C⇤(f), @X) = (C⇤(f), @X̃)

Proof (reference). This is Proposition 3.4.3 in [1, Page 71] ⇤
Theorem 3.17 (Inverse Image). Let M,N be manifolds and Z ✓ N a submanifold.

Then if f t Z, then f�1(Z) is a submanifold of M such that

dimM � dim f�1(Z) = dimN � dimZ (3.2)

Proof (reference). This is Theorem 5.11 in [2, Page 131] ⇤
Applying the above theorem to the inclusion ◆ : N ,! M we get the next useful

corollary.

Corollary 3.18. If M and Z are submanifolds of N of dimension m, z and n re-
spectively and M t Z, then M \ Z is an immersed submanifold of N of dimension
m+ z � n.

We are finally ready to prove the following proposition (and its corollary), which
will play a central role in all our next computations.

Proposition 3.19. Let X be a pseudo-gradient adapted to f on M that satisfies the

Smale condition. Then we have that for any two critical points a and b

codim(W u(a) \W s(b)) = codim(W u(a)) + codim(W s(b)) (3.3)

Proof. Now that we have Corollary 3.18 and Lemma 3.13 we can just write down
the codimentions:

codim(W u(a) \W s(b)) = dimM � dim(W u(a) \W s(b))
Cor3.18
= dimM � (dimW u(a) + dimW s(b)� dimM)

= dimM � (dimM � codimW u(a) + dimM � codimW s(b)� dimM)

= codim(W u(a)) + codim(W s(b))

⌅
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Chapter 3. Morse homology

Definition 3.20 (Trajectories). Given a vector field X defined on M , a trajectory

on M along X is a curve �(t) such that

• � : (�", ") ! M

• 8t 2 (�", ") : �0(t) = X(�(t)).

We usually denote � by �x where x = �(0) saying that �x is the trajectory of x.
A trajectory along X from p to q is a trajectory �p,q such that

lim
t!�"

�p,q(t) = p and lim
t!"

�p,q(t) = q

Moreover Wf (p, q) denotes the set of trajectories from p to q along �rf .

Under the assumption that the smale condition holds, we have a very useful
identification for W u(a) \W s(b). We denote in the following by M(p, q) the set of
points on some trajectory from p to q, i.e.

M(p, q) = {x 2 M |9� 2 Wf (p, q) : 9t 2 (�", ") for which �(t) = x} .

Lemma 3.21. Let M be a manifold with a Morse function f and a pseudo-gradient

which satisfies the smale condition. Then

W u(p) \W s(q) = M(p, q). (3.4)

Further, this is a manifold of dimension

dimM(p, q) = Ind(p)� Ind(q). (3.5)

Proof. The dimension equation (3.5) is a direct consequence of (3.4) using Pro-
position 3.19 to get codim(W u(a) \ W s(b)) = codim(W u(a)) + codim(W s(b)) and
Theorem 3.11 to get dimW u(x0) = codimW s(x0) = Ind(x0).
Equation (3.4) is a consequence of the more general Proposition 3.22 ⌅

Proposition 3.22 (Characterisation of trajectories). Let M be a compact Manifold

and f a Morse function on it. If � : (�", ") ! M is a trajectory along a pseudo-

gradient field X adapted to f on M , then there exist p, q 2 Crit(f) such that

lim
t!�"

�(t) = p and lim
t!"

�(t) = q. (3.6)

Proof. We show that �(t) has a limit for t ! " and that this limit is a critical
point. The same proof will apply for t ! �". We must show that �(t) reaches ⌦(c)
for some critical point c. Assume not, then every time � enters one of the finitely
many ⌦(ci) it must also leave it, and since f is decreasing along �e once � left a
neighbourhood it can not return into it. Let s0 2 (�", ") be the last time that �
leaves

S
N

i=1 ⌦(ci). We first need an intermediate result.

e d
dtf(�(t)) = �kr�(t)fk2 < 0.
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3.3. Morse Complexes

Claim. There exists an "0 > 0 such that

8x 2 M \
N[

i=1

⌦(ci) : (df)x(Xx)  �"0

Proof of Claim. Since (df)x is a continuous function andM\
S

N

i=1 ⌦(ci) is (a compact
set without an open and thus) compact this function has a maximum. The maximum
must be 0 because of Point 1 in Definition 3.8 and can not be zero since (df)x is zero
only at critical points and we precisely exclude them considering M \

S
N

i=1 ⌦(ci). ⇤
So for any s 2 (�", ") such that s � s0:

f(�(s))� f(�(s0)) =

Z
s

s0

d(f(�(u)))

du
du =

Z
s

s0

(df)�(u)X�(u)du  �"0(s� s0)

but since we can di↵eomorphicaly map (�", ") to R this implies that f � � has no
lower bound (by letting s be arbitrary big). But since it factorises trough M which
is compact this is a contradiction. ⌅
We will not be much interested in M(p, q) spaces, but more on trajectories and in

particular trajectories up to re-parametrisation (we are interested in the trajectory
itself and do not want to di↵erentiate based on the speed with which we walk
along it). But this up to re-parametrisation translates in a quotient of the previous
manifold.

Corollary 3.23. Quotienting M(p, q) by the action of time translation we obtain
a new manifold

L(p, q) = {trajectories along �rf} /(reparametrisation).

of dimension

dimL(p, q) = Ind(p)� Ind(q)� 1.

3.3 Morse Complexes

Let for this section f be a Morse function on a compact manifold M and X a
pseudo-gradient field satisfying the Smale condition.
We will consider the Z/2Z-vector space

MCk(f) =

8
<

:
X

c2Critk(f)

�cc | �c 2 Z/2Z

9
=

; = Z/2Z[Critk(f)] (3.7)

where Critk(f) denotes the set of critical points of index k of f . We further define
@X on MCk(f) by extending the definition for a 2 Critk(f):

@X(a) =
X

b2Critk�1(f)

nX(a, b)b (3.8)

where nX(a, b) 2 Z/2Z is the number (modulo 2) of trajectories (up to re-parametrisation)
of X going from a to b, i.e. |L(a, b)|.
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Chapter 3. Morse homology

Theorem 3.24. Given a Morse function f and an adapted pseudo-gradient X on a

compact manifold M , then equations (3.7) and (3.8) define a chain complex structure

MC⇤(f).

This is the building block for Morse theory, but it’s proof requires some non trivial
ideas.

3.3.1 The compactification theorem

The proof of Theorem 3.24 goes as follows. We need to show that @X � @X(a) = 0
for all a 2 Crit(f). This is

@X � @X(a) =
X

b2Critk�2(f)

0

@
X

c2Critk�1(f)

nX(a, c)nX(c, b)

1

A b

and so if we can show
P

c2Critk�1(f)
nX(a, c)nX(c, b) = 0 for any a 2 Critk(f) and

b 2 Critk�2(f) we are done. So by definition of nX(·, ·) we get

X

c2Critk�1(f)

nX(a, c)nX(c, b) =

������

G

c2Critk�1(f)

L(a, c)⇥ L(c, b)

������
.

It is a know fact form topology that the boundary of a one dimensional compact
manifold is given by an even number of point, we will therefore show that this set
is such a boundary. Let’s define the set of broken trajectories

L(a, b) =
[

ci2Crit(f)

niY

j=i

Ind(cij )>Indcij+1
ci1=a,cini

=b

L(cij , cij+1).

Since the L(ci, cj) have a manifold structure we will be able to construct a topo-
logy. This topology makes L(a, b) compact (as the notation suggests). Furthermore
if Ind(a) = Ind(b) + 2, L(a, b) turns out to be a one dimensional compact manifold
with boundaries. This will prove the theorem. The missing proofs for the following
statements can be found in [1, Section 3.2]

Let � = (�i)
q

i=1 2 L(a, b) be a broken trajectory. Then � connects q critical points
ci each of which admits a Morse neighbourhood ⌦(ci) as by Lemma 3.4 (Morse
lemma). Therefore �i exits ⌦(ci�1) to enter ⌦(ci).
Let now U+ (and U�) be the collection of U+

i
(U�

i
) open neighbourhood of the

exit point (entry point) of �i from ⌦(ci�1) (⌦(ci)).

Lemma 3.25 (Topology on L(a, b)). The set

W(�,U+,U�) =

⇢
µ = (µj)kj=1 : µj 2 L(ci, cj), k  q, µj enters and exists

⌦(cij) throught the interiors of U+
i
, U�

i

�

form a basis for a topology on L(a, b).
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From now on we will refer to L(a, b) as a topological space with the topology from
Lemma 3.25.

Theorem 3.26 (Compactness). The topological space L(a, b) is compact.

Corollary 3.27. For Ind(a) = Ind(b) + 1 the space L(a, b) consist in a finite set of
points.

Proof. L(a, b) is a 0-dimensional submanifold of the compact space L(a, b). ⌅
Proposition 3.28. Let f be a Morse function on a compact manifold M and with

pseudo-gradient X satisfying the Smale condition. Let a, c, b 2 Crit(f) with index

k � 1, k, k + 1 respectively and �1 2 L(a, c) and �2 2 L(c, b). Then there is a open

O(�1,�2) ✓ L(a, b) and a continuous injection  : [0, �) ! O(�1,�2) di↵erentiable on

the interior and such that

(
 (0) = (�1,�2) 2 L(a, b)
 (s) 2 L(a, b) 8s > 0

.

Theorem 3.29. If Ind(a) = Ind(b) + 2, then L(a, b) is a compact 1-manifold with

boundaries.

Definition 3.30 (Morse homology). The homology of the chain complex structure
MC⇤(f)

. . . �! MCn+1
@X�! MCn

@X�! MCn�1 �! . . . .

as in Theorem 3.24 with boundary map

@X(a) =
X

b2Critk�1(f)

nX(a, b)b

where nX(a, b) 2 Z/2Z = |L(a, b)| is called the Morse homology MH⇤(f) of M
based on f .

Theorem 3.24 shows that this is indeed well-defined.

Example 3.31 (Sn). We have shown in Example 3.3 that the height function on
S2 has two critical points: N & S.
This holds in general for the height function h : Sn ! R with Ind(N) = n and

Ind(S) = 0. Therefore we have

MCk(h) =

8
><

>:

Z/2ZN, k = n

Z/2ZS, k = 0

0, k 6= 0, n

.

The Morse homology groups are then

MHk(h) =

8
><

>:

Z/2Z, k = n

Z/2Z, k = 0

0, k 6= 0, n

.
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Chapter 3. Morse homology

Generalisation and outlook

It was easy to introduce the concept of Morse complexes as a Z/2Z-vector space.
We can extend this by defining MCk(f) as the Z-module generated by by Critk(f).
The @ maps will work in the same way but we will not have to reduce modulo 2
each time. @ will count the elements in L(a, c) with orientation signsf .
Morse theory can also be used to give a CW structure to M and thus do topology

with that. Morse homology is also considered to be the finite dimensional version
of the very powerful Floer homology where one studies symplectic manifolds and
orbits of hamiltonians.

3.4 Continuation maps

We will introduce in this section the concept of continuation maps. These maps will
play a key role in two important proofs that we present in this work.

3.4.1 Construction

Considering (f0, X0) and (f1, X1) two Morse-Smale pairs, let

F : M ⇥ [0, 1] ! R
(x, s) 7! F (x, s) = Fs(x)

such that
(
Fs = f0 for s 2 [0, 13 ]

Fs = f1 for s 2 [23 , 1]
.

We can extend F to M ⇥ [�1
3 ,

4
3 ] by setting

(
Fs = f0 for s 2 [�1

3 , 0]

Fs = f1 for s 2 [1, 43 ]
.

Consider now a Morse function g : R ! R with critical points in 0 (index 0) and 1
(index 1) increasing on (�1, 0) [ (1,1) and such that

@F

@s
(x, s) + g0(s) < 0 8x 2 M, 8s 2 (0, 1).

A sketch of such a function is given in Figure 3.1.
Then the function F̃ = F + 0 � g : M ⇥ [�1

3 ,
4
3 ] ! R is a Morse function with

critical points:

Crit(F̃ ) = Crit(f0)⇥ {0} [ Crit(f1)⇥ {1}
f
Orientations of moduli spaces are quite technical and we avoid this discussion in this work.
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3.4. Continuation maps

s

g(s)

Figure 3.1: Sketch of a possible g function.

Lemma 3.32. For any a 2 Crit(f0) or b 2 Crit(f1) we have

Ind
F̃
((a, 0)) = Indf0(a) + 1 Ind

F̃
((b, 1))) = Indf1(b). (3.9)

where we add a subscript to the index for avoiding ambiguity.

Proof. By considering now the product M⇥ [�1
3 ,

4
3 ] the dimension of the manifold

increased by one. It’s a direct consequence of Lemma 3.4 (Morse lemma) that in
local coordinates around (·, 0) we will have one more dimension with negative sign
while at (·, 1) we will have one more dimension with positive sign but in this last
case – since the dimension of the manifold increased by one – the number of negative
dimensions will remain the same and so, by its definition, will be the index. ⌅

Two pseudo-gradient fields adapted to F̃ come in consideration at this point:
X0 �rg and X1 �rg. Using a partition of unity we can fill all this into one single
pseudo-gradient X such that

(
X = X0 �rg, on M ⇥ [�1

3 ,
1
3 ]

X = X1 �rg, on M ⇥ [23 ,
4
3 ]

.

By perturbingX we can achieve that it is transversal toM⇥{s} for all s 2 {�1
3 ,

1
3 ,

2
3 ,

4
3}

and that is satisfies the Smale condition (applying Proposition 3.16).
All this means that we can choose X such that

⇣
C⇤(F̃ |

M⇥[� 1
3 ,

1
3 ]
), @X

⌘
=
⇣
C⇤(f0 + g|[� 1

3 ,
1
3 ]
), @X0+rg

⌘
(3.9)
= (C⇤+1(f0), @X0)

and similarly
⇣
C⇤(F̃ |

M⇥[ 23 ,
4
3 ]
, @X

⌘
= (C⇤(f1), @X1) .

Considering now the whole manifold M⇥[�1
4 ,

4
3 ] we are interested in the trajectories

along X. As Proposition 3.22 shows, these connect critical points of F̃ and can be
divided into two categories:
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1. � starting and finishing in the same sections [�1
3 ,

1
3 ] or [

2
3 ,

4
3 ], i.e. trajectories

of either X0 or X1.

2. � that start in the section [�1
3 ,

1
3 ] but finish up in section [23 ,

4
3 ], connecting

critical points of f0 to f1g.

Using Lemma 3.32 this leads to

Ck+1(F̃ ) = Ck(f0)� Ck+1(f1). (3.10)

Acting on this complex @X has the form

@X : Ck(f0)� Ck+1(f1) ! Ck�1(f0)� Ck(f1)✓
a
b

◆
7!
✓
@X0 0
�F @X1

◆✓
a
b

◆

where �F counts trajectories alongX connecting a 2 M⇥{0}\Crit(F̃ ) to b 2 M⇥{1}\Crit(F̃ )

�F : Ck(f0) ! Ck(f1)

a 7!
X

b2Critk(f1)

nX(a, b)b. (3.11)

Since @2
X
= 0 we get

✓
0 0
0 0

◆
=

✓
@X0 0
�F @X1

◆2

=

✓
? ?

�F � @X0 + @X1 � �F ?

◆

So that �F is a morphism of complexes.

3.4.2 Definition

Definition 3.33 (Continuation map). Let (f0, X0) and (f1, X1) be two Morse-Smale
pairs. Let further � = {(fs)}s2[0,1] be a path of functionsh from f0 to f1. A map

� : (C⇤(f0), @X0) ! (C⇤(f1), @X1)

is a continuation map if for a critical point c 2 Critk(f0) it respects

�(c) =
X

b2Critk(f1)

nX(c, b)c (3.12)

using the construct of Section 3.4.1 and (3.11).

The next two corollaries follow directly from the discussion of Section 3.4.1 above.

Corollary 3.34 (Existence). Given (f0, X0) and (f1, X1) two Morse-Smale pairs.
With a path � = {(fs)}s2[0,1] of functions and gradients connecting them. Then a
continuation map form (f0, X0) to (f1, X1) exists.

Corollary 3.35 (Morphism). Continuation maps are morphism of chain complexes,
i.e. chain maps.
g
Note that since F̃ is decreasing along the trajectories start in the section [

2
3 ,

4
3 ] and finish in the

section [� 1
3 ,

1
3 ] is not an option.

h
Note that we do not require fs to be Morse or the associated pseudo-gradients Xs to satisfy the

Smale condition.
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3.5 Reassuring equivalences up to isomorphism

We have now constructed a new type of homology a priori very di↵erent from the
well know singular homology introduced in Section 2.2 and that at a first sight very
much depends on the choices of the Morse function and the pseudo gradient. The
next results are thus important in order to give general validity to this field of study.

3.5.1 Independence of choices

We know from Theorem 3.7 that there is an abundance of Morse functions. The just
introduced concept of Morse homology groups would be quite unusable if for any
two distinct such function we would obtain di↵erent homology groups. The next
theorem states that this does not happen and, on the contrary, there is just one
interesting group.

Theorem 3.36 (Uniqueness of Morse homology). Let M be a compact manifold

and f0, f1 : M ! R be two Morse functions on M respectively with adapted pseudo-

grandients X0, X1 which respect the Smale condition. Then there is a morphism of

complexes

�⇤ : (C⇤(f0), @X0) ! (C⇤(f1), @X1)

which induces and isomorphism on the homology.

Idea of the proof

The proof is based on three steps. Considering

F : M ⇥ [0, 1] ! R
(x, s) 7! F (x, s) = Fs(x)

such that
(
Fs = f0 for s 2 [0, 13 ]

Fs = f1 for s 2 [23 , 1]

First step: From F one deduces a chain complex morphism

�F : (C⇤(f0), @X0) ! (C⇤(f1), @X1)

Second step: One shows that if (f0, X0) = (f1, X1) and Fs = f0 for every s then

�F = id(C⇤(f0),@X0 )

Third step: Considering another Morse-Smale pair (f2, X2), one finally shows that
if G satisfies the same conditions as F for (f1, X1) and (f2, X2) and H does
for (f0, X0) and (f2, X2) then the induced morphisms on the homologies

�G � �F , �H : MH⇤(M, f0, @X0) ! MH⇤(M, f2, @X2)

coincide.
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Chapter 3. Morse homology

The statement follows form the last step since �F must induce an isomorphism on
the homology. Indeed one can use H = f0 = f2 as in Step two. Then �F and �G

must be each others inverse.

Proof.
First step
We can just take the continuation map from (f0, X0) to (f1, X1) on the path � = {(Fs)}s2[0,1]
as introduced in Definition 3.33.
Second step
Let’s set f1 = f0, X1 = X0 and

F : M ⇥ [0, 1] ! R
F (x, s) 7! f0(x).

The function g will have the same form as in the construction of continuation maps
in Section 3.4.1.

Claim. The vector field X = X0 + rg is an adapted pseudo-gradient field for F
and satisfies the Smale condition.

Considering a 2 Crit(f0) then the trajectory from (a, 0) to (a, 1) constant if pro-
jected to M is the unique trajectory along X that connects (a, 0) to (c, 1) for any c
such that Indf0(c) = Indf0(a). Therefore �F = id by the definition of � in (3.12).
Third step
Assume that we have interpolations H between f0, f2; F between f0, f1 and G
between f1, f2. We do an interpolation of interpolations by considering a map:

K : M ⇥ [�1

3
,
4

3
]⇥ [

1

3
,
4

3
] ! R

(x, s, t) 7! K(x, s, t) = Ks,t(x)

satisfying

8
>>><

>>>:

Ks,t = Ht, s 2 [�1
3 ,

1
3 ]

Ks,t = Gt, s 2 [23 ,
4
3 ]

Ks,t = Fs, t 2 [�1
3 ,

1
3 ]

Ks,t = f2, t 2 [23 ,
4
3 ]

.

Considering again a Morse function g as in Section 3.4.1 but now increasing outside
[0, 1] and satisfying

@K

@s
(x, s, t) + g0(s) < 0 8(x, s, t) 2 M ⇥ (0, 1)⇥

⇥
1
3 ,

4
3

⇤

@K

@t
(x, s, t) + g0(s) < 0 8(x, s, t) 2 M ⇥

⇥
1
3 ,

4
3

⇤
⇥ (0, 1).

We finally define

K̃(x, s, t) = Ks,t(x) + g(s) + g(t)
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s = 1

t = 1

s

t

Figure 3.2: The various definition areas of K.

that is a Morse function and in the shaded area of Figure 3.2, is given by fi(x)+g(s)+g(t).
A similar procedure as in Section 3.4.1 shows that we can define a pseudo gradient
X̃ adapted to K̃ that satisfies the Smale property such that the di↵erential @

X̃
is

given by

@
X̃
=

0

BB@

@X0 0 0 0
�F @X1 0 0
�H 0 @X2 0
S �G id @X2

1

CCA

and so we are able to conclude. For more detail on this part see [1, Section 3.4] ⌅
Theorem 3.36 thus shows that the Morse homology of M is independent of f . We

will therefore just write MH⇤(M) meaning the Morse homology of M based on any
function if we do not want to specify a Morse function.

3.5.2 Morse homology is the singular homology

Now that we have shown with Theorem 3.36 that Morse homology is precisely one
object for any manifold, we could be ask ourself if it is a new invariant that could
help us distinguish two spaces.

Theorem 3.37 (Equivalence to singular homology). The Morse homology MH⇤(M)
is isomorphic to the singular homology H⇤(M).

Actually, a stronger statement is true. A Morse function allows us to define a
cellular decomposition of the manifold; this cellular complex and the Morse complex
are isomorphic. A standard result in algebraic topology states that singular and
cellular homology agree.
Strongly inspired by Floer’s approach to similar problems Conley [5] and Sala-

mon [13] build up this proof.

Proof (reference). This is Theorem 7.4 in [2, Page 198] ⇤
Morse homology is thus not a new invariant but a very useful tool to define and

compute (often easily) the already well-known singular homology from which we can
use the known results.
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Chapter 3. Morse homology

3.6 Miscellaneous

3.6.1 Bundles

Definition 3.38 (Fibre bundle). Let F,E andB be topological spaces and ⇡ : E ! B
a surjective map. (F,E, ⇡, B) is a fibre bundle, also denoted

F ! E
⇡�! B,

if ⇡ respects the following local triviality condition: for every x 2 B there exists
an open neighbourhood U ✓ B of x such that there exists a homeomorphism
' : ⇡�1(U) ! U ⇥ F which makes the following diagram commute

⇡�1(U) U ⇥ F

U

'

⇡ pr1 (3.13)

We call B base space, E total space, F fibre, ⇡ projection map and the collection
{(Ui,'i)}i local trivialisation of the fibre bundle.

The intuition behind this definition is that E locally looks like a product of F
and B.
We often denote Ex = ⇡�1(x) the fibre of x. Trivially Ex

⇠= F .

B

Ex
⇠= F

x

Figure 3.3: Visual representation of a Fibre bundle.i

Definition 3.39 (Vector Bundle). A fibre bundle (F,E, ⇡, B) is a n-dimensional
vector bundle (over R) if the fibre F is a n-dimensional vector field F ⇠= Rn such
that the homeomorphism ' given from the local triviality condition induces a k-
linear transformation on each fibre.

3.6.2 Parallel Transportj

Definition 3.40 (Section). Let (F,E, ⇡, B) be a fibre bundle and ' : M ! B
a smooth map. A section of E along ' is a smooth map s : M ! E such that
s(x) 2 E'(x) for every x 2 B. We denote by �'(E) all the sections of E along '.

i
The code for this image was published on https://tex.stackexchange.com/questions/
289165/drawing-a-fiber-bundle?rq=1.

j
For this section the information are taken form [9, Lecture 29].
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3.6. Miscellaneous

Definition 3.41 (Parallel Transport). Let (F,E, ⇡, B) be a vector bundle. A parallel

transport system P on E assigns to every point p 2 E and every curve � : [0, 1] ! B
on the base space with �(0) = ⇡(p) a unique section P�(p) 2 ��(E) with initial
condition p, i.e. P�(p)(0) = p. We call P�(p) parallel lift of � starting at p. This
association should satisfy the following four axioms:

1. For every smooth curve � : [0, 1] ! B

P̂� : E�(0) ! E�(1)

p 7! P�(p)(1)

is a linear isomorphism. Moreover P̂�1
�

= P̂�� .

2. Let � : [0, 1] ! B be a smooth curve and h : [0, 1] ! [0, 1] a di↵eomorphism
h(0) = 0 and h(1) = 1. Then for every p 2 E�(0) and every t 2 [0, 1] we have

P��h(p)(t) = P�(p)(h(t))

3. The section P�(p) depends smoothly on both p and �.

4. Let �, � : [0, 1] ! B be two smooth curves with same start point and �0(0) = �0(0).
Then for each p 2 E�(0)

d

dt

����
t=0

P�(p)(t) =
d

dt

����
t=0

P�(p)(t).
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Chapter 4

Leray-Serre spectral sequence

The goal of this chapter is to prove Theorem 4.1. We will mainly follow the path
delineated in [10, Chapter 3] and [11].

4.1 The theorem

The following Theorem 4.1 (Leray-Serre) is a key tool in understanding the homology
(and thus the structure) of fibre bundles. First presented by Serre in [14], this
theorem expresses the homology of the total space in terms of the one of the base
space and fibre.

Theorem 4.1 (Leray-Serre). Let

F ! E
⇡�! B

be a fibre bundle with a simply connected base B and with a fibre F , where all E, B
and F are closed manifold. Then there exists a spectral sequence given by

E2
p,q

= MHp(B)⌦MHq(F ). (4.1)

Further we have convergence

E2
p,⇤�p

◆ MH⇤(E). (4.2)

4.2 Construction of the proof

The most known proof of this theorem uses just tools from algebraic topology, see
for this [7, Theorem 5.3]. We show here that one can also prove this theorem using
di↵erential geometry tools.
The proof is divided in the following subsections dedicated to each part of it. In

Section 4.2.4 we summarise our findings and conclude the proof.

4.2.1 Morse-Smale data

Consider

b : B ! R and gB,p : TpB ⇥ TpB ! R (4.3)

f : F ! R and gF,p : TpF ⇥ TpF ! R (4.4)
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Chapter 4. Leray-Serre spectral sequence

to be Morse functions and riemannian metrics of B and F respectively. Let further
Crit(b) = {b1, . . . , bn} and Crit(f) = {y1, . . . , ym} which we know to be finite because
of Corollary 3.5.
Let Bi ✓ B be disjoint open sets contained in a local trivialisation of the fibre

bundle with bi 2 Bi. We define the functions fi : E ! R to be the ones that make
the following commute

⇡�1(Bi) Bi ⇥ F

R

'

fi f�proj2 . (4.5)

The behaviour away from the ⇡�1(Bi) is not going to matter as one can see from
their use in (4.6). Let ⇢i : B ! [0, 1] be bump functions such that

⇢i(x) =

(
1, if x 2 B0

i
 Bi

0, if x /2 Bi

for some fix B0
i
 B0

i
.

Morse function on E

We want first to construct a Morse function on E using f and b which we both
(suppose to) know well. The newly defined fi look like a pre-composition of f with the
trivialisation map, so we might combine these and b�⇡ to get a function that encodes
all the useful information we need. The following Lemma shows that perturbing
b � ⇡ : E ! R around its critical values gives a good result.
For simplify the notation we will write b = b � ⇡ from now on.

Lemma 4.2. Let

F ! E
⇡�! B

where all E, B and F are closed manifold.

h : E �! R
x 7�! h(x) = b(x) + "

X

i

(⇢i � ⇡)(x) · fi(x) (4.6)

Then h is a Morse function for " > 0 small enough.

Proof. On {⇢i = 1} we have that h = b + "fi so h = b � "f on {⇢i = 1} ⇥ F .
Since (3.13) implies that the ⇡ map is locally bijective and by our choice of Bi in a
trivialisation we get that h̃ = b� "f : {⇢i = 1}⇥ F ! R is locally a sum of Morse
functions and thus also a Morse function, with h̃ = h � '|'�1({⇢i=1}⇥F ).
We consider now S =

T
i
{⇢i < 1}. We notice that (db)� = 0 holds only for

� 2 Crit(b) but since we can cover Crit(b) with opens such that this cover does not
intersect S (by our definition of the ⇢i) we have db(TS) 6= 0 so there must exist a �
such that 0 < � < |(db)s| for all s 2 S. Because F compact by assumption, all ⇢i and
f are bounded. Therefore by taking " small enough we can achieve 0 < 1

2� < |(dh)s|
for all s 2 S which implies that h has not critical points on S and so is Morse also
there. ⌅
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Corollary 4.3. From the first part of the proof of Lemma 4.2 we conclude that in
the trivialisations

Crit(h) = Crit(b)⇥ Crit(f). (4.7)

Pseudo-gradient on E adapted to f

We want to construct a pseudo vector field v for h such that the following two
conditions hold:

d⇡ � v = rb (4.8)

v = rh = rb� "rfi on ⇢i = 1 (4.9)

Lemma 4.4 (Modified gE pseudo-gradient). Define

V = ker(d⇡) ✓ TE

H = V ?
perpendicular accoring to gE

and let further

g̃E =

(
gE = gB � gF , on V a

⇡⇤gB, on H
: TpE ⇥ TpE ! R. (4.10)

Then denoting r̃ the gradient with respect to g̃Eb
, the pseudo-gradient vector field

v = r̃b+ "
X

i

⇢ir̃fi (4.11)

respects the conditions (4.8) and (4.9).

Notice that using the trivialisation V ⇠= TF and above E|Bi we have H ⇠= TBi.

Proof. We look at first at (4.8). We may remark that by definition of a gradient

dbY = g̃E(r̃b, Y ) = g̃E(r̃b, pr
H
Y )

because on V by definition db ⌘ 0. But H = V ? so

g̃E(r̃b, pr
H
Y ) = g̃E(prHr̃b, pr

H
Y ) = ⇡⇤gB(prHr̃b, pr

H
Y )

where the last equality holds because we are now on H in (4.10). Writing out what
⇡⇤gB is, we get

⇡⇤gB(prHr̃b, pr
H
Y ) = gB(d⇡prHr̃b, d⇡pr

H
Y ) = gB(d⇡r̃b, d⇡Y )

a
Actually we should write gE,p = ⇡⇤gB,⇡(p) � (pr2 � ')⇤gF,pr2'(p), which further reduces to

(pr2 � ')⇤gF,pr2'(p) since we are on the kernel of d⇡.
b
See Remark 3.9, i.e. X = r̃ , g̃E(X,Y ) = d Y .
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with the last equality holding because H = ker(d⇡)? and so we can just forget the
projection d⇡pr

H
Z = d⇡Z. Since the defining property of rb is dbY = gB(rb, Y ),

this leads to

d⇡ · r̃b = rb.

One now notices that for  2 H we have g̃E(r̃fi,) = dfi and over Bi H ⇠= TBi

which implies dfi = 0. Outside Bi, ⇢i = 0 and thus d⇡
P

i
⇢ir̃fi = 0. This directly

implies d⇡ · v = rb, i.e (4.8).
For (4.9) we have that on ⇢i = 1 we must be on V since d⇡ acts trivially. Therefore

there gE = g̃E holds and v simplifies to (4.9). ⌅

4.2.2 Morse complex

Let v the vector field of Lemma 4.4 that respects (4.8) and (4.9) and e 6= e0 2 Crit(h),
then we define

L(e, e0) = {�v trajectory from e to e0}/(�", ") (4.12)

where the quotient represents re-parametrisation as already done in Corollary 3.23.
Equation (4.7) shows that

C⇤ = MC⇤(h) = MC⇤(b)⌦MC⇤(f) (4.13)

and the boundary mapc is naturally given by

@ : MC⇤(h) ! MC⇤�1(h)

e 7! @e =
X

e0 6=e: dim(L(e,e0))=0

|L(e, e0)|e0 (4.14)

=
1X

p=0

dpe

where

dpe =
X

e
0 6=e: Ind(⇡e)�Ind(⇡e0)=p

dim(L(e,e0))=0

|L(e, e0)|e0 (4.15)

as we defined it for any Morse function. Finally we define

Fp =
M

e2Crit(h): Ind(⇡e)p

Z/2Z · e. (4.16)

Lemma 4.5. The Fp groups as in (4.16) form a filtration for MC⇤(h) in (4.13).

c
We prove that d as defined is well-defined as boundary map in the proof of Lemma 4.5.
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Proof. Let Ck = MCk(h), then defining

Fp,k =
M

e2Critk(h): Ind(⇡e)p

Z/2Z · e (4.17)

we clearly get that the defining (2.5) of a filtration

0 = F�1,k ✓ F0,k ✓ F1,k ✓ · · · ✓ Fn,k = Ck

holds. Remark that the index for the critical point must be finite and we have finitely
many critical points, therefore we can just put n 2 N to be the maximal Ind(⇡e) of
any critical point .
We still need to check that the boundary map respects the filtration. Let so

e 2 Fp,k then de is a (weighted) sum over all the other critical points e0 such that
dim(L(e, e0)) = 0. But Corollary 3.23 shows that this implies that Ind(e0) = Ind(e)�1
and so e0 2 Critk�1(h). Remark that if � is a trajectory along �v, then ⇡ � � is a
trajectory along �rb since

(⇡ � �(t))0 = (d⇡)�(t) � (�v)�(t) = �(d⇡ � v)�(t)
(4.8)
= �(rb)�(t).

Therefore we conclude that 0 = dimL(e, e0)  dimV (⇡(e), ⇡(e0)) = Ind(⇡(e))�Ind(⇡(e0))�1
which leads to

Ind(⇡(e0))  Ind(⇡(e))� 1  p� 1  p.

This immediately implies d(Fp,k) ✓ Fp,k�1 ⌅

Lemma 4.6. Define the E0
p,q

groups as in (2.7) by E0
p,k�p

= Fp,k/Fp�1,k, then the

following equality holds

E0
p,k�p

= MCp(b)⌦MCk�p(f). (4.18)

The d0 map is the d0 map defined in (4.15).

Proof. This follows directly form (4.13) using that for e = eb⌦ef 2 MCp(b)⌦MCq(f)
the condition Ind(e) = k is Ind(eb) + Ind(ef ) = kd and the condition Ind(⇡e)  p
is Ind(eb)  p. Remark that taking the quotient makes so that the index Ind(⇡e) is
exactly p.
We recall that d0 for a (to be) spectral sequence for filtered chain complex (see

Section 2.3.2) is defined as d0[!] = [@!] for [!] 2 E0
p,q
. Therefore in this case for a

basis element e = eb ⌦ ef 2 MCp(b)⌦MCq(f)

d0e = @(eb ⌦ ef ) =
1X

p=0

dpe = d0e+
1X

p=1

dpe

| {z }
}

= d0e

where } = 0 since by taking the quotient we allow only change of Ind(⇡e) of order
0 (any other change goes in the 0 coset). ⌅
d
This follows directly from the definition of index arisen form Lemma 3.4 (Morse lemma).
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Lemma 4.7. The d0 boundary map counts the trajectories along �rf . More spe-

cifically this means that |L(e, e0)| = |W (⇡e, ⇡e0)| for any two e, e0 2 MC⇤(h). We

therefore can suggestively denote d0 = @fibre.

Proof. Recall the definition of d0 in (4.15)

d0e =
X

e
0 6=e: Ind(⇡e)�Ind(⇡e0)=0

dim(L(e,e0))=0

|L(e, e0)|e0.

Let so e0 be such that Ind(⇡e) = Ind(⇡e0). Then since trajectories go to critical points
with bigger index we must conclude that either W (⇡e, ⇡e0) is empty which means
that we do not have any trajectory at all (and so |L(e, e0)| = 0) or ⇡e = ⇡e0 which
gives us only one trajectory in B, i.e. the constant trajectory. Since the trajectories
from e to e0 are the product of trajectories from eb to e0

b
and ef to e0

f
we get the

result that |L(e, e0)| counts actually only the trajectories in F . ⌅

Theorem 4.8. The derived groups E1
p,q

using (2.9) on E0
p,q

are

E1
p,q

⇠= MCp(b)⌦MHq(f). (4.19)

Proof.

Claim. We first claim that E1
p,q

=
L

bi2Crit(b) Rq(bi) where

Rq(bi) = MHq(Ebi , h|Ebi
) = MHq(Ebi , fi|Ebi

). (4.20)

Proof of Claim. Recall that by definition E1
p,q

is

E1
p,q

= Hk(MCp(b)⌦MCq(f)) =
ker(d0 : E0

p,q
! E0

p,q�1)

im(d0 : E0
p,q+1 ! E0

p,q
)
.

Let now eb ⌦ ef be a basis element of MCp(b) ⌦MCq(f). Then Lemma 4.7 states
that d0(eb ⌦ ef ) only depends on ef . Thus by fixing eb if we can now show (4.20)
we are done. The second equality is clear since restricting to Ebi makes h collapse
to fi. But restricting the action of d0 on MCq(f) and taking the homology we get
MHq(f) by definition. ⇤

Claim. The second claim is that Rq(bi) ⇠= MHq(f)

Proof of Claim. By picking a trivialisation we have that once we fixed bi, EBi is
homeomorphic to F and composing this homeomorphism with fi we recover exactly
f . ⇤

Composing these two claims we get the isomorphism (4.19) by seeing that every
MHq(F, f) depends on the bi 2 Crit(b) and fixing q we fix the index of bi. ⌅
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4.2.3 The base space

Let Cp be the space generated by {e 2 Crit(h)|Ind(⇡e) = p}. Then we get that
(4.16) is actually

Fp = Cp � Fp�1.

Since the F⇤ groups can be viewed as subsets of C⇤, the restriction of the @ map
defined in (4.14) to Fp is well-defined. We will denote

@0 : Fp = Cp � Fp�1 ! Fp�1 (4.21)

@00 : Fp = Cp � Fp�1 ! Fp�1 (4.22)

the maps d � proj
Cp and d � proj

Fp�1
respectively. We may form a larger operator d

on the whole space Fp by defining

d : Fp = Cp � Fp�1 �! Cp � Fp�1✓
a
b

◆
7�!

✓
d0 0
@0 @00

◆✓
a
b

◆
. (4.23)

which is well-defined because of (4.21)-(4.22) and since (4.15) shows that d0(Cp) ✓ Cp.
The above data comes naturally with some maps which form an exact couple

exactly as in Section 2.3.2. But we are interested in a slightly di↵erent i map here:

i : Fp�1 = Cp�1 � Fp�2 ! Fp = Cp � Fp�1

(a, b) 7! (0, a+ b)

Following the same procedure as there in deriving the exact couple we get

H⇤(Fp�1) H⇤(Fp)

H⇤(Fp/Fp�1) = E1
p,⇤�p

i
1

j
1

k
1

(4.24)

where j1 : H⇤(Fp) ! H⇤(Fp/Fp�1) sending [(a, b)] 7! [a] is well-defined since
Fp/Fp�1 = Cp.
We need a better understanding of the k1 map in order to understand the d1 map.

To do that we look at the short exact sequencese

0 (Fp�1)⇤ (Fp)⇤ (Fp/Fp�1)⇤ 0

0 (Fp�1)⇤�1 (Fp)⇤�1 (Fp/Fp�1)⇤�1 0

d d d
(4.25)

and recall that d : (Fp/Fp�1)⇤ ! (Fp/Fp�1)⇤�1 is just j � k. Inserting j and k in the
diagram we get

(Fp/Fp�1)⇤ 0

(Fp�1)⇤�1 (Fp)⇤�1 (Fp/Fp�1)⇤�1 0
k

d

◆ j

(4.26)

e
We use the notation (Fp)⇤ = Fp,⇤ of (4.17).
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plugging in what these maps concretely do on the elements we get

(a, b) a 0

0 (@0a, 0) d(a, b) = (d0a, @0a+ @00b) d0a 0

d d . (4.27)

We diagram chase what k(a) should be. Since d0a = 0f and because the bottom
of (4.27) is exact d(a, b) = (d0a, @0a + @00b) 2 im(i : (Fp�1)⇤�1 ! (Fp)⇤�1), but the
domain of i implies that this is of the form d(a, b) = i(@0a, 0). Applying this to the
homology (and using the ·1 maps) we get that k1[a] = [(@0a, 0)].
Then just using the definition d1 = j1�k1 and noticing that j1k1[a] = j1[(@0a, 0)] = [@0a]

and since we quotient by Fp�2 this is [d1a] we finally get

d1 : H⇤(Fp/Fp�1) ! H⇤�1(Fp�1/Fp�2) (4.28)

[a] 7! d1[a] = [d1a]. (4.29)

So we actually have to understand better d1 in order to understand d1.
By its definition in (4.14), d1 acts on an element e 2 MC⇤(h) of the from e = eb⌦ef

by

d1(eb ⌦ ef ) =
X

e
02MC⇤,Ind(eb)�Ind(⇡e0)=1

dimL(e,e0)=0

|L(e, e0)| · e0. (4.30)

But letting e0 = e0
b
⌦ e0

f
we have that dimL(e, e0) = 0 says that Ind(e)� Ind(e0) = 1

which together with Ind(eb)� Ind(e0
b
) = 1 implies that ef and e0

f
have same index.

Exactly how we have shown in the proof of Lemma 4.7 the trajectories u 2 L(e, e0)
can therefore be simply visualised as the ⇡ � u trajectories along �rb.

Lemma 4.9. Along a trivialization over any path ⇡�� : R ! B joining bi, bj 2 Crit(b)
we have a unique identification between R(bi) and R(bj).

Proof. We want to choose an appropriate trivialisation of E along the path � of
the form R⇥F g such that it agrees with the already chosen trivialisations when we
defined Bi. This is done by parallel transport (see Definition 3.41) the one over Bi

over � to define (setting it equal to the first one) a trivialisation for Bj ⇥ F around
bj. Since ⇡1(B) is trivial by assumption this definition is well-defined.
Consider two bi, bj 2 Crit(b) and let’s consider an homotopy

F : E ⇥ [0, 1] ! E

(x, s) 7! F (x, s) = Fs(x)

with F0 = F1 = f, with f = f�pr2�', induced by ⇡1(B) = 0. If � is a path joining bi, bj
we consider the path of functions {hs}s2[0,1] with hs(x) = b(⇡(x))+"

P
i
(⇢i�⇡)(x)·Fs(x).

f
This holds because with d0 is d0 and if we follow the path of a on the exact couple, we notice

that it must be mapped in the 0 coset.
gR represents the image of �, with F the usual fibre.
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We assume without loss of generality that the whole path of � is covered by the Bi.
Indeed we can just complete these Bi by adding more (finitely many) opens. Then
the first part of the summands becomes useless, so we get hs(x) = b(⇡(x))+ "Fs(x).
We can rewrite hs(x) = b(⇡(x)) + "f(x) + c(s). Using the above trivialisation we
obtain that h above bi“⇡ �1” or bj“⇡ 1” looks like

h =

(
"f + c1, at (�1, ·)
"f + c2, at (+1, ·)

(4.31)

where ci = c(i) + b(bi) for i 2 {0, 1}. We denote now the continuation map defined
by {hs}s2[0,1] as

� : MC⇤

⇣
h|Ebi

⌘
! MC⇤

⇣
h|Ebj

⌘

In the Second step of the proof of Theorem 3.36 we showed that the continuation
map between the same complex is the identity. Following the same proof one shows
that the continuation map between two homotopic maps is an isomorphism. We
conclude that the count of �v trajectories on the trivialisation is chain homotopic
to an isomorphism and hence is an isomorphism on the homology. Now we are done
recalling the definition MHq(Ebi , h|Ebi

) = Rq(bi). ⌅

Lemma 4.10. The d1 map on E1 =
L

bi
R(bi) = MCp(b) ⌦ MHq(f) counts the

trajectories on the base space. We can therefore suggestively denote d1 = @base on

MC⇤(b)⌦MH?(f).

Proof. This is a direct consequence of Lemma 4.9. Indeed, a trajectory along �v
projects to a trajectory along gB on B. Lemma 4.9 shows that d1 keeps the MH⇤(f)
component unaltered. So by d1 having the form (4.30) we conclude that it must
count the �rb trajectories. ⌅

Theorem 4.11. The second derived group is given by

E2
p,q

= MHp(b)⌦MHq(f) (4.32)

Proof. Follows directly from the construction of E as spectral sequence arising
from the exact couple (4.27), the characterisation of d1 in (4.29) and Lemma 4.10.

⌅

4.2.4 Conclusion

We have now all the necessary ingredients to conclude the proof of Theorem 4.1
(Leray-Serre).

Proof of Theorem 4.1. Consider Morse functions and pseudo-gradients as in
(4.3) and (4.4). From Theorem 3.7 (Existence and Abundance of Morse Functions)
and Theorem 3.12 (Existence of Pseudo-Gradient) we know that these always exist.
Then the arguments in Sections 4.2.1 to 4.2.3 leading to Theorem 4.11 show that a
spectral sequence given by E2

p,q
= MHp(b)⌦MHq(f) exist. Proposition 2.26 states
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that this must be eventually stationary, thus converge, say Er

p,q
! E1

p,q
. We only

need to check (4.2), i.e.
L

p
E1

p,k�p
⇠= MHk(E).

In the over mentioned construction we defined C⇤ = MC⇤(h, v) = MC⇤(b)⌦MC⇤(f)
in (4.13). Remark now that in Lemma 4.4 we showed that v is an adapted pseudo-
gradient to h thus by Theorem 3.36 (Uniqueness of Morse homology) we get that
MC⇤(h, v) ⇠= MC⇤(h). Furthermore Theorem 2.29 (Spectral Sequence limit formula)

states Hk(C⇤)
(def)
= MHk(h) ⇠=

L
p
E1

p,k�p
which concludes the proof. ⌅

4.3 Applications

4.3.1 The Künneth formula

We present now the Künneth Theorem, which allows us to compute the homology
of products.

Theorem 4.12 (Künneth Theorem). Let k be a field, M and N be closed mani-

folds with at least one of them simply connected. Then considering homology with

coeficents in k

MHj(M ⇥N) ⇠=
M

s

MHs(M)⌦MHj�s(N). (4.33)

Proof. We show the k = F2 case. We assume without loss of generality that N is
simply connected. Consider the trivial fibre bundle

M ! N ⇥M
⇡�! N

with ⇡ = pr1. By assumption all the requirements of Theorem 4.1 are satisfied.
Therefore we get that

E2
p,q

= MHp(N)⌦MHq(M)

and

E2
p,⇤�p

◆ MH⇤(N ⇥M)

so we just need to show that E1
p,q

⇠= E2
p,q

and we are done. To show this it su�ces
to show that the d2 maps are trivial, but this is true since the d2 map is induced by
the boundary map on MH⇤(N) and MH⇤(M). ⌅

4.3.2 Computation of MH⇤(CPn)

In order to compute MH⇤(CPn) we consider the Hopf fibration

S1 ! S2n+1 ⇡�! CPn.

CPn is well known to be S
2n+1
�(|z| = 1) and this clarifies why we have such a fibra-

tion.
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We can thus apply Theorem 4.1 (Leray-Serre) and we get

E2
p,q

= MHp(CPn)⌦MHq(S1)

and we know from Example 3.31 that MHq(Sk) = Z for q = 0, k and MHq(Sk) = 0
for q 6= 0, k. By Theorem 2.32 (The Universal Coe�cients Theorem) we get that
E2

p,q
⇠= MHp(CPn) for q = 0, 1 and E2

p,q
= 0 for q � 2 which we can display on Z2

as in Figure 4.1.

q
. . .

...
...

... . .
.

... 0 0 0 0 · · ·

1 MH0(CPn) MH1(CPn) MH⇤(CPn) MHn(CPn) · · ·

0 MH0(CPn) MH1(CPn) MH⇤(CPn) MHn(CPn) · · ·

0 1 · · · n p

d 2

d2

Figure 4.1: The E2
p,q

groups for the Hopf fibration.

Considering then the E3
p,q

groups one notices that the all the d3 arrows either start
or finish in a 0 group and are thus trivial, so E3 = E1. Recall thatMHk(S2n+1) =

L
p
E1

p,k�p

which is Z for k = 0, 2n + 1 and 0 else. So E3 = E1 looks like presented in Figure
4.2.

q
. . .

...
...

... . .
.

... 0 ? 0 0 · · ·

... 0 0 ? 0 · · ·

0 Z 0 0 ? · · ·

0 1 · · · 2n+ 1 p

Figure 4.2: The E3
p,q

groups for the Hopf fibration. The ? can not all be 0.

We can already conclude

Z = E3
0,0 =

ker(d2 : E2
0,0 ! E2

�2,1)

im(d2 : E2
2,�1 ! Er

0,0)
= MH0(CPn)�0 = MH0(CPn).
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Further for 1 < k < 2n we have E3
k�1,1 = E3

k+1,0 = 0 and so d2 : E2
k+1,0 ! E2

k�1,1

must have been injective since 0 = E3
k+1,0 = ker d2/0 and on the other hand also

surjective since 0 = E3
k+1,0 = E2

k�1,1/imd2. So these above mentioned d2 are all
isomorphism, i.e. all the odd homology groups are isomorphic and all the even are
isomorphic: MHk(CPn) ⇠= MHk+2(CPn).
Therefore it remains to computeMH1(CPn). For this one we consider d2 : E2

1,0 ! E2
�1,1

which must be an isomorphism by the same reason given above. It’s furthermore
clear that MHk(CPn) = 0 for k > 2n + 1 since the index of the critical points are
bounded by the dimension of the manifold.
Concluding

MHk(CPn) =

(
Z, for k even, 0  k  2n+ 1

0, else
.
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