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Abstract

The manifold hypothesis, which assumes that data lies on or close to an unknown manifold of low
intrinsic dimension, is a staple of modern machine learning research. However, recent work has shown
that real-world data exhibits distinct non-manifold structures, i.e. singularities, that can lead to
erroneous findings. Detecting such singularities is therefore crucial as a precursor to interpolation and
inference tasks. We address this issue by developing a topological framework that (i) quantifies the
local intrinsic dimension, and (ii yields a Euclidicity score for assessing the ‘manifoldness’ of a point
along multiple scales. Our approach identifies singularities of complex spaces, while also capturing
singular structures and local geometric complexity in image data.

https://proceedings.mlr.press/v202/von-rohrscheidt23a.html
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Manifolds in a nutshell

Manifold Space

A manifold is a space that resembles Euclidean space locally, i.e.
every point admits a neighbourhood that looks like a Euclidean ball. J
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Manifolds in a nutshell

Examples of manifolds:

(d) Klein bottle

Mibius strip

c)

(

) Torus

(b

(a) Sphere

@ Manifolds can encode complex global behaviour

o However, locally they look ‘trivial.
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Why manifolds?

o Manifolds are widely studied objects in mathematics

@ In Data Science, most non-linear dimensionality reduction
techniques (UMAP, t-SNE, ...) make use of the manifold
hypothesis:

The manifold hypothesis assumes that the given data lies on a lower
dimensional manifold.

y

o Performance of these algorithms depends on the correctness of
the manifold hyothesis.
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Singularities

A singularity is a point in a space that violates the assumption of
being locally Euclidean. J

A singular space is a space that may admit singularities.
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Why singularities?

o Recently, Brown et. al.! found evidence that popular datasets
(MNIST, FashionMNIST, ...) do not satisfy the manifold hypothesis.

o Moreover, Perea et. al.? showed empirically that manifold learning
algorithms fail in general, when the underlying data does not stem
from a manifold.

= Let’s test the manifold hypothesis!

"Brown, Bradley CA, et al. "The Union of Manifolds Hypothesis and its Implications
for Deep Generative Modelling." arXiv preprint arXiv:2207.02862 (2022).
2Mike, Joshua Lee, and Jose Perea. "TALLEM: Topological Assembly of Locally

Euclidean Models." 2022 Spring Western Sectional Meeting. AMS, 2022.
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Cone of a topological space

For a topological space X, the cone of X is given by
c°X =X x (0,1]/X x {1} J
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Cone of a topological space

For a topological space X, the cone of X is given by
c°X =X x(0,1]/X x {1} J

Examples:
o c°pt. = (0,1]

o ¢°S' = D? (2-dimensional disk) 6

\V4

o ¢°(S8'u S'") = double cone A
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Singular spaces

A 0-dimensional stratified pseudomanifold is a countable set of
points with the discrete topology.
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of dimension n, together with a filtration by closed (PL) subspaces
X=XpDXp1=Xp2D:--DXgDX_1=0such that

o Every non-empty X,_x — X,_x_1 is a (PL) manifold of dimension
n—Kk.

o X — X,_o isdense in X.

o For each point x € X,,_x — X,_k_1, there exists an open
neighborhood U of x in X and a compact (PL) stratified
pseudomanifold L of dimension k — 1 and a (PL) homeomorphism

é: USSRk x oL

(which is stratum-preserving.)
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Local homology

o For a point x € X, its i-th local homology H;(X, X — x) captures
homological information of an infinitesimal small neighborhood of
x, relative to an infinitesimal punctured neighbourhood of x (in X).
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Local homology

o Let X be a (stratified) pseudomanifold and x € X. Then x has a
distinguished neighborhood U =2 R¥ x ¢°L, where L is called the
link of x.

o The local homology of x will generally depend on the homology of
L.

o The motivation to use local homology for singularity detection
stems from the following fact:

o If U= c¢°L, one can show that

Hi(X, X — x) = Hi_1(L)

forall i > 0.
@ In particular, if X = M is a manifold of dimension n, one obtains

Z,i=n

H,'(M,M—X) = F/,'_1(Sn_1) _{ 0 I;én
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How to test the manifold hypothesis?

@ As we have already seen, manifolds are characterised by a local
property.

o ldea: Test the ‘manifoldness’ of each point in the data space,
individually.
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How to test the manifold hypothesis?

@ From your given dataset X, choose a point x € X.

o For two fixed radius parameters r < s, let B?(x) denote the set of
data points with distance to x at least r, and at most s.

o Let V(B?(x), I) denote the Vietoris-Rips construction w.r.t. B7(x)
at filtration step 1.
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How to test the manifold hypothesis?
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Back to data: Persistent homology

@ Given a finite metric space (X, d), the Vietoris—Rips complex at
step t is defined as the abstract simplicial complex V(X t), in
which an abstract k-simplex (xo, . . ., Xx) of points in X is spanned
if and only if d(x;, x;) < tforall0 </ <j<k.
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Back to data: Persistent homology

@ Given a finite metric space (X, d), the Vietoris—Rips complex at
step t is defined as the abstract simplicial complex V(X t), in
which an abstract k-simplex (xo, . . ., Xx) of points in X is spanned
if and only if d(x;, x;) < tforall0 </ <j<k.

o For t; < t, the inclusions V(X, t;) — V(X b) yield a filtration
which we denote by V(X ).

o This leads to H;(V(X, t)) = Hi(V(X,t)) forany t; < t,

The i-th persistent homology (PH) of X with respect to the
Vietoris-Rips construction is defined to be the collection of all these
i-th homology groups, together with the respective induced maps
between them, and denoted by PH;(V(X o))
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Back to data: Euclidicity

Persistence Diagram

B(2) V(B;(i)’ ) 0s
/e fk""’\' \ L 04
@s7 . =3 PH ]

b — 03

02

. s
B

01 f"

00+4%
00 01 02 03 04 05 06 07
birth
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Back to data: Euclidicity

Persistence Diagram

.ot
o
01 f"
.

0.0
00 01 02 03 04 05 06 07
birth

o We denote the resulting persistence information by
PH(V(B3(x), *))-

@ The idea is now to compare the topological information of B?(x)
with the one of a known Euclidean model space EucB;?(x):

ds"* = dp [ PH(V(BE(x), *)), PH(V(EucB; (x), »))]
o Finally, we vary r and s and take the average of these distances:
@(X) = %Z(ns) dBf,S

¢(x) is called the Euclidicity of x (w.r.t. the ambient data). ]
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Euclidicity enjoys theoretical guarantees

Persistence Diagram
0.7

06

05

04

PH i
—

03

02 . aa
B

01 j"

00+
00 01 02 03 04 05 06 07

o dg"S = dg [PH(V(BE(X), )), PH(V(EucB3(x), »))
o €(x) = £ de"°

&(x) is called the Euclidicity of x (w.r.t. the given data X). |

When the dataset X is sampled from a manifold, &(x) will be small, for
any point x.
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Euclidicity tends to zero for ‘manifold points’

Theorem

Let M c RN be a smooth n-dimensional manifold and let X c M be a
finite sample of size S := |X|. For a given € > 0, sufficiently large S
and a point x € X, there exists s. > 0 that (up to a constant) only
depends on €, such that &(x) is bounded above by ¢, for any radius
configuration with maximum outer radius at most s..
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Euclidicity tends to zero for ‘manifold points’

Theorem |

Let M c RN be a smooth n-dimensional manifold and let X c M be a
finite sample of size S := |X|. For a given € > 0, sufficiently large S
and a point x € X, there exists s. > 0 that (up to a constant) only
depends on €, such that &(x) is bounded above by ¢, for any radius
configuration with maximum outer radius at most s..

However, &(x) will usually not tend to zero when x is a singularity!
(Homology of the link of x is usually different to the homology of a
sphere.)
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Euclidicity detects singularities

0.04 0.09 0.14

Input space with singularities Euclidicity

Y ""'
Euclidicity scores of singular points < 3’"
are higher than for non-singular il
points. [
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Real-world data admits singular regions

t-SNE Dimension 2

(*]

150

-100

—150

-150

The following are embeddings of tokens of a Large Language

Model (RoBERTa)

n#p'.

g
s O
T

W‘"

-SNE Dimension 1

Eudlidicity
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Euclidicity detects non-linearities in image datasets

By flattening images, we obtain llll
point cloud representations of IIII EE EE
image datasets in order to nnn

calculate Euclidicity scores. () MNIST

It turns out that high Euclidicity “m" [I.. mpé

values correspond to images that m". n.@ B
h

possess a high degree of LHIHIHZHD III]E

g A H H b)F. MNIST
geometric complexity inside of the (b FASHION
H Figure 6: Left to right: samples images exhibiting low,
Image' median, and high Euclidicity, respectively.
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Misclassified samples admit higher Euclidicity scores

We trained a simple neural network

T Misclassified }—D:l—{- ce——
to analyse the Euclidicity scores of Correct | [ J—=e e «
m|scl'a'33|f|ed vs. correctly 02 04 06 08 1
classified samples. Euclidicity

. . . (a) MNIST
Misclassified samples admit Misclassified | | | F——+ - -
significantly higher Euclidicity Correct | [ | —feme
scores than correctly classified 02 04 06 o8 1
samples. Euclidicity

- (b) FASHIONMNIST

ACknOWledgement: Th,IS experlment Figure 8: A comparison of Euclidicity scores for misclas-
was conducted tOgethef with Francesco sified and correctly classified samples in two image data
Conti (Universita di Pisa) sets.
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Persistent intrinsic dimension (PID)

@ We have already seen that if X = M is a manifold of dimension n
and x € M, its local homology reads

Z,i =n

Hi(M,M — x) = H;_1(S"™") :{ 0.i%n
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Persistent intrinsic dimension (PID)

@ We have already seen that if X = M is a manifold of dimension n
and x € M, its local homology reads

Z,i =n

Hi(M,M — x) = H;_1(S"™") :{ 0.i%n

@ This means that we can deduce the intrinsic dimension of M, by
looking at its local homology!
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Persistent intrinsic dimension (PID)

B} (z) V(B;(x),1)
//T <
gr @

/0 f’}"%\\ \

% 5;’5‘“ ‘z '35'

e Sl |
};rigﬁ\\—////-ﬁq/
R
. \'( Rl L

o ldea for data that is sampled from a manifold: Same
construction as before (in order to approximate the link) and look
at the maximum degree homology generators.
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Persistent intrinsic dimension (PID)
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o ldea for data that is sampled from a manifold: Same
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@ This maximum homology degree is n.

o In practice, data may be noisy. We therefore only consider
homology generators that exceed a certain persistence threshold.
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o Finally, we vary r and s, and average the resulting dimension
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Persistent intrinsic dimension (PID)

B}(z) V(B}(z),!)
SRS
b 7
;fﬁfv \tih'
ol T ey
L
‘ el

o ldea for data that is sampled from a manifold: Same
construction as before (in order to approximate the link) and look
at the maximum degree homology generators.

@ This maximum homology degree is n.

@ In practice, data may be noisy. We therefore only consider
homology generators that exceed a certain persistence threshold.
o Finally, we vary r and s, and average the resulting dimension

estimates. This is called the persistent intrinsic dimension
(PID) of x.
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Persistent intrinsic dimension (PID)

Theorem

Let M c RN be an n-dimensional compact smooth manifold and let

X :={xq,...,Xs} be a collection of uniform samples from M. For a
sufficiently large S, PID calculates the correct intrinsic dimension of M
in a small neighbourhood around x, for any x € M. Moreover, this
neighbourhood can be chosen arbitrarily small by increasing S.
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Persistent intrinsic dimension (PID)

0.5 1 15 2 25 05 1 1.5 2 25
(a) twoNN (b) PID

o Dimensionality estimates: twoNN vs. PID.

@ PID is more nuanced in capturing changes in dimensionality,
assigning 1 to almost all points of the circle, i.e. S, while
highlighting that points closer to S? exhibit an increase in
dimensionality.
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Conclusion and outlook
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Conclusion and outlook

o Real-world data is often far from being sampled from manifolds.

@ We proposed a framework to assess if a given data point should
be considered to lie on a manifold, or not.

@ The given framework can be used to estimate the intrinsic
dimension around the data point, locally.

o Experiments suggest that singularities have meaning: can we
regularise for singularities, how?
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Code

TARDIS: Topological Algorithms for Robust Discovery of
Singularities

https://github.com/aidos-1lab/TARDIS
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