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Abstract

Fractals are geometric shapes that show arbitrary fine structures and self-
similarities. The dimension of a space indicates how its size changes when
we scale the space. Due to their unique scaling properties, fractals can display
non-integer dimensions. In this thesis we characterise fractals and analyse dif-
ferent fractal dimensions including some standard fractal dimensions like the
Minkowski and Hausdorff dimension. We construct the Vietoris-Rips complex
for finite metric spaces which leads to the definition of persistent homology and
persistent homology dimension. Furthermore, we define magnitude for metric
spaces and explore how magnitude changes when scaling a space revealing the
magnitude dimension. We develop methods to estimate persistent homology
and magnitude dimensions, which are then compared to the Minkowski and
Hausdorff dimensions.
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Chapter 1

Introduction

Fractals are geometric objects which display detailed structures at arbitrary fine
scale. When zooming in on a fractal, it reveals its infinitely fine structure. Some
famous examples of fractals include the Cantor dust, the Sierpinski triangle and
the Koch Curve shown in Figure 1.1.

(a) Cantor dust (b) Sierpinski triangle (c) Koch curve

Figure 1.1: Three examples of fractals.

Another characteristic that fractals share is their self-similarity. Often, a frac-
tal can be decomposed into several copies of itself at lower scales. The self-
similarities of the Cantor dust, the Sierpinski triangle and the Koch Curve be-
come apparent when colouring each copy in its decomposition with a different
colour (see Figure 1.2). The Cantor dust is made up of 4 copies of itself scaled
by 1

3 , the Sierpinski triangle of 3 copies scaled by 1
2 , and the Koch curve of 4

copies scaled by 1
3 .

This ties into another characteristic of fractals; their unique scaling property.
If we scale a line segment, a square or a cube by a factor of 2, their respective
volumes increase 2-, 4- and 8-fold. This is precisely 2 to the power of their
respective dimension. Fractals behave somewhat differently in that regard. If
we scale the Sierpinski triangle by a factor of 2, by the self-similarity described
above, we end up with 3 copies of the original. So we can say its ‘size’ has
increased 3-fold. This is a non-integer power of the scaling factor 2. By anal-
ogy to the above example, we expect the Sierpinski triangle’s ‘dimension’ to

be log(3)
log(2) ≈ 1.585. We formalise this intuitive idea of ‘fractured’ dimension in

Sections 4.1 and 4.2, where we introduce the Minkowski and Hausdorff dimen-
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(a) Cantor dust (b) Sierpinski triangle (c) Koch curve

Figure 1.2: Visualising the self-similarity of fractals.

sions. For example, the Minkowski dimension of a compact metric space (X, d)
is defined as

dimmink(X) := lim
ε→0+

log(N(X, ε))

log
(
1
ε

)
where N(X, ε) denotes the ε-covering number of X, that is, the minimum num-
ber of ε-balls needed to cover X.

A different fractal dimension can be defined by means of persistent homology.
Persistent homology is a tool from algebraic topology that captures the topo-
logical features of a space and shows how these features persist over different
scales. In Section 5.1 we introduce the Vietoris-Rips complex for metric spaces.
The k-simplices of the Vietoris-Rips complex at some scale r ≥ 0 consist of all
(k + 1)-point sets which have diameter less or equal to r. By varying r ∈ R≥0,
we get a sequence of simplicial complexes with inclusion maps between them,
called a filtration. Figure 1.3 depicts Vietoris-Rips complexes at eight different
scales of a metric space obtained by sampling 20 points from an annulus.

Figure 1.3: Example of Vietoris-Rips complexes.

By applying the homology functor to the Vietoris-Rips filtration, we obtain
a persistence module. Persistence modules that arise from the Vietoris-Rips
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complex of finite spaces are decomposable into so-call interval modules. Each
interval module U(b, d) represents a topological feature which appears at scale
b and disappears at scale d. We can visualise the multiset of lifetime intervals
[b, d] using barcodes and persistence diagrams. A barcode plots the lifetime
intervals, while a persistence diagram plots the tuples (b, d). Figure 1.4 depicts
the barcode and persistence diagram of the 1st persistence module PH1, for the
20 points sampled from an annulus. In this example, PH1 has two generators:
one is only visible in the third Vietoris-Rips complex in 1.3, the other persists
from the fifth to the seventh and is then filled in.

(a) Barcode

(b) Persistence diagram

Figure 1.4: Visualisation of PH1 by a barcode and a persistence diagram.

In Section 5.1 we show that in the case of finite metric spaces, there is a cor-
respondence between the bounded intervals in PH0 and the edges of a minimal
spanning trees on the space. Using this relation, we are able to generalise the
definition of topological dimensions which involve minimal spanning trees. In
Section 5.2.1 we expand on the idea of analysing minimal spanning trees on ex-
tremal subsets. We define a persistent homology dimension for compact metric
spaces (X, d) as

dimk
PH(X) := inf{α ≥ 0: ∃C ∈ R : ∀A ⊆ X finite : Ekα(A) ≤ X},

where
Ekα(A) :=

∑
(b,d)∈PHk(A)

(d− b)α.

In Section 5.2.2 we generalise the notion of analysing minimal spanning trees on
random subsets to analysing persistence modules on random subsets. We define
a persistent homology dimension for probability measures µ on a compact metric
space. For Xn ⊆ X i.i.d. samples according to µ, we define

dimk
PH(µ) := inf

{
d > 0: ∃C ∈ R : lim

n→∞
P
[
Lk(Xn) ≤ Cn

d−1
d

]
= 1
}
,

where
Lk(Xn) :=

∑
(b−d)∈PHk(Xn)

(d− b).
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The latter definition has the advantage of being easy to approximate. We expect
the asymptotic slope of Lk(Xn) over n in a log-log plot to be close to d−1

d for

d = dimk
PH(µ). Figure 1.5 shows the log-log plot of L0(Xn) for samples of the

Sierpinski triangle according to a uniform distribution µ. The asymptotic slope

Figure 1.5: L0 for uniform samples on the Sierpinski triangle.

is approximately 0.3187 which means that

dimk
PH(µ) ≈ 1.4679.

This is close to the Minkowski dimension of the Sierpinski triangle, which is
known to be

dimmink(S) =
log(3)

log(2)
≈ 1.5850.

Another fractal dimension of a metric spaces is the magnitude dimension. Mag-
nitude is an invariant, which, for finite spaces, can be thought of as a measure
of the ‘effective number of points’. If some points lie very close together, they
become indistinguishable from one another and appear ‘effectively’ as one point.
Consider for example the 3-point space in Figure 1.6 viewed at different scales.
When viewed at a large scale, all three points can be easily be distinguished.
At medium scale, the left point can be distinguished from the two points on the
right. But the two points on the right cannot be distinguished and appear as
one. If we zoom out all the way, viewing the space at a small scale, the three
points are indistinguishable and appear as one single point.

(a) Large scale (b) Medium scale (c) Small scale

Figure 1.6: A three point space viewed at different scales.

The magnitude function of a metric space assigns to each scale t > 0 the mag-
nitude of the scaled metric space tX, which has the same points as X but its

4



metric is scaled by t. The rate at which the magnitude function changes en-
codes information about the ‘instantaneous dimension’ of the metric space. The
instantaneous magnitude dimension is defined as the growth rate of the magni-
tude function, that is, the slope of the magnitude function when plotted on a
log-log scale,

diminst
mag(X, t) :=

d log(|sX|)
d log(s)

∣∣∣
s=t

=
s

|sX|
d|sX|
ds

∣∣∣
s=t

.

Consider a long, thin rectangle and view it at different scales as shown in Fig-
ure 1.7. At a large scale, we can see that the rectangle is 2-dimensional. When
we zoom out and view it at a medium scale, the rectangle appears as a 1-
dimensional line. If we zoom out even more, and view it at a small scale, the
rectangle appears as a single point, which is 0 dimensional. Figure 1.8a shows

(a) Large scale. (b) Medium scale. (c) Small scale.

Figure 1.7: A long, thin rectangle at different scales.

the log-log plot of the magnitude function over the scale parameter. Figure 1.8b
shows the instantaneous magnitude dimension of the long, thin rectangle. We
can see that it has instantaneous magnitude dimension 0 at small scale, 1 at
medium scale and 2 at large scale.

(a) Magnitude function.

(b) Instantaneous growth rate.

Figure 1.8: Magnitude function and instantaneous growth rate.

The magnitude dimension of a metric space is defined as the asymptotic growth
rate of the magnitude function

dimmag(X) := lim
t→∞

log(|tX|)
log(t)

= lim
t→∞

diminst
mag(X, t).

We can see from Figure 1.8b that the magnitude dimension of the long, thin
rectangle is 2.
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This thesis is dedicated to the characterisation of fractals and the compari-
son of various fractal dimensions. We start by establishing the foundational
concepts for metric spaces in Chapter 2. In Chapter 3, we characterise fractals
and provide examples. We also introduce three standard fractal dimensions in
Chapter 4: The Minkowski, the Hausdorff, and the minimal spanning tree di-
mensions. Chapter 5 is dedicated to defining persistent homology through the
Vietoris-Rips complex and introducing two fractal dimensions based on persis-
tent homology. In Chapter 6 we present the concept of magnitude. We analyse
its continuity properties and study the magnitude function. This leads us to
define another fractal dimension – the magnitude dimension. In Section 6.4 we
study spread, a measurement of size for metric spaces similar to the magnitude,
and we define spread dimension. Lastly, in Chapter 7, we estimate the persis-
tent homology and magnitude dimension of several fractals and compare them
to their Minkowski and Hausdorff dimension.
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Chapter 2

Metric Spaces

This section covers some of the basic definitions for metric spaces. We define
metric and pseudometric spaces, and we introduce the Hausdorff and Gromov-
Hausdorff distance as a measure of how much two metric spaces differ. We refer
to [13] for a more detailed introduction to metric spaces.

Definition 2.1. A metric space (X, d) is a set X together with a map

d : X ×X → R

called the metric or distance which satisfies the following:

• Positivity:

∀x, y ∈ X : d(x, y) ≥ 0 ∧ (d(x, y) = 0 ⇐⇒ x = y) .

• Symmetry:
∀x, y ∈ X : d(x, y) = d(y, x).

• Triangle inequality:

∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z).

In the definition of a pseudometric space, the positivity condition is relaxed
to the weaker condition

∀x, y ∈ X : d(x, y) ≥ 0 ∧ d(x, x) = 0.

Example 2.1. The Euclidean metric on Rn is given by

d(x, y) :=

(
n∑
i=1

(yi − xi)
2

) 1
2

, ∀x, y ∈ Rn.

For the entirety of this thesis we assume that all metric spaces and their sub-
spaces are non-empty.

Definition 2.2. The diameter of a metric space (X, d) is defined as

diam(X) := sup{d(a, b) : a, b ∈ X}.
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2.1 Gromov-Hausdorff Distance

When analysing metric spaces, it is useful to measure how much they differ
from each other. We can measure the distance between two subspaces of a
metric space using the Hausdorff distance. The Hausdorff distance between two
subspaces is the maximum distance a point of one subspace has to the other
subspace. That means, two subspaces are close to each other if any point of one
subspace is close to some point in the other subspace.

Definition 2.3. Let (X, dX) be a metric space. The Hausdorff distance dXH
on the set of non-empty subspaces of X is defined by

dXH (A,B) := max

{
sup
a∈A

dX(a,B), sup
b∈B

dX(A, b)

}
,

where
dX(a,B) := inf

b∈B
dX(a, b), dX(A, b) := inf

a∈A
dX(a, b).

Example 2.2. Consider the Euclidean space X = R2 and two subspace A ⊆ X
consisting of 10 points and B ⊆ R2 consisting of 5 points. Figure 2.1 shows the
two subspaces and where the Hausdorff distance between them is attained.

(a) A (red) and B (blue). (b) dXH (A,B).

Figure 2.1: Hausdorff distance between two metric subspaces.

Proposition 2.1. The Hausdorff distance defines a metric on the set of non-
empty, compact metric subspaces of X.

Proof. If A,B ⊆ X are non-empty, compact metric subspaces, then the suprema
and infima in the definition of dXH (A,B) are attained. So we can write

dXH (A,B) = max

{
max
a∈A

dX(a,B),max
b∈B

dX(A, b)

}
,

where
dX(a,B) = min

b∈B
dX(a, b), dX(A, b) = min

a∈A
dX(a, b).

Hence dXH (A,B) <∞, which means that dXH is well-defined.

• Positivity:
By the positivity of dX , we know that dXH (A,B) ≥ 0. It is also clear that
dXH (A,A) = 0. Furthermore, if dXH (A,B) = 0, then maxa∈A d

X(a,B) = 0,
so for all a ∈ A,

dX(a,B) = min
b∈B

dX(a, b) = 0.
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Therefore, for all a ∈ A, there exists b ∈ B such that dX(a, b) = 0. By
the positivity of dX , this implies that b = a. Thus A ⊆ B. Similarly, one
finds that B ⊆ A, which implies A = B.

• Symmetry:
It follows immediately from the definition that dXH (A,B) = dXH (B,A).

• Triangle inequality:
Let C ⊆ X be a non-empty, compact metric subspace and fix a ∈ A. Since
B is compact, there exists b ∈ B such that dX(a,B) = dX(a, b). Then

dX(a,C) = min
c∈C

dX(a, c)

≤ min
c∈C

dX(a, b) + dX(b, c)

= dX(a,B) + dX(b, C)

≤ max
a′∈A

dX(a′, B) + max
b′∈B

dX(b′, C)

≤ dXH (A,B) + dXH (B,C).

Since this holds for all a ∈ A, we find that

max
a∈A

dX(a,C) ≤ dXH (A,B) + dXH (B,C).

Switching the roles of A and C, we find that

max
c∈C

dX(A, c) ≤ dXH (A,B) + dXH (B,C).

Therefore
dXH (A,C) ≤ dXH (A,B) + dXH (B,C).

We are able to measure how much two metric spaces differ by embedding them
both in a common metric space, and considering the Hausdorff distance. The
Gromov-Hausdorff distance is the infimum of the Hausdorff dimension over all
possible embeddings.

Definition 2.4. The Gromov–Hausdorff distance between two non-empty
metric spaces (A, dA) and (B, dB) is defined as

dGH(A,B) := inf
X,φX ,ψX

dXH (φX(A), ψX(B)),

where the infimum is taken over all metric spaces (X, dX) and isometric embed-
dings φX : A ↪→ X and ψX : B ↪→ X.

Example 2.3. Figure 2.2 depicts the embedding of two metric spaces into a
common metric space that minimises their Hausdorff distance.

Remark 2.1. The Gromov-Hausdorff distance turns the set of non-empty, com-
pact metric spaces into a pseudometric space, where A and B have Gromov-
Hausdorff distance 0 if and only if they are isometric.

9



Figure 2.2: Visualising the Gromov-Hausdorff distance (Figure 3 in [8]).

2.2 Minimal Spanning Trees

In this section we introduce minimal spanning trees and present Kruskal’s algo-
rithm for finding minimal spanning trees. We refer to [4] for more details.

Definition 2.5. Let (X, d) be a finite metric space. A spanning tree on X
is a graph T (X) which connects all the points in X without any cycles. The
weight ∥e∥ of an edge e between two points x, y ∈ X is given by the distance
between the two points

∥e∥ := d(x, y).

A Minimal spanning tree (MST) on (X, d) is a spanning tree T (X) which
minimises the total edge weight ∑

e∈T (X)

∥e∥.

Example 2.4. Figure 2.3 depicts a metric space of 10 points in R2 and a MST
on it.

(a) Metric space. (b) MST.

Figure 2.3: Metric space with MST.
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One algorithm for finding a MST is Kruskal’s algorithm, where we start with
no edges between the vertices and add the shortest edge which does not create
a cycle until we end up with a spanning tree. We refer to [4] for further details
on minimal spanning trees and Kruskal’s algorithm.
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Chapter 3

Fractals

The goal of this chapter is to present the characteristics which describe fractals
and give some examples. We construct the Cantor set, the Sierpinski triangle
and the Koch curve and snowflake. The reader is referred to [7] and [6] for
further reading.

3.1 Fractals: Characteristics and Examples

The term fractal refers to a certain class of geometric objects. While lacking a
universal definition, there are three commonly agreed-upon characteristics that
describe a fractal.

• Fractals have the capacity to exhibit detailed structure at arbitrary small
scales, revealing its infinitely fine structure when zooming in on it.

• A fractal usually exhibits some kind of self-similarity, where intricate pat-
terns repeat themselves at different scales within the structure. Often,
this can be seen in the composition of a fractal, with each part resembling
a scaled-down copy of the whole.

• Fractals have distinctive scaling properties and ‘fractured’ dimension. When
scaling a line segment, a square or a cube by a factor of 2, their respective
volume increase 2-, 4- and 8-fold respectively. This is precisely 2 to the
power of their respective dimension. For fractals, this exponent can take
on non-integer values.

Example 3.1. The Cantor set C is a fractal. It can be constructed as follows:
start with the closed interval C0 := [0, 1]. Remove the middle third of the interval
to get C1, that is

C1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
.

Next, remove the middle third of each of the two intervals in C1 to get

C2 =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
.

Continue this process iteratively, obtaining Cn by removing the middle thirds
from all intervals Cn−1 is made up of. Then Cn is the the disjoint union of 2n
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closed intervals of length 3−n. The Cantor set C consists exactly of the points
that remain after continuing this process infinitely, that is

C :=

∞⋂
n=0

Cn.

Figure 3.1 shows the first six sets of intervals C0, . . . , C5 in the construction of
the Cantor set.

Figure 3.1: Construction of the Cantor set.

Example 3.2. Another example of a fractal is the Sierpinski triangle S. It
can be constructed as follows: start with an equilateral triangle S0. Now subdi-
vide the triangle into four smaller equilateral triangles and remove the middle
one to get S1. Continue this process for each of the remaining triangles. We
obtain Sn from Sn−1 by subdividing all triangles into four smaller equilateral
triangles and removing the middle ones. The Sierpinski triangle is the limit of
this construction

S :=

∞⋂
n=0

Sn.

Figure 3.2 depicts S0, . . . , S5 from the construction of the Sierpinski triangle.

(a) S0 (b) S1 (c) S2

(d) S3 (e) S4 (f) S5

Figure 3.2: Construction of the Sierpinski triangle.

Example 3.3. The Koch curve KC and the Koch snowflake KS are fractals.
They can be constructed as follows: start with a line segment KC

0 . Now divide
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the line segment into three equal parts. Draw an equilateral triangle that has the
middle segment as a base and is pointed upwards, and remove the base. This
yields KC

1 consisting of four equal line segments. Repeat this process on each of
the line segments. The Koch curve KC is the limit of this process. Figure 3.3
shows KC

0 , . . . ,K
C
5 from this construction. The Koch snowflake KS is obtained

(a) KC
0 (b) KC

1 (c) KC
2

(d) KC
3 (e) KC

4 (f) KC
5

Figure 3.3: Construction of the Koch curve.

by replacing the three sides of an equilateral triangle with three Koch curves
pointing outwards (see Figure 3.4).

Figure 3.4: Koch snowflake.
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Chapter 4

Standard Fractal
Dimensions

The aim of this chapter is to present three standard fractal dimensions. In
Section 4.1 we define the Minkowski dimension for compact metric spaces and
compute it for the Cantor set. We define the Hausdorff dimension in Section 4.2
and compute the Hausdorff dimension of the Cantor set. We discuss a result
that simplifies the computation of the Hausdorff dimension is case of self similar
fractals and show that in that case the Hausdorff and Minkowski dimension agree
(Theorem 4.1). For this section we refer to [7]. As preparation for Chapter 5,
we define the MST dimension in Section 4.3 and prove that it is equal to the
Minkowski dimension (Theorem 4.2), following [9].

4.1 Minkowski Dimension

The ‘dimension’ of a metric space measures how the ‘size’ of the metric space
changes as we scale the space. Consider, for example, a line segment, a square
and a cube, and scale them by a factor of 2, as depicted in Figure 4.1. Then their
‘sizes’ increases by a factor of 2, 4 or 8 respectively, which is 2 to the power
of their respective definition. To make this notion precise, we introduce the
covering and the packing number as two measurements of the size of a metric
space. Both of these measurements lead to the definition of the Minkowski
dimension, which is the asymptotic growth rate of the covering or the packing
number.
For the remainder of this section, let (X, d) be a compact metric space.

Definition 4.1. Let ε > 0. The ε-covering number N(X, ε) is the minimum
number of open ε-balls needed to cover X. The ε-packing number M(X, ε) is
the maximum number of disjoint open ε-balls in X.

Example 4.1. Figure 4.2 depicts a minimal ε-cover and a maximal δ-packing
of a square.

Lemma 4.1. For all ε > 0 we have

N(X, 2ε) ≤M(X, ε) ≤ N(X, ε).
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(a) Line segment at scale 1. (b) Line segment at scale 2.

(c) Square at scale 1. (d) Square at scale 2.

(e) Cube at scale 1. (f) Cube at scale 2.

Figure 4.1: A line segment, a square and a cube at different scales.

Proof. Write M :=M(X, ε) and let x1, . . . , xM ∈ X be such that {B(xi, ε)}i is
a maximal ε-packing of X.

• N(X, 2ε) ≤M(X, ε):
By the maximality of {B(xi, ε)}i, ever y ∈ X must satisfy d(y, xi) <
2ε for some i, otherwise we could add B(y, ε) to get a larger ε-packing.
Therefore, {B(xi, 2ε)}i is a (2ε)-covering of X.

• M(X, ε) ≤ N(X, ε):
Since {B(xi, ε)}i are disjoint, we find d(xi, xj) ≥ 2ε whenever i ̸= j. This
means that in any ε-covering of X, all xi must lie in different ε-balls.
Hence every covering must consist of at least M ε-balls.

Consider again the ε-covering and δ-packing from Example 4.1. By halving ε
and δ, the covering and packing number increase 4-fold (see Figure 4.3). This is
precisely 2 to the power of the ‘dimension’ of the square. We use this intuition
as a definition of the Minkowski dimension as the asymptotic growth rate of the
ε-covering number as ε→ 0+.
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(a) ε-covering. (b) δ-packing.

Figure 4.2: An ε-covering and a δ-packing of a square.

(a) ε-covering. (b) ε
2
-covering. (c) δ-packing. (d) δ

2
-packing.

Figure 4.3: Coverings and packings of a square.

Definition 4.2. The lower Minkowski dimension of X is

dimmink(X) := lim inf
ε→0+

log(N(X, ε))

log
(
1
ε

)
and the upper Minkowski dimension of X is

dimmink(X) := lim sup
ε→0+

log(N(X, ε))

log
(
1
ε

) .

If the lower and upper Minkowski dimension coincide, then the Minkowski
dimension exist and is equal to this limit

dimmink(X) := lim
ε→0+

log(N(X, ε))

log
(
1
ε

) .

The Minkowski dimensions is also known as the box dimension or box-
counting dimension.

Proposition 4.1. The lower and upper Minkowski dimensions can also be ex-
pressed in terms of the packing number:

dimmink(X) = lim inf
ε→0+

log(M(X, ε))

log
(
1
ε

) ,

dimmink(X) = lim sup
ε→0+

log(M(X, ε))

log
(
1
ε

) .

Hence, if the Minkowski dimension exists, then

dimmink(X) = lim
ε→0+

log(M(X, ε))

log
(
1
ε

) .
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Proof. For all ε > 0, by Lemma 4.1 and the monotonicity of log we find that

lim inf
ε→0+

log(N(X, ε))

log
(
1
ε

) ≥ lim inf
ε→0+

log(M(X, ε))

log
(
1
ε

)
≥ lim inf

ε→0+

log(N(X, 2ε))

log
(
1
ε

)
= lim inf

ε→0+

log(N(X, 2ε))

log(2) + log
(

1
2ε

)
= lim inf

ε→0+

log(N(X, ε))

log(2) + log
(
1
ε

) .
Since log

(
1
ε

)
→ ∞ as ε→ 0+, we have

lim inf
ε→0+

log(N(X, ε))

log(2) + log
(
1
ε

) = lim inf
ε→0+

log(N(X, ε))

log
(
1
ε

) .

Therefore

lim inf
ε→0+

log(N(X, ε))

log
(
1
ε

) ≥ lim inf
ε→0+

log(M(X, ε))

log
(
1
ε

) ≥ lim inf
ε→0+

log(N(X, ε))

log
(
1
ε

) ,

which proves equality

lim inf
ε→0+

log(N(X, ε))

log
(
1
ε

) = lim inf
ε→0+

log(M(X, ε))

log
(
1
ε

) .

Analogously, we find that

lim sup
ε→0+

log(N(X, ε))

log
(
1
ε

) = lim sup
ε→0+

log(M(X, ε))

log
(
1
ε

) .

Example 4.2. Let us show that the Minkowski dimension of the Cantor set C
exists and is given by

dimmink(C) =
log(2)

log(3)
.

We prove the following claim in preparation.

Lemma 4.2. Let n ∈ N. The (3−n)-covering number of the Cantor set is

N(C, 3−n) = 2n+1.

Proof. Consider Cn from the construction of the Cantor set (see Example 3.1).
Cn consists of 2n intervals of length 3−n. The endpoints of each interval are
also points in C and have a distance of at least 3−n between them. Therefore
these 2n+1 endpoints lie in different 3−n-balls and so

N(C, 3−n) ≥ 2n+1.

On the other hand, the 2n+1 (3−n)-balls centered at the endpoints of all interval
in Cn form a cover of Cn and hence C. Thus

N(C, 3−n) ≤ 2n+1,

proving the claim.
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By Lemma 4.2 and the monotonicity of the covering number, we find that

2n ≤ N(C, ε) ≤ 2n+1

whenever
3−n ≤ ε < 3−(n−1).

Therefore
log(2n)

log(3n)
≤ log(N(C, ε))

log
(
1
ε

) ≤ log(2n+1)

log(3n−1)
,

which simplifies to

log(2)

log(3)
≤ log(N(C, ε))

log
(
1
ε

) ≤ n+ 1

n− 1

log(2)

log(3)
.

Therefore

dimmink(C) = lim inf
ε→0+

log(N(C, ε))
log
(
1
ε

) ≥ log(2)

log(3)
.

And

dimmink(C) = lim sup
ε→0+

log(N(C, ε))
log
(
1
ε

) ≤ lim
n→∞

n+ 1

n− 1

log(2)

log(3)
=

log(2)

log(3)
.

So the lower and upper Minkowski dimension must agree and are equal to

dimmink(C) =
log(2)

log(3)
.

4.2 Hausdorff Dimension

The Hausdorff dimension takes a slightly different approach in measuring the
change in ‘size’ of a metric space as we scale it. In contrast to the Minkowski
dimension we consider coverings made up of arbitrary set that have diameter
less or equal to δ instead of δ-balls. Since this approach is similar to the one
taken Section 4.1, the Minkowski and Hausdorff dimensions agree on a large
class of fractals (see Theorem 4.1).
For the entirety of this section, let (X, d) denote an arbitrary metric space.

Definition 4.3. Let A ⊆ X and δ > 0. A δ-cover of A is a family {Ui}i of
subsets Ui ⊆ X such that diam(Ui) ≤ δ and

A ⊆
⋃
i

Ui.

If, in addition, {Ui}i is countable, we call it a countable δ-cover of A.

For δ > 0 and s ≥ 0 consider the quantity

Hs
δ(A) := inf

{∑
i

diam(Ui)
s : {Ui}i is a countable δ-cover of A

}
,

defined on all subsets A ⊆ X. Every δ-cover of A is also a δ′-cover whenever
δ′ ≥ δ. Therefore Hs

δ(A) ≥ Hs
δ′(A), which means that Hs

δ(A) is monotonically
non-increasing in δ. So the limit ofHs

δ(A) as δ → 0+ exists but might be infinite.
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Definition 4.4. The function

Hs : P(X) → [0,∞], A 7→ Hs(A) := lim
δ→0+

Hs
δ(A) = sup

δ>0
Hs
δ(A)

defined on the family P(X) of all subsets of X is called the s-dimensional
Hausdorff measure on X.

As an outer metric measure, the Hausdorff measure is Borel.

Proposition 4.2. Let A ⊆ X be a Borel set and let 0 ≤ s < t. Then

Hs(A) <∞ =⇒ Ht(A) = 0,

Ht(A) > 0 =⇒ Hs(A) = ∞.

Proof. Let δ > 0 and {Ui}i be a countable δ-cover of A. Then∑
i

diam(Ui)
t =

∑
i

diam(Ui)
s diam(Ui)

t−s ≤ δt−s
∑
i

diam(Ui)
s.

Taking the infimum over all countable δ-covers of A yields

Ht
δ(A) ≤ δt−sHs

δ(A).

If Hs(A) <∞, we find that

Ht(A) = lim
δ→0+

Ht
δ(A) ≤ lim

δ→0+
δt−sHs

δ(A) = lim
δ→0+

δt−sHs(A) = 0.

The second implication is the contraposition of the first.

Definition 4.5. The Hausdorff dimension of X is defined as

dimH(X) := inf{s ≥ 0: Hs(X) = 0} = sup{s ≥ 0: Hs(X) = ∞} ∈ [0,∞]

with the usual conventions inf(∅) = ∞ and sup(∅) = 0.

Remark 4.1. If s := dimH(X) denotes the Hausdorff dimension of X, then the
s-dimensional Hausdorff measure of X could be equal to 0, ∞ or any value in
between. On the other hand, if we can show that 0 < Hs(X) < ∞ for some s,
then by Proposition 4.2 we know that s = dimH(X).

Example 4.3 (Example 2.7 in [7]). Let us prove that the Hausdorff dimension
of the Cantor set C is

dimH(C) =
log(3)

log(2)
.

We do this by showing that
1

2
≤ Hs(C) ≤ 1

for s := log(3)
log(2) and using Remark 4.1.

• 1
2 ≤ Hs(C):
Let δ ≥ 0 and {Ui}i be a countable δ-cover of C. By replacing Ui by the
interval [inf(Ui), sup(Ui)] we do not increase the diameter and hence end
up with a countable δ-cover of C which is made up of closed intervals. So
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we may assume w.l.o.g. that {Ui}i is a countable δ-cover of closed interval.
Furthermore, as every interval Ui satisfies diam(Ui) < δ we can slightly
expand the intervals to get open intervals Vi ⊇ Ui which, for some small
ε > 0, satisfy

diam(Vi) < min{δ, (1 + ε) diam(Ui)}.
Since C is compact, there exists a finite subcover, say {V1, . . . , Vn}. Taking
the closure of V1, . . . , Vn yields a finite δ-cover of closed interval for which

n∑
i=1

diam(Vi)
s ≤ (1 + ε)s

∑
i

diam(Ui)
s.

We may therefore assume w.l.o.g. that {Ui}i is a finite δ-cover of closed
intervals.
So w.l.o.g. let {U1, . . . , Un} be a finite δ-cover of C consisting of closed
intervals. For 1 ≤ i ≤ n let ki ∈ N such that

3−(ki+1) ≤ diam(Ui) < 3−ki .

As all intervals in Cki are at least a distance of 3−ki apart from each other,
Ui intersects at most one of the intervals in Cki . Set j := max{k1, . . . , kn}
so that

∀1 ≤ i ≤ n : 3−(j+1) ≤ diam(Ui).

Form each interval in Cki we get 2j−ki intervals in Cj. Therefore, Ui
intersects at most

2j−ki = 2j3−ski = 2j3s
(
3−(ki+1)

)s
≤ 2j3s diam(Ui)

s

intervals in Cj. Since there are 2j intervals in Cj and each interval must
be intersected by some Ui we find that

2j ≤
n∑
i=1

2j−ki ≤
n∑
i=1

2j3s diam(Ui).

Multiplying by 2−j3−s yields

3−s ≤
n∑
i=1

diam(Ui)
s.

Since this holds for all δ-coverings, we find 3−s ≤ Hs
δ(C) and hence also

Hs(C) = lim
δ→0+

Hs
δ(C) ≥ 3−s =

1

2
.

• Hs(C) ≤ 1:
Using the construction of the Cantor set, it is clear that for all n ∈ N,
the 2n Intervals which make up Cn form a countable (3−n)-cover of C.
Therefore,

Hs
3−n(C) ≤

2n∑
k=1

(3−n)s = 2n3−ns = 1

and thus
Hs(C) = lim

n→∞
Hs

3−n(C) ≤ 1.
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As seen in Example 4.3, computing the Hausdorff dimension by using the trick in
Remark 4.1 can be very time consuming. In particular, proving the lower bound
0 < Hs(X) is often a bit tedious. However, there is an easier way to compute
the Hausdorff dimension of self-similar fractals which do not ‘overlap too much
in their fractal construction’. We need to introduce some more terminology to
make this notion precise.

Definition 4.6. A map f : X → X is called a contraction of X if

∀x, y ∈ X : d(f(x), f(y)) ≤ cd(x, y),

for some 0 < c < 1. If we have equality

∀x, y ∈ X : d(f(x), f(y)) = cd(x, y),

we call f a contracting similarity and c the ratio of f .

Definition 4.7 (Open set condition). A family of contractions {f1, . . . , fm} on
X satisfies the open set condition if there exists a non-empty open set V ⊆ X
that satisfies

V ⊇
m⊔
i=1

fi(V ),

where fi(V ) are disjoint.

The following theorem makes computing the Hausdorff dimension of self-similar
fractals much easier, and shows that in many cases the Minkowski and Hausdorff
dimensions agree.

Theorem 4.1 (Theorem 9.3 in [7]). Let {f1, . . . , fm} be contracting similarities
on a complete metric space with ratios 0 < c1, . . . , cm < 1 which satisfy the open
set condition and consider the attractor

F =

m⋃
i=1

fi(F ).

Then dimH(F ) = dimmink(F ) = s, where s is given by

m∑
i=1

csi = 1.

Moreover,
0 < Hs(F ) <∞.

We refer to [7] for a proof of Theorem 4.1.

Example 4.4 (Example 4.3 revisited). Let us verify Theorem 4.1 on the Cantor
set C. If we consider C on [0, 1], the maps f1, f2 : [0, 1] → [0, 1] given by

f1(x) :=
1

3
x, f2(x) :=

1

3
x+

2

3

are contracting similarities with ratios c1, c2 = 1
3 . They satisfy the open set

condition for V := (0, 1) as

(0, 1) ⊇
(
0,

1

3

)
⊔
(
2

3
, 1

)
= f1((0, 1)) ⊔ f2((0, 1)).
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The Cantor set is the attractor

C = f1(C) ∪ f2(C).

So by Theorem 4.1, the Hausdorff dimension s := dimH(C) is given by(
1

3

)s
+

(
1

3

)s
= 1.

Solving for s confirms our result from Example 4.3,

s = dimH(C) =
log(3)

log(2)
.

4.3 Minimal Spanning Tree Dimension

In this section we define the MST dimension and show that it is equal to the
Minkowski dimension following [9] closely. This is in preparation for Chapter 5,
where we define other fractal dimensions that build on the idea of MSTs and
the MST dimension.
Let A ⊆ X be a finite subspace. For a MST T (A) on A and for α ≥ 0 consider
the quantity

Eα(A) :=
∑

e∈T (A)

∥e∥α,

where ∥e∥ = d(x, y) denotes the length of the edge e ∈ T (A) between x, y ∈ A.

Definition 4.8. The minimal spanning tree dimension (MST dimen-
sion) of X is defined as

dimMST(X) := inf{α ≥ 0: ∃C ∈ R : ∀A ⊆ X finite : Eα(A) < C}.

Theorem 4.2 (Theorem 2 in [9]). We have

dimMST(X) = dimmink(X).

Proof.

• dimmink(X) ≤ dimMST(X):
If dimmink(X) = 0, then we are done. So suppose dimmink(X) > α > 0.
Then

log

(
lim sup
ε→0+

N(X, ε)εα
)

= lim sup
ε→0+

(log(N(X, ε)) + α log(ε))

= lim sup
ε→0+

log

(
1

ε

)(
log(N(X, ε))

log
(
1
ε

) + α
log(ε)

log
(
1
ε

))

= lim sup
ε→0+

log

(
1

ε

)(
log(N(X, ε))

log
(
1
ε

) − α

)
= ∞.

So there exists a sequence {εn}n such that

εn → 0+, N(X, εn)ε
α
n → ∞ as n→ ∞.
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Denote by {B(xni , εn)}i a maximal εn-packing of X and consider the finite
subset An := {xni }i ⊆ X. Every edge e in a MST on An has length
∥e∥ ≥ 2εn as {B(xni , εn)}i are disjoint. Therefore

Eα(A
n) =

∑
e∈T (An)

∥e∥α ≥
∑

e∈T (A)

2αεαn = 2α(N(X, εn)− 1)εαn.

Since N(X, εn)ε
α
n → ∞, the sequence {Eα(An)}n is unbounded and hence

dimMST(X) > α which implies

dimmink(X) ≤ dimMST(X).

• dimMST(X) ≤ dimmink(X):
Let α > dimmink(X). Then there exists C ∈ R such that

∀ε > 0: N(X, ε) ≤ Cε−α.

Let A ⊆ X be finite and consider a MST constructed by the following
greedy algorithm: Start the tree with any point and iteratively add a
point which is closest to the tree and connect it to the point which it is
closest to. Now construct a

(
ε
2

)
-packing of X as follows: For every edge

e ∈ T (A) with ∥e∥ ≥ ε, add the ball B(x, ε2 ) where x is the point added
to T when creating e. These balls form a

(
ε
2

)
-packing on X. Denote the

diameter of X by d := diam(X). Then, for any β > α,

Eβ(A) =
∑

e∈T (A)

∥e∥β

=

∞∑
n=0

∑
e∈T (A)

d2−(n+1)<∥e∥≤d2−n

∥e∥β

≤
∞∑
n=0

N(X, d2−(n+1))(d2−n)β

≤
∞∑
n=0

C(d2−(n+1))−α(d2−n)β

= Cdβ−α2α
∞∑
n=0

2n(α−β).

Therefore, Eβ(A) is bounded, which means dimMST(X) ≤ α.
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Chapter 5

Persistent Homology
Dimension

In this chapter we approximate finite metric spaces with Vietoris-Rips complexes
and study their homology. This yields a persistence module that enables us
to analyse the topological features of the space. For a detailed treatment of
persistent homology, we refer the reader to [3]. By showing the correspondence
between the lifetimes intervals in the 0th persistence module and edges of a
MSTs (see Proposition 5.1) we generalise fractal dimensions based on MSTs.
We do this using two different approaches. In Section 5.2.1 we follow [18] and
study persistence modules on extremal subsets. In Section 5.2.2 we follow [2]
and analyse persistence modules on random subsets.

5.1 Persistent Homology

Persistent homology is a tool from algebraic topology that can be used to capture
topological features of finite metric spaces and to describe the behaviour of these
features over different scales. This concept can be used to analyse data samples
and draw conclusions about the structure of the underlying space.
For the entirety of this chapter, let (X, d) denote a compact metric space. In or-
der to analyse the topological features of X, we construct an abstract simplicial
complex on X and study its homology.

Definition 5.1. An abstract simplicial complex on X is a family F of
non-empty finite subsets which is closed under taking non-empty subsets, that
is,

∀A ∈ F : ∅ ≠ B ⊆ A =⇒ B ∈ F .

Definition 5.2. The Vietoris-Rips complex VR(X, r) for a given scale
parameter r ≥ 0 is the abstract simplicial complex whose vertices are the
points in X and whose k-simplices consist exactly of all (k + 1) point sets
{x0, . . . , xk} ⊆ X, which have diameter diam({x0, . . . , xk}) ≤ r.

Example 5.1. Let X be a metric space depicted in Figure 5.1 obtained by sam-
pling 20 points from an annulus. Figure 5.2 shows the Vietoris-Rips complexes
VR(X, r) for eight different scale parameters r.

25



Figure 5.1: 20 points sampled from an annulus.

Figure 5.2: Example of Vietoris-Rips complexes.

For 0 ≤ r < r′ there is a natural inclusion

VR(X, r) ⊆ VR(X, r′)

as every k-simplex in VR(X, r) is also a k-simplex in VR(X, r′). This inclusion
induces a linear map on the homology groups

Hk(VR(X, r)) → Hk(VR(X, r′)).

The homology groups may be taken over an arbitrary field F, which we drop
from notation.

Definition 5.3. By letting the scale parameter r range over R≥0, we obtain the
Vietoris–Rips filtration

{VR(X, r)}r∈R≥0
.

The family of homology groups

{Hk(VR(X, r))}r∈R≥0

together with the induced linear maps between them is called the kth persis-
tence module.
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We have the following decomposition theorem for the kth persistent module.

Theorem 5.1. If X is finite, then there exist N ∈ N, {b0, . . . , bN} ∈ [0,∞),
{d0, . . . , dN} ∈ [0,∞] with bn ≤ dn and in isomorphism

{Hk(VR(X, r))}r∈R≥0
∼=

N⊕
n=0

U(bn, dn),

where

U(bn, dn)r :=

{
F, if r ∈ [bn, dn],

0, else.

The proof uses the following classification theorem for finitely generated F[t]-
modules.

Theorem 5.2 (Theorem 2.10 in [3]). LetM∗ be a finitely generated F[t]-module.
Then there exist integers {i1, . . . , im}, {j1, . . . , jn}, {l1, . . . , ln}, and an isomor-
phism

M∗ ∼=
m⊕
r=1

F[t](ir)⊕
n⊕
s=1

(F[t]/(tls))(js).

This decomposition is unique up to permutation of factors.

Proof of Theorem 5.1. If X is finite, then the Vietoris-Rips filtration yields only
finitely many distinct complexes. Let r0 < . . . < rM denote the scale parameter
of these different complexes. This allows us to view the R-persistence module
as an N-persistence module

{Hk(VR(X, r))}r∈R≥0
∼= {Hk(VR(X, rn))}n∈N,

where rn := rM for all n > M .

Claim 5.1. There is an equivalence between the category of N-persistence abelian
groups Npers(Ab) and the category of non-negatively graded modules over Z[t].

Proof of Claim. Let {An}n∈N be an N-persistence abelian group with maps

ψm,n : Am → An.

Its associated graded module over Z[t] is given by

θ({An}n∈N) :=
⊕
n∈N

An,

where multiplication with t on elementary elements αn ∈ An is given by

t · αn := ψn,n+1(αn).

θ is a functor from Npers(Ab) to the category of non-negatively graded modules
over Z[t]. Its inverse is given by defining

ψm,n(αm) := tn−mαm.
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By applying the functor θ from Claim 5.1 to the N-persistence module we get a
Z[t]-module

M∗ := θ ({Hk(VR(X, rn))}n∈N) .

In fact, since the homology groups are taken over a field F, M∗ is also a
F[t]-module. Since Hk(VR(X, rn)) is finite dimensional for all n ∈ N and
VR(X, rn) = VR(X, rM ) for all n > M , M∗ is finitely generated. This means
we can apply the classification theorem 5.2 for finitely generated F[t]-modules

M∗ ∼=
m⊕
r=1

F[t](ir)⊕
n⊕
s=1

(F[t]/(tls))(js).

Using the following correspondence and switching back to indexing over R con-
cludes the proof.

F[t](ir) ∼= U(ir,∞),

(F[t]/(tls))(js) ∼= U(ir, ir + ls).

Definition 5.4. Suppose X is finite and decompose the kth persistence module
according to Theorem 5.1

{Hk(VR(X, r))}r∈R≥0
∼=

N⊕
n=0

U(bn, dn).

We call bn and dn the birth and death scale of a feature, and [bn, dn] the
lifetime interval. The multiset of lifetime intervals is denoted by PHk(X).

This representation allows us to visualise the persistence module in the form
of a barcode or a persistence diagram . The barcode of a metric space is
obtained by plotting the lifetime intervals in PHk(X) over [0,∞]. The persis-
tence diagram is obtained by plotting the tuples of life and death scales of each
generator in [0,∞)× (0,∞].

Example 5.2. Consider again the metric space X from Example 5.1, 20 points
sampled from a annulus. Figure 5.3 shows the barcode and persistence diagram
for PH0(X), while Figure 5.4 shows the barcode and persistence diagram for
PH1(X). We use [14, 5] for the computation and plotting.

We can analyse the persistent homology of a sample to deduces the topologi-
cal features of the underlying space. Longer lifetime intervals correspond to a
generator which has persisted over a larger range of scale and are hence likely
to indicate an actual topological feature of the underlying space. Conversely,
shorter lifetime intervals indicate that the corresponding generator has not per-
sisted very long and has likely only appeared as an artefact from sampling.

Example 5.3 (Continuing Example 5.2). As we can see in the barcode and the
persistence diagram of PH1(X) in Figure 5.4, there are two lifetime intervals.
One is very short whereas the other is significantly longer. When looking at the
Vietoris-Rips complexes in Figure 5.2, we see that the generator corresponding
to the shorter lifetime interval is only visible in the third complex. The genera-
tor has appeared due to the sampling and does not describe the topology of the
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(a) Barcode

(b) Persistence diagram

Figure 5.3: Barcode and persistence diagram for PH0.

(a) Barcode

(b) Persistence diagram

Figure 5.4: Barcode and persistence diagram for PH1.

annulus. On the other hand, the generator corresponding to the longer lifetime
interval is present in the fifth, sixth and seventh Vietoris-Rips complex. It ap-
peared due to the hole in the annulus and is describing a topological feature of
the under space.

5.2 Persistent Homology Dimension

In this section we establish the relation between PH0(X) a MST X. We use
this to generalise fractal dimension based on MSTs.

Proposition 5.1. There is a correspondence of bounded lifetime intervals in
PH0(X) and edges in a MST on X, where the length of a lifetime interval is
equal to the length of its corresponding edge.

Proof. Let us see how the 0th homology of the Vietoris-Rips complex changes as
we increase the scale parameter. It is enough to only consider 0 and 1-simplices
of VR(X, r). Note that the connected components of VR(X, r) are generators
of H0(VR(X, r)) and that by increasing the scale parameter r, the number
of connected components in VR(X, r) cannot increase, so no new generators
can appear. For r = 0, the Vietoris-Rips complex VR(X, 0) consists of only
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the vertices in X. Each point in X is a generator of H0(VR(X, 0)) and has
birth scale 0. By increasing r, we start adding 1-simplices to the Vietoris-Rips
complex between two points x and y as soon as d(x, y) = r. Whenever such
a 1-simplex connects two previously disconnected components, the number of
connected components decreases by one and a generator disappears with death
scale is equal to r. Its lifetime interval is [0, r] and has length r. The 1-simplices
which connects two previously disconnected components correspond exactly to
the edges one obtains by Kruskal’s algorithm (see Section 2.2), proving the
statement.

This correspondence can be used to generalise fractal dimensions that are de-
fined via MSTs. There have been multiple different approaches to this, two of
which we are going to analyse here.

• In Section 5.2.1, we follow the approach taken in [18]. We define a per-
sistent homology dimension for metric spaces which generalises a fractal
dimension that is based on MSTs on extremal subsets. This definition
has the advantage of being equal to the Minkowski dimension in case of
the 0th persistent homology (see Theorem 5.3). The disadvantage of this
definition is that it is difficult to compute.

• In Section 5.2.2, we follow the approach taken in [2]. We define a persis-
tent homology dimension for probability measures on metric spaces which
generalises a fractal dimension based on MSTs on random subsets. The
advantage of this definition is that it is easy to compute an estimate. As
of now, no relations of to other fractal dimensions has been proven.

5.2.1 Persistent Homology Dimension (via Extremal Sub-
sets)

The correspondence between the edges of a MST T (A) on a finite subset A ⊆ X
and the bounded lifetime intervals in PH0(A) from Proposition 5.1 lets us rewrite
Eα(A) as

Eα(A) =
∑

(b,d)∈PH0(A)

(d− b)α,

where the sum is taken over all bounded lifetime intervals in PH0(A). We can
generalise this by looking at lifetime intervals in higher dimensional persistent
homology.

Definition 5.5. For α ≥ 0 and k ∈ N define

Ekα(A) =
∑

(b,d)∈PHk(A)

(d− b)α,

where the sum is taken over all bounded lifetime intervals in PHk(A).

Using these newly defined quantities, we can also generalise the MST dimension
from Definition 4.8.

Definition 5.6. For k ∈ N, the k-dimensional persistent homology di-
mension is defined as

dimk
PH(X) := inf{α ≥ 0: ∃C ∈ R : ∀A ⊆ X finite : Ekα(A) < C}.
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Theorem 5.3. We have

dim0
PH(X) = dimmink(X).

Proof. By the correspondence of bounded intervals in PH0(X) and edges in a
MST on X described in Proposition 5.1, we have Eα(A) = E0

α(A) and thus

dim0
PH(X) = dimMST(X).

With Theorem 4.2, we find that

dim0
PH(X) = dimmink(X).

5.2.2 Persistent Homology Dimension (via Random Sub-
sets)

Consider a probability measure µ on X and let Xn be a of n points from X
according to µ. Denote by T (Xn) a MST on Xn and consider the total length
of the MST

L(Xn) :=
∑

e∈T (Xn)

∥e∥.

Steele has analysed the asymptotic behaviour of L(Xn) in [19]. By the corre-
spondence between bounded intervals in PH0(Xn) and edges in T (Xn) described
in Proposition 5.1 we can rewrite the total length of T (Xn) as

L(Xn) =
∑

(b,d)∈PH0(Xn)

(d− b),

where the sum is taken over all bounded lifetime intervals in PH0(Xn). We can
generalise this quantity by looking at lifetime intervals in higher dimensional
persistent homology.

Definition 5.7. For k ∈ N define

Lk(Xn) :=
∑

(b,d)∈PHk(Xn)

(d− b),

where the sum is taken over all bounded lifetime intervals in PHk(Xn).

We can now analyse the asymptotic behaviour of Lk(Xn) as n→ ∞ and define
another fractal dimension.

Definition 5.8. Denote by Xn ⊆ X an i.i.d. sample of n points from X ac-
cording to a probability measure µ. The k-dimensional persistent homology
dimension of µ is defined as

dimk
PH(µ) := inf

{
d > 0: ∃C ∈ R : lim

n→∞
P
[
Lk(Xn) ≤ Cn

d−1
d

]
= 1
}
.
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This definition allows us to approximate the k-dimensional persistent homology
fractal dimension:
Write d := dimk

PH(µ) and α := d−1
d . Almost surely, the asymptotic growth of

Lk(Xn) is
Lk(Xn) ∼ Cnα, as n→ ∞.

Taking the log yields

log(Lk(Xn)) ∼ log(C) + α log(n), as n→ ∞.

To estimate d, we take a increasing sequence of sample sizes {ni}i, and compute
the quantities Lk(Xni). We plot these vales on a log-log scale and look at the
asymptotic part, which looks like a straight line with slope α. We estimate α
and get an estimate for d by

d =
1

1− α
.

Example 5.4. Let us estimate the persistent homology dimension for the uni-
form distribution µ on the Sierpinski triangle S. As a first approximation, let us
consider S5 from the construction of the Sierpinski triangle (see Example 3.2)
instead of the Sierpinski triangle itself. We take uniformly distributed samples
of up to 10000 points from S5. Figure 5.5 show the log-log plot of L0 for these
samples. The asymptotic slope is approximately

Figure 5.5: L0(Xn) for samples from the Sierpinski triangle.

α ≈ 0.3187.

Therefore we can an approximate persistent homology dimension as

dimPH(µ) ≈
1

1− α
≈ 1.4679.

This is close to the Minkowski and Hausdorff dimension of the Sierpinski tri-
angle which is

dimmink(S) = dimH(S) =
log(3)

log(2)
≈ 1.5850.
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Chapter 6

Magnitude Dimension

In this chapter we present the notion of magnitude. We first define magnitude
for matrices and finite metric spaces following [11]. Then we define magnitude
for infinite metric spaces referring to [20], [15] and [16]. In Section 6.2 we
give a continuity statement about magnitude which enables us to approximate
magnitude of infinite metric space. This is based on [12]. Finally, we define the
magnitude function which tells us how magnitude of a metric space changes as
we scale the space. By analysing the growth rate of the magnitude function, we
define another fractal dimension – the magnitude dimension. We show that for
compact subspace of Rn, the magnitude and Minkowski dimension agree (see
Theorem 6.4), referring to [16].

6.1 Magnitude

The aim of this section is to introduce magnitude. We first define magnitude
for matrices before using the associated similarity matrix to define magnitude
for finite metric spaces. For this part, we follow [11] closely. In Section 6.1.4 we
extend this definition to infinite metric spaces, mainly following [20].

6.1.1 Magnitude of Matrices

Let k be a commutative semiring with unit 1 ∈ k and X be a non-empty, finite
set. Let Z ∈ kX×X be a square matrix over k indexed by elements in X.

Definition 6.1. A column vector w ∈ kX is called a weighting of Z if Zw = 1,
where 1 ∈ kX denote the column vector with all 1s. A row vector v ∈ kX is
called a coweighting of Z if vZ = 1

T.

Remark 6.1. It is possible for a matrix to admit a weighting but not coweighting
or vice versa. For example

Z :=

(
1 0
1 0

)
∈ R2×2

has a weighting

w :=

(
1
0

)
but Z does not admit a coweighting.
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Definition 6.2. If Z ∈ kX×X admits both a weighting w ∈ kX and a coweight-
ing v ∈ kX , then ∑

x∈X
w(x) = 1

Tw = vZw = v1 =
∑
x∈X

v(x). (6.1)

In this case, we define the magnitude |Z| of Z to be this sum

|Z| :=
∑
x∈X

w(x) =
∑
x∈X

v(x).

By (6.1) the magnitude of a matrix is independent of the weighting and coweight-
ing. Hence, the magnitude of a matrix is well defined.

Proposition 6.1 (Lemma 1.1.4 in [11]). If Z is invertible, then there exists
a unique weighting and a unique coweighting. Hence, Z admits a magnitude
which is given by the sum of all entries of Z−1,

|Z| =
∑
x,y∈X

Z−1(x, y).

Proof. The unique weighting and coweighting are given by w := Z−1
1 and

v := 1
TZ−1 respectively. Therefore Z admits a magnitude which is given by

|Z| =
∑
x∈X

w(x) =
∑
x∈X

(Z−1
1)(x) =

∑
x,y∈X

Z−1(x, y).

Proposition 6.2 (Proposition 2.4.3 in [11]). If Z ∈ RX×X is positive definite,
then Z admits a magnitude which is given by

|Z| = sup
u∈RX\{0}

(∑
x∈X u(x)

)2
uTZu

= max
u∈RX\{0}

(∑
x∈X u(x)

)2
uTZu

.

The supremum is attained exactly when u ∈ RX \ {0} is a scalar multiple of the
unique weighting of Z.

Proof. Since Z is positive definite, Z is invertible. By Proposition 6.1 Z has a
unique weighting w := Z−1

1 and admits a magnitude.
We have (∑

x∈X w(x)
)2

wTZw
=

(
1
Tw
)2

1Tw
= 1

Tw = |Z|.

Let us now show that for all u ∈ RX \ {0}(∑
x∈X u(x)

)2
uTZu

≤
(∑

x∈X w(x)
)2

wTZw
.

Since Z is positive definite,

RX × RX → R, (u, ũ) 7→ uTZũ
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defines an inner product on RX . We can rewrite(∑
x∈X u(x)

)2
uTZu

≤
(∑

x∈X w(x)
)2

wTZw(
wTZw

) (
1
Tu
)2 ≤

(
uTZu

) (
1
Tw
)2(

wTZw
) (
wTZu

)2 ≤
(
uTZu

) (
wTZw

)2(
wTZu

)2 ≤
(
uTZu

) (
wTZw

)
.

By the Cauchy-Schwarz inequality, this holds, and we have equality if and only
if u is a non-zero scalar multiple of w.

6.1.2 Magnitude of Finite Metric Spaces

Let (X, d) denote a finite metric space for the remainder of this section.

Definition 6.3. The associated similarity matrix (ASM) ZX ∈ RX×X of
X is defined by

ZX(x, y) := e−d(x,y).

A weighting or coweighting of ZX , is sometimes simply referred to as a weight-
ing or coweighting of X respectively.

Definition 6.4. If ZX admits a magnitude, that is, if X admits a weighting and
a coweighting, then we define the magnitude |X| of (X, d) to be the magnitude
|ZX | of ZX .

Remark 6.2. By the symmetry of the metric d, the ASM ZX is a symmetric
matrix. So if there exists a weighting w ∈ RX , then wT is a coweighting as

wTZX = (ZT
Xw)

T = (ZXw)
T = 1

T.

Similarly, if v ∈ RX is a coweighting, then vT is a weighting.
Hence, admitting a weighting is a necessary and sufficient condition for finite
metric spaces to admit a magnitude.

Example 6.1. Let X be the metric space consisting of exacts two points at
distance d > 0. Then the ASM is given by

ZX =

(
1 e−d

e−d 1

)
∈ R2×2.

This matrix is invertible with inverse

Z−1
X =

(
e2d

e2d−1
− ed

e2d−1

− ed

e2d−1
e2d

e2d−1

)
.

By Proposition 6.1, the magnitude of X is given by

|X| = 2
e2d

e2d − 1
− 2

ed

e2d − 1
= 1 + tanh

(
d

2

)
.

There are metric spaces, whose ASM do not admit a weighting, and hence, the
metric space does not admit a magnitude.
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Example 6.2 (Example 2.2.7 in [11]). Consider the complete bipartite graph
X := K3,2 with shortest path metric scaled by log(

√
2).

1

2

3

4

5

Its ASM is given by

ZX =


1 1

2
1
2

√
2
2

√
2
2

1
2 1 1

2

√
2
2

√
2
2

1
2

1
2 1

√
2
2

√
2
2√

2
2

√
2
2

√
2
2 1 1

2√
2
2

√
2
2

√
2
2

1
2 1

 ∈ R5×5.

A quick computation shows that ZX and the augmented matrix [ZX |1] have
different rank. Therefore X does not admit a weighting, and hence X does not
admit a magnitude.

6.1.3 Magnitude of Compact, Positive Definite Metric Spaces

In this section we extend the definition of magnitude to infinite metric spaces
via finite approximations.

Definition 6.5. A finite metric space (X, d) is called positive definite if its
ASM ZX is positive definite. An infinite metric space (X, d) is called positive
definite if every finite subspace is positive definite. We abbreviate ‘positive
definite metric space’ by PDMS.

Remark 6.3. Since a principal submatrix of a positive definite matrix is also
positive definite, every subspace of a PDMS is also positive definite.

Proposition 6.3. If (X, d) is a finite PDMS, then X admits a magnitude given
by

|X| = sup
u∈RX\{0}

(∑
x∈X u(x)

)2
uTZXu

= max
u∈RX\{0}

(∑
x∈X u(x)

)2
uTZXu

.

The supremum is attained exactly when u ∈ RX \ {0} is a scalar multiple of the
unique weighting of X.

Proof. This is an immediate consequence of Proposition 6.2.

Definition 6.6. We define the magnitude |X| of a compact PDMS (X, d) to
be

|X| := sup{|X ′| : X ′ ⊆ X finite} ∈ [0,∞].

Remark 6.4. Since X is positively definite, every finite subspace X ′ ⊆ X is so
too, by definition. Hence, by Proposition 6.3, X ′ admits a magnitude, so |X| is
well-defined. As a consequence of Remark 6.3 and the following Proposition 6.4,
Definitions 6.4 and 6.6 coincide on finite PDMS. So there is no conflict in
terminology.
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Proposition 6.4 (Corollary 2.4.4 in [11]). Suppose (X, d) is a finite PDMS and
X ′ ⊆ X, then |X ′| ≤ |X|.

Proof. For u′ ∈ RX′ \ {0} define u ∈ RX by

u(x) :=

{
u′(x), if x ∈ X ′,

0, else.

Since u′ ̸= 0, also u ̸= 0 and furthermore(∑
x∈X u(x)

)2
uTZXu

=

(∑
x∈X′ u′(x)

)2
u′TZX′u′

and so the claim follows from Proposition 6.3.

6.1.4 Magnitude via Measures

In this section we choose another approach to extend the definition of magni-
tude to infinite spaces. We introduce weight measures to extend the definition
of weights following [20] and [16]. We refer the reader to [17] for a detailed
treatment of measure theory.

Definition 6.7. Denote by M(X) the space of finite signed Borel measures
on X and by M+(X) the space of finite non-negative Borel measures on
X. The support of a non-negative measure µ ∈ M+(X) is given by

supp(µ) := {a ∈ X : ∀ε > 0: µ(B(a, ε)) > 0)}.

Using the Hahn decomposition theorem, any signed measure µ ∈ M(X) can be
written as µ = µ+ − µ− with µ+, µ− ∈ M+(X). The support of µ is then
defined as

supp(µ) = supp(µ+) ∪ supp(µ−).

Define by FM(X) the space of finitely supported, finite signed measures
on X.

Definition 6.8. We define a symmetric bilinear form ⟨·, ·⟩W on FM(X) by

⟨µ, ν⟩W :=

∫
X

∫
X

e−d(x,y) dν(y) dµ(x).

Lemma 6.1. If (X, d) is a PDMS, then ⟨·, ·⟩W is an inner product on FM(X).

Proof. Let µ ∈ FM(X) \ {0}. Denote by B ⊆ X the finite support of µ. Since
X is positive definite, the ASM of B is positive definite. Denote by u ∈ RB \{0}
the vector given by u(x) := µ({x}). Therefore

⟨µ, µ⟩ =
∫
X

∫
X

e−d(x,y) dµ(y) dµ(x)

=
∑
x∈B

∑
y∈B

e−d(x,y)µ({y})µ({x})

= uTZBu > 0.
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Definition 6.9. Denote by W(X) the completion of FM(X) with respect to
⟨·, ·⟩W. We call W(X) the weighting space of X.

Suppose from now on that (X, d) is compact.

Definition 6.10. A weight measure on (X, d) is a measure µ ∈ W(X) such
that for all x ∈ X ∫

X

e−d(x,y) dµ(y) = 1.

Remark 6.5. If X is finite, then X admits a weight measure µ ∈ W(X) if and
only if it admits a weighting w ∈ RX as in Definition 6.3, where the correspon-
dence is given by µ({x}) = w(x) for all x ∈ X.
Indeed, if X is finite, for all x ∈ X we have∫

X

e−d(x,y) dµ(y) =
∑
y∈X

e−d(x,y)w(y) =
∑
y∈X

ZX(x, y)w(y).

Definition 6.11. If X admits a weight measure µ ∈ W(X), we define the
magnitude |X| of X to be

|X| := µ(X).

If X does not admit a weight measure, we set |X| := ∞.

Remark 6.6. The magnitude defined in Definition 6.11 is independent of the
weight measure.
Indeed, if µ, ν ∈ W(X) are two weight measures on X, by Fubini we find

µ(X) =

∫
X

1 dµ(y)

=

∫
X

∫
X

e−d(x,y) dν(y) dµ(x)

=

∫
X

∫
X

e−d(x,y) dµ(x) dν(y)

=

∫
X

1 dν(x)

= ν(X).

Example 6.3 (Theorem 2 in [20]). Let a, b ∈ R with a < b and let us compute
the magnitude of the compact interval [a, b] ⊆ R.

Claim 6.1. A weight measure on [a, b] is given by

µ :=
1

2
(δa + δb + λ),

where δ and λ denote the Dirac and Lebesgue measure respectively.
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Proof of Claim. For all x ∈ [a, b] we have

2

∫
[a,b]

e−d(x,y) dµ(y) =

∫ b

a

e−d(x,y) dδa(y) +

∫ b

a

e−d(x,y) dδb(y)

+

∫ b

a

e−d(x,y) dλ(y)

= e−d(x,a) + e−d(x,b)

+

∫ x

a

e−d(x,y) dλ(y) +

∫ b

x

e−d(x,y) dλ(y)

= ea−x + ex−b +

∫ x

a

ey−x dλ(y) +

∫ b

x

ex−y dλ(y)

= ea−x + ex−b + ey−x
∣∣∣x
a
− ex−y

∣∣∣b
x

= ea−x + ex−b + ex−x − ea−x − ex−b + ex−x

= 2.

Therefore, the magnitude of [a, b] is given by

|[a, b]| = µ([a, b]) =
1

2
(δa([a, b]) + λ([a, b]) + δb([a, b])) = 1 +

b− a

2
.

Remark 6.7. Fubini implies that if X and Y admit weight measures µX and
µY , then µX × µY is a weight measure an X × Y with metric

dX×Y ((x, y), (x′, y′)) = dX(x, x′) + dY (y, y′).

Therefore, the magnitude of X × Y is given by

|X × Y | = |X| · |Y |.

Example 6.4. By Remark 6.7 and Example 6.3, the magnitude of a rectangle
[a, b]× [c, d] with Manhattan metric

d((x, y), (x′, y′)) = ∥x′ − x∥+ ∥y′ − y∥

is given by

|[a, b]× [c, d]| = |[a, b]| · |[c, d]| =
(
1 +

b− a

2

)
·
(
1 +

d− c

2

)
.

Proposition 6.5 (Theorem 3.4 in [16]). Let (X, d) be a compact PDMS. Then

|X| = sup

{
µ(X)2

∥µ∥2W
: µ ∈ FM(X), µ ̸= 0

}
.

Proof. Denote the supremum in Proposition 6.5 by

κ := sup

{
µ(X)2

∥µ∥2W
: µ ∈ FM(X), µ ̸= 0

}
∈ [0,∞].

Let us first prove that if X admits a weight measure, then κ < ∞. Then we
prove that if κ < ∞, then X admits a weight measure and |X| = κ. Together,
this proves the statement.
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• Suppose first that X admits a weight measure µ ∈ W(X). Then, for all
ν ∈ FM(X) we find

ν(X) =

∫
1 dν(y) =

∫ ∫
e−d(x,y) dµ(x) dν(y) = ⟨ν, µ⟩.

By the Cauchy-Schwarz inequality we find that

ν(X)2 = ⟨ν, µ⟩2 ≤ ∥ν∥2W∥µ∥2W.

Therefore
ν(X)2

∥ν∥2W
≤ ∥µ∥2W = |X|.

• Now suppose that

κ := sup

{
µ(X)2

∥µ∥2W
: µ ∈ FM(X), µ ̸= 0

}
<∞.

The linear functional µ 7→ µ(X) on (FM(X), ∥·∥W) is bounded with norm

∥· 7→ ·(X)∥ = sup

{
∥µ(X)∥
∥µ∥W

: µ ∈ FM(X), µ ̸= 0

}
=

√
κ.

We can extend this bounded linear functional on (W, ∥·∥W) with norm√
κ. By Riesz representation theorem, there exists ν ∈ W(X) such that

∥ν∥W =
√
κ and

∀µ ∈ FM(X) : µ(X) = ⟨µ, ν⟩W.

Therefore, for all x ∈ X∫
X

e−d(x,yb) dν(y) =

∫
X

∫
X

e−d(x
′,y) dδx(x

′) dν(y) = ⟨δx, ν⟩ = δx(X) = 1.

Hence ν ∈ W(X) is a weighting of X and |X| = κ.

Corollary 6.1. Suppose that (X, d) is a compact PDMS and X ′ ⊆ X, then
|X ′| ≤ |X|.

Proof. Every measure µ ∈ FM(X ′) induces a measure ν ∈ FM(X) by restriction.
Hence, the statement follows from Proposition 6.5.

6.2 Continuity of Magnitude

We aim to estimate the magnitude of infinite metric spaces by computing the
magnitude of finite metric spaces that closely resemble the infinite ones. For
this to work, it is crucial that the magnitudes of two similar metric spaces –
meaning two metric spaces with small Gromov-Hausdorff distance – are similar.
We follow [12] for this.
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Theorem 6.1 (Proposition 3.1. in [12]). The function

{X : non-empty, compact PDMS} → [0,∞], X 7→ |X|,

which assigns to each non-empty, compact PDMS its magnitude, is lower semi-
continuous with respect to the Gromov-Hausdorff metric.

Let us prove the following two lemmas in preparation.

Lemma 6.2. Let A′ and B′ be two finite, non-empty, compact PDMSs that
satisfy dGH(A

′, B′) < δ. Then

|B′| ≥ |A′| − 6∥w∥21δ,

where w ∈ RA′
denotes the unique weighting of A′.

Proof. Since dGH(A
′, B′) < δ, there exists a metric space (X, dX) and isometric

embeddings φ : A′ ↪→ X, ψ : B′ ↪→ X such that

dXH (φ(A′), ψ(B′)) ≤ dGH(A
′, B′) + δ < 2δ.

Therefore,

sup
a∈A′

inf
b∈B′

dX(φ(a), ψ(b)) = sup
a∈A′

dX(φ(a), ψ(B′)) ≤ dXH (φ(A′), ψ(B′)) < 2δ.

Hence, for all a ∈ A′, there exists f(a) ∈ B′ such that

dX(φ(a), ψ(f(a))) < 3δ.

It follows that for all a, a′ ∈ A′

∥dA
′
(a, a′)− dB

′
(f(a), f(a′))∥ = ∥dX(φ(a), φ(a′))− dX(ψ(f(a)), ψ(f(a′)))∥

≤ dX(φ(a), ψ(f(a))) + dX(φ(a′), ψ(f(a′)))

< 3δ + 3δ = 6δ.

Let now w ∈ RA′
be the unique weighting of A′. Define Zf(A′) ∈ RA′×A′

by

Zf(A′)(a, a
′) := e−d

B′
(f(a),f(a′))

and u ∈ RB′
by

u(b) :=
∑

a∈f−1({b})

w(a).

Then ∑
b∈B′

u(b) =
∑
a∈A′

w(a).

Furthermore, if ZB′ ∈ RB′×B′
denotes the ASM of B′, then

uTZB′u =
∑

b,b′∈B′

u(b)ZB′(b, b′)u(b′)

=
∑

b,b′∈B′

 ∑
a∈f−1({b})

w(a)

ZB′(b, b′)

 ∑
a′∈f−1({b′})

w(a′)


=

∑
a,a′∈A′

w(a)Zf(A′)(a, a
′)w(a′)

= wTZf(A′)w.
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Therefore we find that

∥uTZB′u− wTZA′w∥ = ∥wT
(
Zf(A′) − ZA′

)
w∥

≤
∑

a,a′∈A′

∥w(a)(Zf(A′)(a, a
′)− ZA′)(a, a′)w(a′)∥

≤ ∥Zf(A′) − ZA′∥∞
∑

a,a′∈A′

∥w(a)w(a′)∥

= ∥Zf(A′) − ZA′∥∞

(∑
a∈A′

∥w(a)∥

)2

= ∥Zf(A′) − ZA′∥∞∥w∥21.

We have

∥Zf(A′) − ZA′∥∞ = sup
a,a′∈A′

∥e−d
B′

(f(a),f(a′)) − e−d
A′

(a,a′)∥

≤ sup
a,a′∈A′

∥dB
′
(f(a), f(a′))− dA

′
(a, a′)∥ < 6δ.

Therefore, by Proposition 6.3

|B′| ≥
(∑

b∈B′ u(b)
)2

uTZB′u
≥

(∑
a∈A′ w(a)

)2
wTZA′w + 6δ∥w∥21

≥ |A′| − 6δ∥w∥21.

Lemma 6.3. Let A′ and B be two non-empty, compact PDMSs where A′ is
finite such that they satisfy dGH(A

′, B) < δ. Then there exists a finite subspace
B′ ⊆ B such that dGH(A

′, B′) < 2δ.

Proof. Since dGH(A
′, B) < δ, there exists a metric space (X, dX) and isometric

embeddings φ : A′ ↪→ X, ψ : B ↪→ X such that

dXH (φ(A′), ψ(B)) ≤ dGH(A
′, B) + δ < 2δ.

In particular, we have
max
a∈A′

dX(φ(a), ψ(B)) < 2δ.

For all a ∈ A′ let ba ∈ B be such that dX(φ(a), ψ(ba)) < 2δ. Set

B′ := {ba ∈ B : a ∈ A′}.

Then B′ is finite and satisfies dGH(A
′, B′) < 2δ.

Proof. Let X be a non-empty, compact PDMS and let us show that the mag-
nitude function is lower semi-continuous at X. We consider the cases |X| <∞
and |X| = ∞ separately.

• Suppose first that |X| <∞:
Let ε > 0. Then there exists a finite subspace X ′ ⊆ X such that

|X ′| ≥ |X| − ε

2
.
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Denote by w ∈ RX′
the unique weighting of X ′ and set

δ :=
ε

24∥w∥21
> 0.

Let Y be a non-empty, compact PDMS with

dGH(X,Y ) < δ.

By Lemma 6.3 there exists a finite Y ′ ⊆ Y such that dGH(X
′, Y ′) < 2δ.

By Lemma 6.2 we have

|Y ′| ≥ |X ′| − 12δ∥w∥21 = |X ′| − ε

2
.

Then we find that

|Y | ≥ |Y ′| ≥ |X ′| − ε

2
≥ |X| − ε,

proving that magnitude function is lower semi-continuous at X.

• Now suppose that |X| = ∞:
LetK > 0. There exists a finite subspaceX ′ ⊆ X such that dGH(X,X

′) < δ
and

|X ′| > K + 1.

Denote by w ∈ RX′
the unique weighting of X ′ and set

δ :=
1

24∥w∥21
> 0.

Let Y be a non-empty, compact PDMS with

dGH(X,Y ) < δ.

Then dGH(X
′, Y ) < 2δ and hence, by Lemma 6.3 there exists a finite

Y ′ ⊆ Y such that dGH(X
′, Y ′) < 4δ. By Lemma 6.2, we have

|Y | ≥ |Y ′| ≥ |X ′| − 24∥w∥21 = K,

proving that magnitude function is lower semi-continuous at X.

Theorem 6.2. Let (X, d) be a non-empty, compact PDMS and let {Xk}k∈N
be a sequence of non-empty, compact metric subspaces Xk ⊆ X such that

Xk
k→∞−−−−→ X in the Gromov-Hausdorff topology, that is,

lim
k→∞

dGH(Xk, X) = 0.

Then the magnitudes |Xk| converge to the magnitude |X|, that is,

|X| = lim
k→∞

|Xk|.
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Proof. For all k ∈ N, we have Xk ⊆ X and hence |Xk| ≤ |X|. Therefore

lim sup
k→∞

|Xk| ≤ |X|.

By Theorem 6.1, the magnitude function is lower semi-continuous and hence

lim inf
k→∞

|Xk| ≥ |X|.

Hence we can conclude
lim
k→∞

|Xk| = |X|.

This means that we can compute the magnitude of a finite sample to estimate
the magnitude of the underlying space.

6.3 Magnitude Dimension

After introducing magnitude for metric spaces and proving some properties, we
now focus on the magnitude function which describes how the magnitude of a
metric space changes as we scale the space. This leads to the definition of the
magnitude dimension as the growth rate of the magnitude function. We also
relate the magnitude dimension to the Minkowski dimension and prove that
they agree for compact subsets of Rn. For this, we follow [16] closely.
For the remainder of this section, let (X, d) be a compact metric space.

Definition 6.12. The maximum diversity |X|+ of X is defined as

|X|+ := sup

{
µ(X)2

∥µ∥2W
: µ ∈ M+(X), µ ̸= 0

}
.

Proposition 6.6. We have

|X|+ = sup
µ∈P(X)

(∫
X

∫
X

e−d(x,y) dµ(y) dµ(x)

)−1

,

where P(X) denotes the space of Borel probability measures on X.

Proof. For any λ > 0 and µ ∈ M+(X) we have

(λµ(X))2

∥λµ∥2W
=
µ(X)

∥µ∥2W
.

Therefore, we can simply restrict the supremum in Definition 6.12 to all mea-
sures µ ∈ M+(X) with total measure µ(X) = 1, which is exactly P(X).

Definition 6.13. For t > 0 denote by tX the metric space X scaled by t, that
is, tX has the same points as X and the distance in tX is given by

∀x, y ∈ X : dtX(x, y) = t · dX(x, y).

We call X stably positive definite, if tX is positive definite for all t > 0.
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If X is stably positive definite, then the magnitude |tX| exists for every scale
t > 0, and we can define the magnitude function.

Definition 6.14. Suppose (X, d) is stably positive definite. The magnitude
function on X is

(0,∞) → [0,∞], t 7→ |tX|.

Definition 6.15. The instantaneous magnitude dimension of X at some
scale s > 0 is defined as the growth rate of the magnitude function at s

diminst
mag(X, s) :=

d log(|tX|)
d log(t)

∣∣∣
t=s

=
t

|tX|
d|tX|
dt

∣∣∣
t=s

.

This is precisely the slope of the magnitude function over the scale parame-
ter when viewed in a log-log plot. The instantaneous magnitude dimension
diminst

mag(X, s) tells us the ‘dimension’ of X when viewed at scale s.

Example 6.5. Consider the very long and thin rectangle

R := [0, 2]× [0, 200000]

with Manhattan metric

d((x, y), (x′, y′)) = ∥x′ − x∥+ ∥y′ − y∥.

The rectangle can appear as 0-, 1- or 2-dimensional depending on the scale it
which it is viewed. This is nicely depicted in Figure 6.1 By Example 6.4, the

(a) Small scale. (b) Medium scale. (c) Large scale.

Figure 6.1: A long, thin rectangle at different scales.

magnitude function of R is given by

(0,∞) → [0,∞], t 7→ |tR| =
(
1 +

2t

2

)
·
(
1 +

200000t

2

)
.

Figure 6.2 shows the magnitude function in a log-log plot. The instantaneous
magnitude dimension of R is plotted in Figure 6.3. We can see that the long,
thin rectangle has instantaneous magnitude dimension 0 at small scale, 1 at
medium scale and 2 at large scale.

If we do not know the magnitude of an infinite metric space, we may approxi-
mate its magnitude via a finite subspace. We can then compute the instanta-
neous magnitude dimension of the finite approximation as an estimate for the
dimension of the infinite space.

Example 6.6. Denote by X the space of 10000 points from S5 depicted in
Figure 6.4 as an approximation of the Sierpinski triangle. Denote by ZtX ∈
RX×X the ASM of tX. For each scale t we find a weighting wt of tX by solving
the linear system ZtX ·wt = 1 and compute the magnitude |tX|. Figure 6.5 shows
the magnitude function of X in a log-log plot. The instantaneous magnitude
dimension of X is plotted in Figure 6.6. We see that at low scale, X looks like

45



Figure 6.2: Magnitude function of a long, thin rectangle.

Figure 6.3: Instantaneous magnitude dimension of a long, thin rectangle.

a single point and hence has an instantaneous magnitude dimension close to 0.
At medium scale, X looks very close to the Sierpinski triangle and reaches its
maximum instantaneous magnitude dimension of approximately 1.5396. This is
very close to the Minkowski dimension of the Sierpinski triangle

dimmink(S) =
log(3)

log(2)
≈ 1.5850.

When viewed at larges scale (see Figure 6.7) the individual points of X become
visible and its instantaneous magnitude dimension decreases to 0.

The magnitude dimension is defied as the asymptotic growth rate of the mag-
nitude function.

Definition 6.16. Let (X, d) be stably positive definite. The lower magnitude
dimension of X is

dimmag(X) := lim inf
t→∞

log(|tX|)
log(t)
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Figure 6.4: 10000 points from S5.

Figure 6.5: Magnitude function.

and the upper magnitude dimension of X is

dimmag(X) := lim sup
t→∞

log(|tX|)
log(t)

.

If dimmag(X) = dimmag(X), the magnitude dimension of X exists and is

dimmag(X) := lim
t→∞

log(|tX|)
log(t)

.

Definition 6.17. The lower and upper diversity dimension of X are de-
fined analogously with the maximum diversity |tX|+ instead of the magnitude
|tX|:

dimdiv(X) := lim inf
t→∞

log(|tX|+)
log(t)

, dimdiv(X) := lim sup
t→∞

log(|tX|+)
log(t)

.

If dimdiv(X) = dimdiv(X), the diversity dimension exists and is

dimdiv(X) := lim
t→∞

log(|tX|+)
log(t)

.
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Figure 6.6: Instantaneous magnitude dimension.

Figure 6.7: Part of X at large scale.

Remark 6.8. We have
|X|+≤ |X|

and so if (X, d) is stably positive definite, then

dimdiv(X) ≤ dimmag(X), dimdiv(X) ≤ dimmag(X).

Remark 6.9 (Corollary 6.2 in [16]). For all n ∈ N there exists κn ∈ R such
that

∀X ⊆ Rn compact : |X| ≤ κn|X|+.

We refer to [16] for a proof involving results from potential theory from [1].

Theorem 6.3 (Theorem 7.1 in [16]). For all compact metric spaces (X, d) we
have that

dimdiv(X) = dimmink(X), dimdiv(X) = dimmink(X).

Hence dimdiv(X) is defined if and only if dimmink(X) is defined, and in that
case

dimdiv(X) = dimmink(X).
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Proof. Let us first prove that

dimdiv(X) ≤ dimmink(X), dimdiv(X) ≤ dimmink(X).

Let ε > 0, t > 0 and µ ∈ P(X). For all x ∈ X we find∫
X

e−td(x,y)dµ(y) ≥
∫
B(x,ε)

e−td(x,y)dµ(y)

≥
∫
B(x,ε)

e−tεdµ(y)

= e−tεµ(B(x, ε)).

Therefore, by applying Jensen’s inequality, we find that(∫
X

∫
X

e−td(x,y)dµ(y)dµ(x)

)−1

≤
(∫

X

e−tεµ(B(a, ε))dµ(x)

)−1

≤
∫
X

(
e−tεµ(B(a, ε))

)−1
dµ(x)

≤ etε
∫
X

1

µ(B(a, ε))
dµ(x).

Denote byN := N(X, ε2 ) the
(
ε
2

)
-covering number ofX and let {x1, . . . , xN} ⊆ X

such that we can write

X =

N⋃
j=1

B
(
xj ,

ε

2

)
.

If x ∈ B
(
xj ,

ε
2

)
for some j, then B

(
xj ,

ε
2

)
⊆ B(x, ε) and hence

µ
(
B
(
xj ,

ε

2

))
≤ µ(B(x, ε)).

Therefore ∫
X

1

µ(B(x, ε))
dµ(x) ≤

N∑
j=1

∫
B(xj ,

ε
2 )

1

µ(B(x, ε))
dµ(x)

≤
N∑
j=1

∫
B(xj ,

ε
2 )

1

µ(B(xj ,
ε
2 ))

dµ(x)

=

N∑
j=1

µ(B(xj ,
ε
2 ))

µ(B(xj ,
ε
2 ))

= N.

Putting everything together, we find that

|tX|+ = sup
µ∈P(X)

(∫
X

∫
X

e−td(x,y)dµ(y)dµ(x)

)−1

≤ sup
µ∈P(X)

etε
∫
X

1

µ(B(x, ε))
dµ(x)

≤ sup
µ∈P(X)

Netε = N
(
X,

ε

2

)
etε.
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If we set ε = 2
t , we get

log(|tX|+) ≤ log
(
N
(
X,

ε

2

)
etε
)
≤ log

(
N
(
X,

ε

2

))
.

Therefore we can conclude

dimdiv(X) = lim inf
t→∞

log(|tX|+)
log(t)

≤ lim inf
ε→0+

log(N(X, ε2 )

log( 2ε ))
= dimmink(X)

and analogously

dimdiv(X) = lim sup
t→∞

log(|tX|+)
log(t)

≤ lim sup
ε→0+

log(N(X, ε2 )

log( 2ε ))
= dimmink(X).

Let us now prove that

dimmink(X) ≤ dimdiv(X), dimmink(X) ≤ dimdiv(X).

Let ε > 0 and t > 0. Denote by M := M(X, ε) the ε-packing number of X
and let {x1, . . . , xM} ⊆ X such that {B(xj , ε)}Mj=1 are disjoint. Consider the
measure

µ :=
1

M

M∑
j=1

δxj ∈ P(X).

Since {B(xj , ε)}Mj=1 are disjoint, every x ∈ X can be in at most one such ball.
Therefore∫

X

e−td(x,y)dµ(y) =
1

M

M∑
j=1

e−td(x,xj) ≤ 1

M

(
1 + (M − 1)e−tε

)
≤ 1

M
+ e−tε.

Hence we find that

1

|tX|+
=

(
sup

ν∈P(X)

(∫
X

∫
X

e−td(x,y)dν(y)dν(x)

)−1
)−1

= inf
ν∈P(X)

∫
X

∫
X

e−td(x,y)dν(y)dν(x)

≤
∫
X

∫
X

e−td(x,y)dµ(y)dµ(x)

≤
∫
X

1

M
+ e−tεdµ(x)

=
1

M

M∑
j=1

(
1

M
+ e−tε

)
=

1

M(X, ε)
+ e−tε.

If we set ε = log(2|tX|+)
t , then e−tε = 1

2|tX|+ and hence

M(X, ε) ≤ 2|tX|+.
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Therefore

log(M(X, ε))

log( 1ε )
≤ log(2|tX|+)

log( 1ε )
=

log(|tX|+)
log(t)

log(t)

log( 1ε )
+

log(2)

log( 1ε )
.

If dimdiv(X) = ∞, then dimdiv(X) = ∞ and so

dimmink(X) ≤ dimdiv(X), dimmink(X) ≤ dimdiv(X)

hold trivially. So we may assume that dimdiv(X) < ∞. This implies that

ε(t)
t→∞−−−→ 0. Indeed if ε(t) ≥ c for some constant c > 0, then log(2|tX|+) ≥ ct

which leads to the contradiction

dimdiv(X) = lim inf
t→∞

log(|tX|+)
log(t)

= lim inf
t→∞

log(2|tX|+)− log(2)

log(t)

≥ lim inf
t→∞

ct− log(2)

log(t)
= ∞.

Therefore, we find that

log(2)

log( 1ε )
= o(1) as t→ ∞.

Furthermore we have

log
(
1
ε

)
log(t)

=
log
(

t
log(2|tX|+)

)
log(t)

=
log(t)− log(log(2|tX|+))

log(t)
= 1− log(log(2|tX|+))

log(t)
.

We find that

log(log(2|tX|+)
log(t)

=
log(log(2|tX|+)− log(log(t))

log(t)
+

log(log(t))

log(t)

=
log
(

log(2|tX|+)
log(t)

)
log(t)

+ o(1) as t→ ∞.

Therefore, under the assumption K := dimdiv(X) <∞, we find that

lim inf
t→∞

log(log(2|tX|+)
log(t)

= lim inf
t→∞

log(K)

log(t)
= 0.

Hence we can conclude

dimmink(X) = lim inf
ε→0+

log(M(X, ε))

log( 1ε )

≤ lim inf
t→∞

log(|tX|+)
log(t)

log(t)

log( 1ε )
+

log(2)

log( 1ε )

≤ lim inf
t→∞

log(|tX|+)
log(t)

= dimdiv(X).
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Analogously, under the assumption K ′ := dimdiv(X) <∞, we find that

lim sup
t→∞

log(log(2|tX|+))
log(t)

= lim sup
t→∞

log(K ′)

log(t)
= 0.

Hence we can conclude

dimmink(X) = lim sup
ε→0+

log(M(X, ε))

log( 1ε )

≤ lim sup
t→∞

log(|tX|+)
log(t)

log(t)

log( 1ε )
+

log(2)

log( 1ε )

≤ lim sup
t→∞

log(|tX|+)
log(t)

= dimdiv(X).

Corollary 6.2. Let (X, d) be a compact stably positive definite metric space.
Then dimmink(X) ≤ dimmag(X) and dimmink(X) ≤ dimmag(X).

Proof. This follows immediately from Theorem 6.3 and Remark 6.8.

Theorem 6.4. Let X ⊆ Rn be compact. Then

dimmag(X) = dimmink(X), dimmag(X) = dimmink(X).

Hence dimmag(X) is defined if and only if dimmink(X) is defined, and in that
case

dimmag(X) = dimmink(X).

Proof. Let X ⊆ Rn be compact. By Remark 6.8 and Remark 6.9 we find

|tX|+ ≤ |tX| ≤ κn|tX|+.

Therefore

log(|tX|+)
log(t)

≤ log(|tX|)
log(t)

≤ log(κn) + log(|tX|+)
log(t)

=
log(κn)

log(t)
+

log(|tX|+)
log(t)

.

Letting t→ ∞ we find

dimdiv(X) ≤ dimmag(X) ≤ dimdiv(X),

and
dimdiv(X) ≤ dimmag(X) ≤ dimdiv(X),

proving equality.
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6.4 Spread Dimension

In this section we briefly touch on spread, another measurement of size similar
to the magnitude, but in some ways better behaved and easier to compute. We
define spread for finite metric spaces and analyse how it changes as we scale the
space. This leads to the definition of the instantaneous spread dimension. We
refer to [21] for more details on the matter.
Let (X, d) denote a finite metric space.

Definition 6.18. The spread of (X, d) is defined as

E0(X) :=
∑
x∈X

1∑
y∈X ZX(x, y)

,

where ZX denotes the ASM of X.

Example 6.7. Consider the space X from Example 6.1, 2 points at distance
d > 0. The spread of X is given by

E0(X) =
2

1 + e−d
.

Similar to the magnitude function, we can study how the spread of a metric
space changes with scaling.

Definition 6.19. The spread function on X is

(0,∞) → [0,∞], t 7→ E0(tX).

Similar to the instantaneous magnitude dimension, we can study the growth
rate of the spread function.

Definition 6.20. The instantaneous spread dimension of X as some scale
s > 0 is

diminst
spread(X, s) :=

d log(E0(tX))

d log(t)

∣∣∣
t=s

=
t

E0(tX)

dE0(tX)

dt

∣∣∣
t=s

.

Since the formula for spread is in a closed form, we can simply compute the
derivative. For x, y ∈ X we have

d

dt
ZtX(x, y) =

d

dt

(
e−td(x,y)

)
= −d(x, y)e−td(x,y) = −d(x, y)ZtX(x, y).

Therefore

dE0(tX)

dt
=

d

dt

(∑
x∈X

1∑
y∈X ZtX(x, y)

)

= −
∑
x∈X

d
dt

(∑
y∈X ZtX(x, y)

)
(∑

y∈X ZtX(x, y)
)2

=
∑
x∈X

∑
y∈X d(x, y)ZtX(x, y)(∑

y∈X ZtX(x, y)
)2 .
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Hence the instantaneous spread dimension is given by

diminst
spread(X, s) =

s

E0(sX)

∑
x∈X

∑
y∈X d(x, y)ZsX(x, y)(∑

y∈X ZsX(x, y)
)2

Example 6.8. Let us compute the instantaneous spread dimension for an ap-
proximation of the Sierpinski triangle. Denote by X the same 10000 points on
S5 as in Example 6.6. Figures 6.8 and 6.9 show the spread function on X in
a log-log plot and the instantaneous spread dimension of X respectively. At

Figure 6.8: Spread function.

Figure 6.9: Instantaneous spread dimension.

medium scale, where X looks very similar to the Sierpinski triangle, the instan-
taneous spread dimension reaches is maximum of approximately 1.5557.
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Chapter 7

Experiments

In this chapter we estimate the persistent homology and magnitude dimension of
several fractals and compare them to the Minkowski and Hausdorff dimension.
The python code used for all the computations is available on GitHub [10].

7.1 Cantor Dust

Construction

The Cantor dust D can be constructed as follows: Start with a square D0.
Now subdivide the square into nine equal squares that have side length 1

3 of the
original square. Remove all except the four squares in the corners. Continue
this process iteratively for each of the remaining squares. The Cantor dust D
consists exactly of the points that remain after continuing this process infinitely,
that is,

D :=

∞⋂
n=0

Dn.

Figure 7.1 shows the first six sets D0, . . . , D5 in the construction.

Hausdorff Dimension

Let us compute the Hausdorff dimension of the Cantor dust using Theorem 4.1.
Consider D as subset of [0, 1]2 so that the maps

f1, f2, f3, f4 := [0, 1]2 → [0, 1]2

given by

f1(x, y) :=
1

3
(x, y),

f2(x, y) :=
1

3
(x, y) +

2

3
(1, 0),

f3(x, y) :=
1

3
(x, y) +

2

3
(0, 1),

f4(x, y) :=
1

3
(x, y) +

2

3
(1, 1),
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(a) D0 (b) D1 (c) D2

(d) D3 (e) D4 (f) D5

Figure 7.1: Construction of the Cantor dust.

are contracting similarities with ratios c1, c2, c3, c4 = 1
3 . They satisfy open set

condition for (0, 1)2 as

(0, 1)2 ⊆
(
0,

1

3

)2

⊔
[(

2

3
, 1

)
×
(
0,

1

3

)]
⊔
[(

0,
1

3

)
×
(
2

3
, 1

)]
⊔
(
2

3
, 1

)2

= S1((0, 1)
2) ⊔ S2((0, 1)

2) ⊔ S3((0, 1)
2) ⊔ S4((0, 1)

2).

The Cantor dust is the attractor

D = S1(D) ∪ S2(D) ∪ S3(D) ∪ S4(D).

By Theorem 4.1, the Hausdorff dimension s = dimH(D) is given by(
1

3

)s
+

(
1

3

)s
+

(
1

3

)s
+

(
1

3

)s
= 1.

Solving for s yields

dimmink(D) = dimH(D) =
log(4)

log(3)
≈ 1.2619.

Persistent Homology Dimension

Let us estimate the persistent homology dimension of the uniform distribution µ
on the Cantor dust. We approximate the Cantor dust by taking a uniform sam-
ple of up to 10000 points from D5 in the construction above. Figure 7.2 shows
the log-log plot of L0 for the samples. The asymptotic slope is approximately

α ≈ 0.1903,

which leads to an approximate persistent homology dimension of

dimPH(µ) ≈
1

1− α
≈ 1.2350.
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Figure 7.2: L0 for samples of the Cantor dust.

Magnitude Dimension

To estimate the magnitude dimension of the Cantor dust, we approximate D
by a finite set X of 10000 points as depicted in Figure 7.3. Figures 7.4a and

Figure 7.3: 10000 points from the Cantor dust.

7.4b shows the magnitude function and instantaneous magnitude dimension for
X. At medium scale, where X looks similar to the Cantor dust, it reaches its
Maximum instantaneous magnitude dimension of approximately

dimmag(D) ≈ 1.2573.

7.2 Sierpinski Triangle

We showed the construction of the Sierpinski triangle S in Example 3.2. In
Example 5.4 we approximated the persistent homology dimension of the uniform
distribution µ on S and found

dimPH(µ) ≈ 1.4679.

We approximated the magnitude dimension of S in Example 6.6

dimmag(S) ≈ 1.5396.
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(a) Magnitude function.

(b) Instantaneous magnitude dimension.

Figure 7.4: Magnitude function and instantaneous magnitude dimension.

Hausdorff Dimension

The three maps that send the S0 to any one of the triangles in S1 are contracting
similarities with ratio 1

2 (see Figure 7.5). The open set condition is satisfied for

(a) S0 (b) S1

Figure 7.5: S0 and S1 from the construction of the Sierpinski triangle.

the interior of S0 and so by Theorem 4.1, the Hausdorff dimension s := dimH(S)
is given by

3 ·
(
1

2

)s
= 1.

Solving for s yields

dimmink(S) = dimH(S) =
log(3)

log(2)
≈ 1.5850.

7.3 Koch Snowflake

We covered the construction of the Koch curve and Koch snowflake in Exam-
ple 3.3. Since the Koch snowflake is made up of three copies of the Koch curve,
they have equal dimensions.

58



Hausdorff Dimension

The four maps which send KC
0 to any one of the line segments in KC

1 are
contracting similarities with ratio 1

3 (see Figure 7.6). The open set condition is

(a) KC
0 (b) KC

1

Figure 7.6: KC
0 and KC

1 from the construction of the Koch curve.

satisfied for the interior of KC
0 and so by Theorem 4.1, the Hausdorff dimension

s = dimH(KC) is given by

4 ·
(
1

3

)s
= 1.

Solving for s yields

dimmink(KC) = dimH(KC) =
log(4)

log(3)
≈ 1.2619.

Persistent Homology Dimension

In order to estimate the persistent homology dimension of the uniform distri-
bution µ on the Koch curve, we samples of up to 10000 points from KC

5 as an
approximation. Figure 7.7 show the log-log plot of L0 for these samples. The

Figure 7.7: L0 for samples of the Koch curve.

asymptotic slope is approximately

α ≈ 0.0803.

This yields an approximate persistent homology dimension of

dim0
PH(µ) ≈ 1.0873.
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Magnitude Dimension

Consider 10000 points on KC
5 as an approximation of the Koch curve KC . Fig-

ure 7.8a shows the magnitude function in a log-log plot. The instantaneous
magnitude dimension in depicted in Figure 7.8b. The maximum instantaneous

(a) Magnitude function.

(b) Instantaneous magnitude dimension.

Figure 7.8: Magnitude function and instantaneous magnitude dimension.

magnitude dimension is approximately

dimmag(KC) ≈ 1.2348.
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