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Manifolds in a nutshell

A manifold is a space that resembles Euclidean space locally, i.e.
every point admits a neighbourhood that looks like a Euclidean ball.
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Manifolds in a nutshell

Examples of manifolds:

Manifolds can encode complex global behaviour
However, locally they look ‘trivial‘.
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Why manifolds?

Manifolds are widely studied objects in mathematics
In Data Science, most non-linear dimensionality reduction
techniques (UMAP, t-SNE, ...) make use of the manifold
hypothesis:

The manifold hypothesis assumes that the given data lies on a lower
dimensional manifold.

Performance of these algorithms depends on the correctness of
the manifold hyothesis.
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Singularities

A singularity is a point in a space that violates the assumption of
being locally Euclidean.

A singular space is a space that may admit singularities.
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Why singularities?

Recently, Brown et. al.1 found evidence that popular datasets
(MNIST, FashionMNIST, ...) do not satisfy the manifold hypothesis.
Moreover, Perea et. al.2 showed empirically that manifold learning
algorithms fail in general, when the underlying data does not stem
from a manifold.

⇒ Let’s test the manifold hypothesis!

1Brown, Bradley CA, et al. "The Union of Manifolds Hypothesis and its Implications
for Deep Generative Modelling." arXiv preprint arXiv:2207.02862 (2022).

2Mike, Joshua Lee, and Jose Perea. "TALLEM: Topological Assembly of Locally
Euclidean Models." 2022 Spring Western Sectional Meeting. AMS, 2022.
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Cone of a topological space

For a topological space X , the cone of X is given by
c◦X := X × (0,1]/X × {1}

Examples:
c◦pt . = (0,1]

c◦S1 ∼= D2 (2-dimensional disk)

c◦(S1 ⊔ S1) ∼= double cone
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Singular spaces

A 0-dimensional stratified pseudomanifold is a countable set of
points with the discrete topology.

An n-dimensional (PL) stratified pseudomanifold is a (PL) space X
of dimension n, together with a filtration by closed (PL) subspaces
X = Xn ⊃ Xn−1 = Xn−2 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅ such that

Every non-empty Xn−k − Xn−k−1 is a (PL) manifold of dimension
n − k .
X − Xn−2 is dense in X .
For each point x ∈ Xn−k − Xn−k−1, there exists an open
neighborhood U of x in X and a compact (PL) stratified
pseudomanifold L of dimension k − 1 and a (PL) homeomorphism

ϕ : U ∼−→ Rn−k × c◦L

(which is stratum-preserving.)
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Local homology

For a point x ∈ X , its i-th local homology Hi(X ,X − x) captures
homological information of an infinitesimal small neighborhood of
x , relative to an infinitesimal punctured neighbourhood of x (in X ).

Let X be a (stratified) pseudomanifold and x ∈ X . Then x has a
distinguished neighborhood U ∼= Rk × c◦L, where L is called the
link of x .
The local homology of x will generally depend on the homology of
L.
The motivation to use local homology for singularity detection
stems from the following fact:
If U ∼= c◦L, one can show that

Hi(X ,X − x) = H̃i−1(L)

for all i ≥ 0.
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Local homology

Let X be a (stratified) pseudomanifold and x ∈ X . Then x has a
distinguished neighborhood U ∼= Rk × c◦L, where L is called the
link of x .
The local homology of x will generally depend on the homology of
L.
The motivation to use local homology for singularity detection
stems from the following fact:
If U ∼= c◦L, one can show that

Hi(X ,X − x) = H̃i−1(L)

for all i ≥ 0.
In particular, if X = M is a manifold of dimension n, one obtains

Hi(M,M − x) = H̃i−1(Sn−1) =

{
Z, i = n
0, i ̸= n

12 / 36



How to test the manifold hypothesis?

As we have already seen, manifolds are characterised by a local
property.
Idea: Test the ‘manifoldness‘ of each point in the data space,
individually.
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How to test the manifold hypothesis?

From your given dataset X, choose a point x ∈ X.
For two fixed radius parameters r < s, let Bs

r (x) denote the set of
data points with distance to x at least r , and at most s.
Let V(Bs

r (x), t) denote the Vietoris-Rips construction w.r.t. Bs
r (x)

at filtration step t .

14 / 36



How to test the manifold hypothesis?
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How to test the manifold hypothesis?
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How to test the manifold hypothesis?
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Back to data: Persistent homology

Given a finite metric space (X,d), the Vietoris–Rips complex at
step t is defined as the abstract simplicial complex V(X, t), in
which an abstract k -simplex (x0, . . . , xk ) of points in X is spanned
if and only if d(xi , xj) ≤ t for all 0 ≤ i ≤ j ≤ k .

For t1 ≤ t2, the inclusions V(X, t1) ↪→ V(X, t2) yield a filtration
which we denote by V(X, •).
This leads to Hi(V(X, t1)) → Hi(V(X, t2)) for any t1 ≤ t2

The i-th persistent homology (PH) of X with respect to the
Vietoris-Rips construction is defined to be the collection of all these
i-th homology groups, together with the respective induced maps
between them, and denoted by PHi(V(X, •))

23 / 36



Back to data: Persistent homology

Given a finite metric space (X,d), the Vietoris–Rips complex at
step t is defined as the abstract simplicial complex V(X, t), in
which an abstract k -simplex (x0, . . . , xk ) of points in X is spanned
if and only if d(xi , xj) ≤ t for all 0 ≤ i ≤ j ≤ k .
For t1 ≤ t2, the inclusions V(X, t1) ↪→ V(X, t2) yield a filtration
which we denote by V(X, •).

This leads to Hi(V(X, t1)) → Hi(V(X, t2)) for any t1 ≤ t2

The i-th persistent homology (PH) of X with respect to the
Vietoris-Rips construction is defined to be the collection of all these
i-th homology groups, together with the respective induced maps
between them, and denoted by PHi(V(X, •))

23 / 36



Back to data: Persistent homology

Given a finite metric space (X,d), the Vietoris–Rips complex at
step t is defined as the abstract simplicial complex V(X, t), in
which an abstract k -simplex (x0, . . . , xk ) of points in X is spanned
if and only if d(xi , xj) ≤ t for all 0 ≤ i ≤ j ≤ k .
For t1 ≤ t2, the inclusions V(X, t1) ↪→ V(X, t2) yield a filtration
which we denote by V(X, •).
This leads to Hi(V(X, t1)) → Hi(V(X, t2)) for any t1 ≤ t2

The i-th persistent homology (PH) of X with respect to the
Vietoris-Rips construction is defined to be the collection of all these
i-th homology groups, together with the respective induced maps
between them, and denoted by PHi(V(X, •))

23 / 36



Back to data: Euclidicity

PH−−→

We denote the resulting persistence information by
PH(V(Bs

r (x), •)).
The idea is now to compare the topological information of Bs

r (x)
with the one of a known Euclidean model space EucBs

r (x):
dB

r ,s := dB

[
PH(V(Bs

r (x), •)),PH(V(EucBs
r (x), •))

]
Finally, we vary r and s and take the average of these distances:
E(x) := 1

C
∑

(r ,s) dB
r ,s

E(x) is called the Euclidicity of x (w.r.t. the ambient data).
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Euclidicity enjoys theoretical guarantees

PH−−→

dB
r ,s := dB

[
PH(V(Bs

r (x), •)),PH(V(EucBs
r (x), •))

]
E(x) := 1

C
∑

(r ,s) dB
r ,s

E(x) is called the Euclidicity of x (w.r.t. the given data X).

When the dataset X is sampled from a manifold, E(x) will be small, for
any point x .
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Euclidicity tends to zero for ‘manifold points’

Theorem
Let M ⊂ RN be a smooth n-dimensional manifold and let X ⊂ M be a
finite sample of size S := |X|. For a given ϵ > 0, sufficiently large S
and a point x ∈ X, there exists sϵ > 0 that (up to a constant) only
depends on ϵ, such that E(x) is bounded above by ϵ, for any radius
configuration with maximum outer radius at most sϵ.

However, E(x) will usually not tend to zero when x is a singularity!
(Homology of the link of x is usually different to the homology of a
sphere.)
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Euclidicity detects singularities

Euclidicity scores of singular points
are higher than for non-singular
points.
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Real-world data admits singular regions

The following are embeddings of tokens of a Large Language
Model (RoBERTa)

28 / 36



Euclidicity detects non-linearities in image datasets

By flattening images, we obtain
point cloud representations of
image datasets in order to
calculate Euclidicity scores.

It turns out that high Euclidicity
values correspond to images that
possess a high degree of
geometric complexity inside of the
image.
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Misclassified samples admit higher Euclidicity scores

We trained a simple neural network
to analyse the Euclidicity scores of
misclassified vs. correctly
classified samples.

Misclassified samples admit
significantly higher Euclidicity
scores than correctly classified
samples.

Acknowledgement: This experiment
was conducted together with Francesco
Conti (Università di Pisa)
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Persistent intrinsic dimension (PID)

We have already seen that if X = M is a manifold of dimension n
and x ∈ M, its local homology reads

Hi(M,M − x) = H̃i−1(Sn−1) =

{
Z, i = n
0, i ̸= n

This means that we can deduce the intrinsic dimension of M, by
looking at its local homology!
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Persistent intrinsic dimension (PID)

Idea for data that is sampled from a manifold: Same
construction as before (in order to approximate the link) and look
at the maximum degree homology generators.

This maximum homology degree is n.
In practice, data may be noisy. We therefore only consider
homology generators that exceed a certain persistence threshold.
Finally, we vary r and s, and average the resulting dimension
estimates. This is called the persistent intrinsic dimension
(PID) of x .
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Persistent intrinsic dimension (PID)

Theorem
Let M ⊂ RN be an n-dimensional compact smooth manifold and let
X := {x1, . . . , xS} be a collection of uniform samples from M. For a
sufficiently large S, PID calculates the correct intrinsic dimension of M
in a small neighbourhood around x, for any x ∈ M. Moreover, this
neighbourhood can be chosen arbitrarily small by increasing S.
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Persistent intrinsic dimension (PID)

Dimensionality estimates: twoNN vs. PID.
PID is more nuanced in capturing changes in dimensionality,
assigning 1 to almost all points of the circle, i.e. S1, while
highlighting that points closer to S2 exhibit an increase in
dimensionality.
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Conclusion and outlook

Real-world data is often far from being sampled from manifolds.

We proposed a framework to assess if a given data point should
be considered to lie on a manifold, or not.
The given framework can be used to estimate the intrinsic
dimension around the data point, locally.
Experiments suggest that singularities have meaning: can we
regularise for singularities, how?
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Code

https://github.com/aidos-lab/TARDIS
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