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Abstract

Time series are lists of measurements taken from dynamical systems, i.e. systems
that change over time according to certain rules. Detecting cyclic motion in time series
is insightful, because it tells us that there are recurring patterns in the underlying
system. Finding such patterns can help us predict the future evolution of the system.

The aim of this master’s thesis is to introduce persistent homology, an important
tool in topological data analysis, and in later chapters, to understand and elaborate
on a new approach suggested by Bauer et al. in [Bau+23b], which aims to detect
cycles in time series data using persistent homology, and more importantly, to classify
cycles that behave similarly. Cycling signatures capture the different types of cycles
that occur within segments of a given time series. The core work done for this thesis
is the study of how to move from the rather abstract definition of cycling signatures
to more combinatorial objects, do the computation there and come back without
losing significance and accuracy.
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Abbreviations and Acronyms

The following list contains abbreviations and acronyms used in this thesis.

R+ The set of positive real numbers.
R+
0 The set of non-negative real numbers.

N The set of positive integers.
N0 The set of non-negative integers.
#X The size of the set X.
P(X) The power set of X, i.e. the set of all subsets.
X The closure of the set X, i.e. the smallest closed set containing

X.
X◦ The interior of the set X, i.e. the largest open set contained

in X.
∂X The boundary of the set X, i.e. ∂X = X \X◦.
⊆ An inclusion which can be an equality.
⊂ A strict inclusion.
∼= An isomorphism (mostly of vector spaces).
≃ A homeomorphism of topological spaces.
∼ An equivalence relation.
[x], x or [x]∼ The equivalence class of an element x with respect to an

equivalence relation ∼.
[v0, . . . , vk] The geometric k-simplex spanned by the vertices v0, . . . vk.
VR(X, r) The Vietoris-Rips complex with vertex set X and radius r.
Č(X, r) The Čech complex with vertex set X and radius r.
|K| The geometric realisation of the simplicial/cubical complex K.
B(p, r) or B2(p.r) The open ball of radius r around p in Rd with respect to

Euclidean metric.
U(X, r) The thickening of the set X by r.
B∞(p, r) The open ball of radius r around p with respect to the ∞-

metric.
Sd or Sd2 The sphere of dimension d with respect to Euclidean metric

(embedded in Rd+1).
Sd∞ The sphere of dimension d with respect to the ∞-metric.
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Chapter 1

Introduction

Data often come in the form of time series, i.e. a sequence of measurements, usually
recorded at equidistant time stamps. More precisely, they are sampled from dynamical
systems, which means systems that evolve over time according to a set of rules. For
example, time series can be lists of weather data, stock prices, brain monitoring
measurements and so on. With time series, the goal is to use the information it
contains to construct a model that approximates the underlying dynamical system.
In this thesis, we assume that the time series come from dynamical systems (X,Φ),
where X ⊆ Rd is a subset of Euclidean space and and Φ : R×X −→ X is a smooth
map describing how the system changes over time. This means that for any point
x in X, we can trace the evolution Φ(t, x) of x with the flow Φ over time t. The
word "flow" indicates that if we track x starting from t = 0 and observe its position
after some time T , the result is the same as if we first measured its position at an
intermediate time step s (where s ∈ [0, T ]) and then measured its movement from s
to T .

Assuming our time series comes from a dynamical system, we are interested in
finding out whether the system contains any cyclic motion and if yes, what type of
cyclic motion. For example, the plot in Figure 1.1 shows the evolution of temperatures
in Basel (75 km from Zurich) over the past ten years. Clearly, there is some periodicity
present. The temperature always falls in the winter months and rises again in the
summer. Identification of such trends helps us to predict the future evolution of the
dynamical system. In the temperature example, we can now say with high confidence
that it will be cold next winter as well.

Figure 1.1: Temperature measurements (daily average) in Basel (75 km from Zurich)
from March 2015 to March 2025. The data can be freely accessed with the following
link: https://www.meteoblue.com/de/wetter/archive/export.

A mathematical example of a time series coming from a dynamical system is
illustrated in Figure 1.2. In mathematics, dynamical systems often appear in the
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Figure 1.2: Double well dynamical system and time series.

form of solutions to differential equations. The dynamical system from Figure 1.2
comes as the solution of the stochastic differential equation

dx = f(x)dt+ σdW,

where W is a d-dimensional stochastic process called Wiener process and σ is a
parameter which controls the importance of the randomness introduced by W . This
type of differential equation models systems from a range of different areas. Example
include dynamics in chemical reactions [JLR20] and neural dynamics [Mel19]. As can
be seen in Figure 1.2, the time series includes two obvious voids (hence the name).
The results studied in this thesis will allow us to identify the cycles that go around
the voids, and will also make it possible to distinguish between the cycles that go
around the left void, those that go around the right void, and the longer segments
that go around both. To detect and classify those cycles, we will use objects from
the field of algebraic topology called homology groups.

Homology groups capture information about loops and higher-dimensional voids
in topological spaces. The numbers that count these loops and voids are called Betti
numbers. For example, the first Betti number of a circle is one, because a circle
consists of one 1-dimensional loop. The problem with time series is that they are
only finite collections of points. This means that we cannot use a time series as is to
compute Betti numbers, since a collection of points has no interesting topological
properties.

One way to approach the above-mentioned problem is to construct thickenings
(Definition 3.5). Let X be a collection of points in Rd. For example, this could be a
sample from a dynamical system. Then

U(X, r) =
⋃
p∈X

B(p, r/2)

is the thickening of X by the radius r/2, where B(p, r/2) is the open ball of radius r/2
around the point p. As can be observed in Figure 1.3, the radii of these thickenings
strongly influence which topological features (voids) can be detected. Persistent
homology will allow us to collect the topological features that occur for a range of
different radii. To compute homology of the thickenings, we show (Theorem 3.6)
that the closure of a thickening U(X, r) is topologically equivalent to the more
combinatorial Čech complex Č(X, r).
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Figure 1.3: Double well time series with thickenings for increasing radii.

A Čech complex is a simplicial complex, i.e. a collection of simplices - convex
hulls of points - glued together along common boundaries. So, 0-simplices are points,
1-simplices are edges, 2-simplices are triangles, 3-simplices are tetrahedra and for
larger dimensions k, k-simplices are their k-dimensional counterparts. The simplex
[p0, . . . , pk] spanned by the points p0, . . . , pk ∈ X is a simplex of the Čech complex
Č(X, r) (Definition 3.4) if and only if

k⋂
i=0

B(pi, r/2) ̸= ∅.

A picture of a Čech complex and the corresponding thickening can be seen in Figure 1.4.

Figure 1.4: A Čech complex and the corresponding thickening of points.

Computing persistent homology means taking a collection of nested simplicial
complexes, and recording the radii at which a topological feature is born and at which
it dies. Looking at Figure 1.3 once again, there are many small voids that appear
in the first thickening, but already disappear in the second. On the other hand, the
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right and left loops are born at around the same time, but only disappear at a much
larger radius. The observation that they persist over the largest range of radii hints
at the fact that they are the most significant topological features in the data.

Another question that arises when looking at time series data, is how to include
the direction of the flow of the system into the computation. As we can see in
Figure 1.5, the middle points merge in the thickening even though the flow goes in
opposite directions. Bauer et al. address this issue in [Bau+23b] by using a different
distance than the standard Euclidean metric for the balls B(p, r/2) in the definition
of the thickenings. We add a directional component to each point by considering the
tangent vectors with respect to the flow Φ from the dynamical system. The map that
formalises this is

ρ : X \Xfix −→ UTX, x 7−→
(
x,

v(x)

∥v(x)∥2

)
,

where Xfix collects all fixed points of the dynamical system (X,Φ), i.e. points that
do not move at all over time, UTX is the set containing all tangent vectors of length
1 for all points in X, and

v(x) =
d

dt
Φ(t, x)

∣∣∣
t=0

is the tangent vector induced by the flow Φ at x. In other words, we do not just look
at the points x ∈ X from the data per se, but we also take into account the direction
towards the following points in the time series, which roughly models the direction of
the flow at x. For the new thickenings U(ρ(γ), r) of segments γ of the time series,
this means that two points going in very different directions are now further away
with respect to the new distance, even if they look like they are close in space. We
will look at this construction in more detail in Section 5.1.

Figure 1.5: Short subsequence of the time series from Figure 1.3, thickened and with
arrows to indicate direction of the flow.

One more thing to think about is how to distinguish between different types of
cycles. As we can infer from Figure 1.3, there are three different types of cycles at
first glance. The left one, the right one and one going around both. This distinction is
made by looking at the thickening as a subset of a larger space Y called a comparison
space. In practice, this comparison space is a collection of cubes Y∞ (squares in

4



Figure 1.6: Sketch of a comparison space (orange squares) for the time series from
Figure 1.3. The representation is not strictly accurate, as the directional component
of the time series is not taken into consideration.

dimension two, lines in dimension one and points in dimension zero). A visualisation
of a comparison space for the double well time series can be found in Figure 1.6.

The comparison space already contains the two holes from the double well system.
If we look at the thickenings as a subspace of this comparison space, the different
cycles have different generators (from the comparison space) in homology. This is
the core idea of the cycling signatures introduced by Bauer et al. in [Bau+23b]. The
cycling signature of a time series segment is the image of the map in homology
induced by this inclusion. This translation of maps is justified by the fact that
homology is a functor, as we show in Theorem 2.29.

For the cycling signatures to be computed efficiently, we perform a number of
tweaks to enhance the performance. The detour we take is summarised in the
commutative diagram

{H1(U(ρ(γ), r))}r≥0 H1(Y )

{H1(Č(ρ(γ), r))}r≥0 H1(Y∞),

H1(iγ)

∼=

H1(ϕ)

∼= (1.1)

where ρ(γ) is a short piece of a time series with added tangent vectors, and the Čech
complex Č(ρ(γ), r) is constructed with the adapted metric defined on ρ(γ). The
parameter r ≥ 0 indicates that we are working with persistent homology groups,
so we capture the homology groups for all r within a predetermined range and
observe when and how they change. The left arrow is a result of the topological
equivalence between thickenings and Čech complexes, and the right arrow essentially
relates round balls and cubes. The top map is the translation (using functoriality of
homology, Theorem 2.29) of the above-mentioned inclusion of the time series into
a comparison space Y , and the map on the bottom is the computational approach
with the algorithm provided in [Bau+23b].

In the algorithm, we first compute the homology of the cubical comparison space
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Y∞ and decide on a collection of segments of the time series for which we check if they
contain any cycles. For these segments, we construct simplicial complexes similar to
Čech complexes for increasing radii and compute persistent homology. Lastly, we find
a basis of the image of H1(ϕ) from the above diagram by performing a subdivision of
the simplicial complex and using a clever construction which is roughly sketched in
Figure 1.7 and will be explained in more detail in Section 5.7.

Figure 1.7: Sketch of an example for the map ϕ used for the commutative diagram 1.1.

In the sketch from Figure 1.7, the cycling signature we obtain for this specific
radius is the space H1(Y∞) itself. Going back to the double well system, the algorithm
computes three distinct cycling signatures of rank 1. They are represented with three
different colours in Figure 1.8.

Figure 1.8: Double well time series inside a cubical comparison space and with
different colours indicating the three different rank 1 cycling signatures.

For a segment going once around the left void (blue in the figure), we obtain a
trivial cycling signature as long as the radius for the construction of the Čech complex
is too small to connect all the dots, and then get a rank 1 signature generated by
the generator of H1(Y∞) corresponding to the left void. The same argument holds
for segments going around the right void once, which are highlighted in green in the
figure. The cycling signature of longer segments going around both voids (coloured in
red in Figure 1.8 have their cycling signature generated by the sum of the generators
of H1(Y∞).
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Chapter 2

Simplicial Complexes, Cubical Complexes and
Homology

2.1 Simplicial Complexes

Simplicial complexes are constructions consisting of points, lines, triangle and
higher-dimensional polytopes glued together along common boundaries. They can
be used to describe many topological spaces in a combinatorial way, which makes it
easier to compute certain topological invariants (like homology, which we introduce
in Section 2.3). We follow chapter 2 of [Car14], as well as [EH10] and [Hat01].

If we draw three points on a plane, we want to avoid the case in which they all lie
on the same line. This will be important in the definition of simplices, as it ensures
that the set spanned by k + 1 points has dimension k, and not a lower dimension.
For our three points, this means connecting them and filling in the resulting triangle
gives us a surface, so a 2-dimensional object.

Definition 2.1 (General Position). Let S ⊂ Rd be a finite set. Then S is in
general position, if it is not contained in a hyperplane H ⊆ Rd of dimension
dimH ≤ #S − 1.

Going forward, we assume our finite sets in Rd to be in general position. The
geometric simplices introduced in the next definition are the building blocks which
we will use for the construction of simplicial complexes.

Definition 2.2 (Geometric Simplex).

(a) Let S = {x0, . . . , xk} be a finite subset of Rd. The convex hull of the set S is
given by

σ(S) =

{
k∑
i=0

λixi : xi ∈ S, 0 ≤ λi ≤ 1 for all i and
k∑
i=0

λi = 1

}
.

(b) Let S ⊂ Rd be a finite set in general position. Then the geometric simplex
spanned by S is the convex hull of S in Rd. Write σ = σ(S) or [x0, . . . , xk]
for S = {x0, . . . , xk}. The points xi, i = 0, . . . , k are called vertices and the
simplices generated by subsets of S are called faces of σ. A simplex spanned by
a set containing k + 1 points is called a k-simplex, as it has dimension k.

(c) The standard k-simplex is the simplex

∆k =

{
(t0, . . . , tk) ∈ Rk+1 :

k∑
i=0

ti = 1

}
.

7



In other words, it is the k-simplex spanned by all points of the form

(0 . . . , 0, 1, 0, . . . , 0) ∈ Rk+1.

(d) Let σ be a k-simplex. Then its boundary is the set containing all (k − 1)-
simplices which are faces of σ.

In Figure 2.1 we illustrate what 0- 1- and 2-simplices looks like.

v0 v0 v1 v0 v1

v2

Figure 2.1: A geometric 0-simplex or vertex v0, a 1-simplex or edge [v0, v1] and a
2-simplex or triangle [v0, v1, v2].

When we glue geometric simplices together along their boundaries, we get a
so-called geometric simplicial complex. The precise rules for this construction are
given by the following definition.

Definition 2.3 (Geometric Simplicial Complex). A geometric simplicial
complex is a finite collection K of geometric simplices σ such that if σ ∈ K, then
all faces of σ are also contained in K. Moreover, for two simplices σ, τ in K, their
intersection must also be a simplex, which is a face both of σ and τ . We use the
following notation.

• V (K) is the set of vertices of K (i.e. 0-dimensional simplices).

• Σk(K) is the collection of k-simplices of K.

• The k-skeleton of K is the subcomplex

K(k) =
⋃
i≤k

Σi(K)

containing all simplices of K that have dimension up to k.

The topology on a geometric simplicial complex is the quotient topology obtained
by identifying the boundary of each k-simplex with the corresponding (k−1)-simplices.
We look at the simplices as subspaces of Rd.

Example 2.4. Consider the constructs in Figure 2.2. The leftmost construc-
tion is a geometric simplicial complex K with vertices V (K) = {v1, . . . , v5}, edges
Σ1(K) = {[v1, v2], [v1, v3], [v2, v3], [v3, v4]} and one triangle Σ2 = {[v1, v2, v3]}. The
second construct is not a geometric simplicial complex, as the edge [v2, v3] of the trian-
gle [v1, v2, v3] is not included in the set of simplices. The third construct is no geometric
simplicial complex either, as the edge set is {[v1, v2], [v1, v3], [v2, v6], [v6, v3], [v3, v4]},
so again, the face [v2, v3] of the triangle [v1, v2, v3] is missing. Moreover, the vertex
v6 is in the intersection [v2, v6] ∩ [v1, v2, v3] but is not a face of [v1, v2, v3].
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v1

v2

v3

v4

v5
v1

v2

v3

v4

v5
v1

v2

v6

v3

v4

v5

Figure 2.2: On the left, we see an example of a geometric simplicial complex. The
two other constructs are non-examples of geometric simplicial complexes.

Geometric simplicial complexes are bound by their position in Rd. We want
to identify all geometric simplicial complexes which are homeomorphic, or more
intuitively, for which there is a bijection between the set of all simplices which
preserves faces.

Definition 2.5 (Abstract Simplicial Complex). An abstract simplicial com-
plex is a pair K = (V (K),Σ(K)) consisting of a finite set of vertices V (K) and a
collection of simplices Σ(K) ⊆ P(V (K)) \ {∅}, such that if σ ∈ Σ(K) and τ ⊆ σ,
τ ∈ P(V (K)) \ {∅}, then τ ∈ Σ(K).

A geometric realisation |K| of an abstract simplicial complex K is a geometric
simplicial complex which arises from assigning the vertices V (K) points in Euclidean
space Rd and mapping every abstract simplex to the geometric simplex spanned by the
points corresponding to its vertices.

From now onwards, when we write "simplicial complex" we mean "abstract
simplicial complex". When we think of maps of simplicial complexes, it makes sense
to expect that such a function should map a simplex to another simplex. The following
definition formalises this idea.

Definition 2.6 (Simplicial Map). Let K and L be simplicial complexes, and let
f : K −→ L be a map. f is called simplicial, if for any simplex σ ∈ K, f(σ) is a
simplex of L.

2.2 Barycentric Subdivision

The most commonly studied subdivisions of simplicial complexes are barycentric
subdivisions. In particular, they allow us to define coordinates for all points in a
geometric simplicial complex using only the vertices. Moreover, they play an important
role in the proofs of some fundamental results in the field algebraic topology, like the
Excision theorem and Mayer-Vietoris sequences (see [Hat01] if interested). In this
section, we use theory from [Bau+23a], [Wof18] and [Hat01].

Definition 2.7 (Barycentric Subdivision and Star). Let K be a simplicial
complex and let |K| be its geometric realisation.

(a) A simplicial subdivision or refinement of K is another simplicial complex
L, such that |K| = |L|, and every simplex of L is contained in a simplex of K.
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(b) Let σ = [v0, . . . , vk] be a simplex of K. The barycenter of σ is

b(σ) =
1

k + 1

k∑
i=0

vi.

(c) The barycentric subdivision of K is the simplicial subdivision sdK with
vertices

V (sdK) = {b(σ) : σ ∈ Σ(K)}

and simplices

Σ(sdK) =
{
[b(σ0), . . . , b(σl)] : σ0 ⊂ · · · ⊂ σl in K

}
.

(d) The (closed) barycentric star of a vertex v of K is the subcomplex

bst(v,K) = |{τ ∈ sdK : τ ∪ {v} ∈ sdK}| ⊆ |sdK| .

In Figure 2.3, we take the simplices from Figure 2.1 and add their barycentre to
illustrate Definition 2.7.

b(v0) = v0 v0 v1

b([v1, v2])

v0 v1

v2

b([v1, v2, v3])

Figure 2.3: The same simplices as in Figure 2.1 with their respective barycentres
added as blue dots.

Remark 2.8. Intuitively, the barycentric star of a vertex v in K is the union of all
simplices of |sdK| which contain the vertex v, plus all of their faces (this is the reason
why it is closed). Moreover, the collection of all barycentric stars gives a closed cover
of |sdK|.

v

Figure 2.4: A simplicial complex and its barycentric subdivision. The simplices
highlighted in blue are a visualisation of the closed barycentric star of v.

An example of a barycentric subdivision and star can be found in Figure 2.4. The
following lemma tells us that the barycentric stars bst(v,K) form a so-called good
cover of |K|.
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Lemma 2.9. Let σ be a simplex of a simplicial complex K. Then the intersection⋂
v∈σ

bst(v,K)

is contractible.

Proof. Let σ = [v0, . . . , vk] be a simplex of K. We consider the subcomplex L of sdK
which contains all simplices [b(σ0), . . . , b(σl)] for which

σ ⊆ σ0 ⊂ · · · ⊂ σl.

Let τ = [b(σ0), . . . , b(σl)] be such a simplex. Then τ is contained in the simplex
[b(σ), b(σ0), . . . , b(σl)] of sdK, thus |τ | is contained in bst(vi,K) for all vi. In particular,
this implies

|L| ⊆
k⋂
i=0

bst(vi,K).

On the other hand, let τ = [b(σ0), . . . , b(σl)] be a simplex of sd(K) such that

|τ | ⊆
k⋂
i=0

bst(vi,K).

Then |τ | ⊆ bst(vi,K) for all i ∈ {0, . . . , k}. This implies vi ∈ σ0 for all i. Therefore,
σ = [v0, . . . , vk] ⊆ σ0, which in turn implies that τ ∈ L, so we get

k⋂
i=0

bst(vi,K) ⊆ |L| and so,
k⋂
i=0

bst(vi,K) = |L|.

By definition of L and the previous argument, any geometric simplex
|τ | ⊆

⋂
v∈σ bst(v,K) contains |σ|, so it also contains |b(σ)| by convexity of simplices.

Thus,
⋂
v∈σ bst(v,K) is star-shaped with respect to |b(σ)|, which implies that it is

contractible.

Definition 2.10 (Barycentric Coordinates). Let K be a simplicial complex and
let σ = [v0, . . . , vk] ∈ Σk(K) be a k-simplex.

(a) Consider the linear homeomorphism

β : ∆k −→ |σ|, (t0, . . . , tk) 7−→
k∑
i=0

ti|vi|.

The tuple (t0, . . . , tk) specifies the barycentric coordinates of x =
∑k

i=0 ti|vi|
with respect to σ.

(b) Let vi be a vertex of K. We define the map

bvi : |K| −→ [0, 1], x 7−→

0
|vi| is not a vertex of the smallest
geometric simplex containing x

ti else,

where ti is the barycentric coordinate of x corresponding to the vertex vi (see
(b)).
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v4

v1

v2

v3

x

Figure 2.5: A simplicial complex with a highlighted point v ∈ [v1, v2] contained in it.

The above enables us to write any point contained in K as a linear combination
of vertices of K. More precisely, let x be a point in |K| and let |σ| = |[v0, . . . , vk]| be
the smallest geometric simplex of |K| containing x. Then we can write

x =
∑

v∈V (K)

bv(x)|v| =
k∑
i=0

ti|vi|.

Example 2.11. Consider the simplicial complex K in Figure 2.5. The smallest
geometric simplex of |K| containing the blue point x is |[v1, v2]|. So, we can write

x = bv1(x)|v1|+ bv2(x)|v2|,

and bvi(x) = 0 for all i ̸= 1, 2.

Lemma 2.12. Let v be a vertex of a simplicial complex K. Then

bst(v,K) = {x ∈ |K| : bv(x) ≥ bw(x) for all w ∈ V (K)}.

Proof. Let x be a point in the geometric realisation |K| of K. The first step in the
proof is to find a way to switch from the barycentric coordinates of x with respect
to the geometric complex |K| to those with respect to the barycentric subdivision
|sdK|. Let wi, i = 0, . . . ,m be the vertices of the smallest simplex of K containing x.
We assume without loss of generality that they are ordered in decreasing order with
respect to the barycentric coordinates bwi(x), so

bwo(x) ≥ bw1(x) ≥ · · · ≥ bwm(x) > 0.

Let σi = [w0, . . . , wi] for all i ≤ m. By construction, x is contained in the geometric
simplex |[b(σ0), . . . , b(σm)]| of |sdK|.

If, on the other hand, x is a point of |sdK| with barycentric coordinates

x =
m∑
j=0

bb(σj)(x)b(σj)

for some simplices
σ0 ⊂ σ1 ⊂ · · · ⊂ σm = [w0, . . . , wm]

of K, then clearly, x is contained in the simplex σm. So, we can write x in barycentric
coordinates with respect to [w0, . . . , wm]. A sketch to encourage intuition can be
found in Figure 2.6.
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Figure 2.6: Sketch of how the change of barycentric coordinates from the proof of
Lemma 2.12 might look.

The precise formulas for how to switch between the coordinates can be found in
[Bau+23b], Lemmas A.2 and A.3.

We fix a vertex v ∈ V (K) and let x be a point in the geometric realisation |K|
such that

bv(x) ≥ bw(x) for all w ∈ V (K).

We show that x is contained in a simplex of |sdK| which contains the vertex v. Let
|σ| = |[w0, . . . , wm]| be the smallest simplex of |K| which contains x and assume like
before that the vertices w0, . . . , wm are ordered in decreasing order with respect to the
barycentric coordinates bwi(x). This implies v = w0, since the barycentric coordinate
bv(x) is maximal by assumption. By the precedent argument, this means that x is
contained in a simplex [v = b(σ0), b(σ1), . . . , b(σm)]. Thus, x ∈ bst(v,K).

On the other hand, let x be contained in bst(v,K). Then there exists some simplex
τ of sdK with v as a vertex, for which x ∈ |τ |. We write τ = [b(σ0), . . . , b(σm)] for
v = σ0,⊂ . . . ,⊂ σm a chain of simplices of K. By the coordinate switch argument,
this means, that the barycentric coordinate of x in K with respect to v is maximal.

We end the section with a useful lemma about simplicial complexes and subdivi-
sions in general.

Lemma 2.13. Let K and L be simplicial complexes and let

f : |K| −→ |L|

be a map which is linear on all simplices of K. There exists a simplicial subdivision
K′ of K and L′ of L, such that

f : |K′| −→ |L′|

is simplicial, i.e. maps every simplex of K′ to a simplex of L′.

For a proof, we refer to [Col82], Lemma 2.13.
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2.3 Simplicial Homology

In this section, we will describe collections of adjacent simplices using vector
spaces. These collections are usually called chains and can be written as formal sums
of simplices. Using those, we will be able to identify loops and higher-dimensional
voids in simplicial complexes. We present theory from [Car14],[EH10] and [Hat01].

To define said chains, we make use of free vector spaces.

Definition 2.14 (Free Vector Space). Let K be a field and S a finite set. The
free K-vector space on S is the vector space VK(S) which has basis S and contains
all formal sums ∑

s∈S
λss,

where λs ∈ K for all s. Its dimension is dimVK(S) = #S.

The next lemma gives a characterisation for free quotient vector spaces.

Lemma 2.15. Let X be a finite set and R be an equivalence relation on X. Define
VK(R) to be the subspace of VK(X) spanned by {x− y : x ∼R y}. Then

VK(X)/VK(R) ∼= VK(X/R).

Proof. The map above is given by

VK(X)/VK(R) −→ VK(X/R), [x] 7−→ x.

We check that it is bijective on the basis elements. First, let x = y in VK(X/R). This
directly implies x ∼R y by definition of the free vector spaces. Thus, by definition of
VK(R), [x] = [y] in VK(X)/VK(R). We have shown injectivity.

For surjectivity, let x be an element of VK(X/R). Since any element x ∈ X is
contained in exactly one equivalence class [x] in X/R, it follows by construction of
VK(R), that there is exactly one element [x] in the preimage of x.

From now on, we will always assume K = F2 to be the the field containing two
elements 0, 1 and such that 1 + 1 = 0. We define the free K-vector spaces that we
use in the context of simplicial complexes.

Definition 2.16. Let K be a simplicial complex. We define the free K-vector spaces

Ck(K) = VK(Σk(K)) for all k ∈ N0.

Moreover, we consider the maps

∂k : Ck(K) −→ Ck−1(K), σ = [v0, . . . , vk] 7−→
k∑
i=0

[v0, . . . , vi−1, vi+1 . . . , vk].

We call Ck(K) the vector space of k-chains of K, its elements k-chains and ∂k
the k-th boundary operator, as it maps any k-simplex to the (k− 1)-chain which is
the sum of the simplices in its boundary.
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Remark 2.17. We are already using the fact that K = F2, so 1 = −1. Otherwise,
we would have to add signs in the definition of the boundary operator to take the
orientation of simplices into consideration. This will not be discussed in this thesis,
but we refer to [Hat01], Section 2.1 for further reading.

Example 2.18. Consider the simplicial complex K from Figure 2.2 on the left. We
get the following free vector spaces.

C0(K) = spanK(v1, v2, v3, v4, v5)

C1(K) = spanK([v1, v2], [v1, v3], [v2, v3], [v3, v4])

C2(K) = spanK([v1, v2, v3])

Ck(K) = spanK(∅) = {0} for k ≥ 3

The boundary operators ∂k can be written as matrices with columns corresponding
to the k-simplices of the simplicial complex and rows corresponding to the (k − 1)-
simplices. The (i, j)-th entry of the matrix is one, if the lower-dimensional (k − 1)-
simplex corresponding to the i-th row is a face of the higher-dimensional k-simplex
corresponding to the j-th column, and zero if this is not the case. So the 1-entries
of the matrix indicate faces which occur in the formal sum that is the boundary of
the simplex. For example, the boundary operator ∂1 corresponding to the simplicial
complex in Figure 2.2 can be represented by the matrix

∂1 =

[v1, v2] [v1, v3] [v2, v3] [v3, v4]


v1 1 1 0 0

v2 1 0 1 0

v3 0 1 1 1

v4 0 0 0 1

v5 0 0 0 0

.

We check that this matrix satisfies Definition 2.16 for the edge [v1, v2].

∂1([v1, v2]) =

[v1, v2] [v1, v3] [v2, v3] [v3, v4]


v1 1 1 0 0

v2 1 0 1 0

v3 0 1 1 1

v4 0 0 0 1

v5 0 0 0 0

·



1 [v1, v2]

0 [v1, v3]

0 [v2, v3]

0 [v3, v4]

=




1 v1

1 v2

0 v3

0 v4

0 v5

= v1 + v2,

which are exactly the vertices incident to [v1, v2] as can be seen in Figure 2.2.

Using the spaces Ck(K) and the maps ∂k, we can build a chain of vector spaces
connected by maps, which looks like

. . .
∂k+1−→ Ck(K)

∂k−→ Ck−1(K)
∂k−1−→ . . .

∂1−→ C0(K)
∂0−→ 0.

Such chains are called chain complexes.
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Definition 2.19 (Chain Complex). A chain complex is a sequence

C• = {Ck}k∈N0

of vector spaces with linear maps ∂k : Ck −→ Ck−1 for all k, where ∂0 : C0 −→ 0 is
the last map, and such that ∂k ◦ ∂k+1 = 0 for all k ∈ N0.

Remark 2.20. The condition ∂k ◦ ∂k+1 = 0 is equivalent to im(∂k+1) ⊆ ker(∂k).

Lemma 2.21. Let K be a simplicial complex and let

. . .
∂k+1−→ Ck(K)

∂k−→ Ck−1(K)
∂k−1−→ . . .

∂1−→ C0(K)
∂0−→ 0

be the resulting chain of vector spaces. Then for all k ∈ N0,

∂k ◦ ∂k−1 = 0,

so C•(K) is indeed a chain complex.

Proof. Let σ ∈ Ck(K) be a k-simplex of K. We write σ = [v0, . . . , vk], where v0, . . . , vk
are the vertices spanning σ. We compute

(∂k−1 ◦ ∂k)(σ) = ∂k−1

(
k∑
i=0

[v0, . . . , vi−1, vi+1, . . . , vk]

)

=
k∑
i=0

∂k−1 ([v0, . . . , vi−1, vi+1, . . . , vk])

=
k∑
i=0

∑
j<i

[v0, . . . , vj−1, vj+1, . . . , vi−1, vi+1, . . . , vk]

+
∑
j>i

[v0, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk]


= 0,

by switching the indices j and i in he second sub-sum. Showing that the linear
transformation ∂k−1 ◦ ∂k is zero on the basis elements of Ck(K) (which are the k-
simplices of K) is enough to show that it is zero on all elements by linearity, so we
are done.

Speaking in the language of chains, a cycle is a chain whose boundary is empty. If
we think about a cycle made of edges, e.g. the cycle [v1, v2]+[v2, v3]+[v3, v4]+[v4, v1]
in Figure 2.7, we see that when applying the boundary operator ∂1, every vertex
appears exactly twice in the resulting sum, which means the sum cancels out as
K = F2.

In order to find voids in a simplicial complex K, we consider k-chains c for which
∂k(c) = 0, which is exactly the subspace ker(∂k) of Ck(K) and check that they are
not the boundary of any (k + 1)-simplex, i.e. they are not in the image im(∂k + 1),
since in that case the cycle is filled in with a higher-dimensional simplex. Formally,
this idea gives rise to homology groups, which are vector spaces in our setting.
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e6

Figure 2.7: A simplicial complex consisting of a 1-dimensional cycle plus a triangle.

Definition 2.22 (Homology). Let

. . .
∂k+1−→ Ck

∂k−→ Ck−1
∂k−1−→ . . .

∂1−→ C0
∂0−→ 0

be a chain complex. The k-th homology group of the chain complex is the quotient
vector space Hk = ker ∂k/ im ∂k+1. The dimension βk = dim(Hk) is called the k-th
Betti number.

Remark 2.23. This notion makes sense, as ker ∂k and im ∂k+1 are both subspaces
of Ck, and by the definition of a chain complex, im ∂k+1 ⊆ ker ∂p.

Proposition 2.24. Let U, V,W be K-vector spaces and let φ : U → V and ψ : V →W
be linear maps, such that ψ ◦ φ = 0. Moreover, let L, M and N be linear self-maps
of U , V and W , respectively, which are invertible. Then

(a) NψM−1 ◦MφL = 0.

(b) ker(ψ)/ im(φ) ∼= ker(NψM−1)/ im(MφL) as K-vector spaces.

Proof. For (a): Since composition of maps is associative, we may rewrite

NψM−1 ◦MφL = Nψ(MM−1)φL = N(ψ ◦ φ)L = N0L = 0.

For (b): Since L, M and N are all invertible linear maps, we have that

ker(ψ) ∼= ker(NψM−1) and im(φ) ∼= im(MφL).

This directly implies ker(ψ)/ im(φ) ∼= ker(NψM−1)/ im(MφL).

In the setting of a chain complex induced by a simplicial complex K

. . .
∂k+1−→ Ck(K)

∂k−→ Ck−1(K)
∂k−1−→ . . .

∂1−→ C0(K)
∂0−→ 0,

Proposition 2.24 enables us to construct an algorithm that makes computing homology
groups much easier. The core idea is to use elementary matrices to change the matrices
∂p so that we can read off the homology groups very easily.
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Definition 2.25 (Elementary Matrices). For positive integers i, j ∈ N, we define
the elementary matrix e(i, j) by

ek,l(i, j) =


1 (k, l) = (i, j)

1 k = l

0 else.

We will apply the following three operations to a pair of boundary maps (∂k, ∂k+1).

(a) Left multiplication of ∂k with an elementary matrix e(i, j), i.e. a row op-
eration adding the i-th row to the j-th (this corresponds to the map L in
Proposition 2.24).

(b) Right multiplication of ∂k+1 with an elementary matrix e(i, j), i.e. a column
operation which adds the j-th columns to the i-th (this corresponds to the map
N in Proposition 2.24).

(c) Any column operation on ∂k, while applying the inverse row operation to
∂k+1(this corresponds to the maps M and M−1 in Proposition 2.24).

We observe that the inverse matrix for e(i, j) is the exact same elementary matrix
e(i, j), since K = F2. Using these matrices, we formulate the following algorithm.

Algorithm 2.26. Input: A pair (∂k, ∂k+1) of boundary matrices.

Output: A pair 
 Ik 0 0

0 0 0

0 0 0
,

 0 0 0

0 0 0

0 0 Im

 ,

Where Ik and Im are the k × k and m×m identity matrices, respectively.

Step 1: Apply row and column operations to ∂k until it is of the form

∂′k =

 Ik 0 0

0 0 0

0 0 0
.

Whenever we use a column operation, we apply the inverse row operation to the
matrix ∂k+1. The new matrix ∂′k+1 then looks like B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

,

where B1,1 has k rows, and we set the number of rows of B2,1 and B3,1 to
be l and m, respectively. Since the relation ∂k ◦ ∂k+1 = 0 is preserved under
the operations performed above by Proposition 2.24, we deduce that the blocks
B1,1, B1,2 and B1,3 are zero already (by the rules of matrix multiplication).
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Step 2: Apply row and column operations to the l +m non-zero rows of ∂′k+1

and transpose rows and columns until it is of the form

∂′′k+1 =

 0 0 0

0 0 0

0 0 Im
.

For the row operations, we have to apply the inverse operations to ∂′k. But this
has no effect, since the l +m last rows of ∂′k are zero.

When performing the operations described above, it is useful to keep track of the
basis elements corresponding to the rows and columns. This allows us to find the
homology group easily. Using Proposition 2.24,

Hk(K) = ker ∂k/ im ∂k+1
∼= ker ∂′k/ im ∂′′k+1.

By linear algebra, the kernel of ∂′k is spanned by the basis elements corresponding to
its zero columns. The image of ∂′′k+1 is spanned by the basis elements corresponding
to its non-zero rows.

So, we restrict ∂′′k+1 to ker(∂′k), i.e. we look at the l+m last rows of ∂′k+1 and we
check if there is a zero row. A zero row means that we found a basis element which
is in ker(∂′k) \ im(∂′′k+1). Hk is spanned by exactly those elements.

Example 2.27. Consider the simplicial complex K in Figure 2.7. The chain vector
spaces are

C0 = spanK(v1, . . . , v5)

C1 = spanK(e1, . . . , e6)

C2 = spanK(f)

Ck = spanK(∅) = 0,

and the boundary maps ∂1 and ∂2 are given by

(∂1, ∂2) =



e1 e2 e3 e4 e5 e6


1 0 0 1 0 0

1 1 0 0 0 0

0 1 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 1

,

f



0

0

1

0

1

1


.

We first add the first row to the second in ∂1, then the first column to the fourth. We
apply the reverse row operation to ∂2, which means we add the fourth row to the first.
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The resulting pair is

(∂1, ∂2) =



e1 e2 e3 e1 + e4 e5 e6


1 0 0 0 0 0

0 1 0 1 0 0

0 1 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 1

,

f



0

0

1

0

1

1


.

We continue to proceed like in the algorithm and obtain the final pair

(∂1, ∂2) =



e1 e2 e3 e3 + e5 e1 + e2 + e3 + e4 e3 + e5 + e6


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

,

f



0

0

0

0

0

1


.

We can now directly read off that ker(∂1) = spanK(e1 + e2 + e3 + e4, e3 + e5 + e6)
and if we restrict ∂2 to its last two rows and compare that with the last two columns
of ∂1, we see that e3 + e5 + e6 is in the image of ∂2 (since there is a 1 in the last
row), but e1 + e2 + e3 + e4 is not. Therefore, e1 + e2 + e3 + e4 is a generator for the
first homology group H1(K). If we look back to Figure 2.7, we see that this chain
corresponds exactly to the (hollow) cycle on the left side of the complex.

Next, we want to be able to translate maps between simplicial complexes to maps
between their homology groups. To do that, we define maps between chain complexes
as intermediate step.

Definition 2.28 (Chain Map). Let C• and C ′
• be chain complexes. Then a collection

of linear maps {fk : Ck −→ C ′
k}k∈N0 such that all squares 2.1 commute is called a

chain map.

Ck Ck−1

C ′
k C ′

k−1

∂k

fk fk−1

∂′k

(2.1)

The following theorem tells us that maps between simplicial complexes induce
chain maps, which in turn induce linear maps between homology groups (i.e. vector
spaces).

Theorem 2.29 (Functoriality). Let K and K′ be simplicial complexes and let
f : K → K′ be a simplicial map. Then
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(a) the chain map f• : C•(K) −→ C•(K′) given by

fk : Ck(K) −→ Ck(K′)

σ 7−→

{
f(σ) dim(f(σ)) = k

0 dim(f(σ)) < k
for all k,

satisfies fk−1 ◦ ∂k = ∂′k ◦ fk for all k. In particular, any map of simplicial
complexes induces a chain map.

(b) there are induced homomorphisms Hk(f) : Hk(K) −→ Hk(K′) for all k.

The map (b) is a result of fact that a chain map between K and L sends cycles in
K to cycles in K′, and boundaries to boundaries (by the commutative diagram 2.1).
This is what allows us to construct the map

Hk(f) : ker(∂k)/ im(∂k+1) −→ ker(∂′k)/ im(∂′k+1).

For a full proof of Theorem 2.29, consult [EH10], Section IV.1.

2.4 Cubical Complexes and Homology

Next, we introduce cubical complexes. They are useful when we want to put a set
into a collection of boxes, and thus make it more combinatorial for computation. In
this thesis, they will play an important role in the computation of comparison spaces
for the cycling signatures. We already observe that cubes are polytopes, so it makes
sense to talk about their faces. We follow [Bau+23b], [KMM04], and [Col82].

Definition 2.30 (Cube). Let p ∈ Rd and let r > 0. We denote the d-dimensional
cube with centre p ∈ Rd and side length r by

Qr(p) = B∞(p, r/2) =
d∏
i=1

[pi − r/2, pi + r/2].

A cube Q1(p) is called an elementary cube. Moreover, we denote the set of d-
dimensional cubes in Rd with side length r and vertices on the integer grid Zd by

Qdr(Rd) := {Qr(p) : p ∈ (r − 1/2)Zd} =

{
d∏
i=1

[vi, vi + r], vi ∈ rZd
}
,

and more generally for k ≤ d,

Qkr (Rd) =

{
d∏
i=1

[vi, vi + rwi], vi ∈ rZd, wi ∈ {0, 1},
d∑
i=1

wi = k

}
.

For any cube Q ∈ Qkr (Rd), we write ↓ Q to denote the collection of all faces of Q
of dimension ≤ k. For a collection of cubes K ⊆ ↓ Qdr(Rd), we write

↓ K =
⋃
Q∈K

↓ Q.
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Moreover, we denote the geometric realisation of such a collection K by

|K| =
⋃
Q∈K

Q.

Using cubes, we can define cubical complexes. The construction of cubical com-
plexes resembles that of simplicial complexes, but instead of triangles and tetrahedra,
we glue squares and cubes together along their common boundaries.

Definition 2.31 (Cubical Complex). Consider the set

Q(Rd) := ↓ Qd1(Rd)

of all elementary cubes of dimension ≤ d with vertices on the integer grid Zd.

(a) A cubical complex is a set K ⊆ Q(Rd) for which ↓ K = K. We write Kk to
denote the subcomplex of K containing all k-dimensional cubes of K.

(b) Let X ⊆ Rd be a subset. The cubical complex

K(X) = ↓ {Q ∈ Qd(Rd) : Q ∩X ̸= ∅}

is called the outer cubical complex of X. In analogy to (a), we write Kk(X)
to denote the k-skeleton of K(X).

A sketch of an outer cubical complex can be found in Figure 2.8.

Figure 2.8: Geometric realisation |K(X)| of an outer cubical complex (blue) of a set
X ⊂ R2 (green).

The next definition relaxes Definition 2.31 in the sense that it allows us to scale
and rotate the grid which defines the position and orientation of the cubes. If we
want to construct the outer cubical complex for a very small set X, for example, this
allows us to use a much finer grid to approximate the set.
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Definition 2.32. Let A ∈ GLd(R) be a linear, invertible map. We define the collection

AQ(Rd) = {AQ : Q ∈ Q(Rd)} where AQ = {Aq : q ∈ Q}

Let X ⊆ Rd be a subset. The cubical complex

AK(X) = ↓ {Q ∈ AQd1(Rd) : Q ∩X ̸= 0}

is called the outer cubical cover of X transformed by A.

In Section 2.2, we subdivided simplicial complexes into smaller simplicial com-
plexes. Similarly, we will now subdivide cubical complexes into simplicial complexes.

Definition 2.33 (Simplicial Subdivision). Let K be a cubical complex. A sim-
plicial subdivision of K is a simplicial complex K such that |K| = |K| and every
simplex of K is contained in a cube of K.

We illustrate a simplicial subdivision of a cubical complex with a sketch in
Figure 2.9.

Figure 2.9: Simplicial subdivision (right) of a cubical complex (left).

Finally, we state a proposition that relates cubical complexes to simplicial com-
plexes with the same vertex set, using subdivisions as introduced in Definition 2.33.

Proposition 2.34. Let K be a cubical complex. There exists a simplicial subdivision
K of K, such that V (K) = V (K).

Proof. We proceed by induction on the maximal dimension of cubes in K.

If K only consists of 0- or 1-dimensional cubes, then it is just a collection of points
or edges, so K is already simplicial.

Assume now that K has a cube of maximal dimension k > 1. By induction, there
exists a simplicial subdivision of K(k−1) with no added vertices. Let Q be a cube of
dimension k and let v be a vertex of it. Consider the union Qv̂ of all faces of the
cube Q that do not contain v. By induction, Qv̂ has a subdivision into a simplicial
complex Kv̂ with equal vertex set. The cube Q is homeomorphic to the cone

vQv̂ = {λv + µQ′ : Q′ ∈ Qv̂, λ+ µ = 1}.

A visualisation of this can be seen in Figure 2.10. We construct the simplicial
subdivision of K of Q is by adding to the collection of simplices of Kv̂ the simplices
{v ∪ |σ| : σ ∈ Kv̂}.
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Qv̂

v

vQv̂ ≃ Q

Figure 2.10: Visualisation of the induction in the proof of Proposition 2.34.

Using cubical complexes, we could now replicate everything we did in Section 2.3
and introduce cubical homology. We will not look at cubical homology in this thesis,
but we refer to [KMM04] for an in-depth study of the topic.
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Chapter 3

Metric Spaces and Persistent Homology

3.1 Metric Spaces to Simplicial Complexes

In this section, we define constructions that allow us to transform finite metric
spaces (a collection of points for which a distance is defined) into simplicial complexes,
and then compute homology. This means that we will be able to infer the underlying
topological features from only finitely many points. We follow [Car14], section 3.6.,
[Ada20], and [Bau+23a]. The first construction we present is called a Vietoris-Rips
complex.

Definition 3.1 (Vietoris-Rips Complex). Let (X, d) be a finite metric space and
let r ∈ R≥0. The Vietoris-Rips complex VR(X, r) has vertex set

V (VR(X, r)) = X = {x1, . . . , xn}

and contains a simplex [xi0 , ..., xik ] if and only if d(xij , xil) ≤ r for all j, l ∈ {0, ..., k}.

To understand what this brings us, we look at the following example.

Example 3.2. Consider the metric space (X, d), where X = {v1, . . . , v5} ⊂ R2

is the set containing the five points depicted on the left in Figure 3.1 and d is the
Euclidean metric on R2. Using the radius r as drawn on the right side of Figure 3.1,
we see how the Vietoris-Rips complex connects these points, which previously had
no interesting topology, to a simplicial complex which, in this case, contains one
connected component.

v1

v2

v4

v3

v5

Figure 3.1: On the left side, we represent the set X = {v1, . . . , v5}. On the right, we
drew the Vietoris-Rips complex VR(X, r), where r is represented by the gray circles.

We introduce another way to construct simplicial complexes, but this time, we
only require a topological space and no metric.

Definition 3.3 (Nerve Complex). Let X be a topological space and let U = {Ui}i∈I
be a cover of X. The nerve complex of U is the simplicial complex N(U) on with
vertex set I that contains a simplex σ(J), J ⊆ I if and only if⋂

i∈J
Ui ̸= ∅.
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Figure 3.2: Example of a Nerve complex.

Intuitively, we choose one point per subset Ui and draw simplices between points
whenever the intersection of the corresponding sets is non-empty. A visual example
can be seen in Figure 3.2. Lastly, we introduce the Čech complex, which is a special
case of a nerve complex.

Definition 3.4 (Čech Complex). Let (X, d) be a finite metric space and let r ≥ 0.
We write X = {x1, . . . , xn}. The Čech complex Č(X, r) has vertex set X and contains
the simplex [xi0 , ..., xik ] if and only if

k⋂
j=0

B(xij , r/2) ̸= ∅.

To make the connection to the nerve complex precise: for Ur = {B(x, r/2)}x∈X ,
we have N(Ur) = Č(X, r). Moreover, the Čech complex Č(X, r) is a subcomplex of
the Vietoris-Rips complex VR(X, r). In particular, the 1-simplices of the Vietoris-
Rips complex and the Čech complex on the same metric space (X, d) are identical.
This makes sense, as pairwise intersections and intersections are the same thing if we
only have two sets.

Figure 3.3: Example of a Čech complex.

3.2 Čech Complexes and Thickenings

As we already mentioned in the introduction, an easy way to find topological
features in a finite set of points X ⊂ Rd is to thicken the points. We will see that the

26



thickening of the points X by r is homotopy equivalent to the Čech complex Č(X, r).
In particular, this means that their homology groups are equal. The references for
this section are [Bau+23a], [Bau+23b] and [Hat01].

We define the thickening of a subset of Rd. This construction relates to the
Vietoris-Rips and Čech complexes, in the sense that it also creates a connection
between points that are within a certain distance r from each other.

Definition 3.5 (Thickening). Let X ⊆ Rd be a subset. Let r ≥ 0. The r-
thickening of X is the open set

U(X, r) =
⋃
p∈X

B(p, r/2).

Since we are interested in finding topological features of thickenings computation-
ally, it makes sense that we would try to relate U(X, r) to a simplicial complex. This
is because simplicial complexes are combinatorial objects, for which computations are
usually much more efficient. We will use subdivisions of Čech complexes to prove a
version of the nerve theorem (Theorem 3.6, and see [Bau+23a] for different versions),
which states that there is a homotopy equivalence between the closed thickening
U(X, r) and the geometric simplicial complex |Č(X, r)|.

One key ingredient for the proof of this result is a barycentric subdivision (as
we introduced in Section 2.2). It is important to keep in mind that by definition,
subdivisions preserve the geometric realisation of simplicial complexes. Let r ≥ 0,
and set

Kr : eqqsdČ(X, r).

We define the map
fr : |Kr| −→ U(X, r), (3.1)

as follows. Let v be a vertex of Kr. By definition, this means that v is the barycentre
of a simplex [p0, . . . , pk] of Č(X, r). In particular,

k⋂
i=0

B(pi, r/2) ̸= ∅.

Let x be a point in this intersection. We set fr(v) = x. We repeat this process for all
vertices v in Kr. This is a finite procedure, as the set X is finite by assumption.

Next, consider a simplex σ = [v0, . . . , vk] of Kr. We set

fr(λ0v0 + · · ·+ λnvn) : eqqλ0fr(v0) + · · ·+ λnfr(vn).

A visual representation of this map can be found in Figure 3.4. We state the nerve
theorem.

Theorem 3.6 (Nerve Theorem). Let X ⊂ Rd be a finite set of points. The map

fr : |Kr| = |Č(X, r)| −→ U(X, r)

is a homotopy equivalence for all r ≥ 0.
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Figure 3.4: A Čech complex Č(X, r) with visible circles of radius r/2, its barycentric
subdivision and the image of a possible choice for fr drawn in blue inside the closed
thickening U(X, r).

Proof. To prove that fr is a homotopy equivalence for all r ≥ 0, we are going to
construct a homotopy inverse, i.e. a map

f−1
r : U(X, r) −→ |Kr|

such that fr ◦ f−1
r and f−1

r ◦ fr are homotopic to the identity on U(X, r) and |Kr|,
respectively.

Let p, q ∈ X be points for which

B(p, r/2) ∩B(q, r/2) = ∅.

Since Rd is normal (or T4), there exists a ε > 0 such that the open balls Vp : eqqB(p, r/2+
ε) and Vq : eqqB(q, r/2 + ε) are disjoint. This property inductively extends to the
finite family of closed balls {B(p, r/2)}p∈X . We call the resulting open cover of
U(X, r)

C : eqq{Vp}p∈X =
{
B(p, r/2 + ε)

}
p∈X for some ε small enough.

By construction, the new cover preserves empty intersections, which implies

|Kr| = |Č(X, r)| = |N(C)|.

Consider the continuous map

φp : Rd −→ [0, 1], x 7−→ d(x,Rd \ Vp)
d(x,B(p, r/2)) + d(x,Rd \ Vp)

.

For x ∈ B(p, r/2), it has value one, and for x /∈ Vp, it is zero. We normalise φp,
restrict it to U(X, r) and denote the resulting map by

ψp : eqqφp

/∑
q∈X

φq : U(X, r) −→ [0, 1].
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We define the function

f−1
r : U(X, r) −→ |Č(X, r)|, x 7−→

∑
p∈X

ψp(x) · p,

So, the function f−1
r indirectly provides us with barycentric coordinates on Č(X, r).

We claim that f−1
r is a homotopy inverse of fr.

First, let us show that the pair

(f−1
r , idX) : (U(X, r), C) −→ (|Kr|, {bst(vp,Kr)}p∈X)

is a morphism of covered spaces. Here, we use idX to denote the function which sends
the open set Vp to bst(p, Č(X, r)), as well as its inverse map. Let x be in the open
set Vp ∈ C. Then by definition, φp(x) = 1, thus, ψp(x) = maxq∈X ψq(x) is maximal.
Using Lemma 2.12, this implies f−1

r (x) ∈ bst(p, Č(X, r)).

Next, we show that the pair

(fr, idX) : (|Kr| = |Č(X, r)|, {bst(p, Č(X, r))}p∈X) −→ (U(X, r), C)

is also a morphism of covered spaces. By construction, fr sends the vertices of
any simplex |σ| ⊆ bst(vp, Č(X, r)) to Vp. For the construction of Vp, we extended
B(p, r/2) equally into all directions, so the convexity is preserved. Since fr is affine
linear on |σ|, fr(σ) is fully contained in Vp. So,

fr(bst(p, Č(X, r)) ⊆ Vp for all p ∈ X.

Since both (fr, idX) and (f−1
r , idX) are morphisms of covered spaces, so are

(fr ◦ f−1
r , idX) and (f−1

r ◦ fr, idX). For x ∈ Vp, we obtain (fr ◦ f−1
r )(x) ∈ Vp. The

set Vp is convex, so the straight line from x to (fr ◦ f−1
r )(x) is entirely contained

in Vp. This means that we can construct a straight line homotopy between id
U(P,r)

and fr ◦ f−1
r . For f−1

r ◦ fr, we use the fact that any two maps into a good cover (all
intersections empty or contractible) are homotopic (Proposition 3.8 in [Bau+23a]).
We have shown in Lemma 2.9 that barycentric stars are contractible, so f−1

r is indeed
a homotopy inverse for fr.

Corollary 3.7. H1(Č(X, r)) = H1(U(X, r)) for all r ≥ 0.

Proof. This follows directly from the fact that subdivisions preserve geometric repre-
sentations, Theorem 3.6 and applying homotopy invariance (see e.g. [Hat01], Section
2.1, Homotopy Invariance).

3.3 Persistent Homology and its Representation

Assume we are looking at a finite metric space (X, d), where X is a set of
points in Rd, and d is the Euclidean metric. The construction of a Vietoris-Rips
complex VR(X, r) can help us determine the underlying topological features. However,
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choosing a good radius r is not trivial. If we choose it to be small, we might miss
global, relevant topological structures. If we choose r to be rather large, we might
overlook smaller, but equally interesting features. One approach to this issue is to
find a way to capture topological features for all values of r at once.

Example 3.8. Recall the Vietoris-Rips complex from Example 3.2. In Figure 3.5, we
constructed the same Vietoris-Rips complex but for 4 different radii to illustrate how
the complex evolves when increasing the radius. It is clear from the picture that for
r < r′, we have an inclusion VR(X, r) ⊆ VR(X, r′). We will see that these inclusions
give the Vietoris-Rips complexes the structure of a R+-filtered simplicial complex; the
filtered set S being the set of simplices (including vertices), and the map ρ sending
every simplex to the radius r of its first appearance.

v1

v2

v4

v3

v5

R0 R1 R2 R3

Figure 3.5: Example the Vietoris-Rips complexes VR(X, r) arising from taking
increasing radii r ∈ {R0, . . . , R3}, 0 = R0 < R1 < R2 < R3. The set of vertices is
X = {v1, . . . , v5} ⊂ R2.

As we hinted at in Example 3.8, we will add a continuous parameter (e.g. a radius)
to everything we did in Section 2.3. Instead of simplicial complexes, we will now
look at persistent simplicial complexes, which are simplicial complexes that change
(usually grow) over time, like the Vietoris-Rips complex in Figure 3.5. This allows us
to see how the homology groups change and what structures appear and disappear
as the complex evolves. We follow chapter 3 of [Car14].

Definition 3.9 (Persistent Object). Let C be a category.

(a) A persistent object is a family {Xr}r∈R of objects Xr of C with morphisms

φr
′
r : Xr −→ Xr′ for all r ≤ r′

satisfying
φr

′′
r′ ◦ φr

′
r = φr

′′
r whenever r ≤ r′ ≤ r′′

(b) A morphism of persistent objects {Xr}r∈R and {Yr}r∈R is a family {fr}r∈R
of morphisms of C, such that

fr′ ◦ φr
′
r = ψr

′
r ◦ fr,

where φr′r and ψr′r are the maps from (a) corresponding to {Xr}r∈R and {Yr}r∈R,
respectively. So we have commutative diagrams
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Xr X ′
r

Yr Yr′

φr′
r

fr fr′

ψr′
r

.

Example 3.10 (Persistent Set). A persistent set is a family {Xr}r∈R of sets with
maps

φr
′
r : Xr −→ Xr′

that satisfy
φr

′′
r′ ◦ φr

′
r = φr

′′
r .

In particular, if we are given a set X and a map ρ : X −→ R, we can construct the
subsets Xr = {x ∈ X : ρ(x) ≤ r} and obtain a persistent set, where φr′r are inclusion
maps. We will call such a pair (X, ρ) an R-filtered set. Any structure with an
underlying set can be filtered that way. For example, what we see in Figure 3.5 has the
structure of an R-filtered simplicial complex, where for a radius R such that VR(X, r)
is the full complex (which contains all possible simplices), ρ is defined by

ρ : VR(X,R) −→ R, σ 7−→ min{r ≥ 0 : σ ∈ VR(X, r)}.

In order to introduce persistent homology, the starting point is to observe that
for a persistent simplicial complex like {VR(X, r)}r≥0, we obtain persistent vector
spaces {Ck(VR(X, r))}r≥0 of k-chains and homology groups {Hi(VR(X, r))}r≥0 by
functoriality (Theorem 2.29). Since we will encounter persistent vector spaces very
often, we define them separately.

Definition 3.11 (Persistent Vector Space). A persistent vector space is a collec-
tion V = {Vr}r∈R of vector spaces with homomorphisms

LV (r, r
′) : Vr −→ Vr′ for all r ≤ r′,

such that
LV (r

′, r′′) ◦ LV (r, r′) = LV (r, r
′′) for all r ≤ r′ ≤ r′′.

Depending on the author, persistent vector spaces might also be called persistence
modules or persistence vector spaces.

As for usual vector spaces, we can define sub-persistent vector spaces U = {Ur}r∈R
of V = {Vr}r∈R by requiring Ur to be a subspace of Vr for all r and LV (r, r′)(Ur) ⊆ Ur′ .
Moreover, LU is the restriction of LV to U . A special case is the image of a linear
transformation f : V −→W of persistent vector spaces, which is defined as the sub-
persistent vector space that collects all images of fr, r ∈ R (which are subspaces of
Wr, respectively). Analogously to quotient vector spaces, we can define persistent
quotient vector spaces V/U = {Vr/Ur}r∈R with maps

LV/U (r, r
′) : Vr/Ur −→ Vr′/Ur′

[v] 7−→ [LV (r, r
′)(v)].
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Example 3.12. Consider the filtered Vietoris-Rips complex K = {Ki}i=0,1,2 in Fig-
ure 3.6. We denote the j-th boundary map of Ki by ∂j,Ki , write Cj(K) = {Cj(Ki)}i=0,1,2

to denote the persistent vector space of chains and denote the corresponding linear
maps (Definition 3.11) by

LCk(K)(i, j) : Ck(Ki) −→ Ck(Kj) for 0 ≤ i < j ≤ 2 and k ∈ N.

We obtain the following commutative diagram

. . . 0 C0(K0) 0

. . . C1(K1) C0(K1) 0

. . . C1(K2) C0(K2) 0

LC1(K)(0,1)

∂1,K0

LC0(K)(0,1)

LC1(K)(1,2)

∂1,K1

LC0(K)(1,2)

∂1,K2

(3.2)

We have all necessary ingredients to compute the persistent vector space
H0(K) : eqq{H0(Ki)}i=0,1,2. We first compute the spaces H0(Ki) for i = 0, 1, 2 and
then explain what the corresponding linear maps (Definition 3.11) are.

(i=0): We have ∂1,K0 = 0 and C0(K0) = spanK(v1, v2, v2), thus im(∂1,K0) = 0 and
ker(∂0,K0) = spanK(v1, v2, v2), which implies

H0(K0) = ker(∂0)/ im(∂1) ∼= spanK(v1, v2, v3).

This reflects the fact that K0 has three connected components.

(i=1): This time, the vector space of 1-chains is more interesting; C1(K1) = spanK([v1, v2])
but C0(K1) = spanK(v1, v2, v2) stays the same. We have

im(∂1,K1) = spanK
(
∂1,K1([v1, v2])

)
= spanK(v1 + v2).

v1

v2
v3

R0 R1 R2

Figure 3.6: A filtered Vietoris-Rips complex K = {Ki}i=0,1,2, Ki = VR(X,Ri) with
vertex set X = {v1, v2, v3} and increasing radii 0 = R0 < R1 < R2 as indicated by
the grey circles.
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Therefore, we obtain the homology group

H0(K1) = ker(∂0,K1)/ im(∂1)

= spanK(v1, v2, v3)/spanK(v1 + v2)
∼= spanK(v1 + v2, v2, v3)/spanK(v1 + v2)
∼= spanK(v2, v3).

This reflects the fact that K1 has two connected components.

(i=2): For the last homology group in the filtration, we have the vector space of 1-chains
C1(K2) = spanK([v1, v2], [v1, v3], [v2, v3]) and as before,
C0(K2) = spanK(v1, v2, v3). This time, we apply Algorithm 2.26 to the pair
(∂0,K2 , ∂1,K2) where ∂0 = 0 and

∂1,K2 =

[v1, v2] [v1, v3] [v2, v3] v1 1 1 0

v2 1 0 1

v3 0 1 1

.

We obtain the matrix

P∂1,K2Q =

[v1, v2] [v1, v2] + [v1, v3] [v1, v2] + [v1, v3] + [v2, v3] v1 + v2 1 0 0

v2 + v3 0 1 0

v3 0 0 0

,

where P and Q are products of elementary matrices. So we see that
im(P∂1,K2Q) = spanK(v1 + v2, v2 + v3), thus with Proposition 2.24,

H0(K2) = ker(∂1,K2)/ im(∂1,K2)

= spanK(v1, v2, v3)/spanK(v1 + v2, v1 + v3, v2 + v3)
∼= spanK(v1, v2, v3)/spanK(v1 + v2, v2 + v3)
∼= spanK(v1 + v2, v2 + v3, v3)/spanK(v1 + v2, v2 + v3)
∼= spanK(v3),

which reflects the fact that K3 has only one connected component.

We now explain the maps in homology that are induced by the chain maps from the
commutative diagram 3.2.

In H0(K0) each of the vertices v1, v2, v3 is a generator. When passing to H0(K1),
we see that

[v1] = [v1] + [v1 + v2] = [v1 + v1] + [v2] = [v2].

So the induced map H0(LC(K)(0, 1)) is given by

H0(LC(K)(0, 1)) : C0(K0)/ im(∂1,K0)
∼= C0(K0) −→ C0(K1)/spanK(v1 + v2)

v1 7−→ [v1] = [v2]

v3 7−→ [v3].
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For the map H0(LC(K)(1, 2)), we observe that

[v1] = [v1] + [v1 + v3] = [v1 + v1] + [v3]

and
[v2] = [v2] + [v2 + v3] = [v2 + v2] + [v3] = [v3]

in H0(K2) = spanK(v1, v2, v3)/spanK(v1 + v2, v1 + v3, v2 + v3). Therefore,

H0(LC(K)(1, 2)) : C0(K1)/ im(∂1,K1) −→ C0(K2)/spanK(v1 + v2, v1 + v3, v2 + v3)

[v1] = [v2] 7−→ [v1] = [v2] = [v3]

[v3] 7−→ [v1] = [v2] = [v3].

This completes the description of the persistent vector space H0(K) = {H0(Ki)}i=0,1,2.

Definition 3.13 (Free, Finitely Generated Persistent Vector Space). Let
(X, ρ) be a R+-filtered set.

(a) The free persistent vector space on (X, ρ) over a field K is the persistent
vector space {VK(X, ρ)r}r∈R, where for all r > 0, VK(X, ρ)r is the free K-vector
space spanned by the set {x ∈ X : ρ(x) ≤ r}. In particular, this means

VK(X, ρ)r ⊆ VK(X, ρ)r′ ⊆ VK(X) for all r ≤ r′.

(b) A persistent vector space {Vr}r∈R is free, if it is isomorphic to a space
{VK(X, ρ)r}r∈R. If X can be chosen to be finite, {Vr}r∈R is finitely generated.

Example 3.14. Consider the persistent simplicial complex K from Example 3.12.
Then Ck(K) is a free and finitely generated persistent vector space for all k ∈ N. In
fact, the R+-filtered set (X, ρ) from Definition 3.13 is given by the set

Σk(K) =
⋃

i=0,1,2

Σ(Ki),

and the map ρ, which assigns to every k-simplex σ the radius

ρ(σ) = min
{
i ∈ {0, 1, 2} : σ ∈ Σk(Ki)

}
of its first appearance.

Lemma 3.15. An element
∑

x∈X axx of VK(X) is contained in VK(X, ρ)r if and
only if ax = 0 for all x ∈ X with ρ(x) > r.

Proof. Recall that

VK(X, ρ)r = spanK({x ∈ X : ρ(x) ≤ r}),

so the lemma folows directly from the definition of the linear span.
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Definition 3.16 (Finitely Presented Persistent Vector Space). A finitely
presented persistent vector space is one isomorphic to a persistent vector space of
the form

{Wr}r∈R/ im(f)

for a linear transformation of finitely generated, free persistent vector spaces

f : {Vr}r∈R −→ {Wr}r∈R.

Example 3.17. The persistent vector spaces {Hk(Ki)}i=0,1,2 from Example 3.12
are finitely presented. Consider the linear transformation of finitely generated, free
persistent vector spaces

{∂k,Ki
}i=0,1,2 : {Ck,Ki

}i=0,1,2 −→ {ker(∂k−1,Ki
)}i=0,1,2 ⊆ {Ck−1(Ki)}i=0,1,2

Recall that the subscript i refers to the radius Ri from Figure 3.6. Moreover,
the above map makes sense, as im(∂k,Ki

) ⊆ ker(∂k−1,Ki
) for i = 0, 1, 2. Setting

Wi : eqq ker(∂k−1,Ki
) for all i and f : eqq{∂k,Ki

}i=0,1,2, we see that indeed,

{Hk(Ki)}i=0,1,2
∼= {Wi}i=0,1,2/ im(f)

is finitely presented.

Another example for finitely presented persistent vector spaces are the interval
spaces defined below. We will use them later on to characterise all finitely presented
persistent vector spaces.

Definition 3.18 (Persistent Interval Vector Spaces). Let a < b be both positive
real numbers, b is allowed to be∞. The persistent vector space P (a, b) = {P (a, b)r}r∈R
is given by

P (a, b)r =

{
K r ∈ [a, b)

{0} r /∈ [a, b),

and is called a persistent interval vector space.

Lemma 3.19. The spaces P (a, b) are finitely presented.

Proof. Let (X, ρ) and (Y, σ) be R+-filtered sets containing one element each, i.e.
X = {x} and Y = {y}. Let ρ(x) = a and σ(y) = b.

First, assume b <∞. Since a < b, the 1× 1 identity matrix [1] is a (ρ, σ)-adapted
(X,Y )-matrix. Moreover,

θ([1])R =


{0} R < a

K/{0} = K a ≤ R ≤ b
K/K = {0} a < b ≤ R

,

which coincides with the definition of P (a, b)R.
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Let now b =∞. Then

P (a, b)R =

{
K R ≥ a
0 else

∼= Vk(X, ρ)R

= θ([0])R.

In both cases, we have shown that P (a, b) is of the form θ(·), so finitely presented.

As we did in Section 2.3 for the homology groups of simplicial complexes, it turns
out that we can represent maps between finitely generated, free persistent vector
spaces using matrices. The crucial observation to do so, is that when choosing a
radius R∞ large enough, it turns out that

VK(X, ρ)R∞ = VK(X),

because X is a finite set. This means that a linear transformation of finitely generated,
free persistent vector spaces

{fr}r∈R : {VK(Y, σ)r}r∈R −→ {VK(X, ρ)r}r∈R

induces a linear transformation of finite-dimensional, free vector spaces

f∞ : VK(Y ) −→ VK(X).

We can represent such maps using matrices with rows corresponding to elements of
X and columns corresponding to elements of Y . The following definition formally
introduces this type of matrix.

Definition 3.20 ((X,Y)-Matrix). Let X and Y be finite sets. A (X,Y )-matrix
is a matrix with rows indexed by the set X and columns indexed by Y . We denote
the row corresponding to x ∈ X by row(x) and the column corresponding to y ∈ Y by
col(y).

Remark 3.21. A (X,Y )-matrix always has size |X| × |Y |. Moreover, we will label
every element in x ∈ X and y ∈ Y with their corresponding values ρ(x) and σ(y)
when we annotate rows and column.

We denote the (X,Y )-matrix arising from a linear transformation f = {fr}r∈R
of finitely generated, free persistent vector spaces by A(f). We state an important
property of such matrices A(f).

Proposition 3.22.

(a) Let f = {fr}r≥0 be a linear transformation of finitely generated, free persistent
vector spaces. Then the matrix A(f) has entries ax,y = 0 whenever ρ(x) > σ(y).

(b) Any (X,Y )-matrix A satisfying the property in (a) uniquely determines a linear
transformation fA of persistent vector spaces {Vk(Y, σ)r}r≥0 and {VK(X, ρ)r}r≥0.
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Moreover, the maps f 7−→ A(f) and A 7−→ fA are inverse to each other.

Proof. Let f : VK(Y, σ) −→ VK(X, ρ) be a linear transformation of finitely gener-
ated persistent vector spaces. Let y ∈ Y , so in particular, y is a basis element of
VK(Y, σ)σ(y). Applying the linear transformation fσ(y) to y yields

fσ(y)(y) =
∑
x∈X

ax,yx,

which by Lemma 3.15 lies in VK(X, ρ)σ(y) if and only if ax,y = 0 for all x ∈ X with
ρ(x) > σ(y).

For (b): If we have R≥0-filtered stes (X, ρ) and (Y, σ), as well as a (X,Y )-matrix
with zero entries whenever ρ(x) > σ(y), we can uniquely define

f : VK(Y, σ) −→ VK(X, ρ)

fσ(y) : VK(Y, σ)σ(y) −→ VK(X, ρ)σ(y)

y 7−→
∑
x∈X

ax,yx.

Definition 3.23 (Adapted Matrix). Let (X, ρ) and (Y, σ) be R+-filtered sets. A
(X,Y )-matrix A satisfying ax,y = 0 whenever ρ(x) > σ(y) is called (ρ, σ)-adapted.

Corollary 3.24. There is a one-to-one correspondence:

{
(ρ, σ)-adapted (X,Y )-matrices

}
←→


linear transformations of finitely
generated, free persistent vector
spaces


A 7−→ fA

A(f)←− [ f

For a (ρ, σ)-adapted (X,Y )-matrix, we define a special, finitely presented persistent
vector space

θ(A) : eqVK(X,σ)/ im(fA).

Corollary 3.25. Let (X, ρ) and (Y, σ) be R+-filtered sets and let A be a (ρ, σ)-adapted
(X,Y )-matrix.

(a) θ(A) is a finitely presented persistent vector space.

(b) Any finitely presented vector space is isomorphic to a persistent vector space of
the form θ(A) for some A as above.

Corollary 3.26. Let (X, ρ) be a R+-filtered set. The automorphisms of VK(X, ρ)
are in one-to-one correspondence with the invertible (ρ, ρ)-adapted (X,X)-matrices.

Proof. Both corollaries directly follow from the one-to-one correspondence established
in Proposition 3.22.
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Example 3.27. We continue analysing the persistent Vietoris-Rips complex from
Figure 3.6. We already wrote down all maps ∂1,Ki for i = 0, 1, 2, and are ready to
construct the map ∂∞1 , which is the boundary map on the full complex, i.e. the complex
with no missing faces. In our case this is the complex K2.

∂∞1 =

[v1, v2]R1 [v1, v3]R2 [v2, v3]R2 v1,R0 1 1 0

v2,R0 1 0 1

v3,R0 0 1 1

.

This is a (ρ, σ)-adapted (X,Y )-matrix for

X = Σ0(K) : eqq
⋃

i=0,1,2

Σ0(Ki)

Y = Σ1(K) : eqq
⋃

i=0,1,2

Σ1(Ki),

ρ and σ assigning to every simplex in X and Y , respectively, the radius of its first
appearance. Formally,

ρ : X −→ R≥0

x 7−→ min{Ri : x ∈ Σ0(Ki)}

and

σ : Y −→ R≥0

y 7−→ min{Ri : y ∈ Σ1(Ki)}.

The fact that ∂∞1 is (ρ, σ)-adapted essentially comes from the definition of simplicial
complexes (Definition 2.3): If a simplex is contained in the Vietoris-Rips complex with
radius Ri, then all of its faces must appear at latest at radius Ri as well, otherwise
the resulting construct is not a well-defined simplicial complex.

Proposition 3.28. Let (X, ρ) and (Y, σ) be R+-filtered sets and let A be a (ρ, σ)-
adapted (X,Y )-matrix. Moreover, let P be a (ρ, ρ)-adapted (X,X)-matrix and Q a
(σ, σ)-adapted (Y, Y )-matrix. Then PAQ is still a (ρ, σ)-adapted (X,Y )-matrix and
θ(A) ∼= θ(PAQ).

Proof. Let A be a (ρ, σ)-adapted (X,Y )-matrix. Then its entries ax,y are zero
whenever ρ(x) > σ(y). We denote the entries of P by px,x′ for x, x′ ∈ X and the
entries of Q by qy′,y for y′, y ∈ Y . Consider the entry

(PAQ)x,y =
∑
y′∈Y

∑
x′∈X

px,x′ax′,y′qy′,y,

by the rules of matrix multiplication. We have the following possible cases:

px,x′ax′,y′qy′,y =


0ax′,y′qy′,y = 0 ρ(x) > ρ(x′)

px,x′0qy′,y = 0 ρ(x′) > σ(y′)

px,x′ax′,y′0 = 0 σ(y′) > σ(y)
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In fact these are already all possible cases (which might overlap): If they all do not
apply, this means

ρ(x) ≤ ρ(x′) ≤ σ(y′) ≤ σ(y),

which contradicts adaptedness of A. The uniqueness from Proposition 3.22, Corol-
lary 3.26 and the one-to-one correspondence from Corollary 3.25 imply

θ(A) = VK(X, ρ)/ im(fA) ∼= VK(X, ρ)/ im(fPAQ) = θ(PAQ).

This proposition will prove to be very useful in our endeavour to replicate Algo-
rithm 2.26 for matrices corresponding to persistent simplicial complexes. The last
ingredient we need are row and column operations, with a twist.

Definition 3.29 (Adapted Elementary Operations). Let (X, ρ) and (Y, σ) be
R+-filtered sets and let A be a (ρ, σ)-adapted (X,Y )-matrix.

(a) Let x, x′ ∈ X. An adapted row operation adds row(x) to row(x′) in A, under
the condition ρ(x) ≥ ρ(x′). This corresponds to the left multiplication of A by
an elementary matrix e(i, j).

(b) Let y, y′ ∈ Y . An adapted column operation adds ccol(y) to col(y′) in A,
under the condition σ(y) ≤ σ(y′). This corresponds to the right multiplication
of A by an elementary matrix e(i, j).

Next, we show that we can decompose any finitely presented persistent vector
space θ(A) into a finite direct sum of persistent interval vector spaces P (a, b), as
introduced in Definition 3.18. In order to do so, we will use the adapted elementary
operations we just introduced (Definition 3.29) to reduce the matrix A.

Theorem 3.30 (Structure Theorem). Any finitely presented persistent K-vector
space is isomorphic to a finite direct sum

n⊕
i=1

P (ai, bi).

Proof. Let V = {VR}R∈R be a finitely presented persistent K-vector space. By
Corollary 3.25, V is isomorphic to a space θ(A) for some (ρ, σ)-adapted (X,Y )-matrix
A. We decompose A into a (ρ, σ)-adapted (X,Y )-matrix PAQ with at most one
non-zero element per row and column, which is 1.

First, we find all x ∈ X for which row(x) is non-zero and pick one for which ρ(x)
is maximal. Now, consider the y ∈ Y for which ax,y ̸= 0 and pick one for which σ(x)
is minimal.

Thanks to our choice of x, we can apply adapted row operations ad libitum ((b)
in Definition 3.29), until the only non-zero entry left in col(y) is ax,y. By our choice
of y, we can apply adapted column operations ((c) in Definition 3.29) until the only
non-zero entry remaining in row(x) is ax,y.
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Since K = F2, all entries are now one or zero. We delete row(x) and col(y) and
repeat the procedure for the resulting matrix A′. A′ is a (ρ′, σ′) adapted (X ′, Y ′)-
matrix, where X ′ = X \ {x}, Y ′ = Y \ {y}, ρ′ and σ′ are the maps ρ and σ restricted
to X ′ and Y ′, respectively. Repeating this until we only have a zero matrix left
provides a decomposition of A into

PAQ =

 In 0 0

0 0 0

0 0 0

=

n∑
i=1

yi
0

... 0

· · · 1 · · · xi

0
... 0

,

where n denotes the number of the last step in the procedure with a non-zero matrix.

Using Proposition 3.28 and Corollary 3.25, this translates to

θ(A) ∼= θ(PAQ)

∼=
n⊕
i=1

P (ρ(xi), σ(yi)) ⊕
⊕

x/∈{x1,...,xn}

P (ρ(x),+∞) (cf. Lemma 3.19).

The following algorithm is a reduction algorithm for adapted matrices and extends
Algorithm 2.26 to persistent simplicial complexes.

Algorithm 3.31. Input: A pair (∂∞k , ∂
∞
k+1) of boundary maps for a persistent

simplicial complex, with labels for every row and column indicating the minimal radius
for which the corresponding simplex appears.

Output: A pair 
 Ik 0 0

0 0 0

0 0 0
,

 0 0 0

0 0 0

0 0 Im

 ,

of matrices with labels as well. As before, Ik and Im denote the k×k and m×m
identity matrices.

Step 1: Apply adapted row and column operations to ∂∞k as in the proof of
Theorem 3.30, until we get a matrix of the form

P∂∞k Q =

 Ik 0 0

0 0 0

0 0 0
.

For any row and column operation where we add a row or column to one with
a different label, we keep the larger label for the changed row or column. This
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makes sense, since a chain of simplices can only exist if all of the simplices in
the chain do.

Whenever we apply column operations to ∂∞k , we apply the inverse row operation
to ∂∞k+1. This means that we get a pair (P∂∞k Q,Q

−1∂∞k+1), where Q−1∂∞k+1 is
of the form

Q−1∂∞k+1 =

 B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

.

As in Algorithm 2.26, B1,1 has k rows and we set denote the number of rows of
B2,1 and B3,1 by l and m, respectively. Since (P∂∞k Q) ◦ (Q−1∂∞k+1) = 0, B1,1,
B1,2 and B1,3 must be zero blocks.

Step 2: Finally, we apply row and column operations to Q−1∂∞k+1. We only
apply row operations to the l + m last rows and apply the inverse column
operations to the l+m last columns of P∂∞k Q. This does not have any effect, as
the last l+m columns of P∂∞k Q are already zero. We switch rows and columns
around until we arrive at the form (maybe for a slightly different Q)

Q−1∂∞k S =

 0 0 0

0 0 0

0 0 Im
,

whilst adapting the labels in the same way as we did in Step 1.

Proposition 3.32. The decomposition from Proposition 3.30 is unique up to reorder-
ing.

For the proof, we refer to [Car14], Proposition 3.13.

Example 3.33. We demonstrate how to apply Algorithm 3.31 to the persistent
Vietoris-Rips complex from Figure 3.6. Since we already computed the 0-th persistent
homology group {H0(Ki)}i=0,1,2 in Example 3.12, we will now compute the first
homology group {H0(Ki)}i=0,1,2.

In Example 3.27, we already constructed the matrix for ∂∞1 , and the matrix for
∂∞2 looks the same as ∂2,K3. So we get the pair

(∂∞1 , ∂
∞
2 ) =


[v1, v2]R1 [v1, v3]R2 [v2, v3]R2 v1,R0 1 1 0

v2,R0 1 0 1

v3,R0 0 1 1

,

[v1, v2, v3]R2 1 [v1, v2]R1

1 [v1, v3]R2

1 [v2, v3]R2

 ,

with labels (subscripts next to the simplices) to represent for which radius Ri the
simplices first appear.
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We apply Algorithm 3.31. First, we add row 1 to row 2 in ∂1,∞. This is allowed,
since v1 and v2 have the same radius of first appearance. We are left with only one
non-zero entry in the first column, so we are happy. Next, we add the first column to
the second. This is allowed, because [v1, v2] is the first edge to appear. We apply the
inverse row operation to ∂2,∞ (which is also a legitimate adapted row operation) and
get

(
e(1, 2)∂1,∞e(2, 1), e(2, 1)∂2,∞

)
=


[v1, v2]R1 ([v1, v3] + [v1, v2])R2 [v2, v3]R3 1 0 0

0 1 1

0 1 1

,

[v1, v2, v3]R2 0

1

1

 .

We add the second to the third row in ∂1,∞, then the second column to the third
whilst adding the third row to the second in ∂2,∞ and already get the form

(P∂1,∞Q,Q
−1∂2,∞) =


[v1, v2]R1 ([v1, v3] + [v1, v2])R2 (

∑
i,j [vi, vj ])R2 1 0 0

0 1 0

0 0 0

,

[v1, v2, v3]R2 0

0

1

 ,

where P = e(2, 3)e(1, 2) and Q = e(2, 1)e(3, 2) are products of elementary matrices.

We see that there is one zero column in P∂1,∞Q, which means that its kernel is
spanned by the sum of all three edges, which appears at radius R2. Moreover, this
sum lies in the image of Q−1∂2,∞, as the third entry is 1. Since this combination also
appears at radius R2, the first homology group is zero for all radii. One advantage of the
algorithm, is that maps H1(LC(K)(i, j)), which we computed by hand in Example 3.12
for H0 are encoded as well in these matrices.

Intuitively, this indicates that the cycle
∑

i,j [vi, vj ] which appears at radius R2

disappears simultaneously, because of the birth of the face [v1, v2, v3] at the same time.

We will now introduce two ways to represent decompositions (Theorem 3.30) of
finitely presented persistent vector spaces in a way which makes it easier to analyse
and compare them.

Definition 3.34 (Persistence Diagram). A persistence diagram is a multiset
of pairs

D = {(ai, bi) : i = 1, . . . , n and bi ≥ ai for all i} ∪ {(a, b) : a = b} ⊂ R2.

We denote the multiplicity of (x, y) ∈ D by µ(x, y) ∈ N ∪ {∞}, and we set µ(x, y) =
+∞ whenever x = y.

Let V be a finitely presented persistent vector space. By Theorem 3.30, we can
write V as a direct sum

V =

n⊕
i=1

P (ai, bi).
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Then there is a persistence diagram

D = {(ai, bi) : i = 1, . . . , n} ∪ {(a, b) : a = b}

corresponding to V . The multiplicities in this case are given by

µV (x1, x2) =

{
number of occurrences of (ai, bi) in

⊕n
i=1 P (ai, bi) if x1 < x2

+∞ if x1 = x2.

Remark 3.35. If V = Hk(K) for a persistent simplicial complex K, then the multi-
plicity µV (x) of a point x = (x1, x2) ∈ D(V ) tells us how many topological features
get born at radius (or another continuous parameter) x1 and die at radius x2.

Another way to represent (isomorphism classes of) finitely presented persistent
vector spaces is with persistence barcodes. Starting from the decomposition given by
Theorem 3.30, we can gather all intervals {(x1, x2) : (x1, x2) ∈ D} (the first pair of
brackets indicates an open interval, the second a point in R2) and we get a persistence
barcode.

Definition 3.36 (Persistence Barcode). A persistence barcode is a multiset of
intervals

I = {(ai, bi) ⊂ R : i = 1, . . . , n},

such that every interval has finite multiplicity.

Example 3.37. In Figure 3.7, we plot the persistence diagram and barcode for the
persistent Vietoris-Rips complex K from Figure 3.6. There are no points/bars for

Figure 3.7: In the first subfigure, we can see the persistence diagram corresponding to
the Vietoris-Rips filtration K = {Ki}i=0,1,2 from Figure 3.2. In the second subfigure,
we added the corresponding barcode.

H1(K), since there are no one-dimensional topological features which persists at all.
In fact, as we explained in Example 3.27, the cycle [v1, v2] + [v1, v3] + [v2, v3] appears
at the exact same time as the face [v1, v2, v3], so the first homology group H1(K) is
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trivial at all times. However, the diagram detects the three connected components at
the start, two of which merge at R1 and later merge again, so that we only have one
connected component left, which lives on eternally. This is represented by the top
point in the persistence diagram and omitted in the barcode, since this feature always
exists (if we have at least 1 sample in the data) and therefore has no meaning at all.

Example 3.38. We do another example in pictures. Consider the point cloud in
Figure 3.8 on the left. We construct a persistent Vietoris-Rips complex by considering
increasing radii r ≥ 0, compute persistent homology as introduced earlier in this section
and obtain the persistence diagram in the middle.

Figure 3.8: In the left plot, we see a point cloud sampled from two circles glued
together with added noise. In the middle plot, we show the persistence diagram
corresponding to the persistent Vietoris-Rips complex constructed on the point cloud
from the left plot. In the rightmost plot, one can see the corresponding persistence
barcode.

The persistence diagram has one blue point at infinity, indicating that there is
a connected component appearing early on and which does not disappear for larger
radii. The two orange dots that are a bit further from the diagonal than the rest of
the orange dots reflect the fact that there is a smaller and a larger circle which persist
for a wider range of radii, but eventually disappear as well. This is the point where
thickening the point cloud just merges everything into one connected component. The
points close to the diagonal represent topological features which persist only over a
small range of radii and are therefore less relevant. The green dots hint at the fact
that there are no 2-dimensional structures of interest in the data.

On the right side, we see an example of a persistence barcode. It corresponds to the
persistence diagram and point cloud left of it. The two longer orange bars correspond
to the two points in the diagram which are a bit further away from the diagonal, and
thus arise from two approximate circles in the point cloud.

3.4 Distances between Persistence Diagrams

In this section, we introduce two notions of distance on the set of persistence
diagrams. This can, for example, help us to compare and classify diagrams we obtain
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from the construction of persistent Vietoris-Rips complexes on different point clouds,
which indirectly provides us with a comparison of the point clouds themselves.

Definition 3.39 (Bottleneck Distance). Let D ⊂ R2 and D′ ⊂ R2 be persistence
diagrams and let

Θ =
{
θ : A→ A′ : θ is bijective, A ⊆ D\{(x, y) : x = y} and A′ ⊆ D′\{(x, y) : x = y}

}
be the collection of bijections between subsets of D and D′. Moreover, set

λ(x) : eqq
x2 − x1

2
for all x = (x1, x2) ∈ D ∪D′.

Recall that x2 ≥ x1 by definition of persistence diagrams.

The bottleneck distance between D and D′ is defined as

d∞(D,D′) = min
θ∈Θ

max

(
max
x∈A
∥x− θ(x)∥∞, max

x∈D\A
λ(x), max

y∈D′\A′
λ(y)

)
,

Where ∥b− a∥∞ = max(|b1 − a1|, |b2 − a2|) denotes the l∞-distance on R2.

Remark 3.40. λ(x) measures the distance between x and the diagonal
{(x1, x2) ∈ R2 : x1 = x2}. The bottleneck distance thus minimises the maximum
l∞-norm over all bijections, including topological features that appear and vanish
at the same time (this set has continuous cardinality). A sketch to illustrate the
bottleneck distance can be found in Figure 3.9.

Figure 3.9: Visualisation of the bottleneck distance between two persistence diagrams
containing 3 points each (filled black and blue dots). In this case, the distance is
given by the l∞-distance between the two points on the top left, represented by the
gray boxes. The hollow dots on the diagonal correspond to the component λ(x) from
the definition. They determine the distance between the points from the persistence
diagrams and the diagonal (dotted line).

Example 3.41. We consider the two persistence diagrams

D =
{
(0.3, 1.3), (1.3, 1.6), (3.2, 7.0)

}
∪
{
(x, y) : x = y

}
and

D′ =
{
(1.0, 1.2), (1.8, 5.5), (4.0, 4.2), 4.4, 5.2)

}
∪
{
(x, y) : x = y

}
.
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Figure 3.10: The two persistence diagrams D in pink and D′ in green from Exam-
ple 3.41.

Both diagrams are illustrated in Figure 3.10. We define two bijections θ1, θ2 ∈ Θ to
illustrate how the bottleneck distance is constructed.

θ1 : (0.3, 1.3) 7−→ (1.0, 1.2)

(1.3, 1.6) 7−→ (4.0, 4.2)

(3.2, 7.0) 7−→ (1.8, 5.5)

θ2 : (1.3, 1.6) 7−→ (1.0, 1.2)

(3.2, 7.0) 7−→ (1.8, 5.5)

We see that max ∥x−θ1(x)∥∞ = 2.6 which comes from the pair (1.3, 1.6) and (4.0, 4.2).
Moreover, λ(4.4, 5.2) = 0.4. This has no impact, since it is smaller than 2.6.

On the other hand, max ∥x− θ2(x)∥∞ = 1.5, which comes from the pair (3.2, 7.0)
and (1.8, 5.5). As we can guess from the coordinates and Figure 3.10, those points
are the ones which determine the bottleneck distance, as they are both far away from
all other points and the diagonal. However, λ(3.2, 7.0) = 1.6 and λ(1.8, 5.5) = 1.85,
so θ2 finds the smallest distance for those two points. The points x which are not in
the range or image of θ2 have much smaller λ(x), so they do not play a significant
role in the computation of the bottleneck distance for this example.

Comparing θ1 and θ2 makes it clear that θ2 provides the smaller distance between
the two diagrams. In fact, θ2 determines the bottleneck distance in this case, so

d∞(D,D′) = max

(
max
x∈A
∥x− θ1(x)∥∞, max

x∈D\A
λ(x), max

y∈D′\A′
λ(y)

)
,

where A =
{
(1.3, 1.6), (1.0, 1.2)

}
and A′ =

{
(1.0, 1.2), (1.8, 5.5)

}
.

Next, we observe that the bottleneck distance arises as the ∞-version of a class
of metrics called Wasserstein distance.
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Definition 3.42 (Wasserstein Distance). Let D, D′, Θ and λ(·) be as in Defini-
tion 3.39, and let p ≥ 1. The p-Wasserstein distance between D and D′ is given
by

dp(D,D
′) =

min
θ∈Θ

∑
x∈A
∥x− θ(x)∥p∞ +

∑
x∈D\A

λ(x)p +
∑

y∈D′\A′

yp

 1
p

.
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Chapter 4

Differential Geometry, Dynamical Systems and
Time Series

Time series are sequences of measurements sampled from some dynamical system.
We assume that the dynamical system describes the smooth evolution of some subspace
of Rd over time. We start this chapter by introducing smooth manifolds, and more
importantly, smooth maps.

4.1 Smooth Manifolds and Maps

For the preliminaries in differential geometry, we follow the textbook [Lee12].
Instead of Euclidean space Rd, we now consider only a topological space. However,
since Euclidean space is the environment in which we work best, we aim at relating
topological spaces, at least locally, with some subspace of Rd.

Definition 4.1 (Topological Manifold). Let M be a topological space. M is called
a topological manifold of dimension d, if the following conditions are satisfied.

(a) M is a Hausdorff space (also referred to as T2). This means that for any distinct
points p, q ∈ M , there exist disjoint open subsets U, V of M with p ∈ U and
q ∈ V .

(b) M is second-countable, i.e. there is a countable basis of open subsets for the
topology on M .

(c) M is locally Euclidean of dimension d. That is, for any point p ∈ M , there
exists a neighbourhood of p which is homeomorphic to some open subset in Rd.

We clarify the notion of being locally Euclidean by defining charts. By Defini-
tion 4.1, a topological manifold can be completely covered with charts.

Definition 4.2 (Chart). Let M be a topological manifold. A (coordinate) chart on
M is a pair (U,φ) consisting of an open set U ⊆M and a homeomorphism φ : U −→
φ(U), where φ(U) ⊂ Rd is an open subset. The map φ is often called a (local) coor-
dinate map. The components (φ1, . . . , φd) of φ given by φ(p) = (φ1(p), . . . , φd(p))
are called local coordinates on U .

Example 4.3. We consider the two curves defined as follows. First, a flower-like
shape as depicted in Figure 4.1 on the left. It is given by

γ1 : [0, 2π] −→ R2, t 7−→
(
x1(t), y1(t)

)
: eqqr(t)

(
cos(t), sin(t)

)
,

where the radius r(t) is given by the triangle wave

r(t) = 1 + 2

∣∣∣∣ 5t2π −
⌊
5t

2π
+

1

2

⌋∣∣∣∣ .
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Moreover, we consider the circle with centre (0, 0) and radius 1 (see Figure 4.1 on the
right),

γ2 : [0, 2π] −→ R2, t 7−→
(
x2(t), y2(t)

)
=
(
cos(t), sin(t)

)
.

We define the map

Figure 4.1: Two topological manifolds: the flower-like curve defined in Example 4.3
and a circle with radius r = 1.

f : im(γ1) −→ im(γ2),
(
x1(t), y1(t)

)
7−→ r(t)

(
x1(t), y1(t)

)
.

The function f is continuous and has a continuous inverse

f−1 : im(γ2) −→ im(γ1),
(
x2(t), y2(t)

)
7−→ 1

r(t)

(
x2(t), y2(t)

)
.

This is well-defined, because r(t) > 0 for all t. So, the flower and the circle are
homeomorphic. We define the charts

U = im(γ1) \ {(1, 0)} and V = im(γ1) \ {(0, 1)}

and we the continuous maps

φU : U −→ (−1, 1), (x, y) 7−→
(

y

1− x

)
φV : V −→ (−1, 1), (x, y) 7−→

(
x

1− y

)
.

These maps are so-called stereographic projections. This shows that the circle is a
topological manifold. Pulling back the charts (UφU ) and (V, φV ) through f gives us
another pair of charts

(
f−1(U), φU ◦ f

)
and

(
f−1(V ), φV ◦ f

)
for the flower, so it is

a topological manifold as well.

Definition 4.4 (Smooth Maps: Euclidean Space). Let U ⊆ Rd and V ⊆ Re
be open sets. A map f : U −→ V is smooth (also denoted by C∞), if all partial
derivatives of all components are well-defined and continuous. If f is bijective with
smooth inverse map f−1, we say that f is a diffeomorphism.
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The next restriction we may require, is for the charts to overlap in a way that
makes transitioning between different charts from the open cover nicer.

Definition 4.5 (Compatible Charts, Atlas). Let M be a topological manifold
and let (U,φ), (V, ψ) be two charts on M .

(a) Assume U ∩ V ̸= ∅. The map

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V )

is called the transition map from φ to ψ.

(b) If U ∩ V = ∅ or ψ ◦ φ−1 is a diffeomorphism, then the charts (U,φ) and (V, ψ)
are smoothly compatible.

(c) An atlas for M is a collection of charts A = {(Ui, φi)}i∈I such that M =⋃
i∈I Ui. If for every i, j ∈ I, (Ui, φi) and (Uj , φj) are smoothly compatible, A

is called a smooth atlas.

(d) A smooth atlas A is maximal, if it is not strictly included in any other smooth
atlas for M . In that case, A is also called a smooth structure on M .

Definition 4.6 (Smooth Manifold). A pair (M,A), where M is a topological
manifold and A is a smooth structure on M , is called a smooth manifold. The
charts contained in the atlas A are called smooth charts.

Example 4.7. The circle from Example 4.3 is a smooth manifold. The charts (U,φU )
and (V, φV ) are smoothly compatible on the intersection U ∩V . For instance, we have
the inverse map of the stereographic projection,

φ−1
V : t 7−→

(
2t

1 + t2
,
−1 + t2

1 + t2

)
,

so we can compute

φU ◦ φ−1
V : t 7−→ t2 − 1

(t− 1)2
.

Clearly, this is well-defined on φV (U ∩ V ). The charts
(
f−1(U), φU ◦ f

)
and(

f−1(V ), φV ◦ f
)

are not smooth charts, since the function r is a triangle wave,
which is not differentiable at the peaks.

Using their the smooth structure, we can extend the definition of smooth maps
from Euclidean spce to general smooth manifolds.

Definition 4.8 (Smooth Maps). Let M and N be smooth manifolds.

(a) A map F : M −→ Rn is smooth, if for all p ∈ M , there is a smooth chart
(U,φ), such that F ◦ φ−1 is smooth on φ(U) ⊆ Rn.

(b) A map G : M −→ N is smooth, if for any p ∈M , there are charts (U, ϕ) and
(V, ψ) with p ∈ U and G(p) ∈ V such that φ(U) ⊆ V and
ψ ◦G ◦ φ−1 : φ(U) −→ ψ(V ) is smooth.

(c) G : M −→ N is called a diffeomorphism, if it is smooth and bijective with
smooth inverse function G−1. In that case, M and N are said to be diffeo-
morphic.
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Figure 4.2: A smooth manifold with a highlighted point, its tangent space and a
curve determining one of its tangent vectors in that tangent space.

4.2 Tangent Spaces

For any point p of a smooth manifold, the tangent space collects all possible ways
for a curve to go through this point. A tangent vector essentially records the direction
and the speed at which a certain curve passes through p. We introduce tangent spaces,
since when we will look at time series, we will not only be interested in what the
samples are per se, but we will want to compare them with the measurements recorded
before and after, in order to get an idea of the direction in which the underlying
dynamical system flows. Such directional information is best captured with tangent
vectors. A sketch of a tangent space to gain some intuition can be found in Figure 4.2.
We continue following the textbook [Lee12].

We will only formally introduce tangent spaces for Euclidean space Rd, as this is
enough to understand the results in the later chapters. For a general introduction to
tangent spaces of smooth manifolds M , we recommend studying [Lee12], Chapter 3.

Definition 4.9 (Curve, Velocity). Let I ⊂ R be an interval. A curve in Rd is a
continuous map

γ : I −→ Rd.

If γ is differentiable at t0, its velocity at t0 ∈ I is given by

γ′(t0) =
d

dt
γ(t)

∣∣∣
t=t0

.

The value ∥γ′(t0)∥2 can be interpreted as the speed of the curve γ at the time t0
without taking direction into account, and the unit vector γ′(t0)/∥γ′(t0)∥2 indicates
the direction of the curve at t0 while ignoring its speed. A tangent vector at a point
p ∈ Rd is nothing other than the velocity of a curve through the point p.

Example 4.10. In Figure 4.3, we can see the plot of a curve in R2 and some of its
tangent vectors. The curve is defined by

γ : [0, 10] −→ R2, t 7−→
(
sin(2t)/(t+ 4), cos(2t)/(t2 + 4)

)
.
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We compute its tangent vector at t = 0.

γ′(0) =
d

dt

(
sin(2t)

t+ 4
,
cos(2t)

t2 + 4

) ∣∣∣∣∣
t=0

=

(
2 cos(2t)

t+ 4
− sin(2t)

(t+ 4)2
,
−2 sin(2t)
t2 + 4

− 2t cos(2t)

(t2 + 4)2

) ∣∣∣∣∣
t=0

= (0.5, 0).

So, this tangent vector is parallel to the x-axis, which can also be observed in Figure 4.3.

Figure 4.3: The curve γ(t) =
(
sin(2t)/(t+ 4), cos(2t)/(t2 + 4)

)
for t ∈ [0, 10] with a

few tangent vectors (blue arrows).

Tangent spaces collect the tangent vectors for all curves through one point. In
Figure 4.4, we can see a sketch with a point p ∈ R2 and three different curves going
through p with tangent vectors at the point p. This should already motivate the fact
that for a point in Rd, there are tangent vectors in all directions and of all lengths.

Definition 4.11 (Tangent Space). Let p ∈ Rd be a point. The tangent space
TpRd of Rd at p is given by

TpRd =
{
v ∈ Rd : p = γ(t0) and v = γ′(t0) for some curve γ : I −→ Rd and t0 ∈ I

}
.

We go one one step further and collect the tangent spaces for every point p ∈ Rd.
The resulting set is called the tangent bundle.

Definition 4.12 (Tangent Bundle and Unit Tangent Bundle).

(a) The tangent bundle of Rd is given by

TRd = {(p, v) : p ∈M, v ∈ TpM}.
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Figure 4.4: Three different curves going through a point p ∈ R2, with corresponding
tangent vectors at p.

(b) The unit tangent bundle of M is a subset of the tangent bundle, which only
takes into account tangent vectors of length one. Formally,

UTRd = {(p, v) : p ∈M,v ∈ TpM and ∥v∥2 = 1}.

The following theorem formalises what we already hinted at. The tangent spaces
TpRd contain vectors of all lengths and directions, so it makes sense that TpRd ∼= Rd.
Since in the unit tangent bundle, we restrict the tangent vectors to have length one,
it makes sense that the tangent spaces contained in it are spheres Sd−1. If we collect
the (unit) tangent spaces for all points in Rd, we get the following result.

Theorem 4.13 (Real Tangent Bundles).

(a) The tangent bundle TRd is diffeomorphic to Rd × Rd.

(b) The unit tangent bundle UTRd is diffeomorphic to Rd × Sd−1.

We refer to chapter 3 in [Lee12] for a proof.

The definition of the unit tangent bundle requires a norm. So far, we have always
used the Euclidean or 2-norm, which is standard for spaces Rd. We will introduce
unit tangent bundles with respect to the ∞-norm as well, as the ∞-norm is better
suited for computation. We recall the definitions of both norms.

Definition 4.14 (2- and ∞-Norm). Let x = (x1, . . . , xd) be an element of Rd.

(a) The 2-norm of x is given by

∥x∥2 =
√
x21 + · · ·+ x2d.

(b) The ∞-norm of x is given by

∥x∥∞ = max
i∈{1,...,d}

|xi|.
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It is clear from the definition that ∞-norms are easier to compute. Computation
of the 2-norm requires squares and roots, while we merely need to find a maximal
element in a vector for the ∞-norm. The unit tangent bundle with respect to the
∞-norm is given by

UT∞Rd = {(p, v) ∈ TRd : ∥v∥∞ = 1}.

The following lemma links the two unit tangent bundles and will be part of the
justification why we can use∞-norms for computation without any loss of significance.

Lemma 4.15. There is a homeomorphism

η : UTRd −→ UT∞Rd, (p, v) 7−→
(
p,

v

∥v∥∞

)
.

Proof. For the proof, we note that

η−1 : UT∞Rd −→ UTRd, (p, v) 7−→
(
p,

v

∥v∥2

)
is an inverse map to η. Moreover, both η and η−1 are continuous.

4.3 Dynamical Systems

As already mentioned in the introduction, dynamical systems are a central object
of interest of this thesis. A time series is a sequence of data with time stamps sampled
from such a dynamical system. In order to understand how to handle such data, we
introduce a few basic notions from the field of dynamical systems to get a feeling of
what they are. We follow [BS02] and [Lee12].

Definition 4.16 (Dynamical System).

(a) A discrete-time dynamical system is a pair (X,φ), where X is a non-empty
set called the phase space and φ : X → X a self-map. For any n ∈ N, we call
the n-fold composition φn = φ ◦ φ ◦ · · · ◦ φ the n-th iterate of φ, with φ0 set
to be the identity map. If φ is invertible, we can also choose n to be a negative
integer by iterating the inverse map φ−1.

(b) A continuous-time dynamical system is a pair (X,φ) consisting of a set X
and a map φ : R×X −→ X, such that φ(0, x) = x and φ(s+t, x) = φ(s, φ(t, x)).

Definition 4.17 (Orbit). Let (X,φ) be a dynamical system and let x ∈ X be a
point. Then the orbit through x is the set

Oφ(x) = {φ(t, x) : t ∈ I} ⊆ X,

where I ⊆ N or I ⊆ Z if (X,φ) is discrete-time and I ⊆ R, if (X,φ) is continuous-
time. There are the following possible special cases.
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(a) If there is a T > 0, such that φ(T, x) = x, then x is called a periodic point
of period (or length) T . In that case, the orbit through x is called a periodic
orbit.

(b) A point x ∈ X is called a fixed point of (X,φ), if φ(t, x) = x for all t.

Example 4.18 (Double Well). An example of a dynamical system we will come
back to a few times is the so-called (perturbed) double well.

In order to write down the differential equation giving rise to it, we define Wiener
processes.

A d-dimensional Wiener Process is a stochastic process

{Wt = (W
(1)
t , . . . ,W

(d)
t )}t≥0

with the following properties.

(a) W0 = 0

(b) The map t 7−→Wt is continuous in t almost surely.

(c) The process {Wt}t≥0 has stationary, independent increments.

(d) The increment Wt+s −Ws has normal distribution N (0, t).

Wiener processes arise as limits of random walks, but also in other settings.

Consider the following stochastic differential equation. The constant σ is a noise
amplitude coefficient which controls the random perturbation introduced by the Wiener
process W .

dx = f(x)dt+ σdW

The solution to this differential equation is a so-called double well Hamiltonian
system given by

f(x) =

(
Hp(x)

−Hq(x)

)
− ah(H(x))

(
Hq(x)

Hp(x)

)
,

where h(z) = (z3 − z)/2, H is the Hamiltonian function

H(q, p) = p2/2 + q4/8− q2/2− q3/15− q/10,

and Hp, Hq denote the partial derivatives. We note that this system is special, as
it does not depend on time. This just means that the speed of its motion does not
change. It is nevertheless a well-defined dynamical system. A plot of an orbit of this
dynamical system in its phase space R2 can be found in Figure 4.5.

There are two standard ways to plot dynamical systems. The first is to plot the
orbits φn(x) component-wise against n ∈ N0 or n ∈ Z, or in the case of a continuous-
time dynamical system, φ(t, x) against t ∈ R. The second is to plot the phase space
X and the curve γ(t) : eqqφ(t, x). The second version is often called a phase space
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Figure 4.5: Plot of an orbit of the perturbed double well system introduced in
Example 4.18.

Figure 4.6: Component-wise plot of the perturbed double well system from Exam-
ple 4.18 to illustrate the two types of standard plots for dynamical systems.

plot. The plot in Figure 4.5 if a phase space plot, and we demonstrate in Figure 4.6
how the other version looks for this example.

In this thesis, we will be dealing with a special type of continuous-time dynamical
systems, namely flows. They form a crossing point between the fields of dynamical
systems and differential geometry.

Definition 4.19 (Flow). Let M be a manifold. A (global) flow on M is a
continuous map Φ: R×M −→M that satisfies the following two conditions.

(a) Φ(s+ t, p) = Φ(s,Φ(t, p)) for all s, t ∈ R and p ∈M .

(b) Φ(0, p) = p for all p ∈M .

Example 4.20. The perturbed double well system introduced in Example 4.18 is a
smooth flow, since the functions h and H are smooth maps.
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4.4 Time Series

Now that we know what a dynamical system is, we will introduce time series. In
principle, we just take samples from a dynamical system at certain time stamps and
this already gives us a time series. We follow [BD16], [Tak81] and [Bau+23b].

Definition 4.21 (Time Series). A time series is a sequence {xt}t∈I of observations
recorded at time t from some dynamical system. It is called discrete-time, if the
index set I is discrete and continuous-time, if I is continuous.

In real life, we are always given finite time series, so we will always assume
I = {0, ..., T} for some T ∈ N.

The most simple types of time series occur when xt ∈ R are just scalars. But
often, the sample might come from a higher-dimensional space, or there might be
several factors observed at the same time, making the time series multivariate. So xt
could also be a tuple or even a whole table of data, all corresponding to one single
point in time.

When we have a given time series, we want to be able to extract as much
information as possible about the underlying dynamical system from it. The following
result was proved in 1981 by Floris Takens, see [Tak81] and provides us with a first
approach to extract said information.

Theorem 4.22 (Takens’ Embedding). Let M be a compact manifold of dimension
m, and let (Φ, β) be a pair consisting of a smooth diffeomorphism Φ: M →M and a
smooth function β : M → R. Then the map

Ψ(Φ,β) : M −→ R2m+1, x 7−→ (β(x), β(Φ(x)), . . . , β(Φ2m(x)))

is an embedding.

Remark 4.23. β is often called observation function.

Remark 4.24. Φ(Φ,β) being an embedding means that its domain M is diffeomorphic
to im(Φ(Φ,β)). So the whole topological (and differential) structure is preserved.

What the theorem essentially tells us in the setting of finite time series, is that if
we have a given real time series

{xt}t∈{0,...,T} = {β(Φt(x))}t∈{0,...,T},

we can extract all information about the underlying dynamical system (M,Φ), at
least for this finite time span, by considering the observation at time t together with
a certain number of following observations.

One difficulty in the application of Theorem 4.22 is to find a good embedding
dimension d ≥ 2m+ 1 (note that we do not know m). A problem that might arise is
that points that are not actually neighbours in a higher dimension might look like
they are when projected to a lower dimension. One possibility to avoid this issue
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(mentioned in [RC19]) is to pick the smallest positive integer d for which the nearest
neighbours as well as the corresponding distances stay the same when looking at the
embedding in dimension d+ 1.

Moreover, in practice, we often choose a time delay parameter τ , and then apply
Takens’ theorem to the modified time series. Its purpose is to make the computation
stable when we have noisy data (by Theorem 4.22, there is no time lag needed if the
data is precise). It is usually chosen to be the smallest time lag for which xt and xt+τ
seem to correlate very little.

There are several other methods to find d and τ , but for now, let us assume we
know their ideal values. The theorem then tells us that having all points of M is
equivalent to having all tupels

(xt, xt+τ , . . . , xt+(d−1)τ ).

Example 4.25. We will apply Takens’ theorem to the Lotka-Volterra system given
by the following differential equations.

dx

dt
= x− 0.4xy

dy

dt
= −y + 0.3xy,

where x represents the population size of a prey species (e.g. rabbits) and y the
population size of a predator species (e.g. foxes). Moreover, we set the initial
populations to be 10 for both species. A visualisation can be seen in Figure 4.7.

Figure 4.7: Population dynamics and phase space plots for the Lotka-Voltera Predator-
Prey model stated in Example 4.25.

For this example’s sake, we took samples from the prey population and then
reconstructed the phase space from it, which allowed to compute persistent homology,
as can be seen in Figure 4.8. In this example, persistent homology helps us capture the
cyclic motion in the phase space, which means we detected periodicity in the system.
In Chapter 5, we will build on this idea and study a more refined method to detect
cycles in time series.

Let Γ = {xt}t=0...,T be a time series sampled from a smooth flow (X,Φ), where
X ⊆ Rd. Then there is an increasing sequence {ti}i=1,...,T and an initial point x0,
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Figure 4.8: The left plot shows a time series sampled from the prey population
of the Lotka-Volterra system stated in Example 4.25 consisting of 126 equidistant
observations (distance 3). The plot on the right shows the phase space reconstruction
with the help of Takens’ Embedding, using d = 2 and τ = 3.

such that
xi = x(ti) = Φ(x0, ti) = Φ(xi−1, ti − ti−1).

In practice, we encounter time series with noise, so the above equations are only
approximate.

Definition 4.26 (Segment of a Time Series). A segment of Γ is a consecutive
sub-time series xk, xk+1, . . . , xl for some k, l ∈ {0, . . . T} and k ≤ l. Its time span
is given by tl − tk.

We now consider a fragment γ = Φ([a, b], x) of the orbit of Φ that goes through
some x ∈ X. The following lemma is a simple but crucial observation.

Lemma 4.27. The following are equivalent.

(a) γ contains a periodic orbit.

(b) H1(γ) ̸= 0.

Proof. A simplicial complex homeomorphic to a curve is always one-dimensional,
connected and contains either zero or two loose edges (i.e. which are attached to the
complex on one side only) by default.

γ contains a periodic orbit if and only if it is homeomorphic to a connected
simplicial complex γ∆ containing at least one cycle, which is the case exactly when
the first homology group H1(γ

∆) = H1(γ) is non-zero.

In order to make use of this lemma in the context of time series, we consider
a segment γ ⊆ Γ of length l − k. This gives us a point cloud with points on the
fragment Φ([tk, tl], xk) of the orbit OΦ(xk). In order to detect cycles, we will make
use of persistent homology methods.
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Chapter 5

Cycling Signatures

We have gathered all preliminaries needed to finally introduce cycling signatures.
Their study is the main focus of this thesis. They were introduced by Bauer et al.
([Bau+23b]) in 2023. In one sentence, the idea behind cycling signatures is to use
persistent homology to detect cycles in time series data, and to distinguish between
qualitatively different cycles by computing their homology as subsets of a larger
comparison space.

Let Γ be a time series in Rd, which we assume is sampled from a flow (X,Φ).
The first thing we do is to compute thickenings of the points contained in this time
series. We make use of the fact that the time series comes from a flow by adapting
the metric used to compute the thickenings.

Example 5.1. Consider the flow illustrated in Figure 5.1. Clearly, the points are
sampled from one single loop. But using balls in R2 for the thickenings as in the
picture, we see that they merge in the middle, since the points there are a little closer.
So, we detect two cycles instead of one. This does not make much sense, as the
merged balls correspond to points that are at very different places in the flow (depicted
on the left), and in particular, they evolve in opposite directions. This illustrates why
it makes sense to take directional information into account when deciding on what
metric to use for the thickenings. The metric we choose is then the one we use to
construct the open balls from Definition 3.5.

Figure 5.1: On the left side, we see the plot of a flow with arrows to indicate direction.
The black dots in the right subfigure are samples taken from the flow on the left, and
the transparent purple balls represent a thickening of the samples.

5.1 Finding a Good Metric

The goal of this section is to find a metric that takes both the position of a point
and the direction given by the flow Φ (in practice, we do an approximation using
a time series) into account. For this, we make use of tangent vectors (Section 4.2).

60



Figure 5.2: Illustration of a ball of radius r with respect to the metric dC .

We recall that elements of the tangent bundle (p, v) ∈ Rd × Rd can be thought of as
a pair containing the point p ∈ Rd and the velocity v given by some curve through
p. In our scenario, the curves of interest are fragments of orbits of Φ. We follow
[Bau+23b], Section 2.1.

For any point x ∈ X which is not a fixed point of Φ, we define the non-zero
tangent vector

v(x) =
d

dt
Φ(t, x)

∣∣∣
t=0

.

Let Xfix ⊆ X denote the set of fixed points in (X,Φ). We define the map

ρ : X \Xfix −→ UTX, x 7−→
(
x,

v(x)

∥v(x)∥2

)
. (5.1)

We consider the following distance function dC on Rd × Sd−1, which induces a
metric on im(ρ) by restriction. For (p, v) and (q, w) in UTRd, set

dC
(
(p, v), (q, w)

)
: eqqmax

{
∥p− q∥2, C∥v − w∥2

}
.

See Figure 5.2 for a sketch of how a ball of radius r looks with respect to the metric
dC , and Figure 5.3 for a Čech complex constructed with respect to this metric, next to
the Čech complex without modification. We observe that the two points with opposed
directions are not connected in the new Čech complex, while they are connected by
an edge to the third point which is further away in its spatial component. We will
discuss in Section 5.5 how to choose C in practice.

5.2 Cycling Segments and Classification

Using the metric found in the first section, we proceed to the computation of
persistent homology groups. Since cycles are one-dimensional objects, we only look
at the first homology groups {H1(U(X, r))}r≥0. We have all ingredients to define
cycling segments, as introduced in Sections 2.1 and 2.2 in [Bau+23b]. Recall from
Lemma 4.27 that a fragment γ = Φ([a, b], x) contains an orbit if and only if it has
non-trivial first homology. Since in our case, γ is a segment of a time series, thus not
a continuous curve, we rely on thickenings to detect periodic orbits.
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Figure 5.3: In the left coordinate system, we see three points P with unit tangent
vectors, so it is a sketch of ρ(P ) ∈ R4. In the middle, we show the Čech complex
Č(ρ(P ), 3.4) with respect to the distance dC for C = 1.9. For comparison, we added
the standard Čech complex on the three points with the same radius as a third
subfigure.

Definition 5.2 (Cycling). A segment γ ⊆ Γ = {xt}t=0,...,T is r-cycling, if

H1(U(γ, r)) ̸= 0,

where the construction of the thickening is done with a suitable metric dC .

Once we find cycling segments in a time series Γ, the next step is to compare
and classify them. We call a collection of similar cycling segments in Γ an oscillation.
The comparison of oscillations requires a few additional notions.

Definition 5.3 (Comparison space). Let Γ be a time series with values in X ⊆ Rd.
A comparison space for Γ is a neighbourhood Y ⊆ UTX of ρ(Γ), where ρ is the map
from (5.1).

A sketch to illustrate comparison spaces (first component only) can be seen in
Figure 5.4.

Assume we have a segment γ ⊆ Γ and a given radius r > 0. For r small enough,
there is an inclusion map

iγ,r : U(ρ(γ), r) −→ Y,

which by functoriality induces a map

H1(iγ,r) : H1

(
U(ρ(γ), r)

)
−→ H1(Y ).

The image of this inclusion defines a subspace im
(
H1(iγ,r)

)
of H1(Y ).

Collecting the inclusions for all r > 0 and passing to homology like we just
demonstrated, we get a linear transformation {H1(iγ,r)}r>0 of persistent vector
spaces. This allows us to define cycling signatures.

Definition 5.4 (Cycling Signature). Let γ be a segment of a time series Γ, and
let Y be a comparison space of Γ.
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Figure 5.4: A time series (black dots) in R2 and a comparison space Y . We note that
the sketch only captures the spatial component of the comparison space.

(a) The r-cycling space of γ with respect to Y is given by

Cycr(γ, Y ) = im(H1(iγ,r)).

(b) The r-cycling rank of γ is dim(Cycr(γ, Y )).

(c) H1(Y ) is called a homological comparison space for Γ.

(d) The cycling signature of γ in Y is the persistent vector space

Cyc(γ, Y ) = {Cycr(γ, Y )}r∈[0,r0(Y )),

where r0 is a choice of maximal radius that makes sense in the comparison space
Y . This will be discussed in Section 5.5.

In practice, we will see that we can compute a basis of the cycling signature using
Proposition 5.24.

Example 5.5. We consider the double well system introduced in Example 4.18.
Figure 5.5 shows a time series sampled from said system, which contains 3000 points.
The data are provided together with the Julia code used in [Bau+23b] on the GitHub
repository [Hie23]. The next figure, Figure 5.6, illustrates why for this example, we
obtain three different rank 1 signatures. The blue marking represents all cycles going
around the left loop of the comparison space once, the green marking represents those
which go around the right loop, and the red one represents the segments that go around
both.

Let Y be a comparison space which is fine enough that it admits the two obvious
voids from the time series. We see that this is the case in Figure 5.6, although the
picture shows a cubical comparison space Y∞, as we will introduce later. However,
it is still useful to encourage intuition. Let gb and gg be the generators of H1(Y )
corresponding to the voids inside the blue and green loops. Then the cycling signature
of the blue segment is the subspace of H1(Y ) generated by gb, the cycling signature
of the green segment is generated by gg, and the red segment has a cycling signature
generated by the sum of both.
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Figure 5.5: 3000 samples from a double well system as described in Example 4.18.

Figure 5.6: The blue, green and red markings indicate the three types of rank 1 cycles
that arise in the double well time series. The grey boxes correspond to the spatial
component of a cubical comparison space Y∞ (see Section 5.4).

The higher-rank signatures correspond to segments which are combinations of
rank 1 cycles. A longer sequence of the time series which goes along a blue cycle and
then a red one has a cycling signature of rank 2 that is generated by both gb and gr.
This also motivates that the rank 1 signatures are subspaces of the rank 2 signatures.
Finally, since the vector space H1(Y ) has dimension 2 (two voids) in this example,
there cannot be cycling spaces with cycling rank > 2.
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5.3 Internal and External Thickenings

We continue following [Bau+23b]. It is not clear yet how we can compute cycling
signatures in practice. The following diagram shows the detour we are going to take.

{
H1

(
U(ρ(γ), r)

)}
r≥0

H1(Y )

{
H1

(
Č(ρ(γ), r)

)}
r≥0

H1(Y∞)

H1(iγ)

∼=

H1(ϕ)

∼= (5.2)

We already know what happens in the top row. We will first address the left
vertical arrow. The Čech complex introduced in Definition 3.4 is a simplicial complex,
which is a combinatorial object and thus computable. With the nerve theorem
(Theorem 3.6), we have shown that there is topological equivalence between Čech
complexes and thickenings.

So far, we have not paid much attention to the fact that our thickenings are taken
in a unit tangent space. We recall the map

ρ : X \Xfix ⊆ Rd −→ UTX, x 7−→
(
x,

v(x)

∥v(x)∥2

)
.

There are two possible ways to define thickenings, which we will use interchangeably
after providing justification in this section.

Definition 5.6 (Internal and External Thickenings). Let γ be a segment of a
time series Γ.

(a) The internal ball of radius r around a point x ∈ UTX is given by

BI
C(x, r) = {x′ ∈ UTX : dC(x, x

′) ≤ r}.

The internal r-thickening of ρ(γ) ⊆ Γ is the union of internal balls

U IC(ρ(γ), r) = {p ∈ UTX : dC(p, ρ(γ)) ≤ r}.

(b) The external ball of radius r around a point (x, v(x)) ∈ UTX is given by

BE
C (x, r) = {x′ ∈ TX : dC(x, x

′) ≤ r}.

The external r-thickening of ρ(γ) ⊆ Γ is the union of internal balls

UEC (ρ(γ), r) = {p ∈ TX : dC(p, ρ(γ)) ≤ r}.

We refer to Figure 5.7 for a visual comparison of an internal and external ball.
The next proposition provides justification to use internal and external balls inter-
changeably.
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Figure 5.7: On the left, we sketch internal ball, and on the left we sketch the same
ball, but external.

Proposition 5.7. Let γ be a segment of some time series Γ. In particular, γ is a
finite subset of Rd. Moreover, let C ≥ 0 and r ∈ [0, C). Then, for

θ(x) =

√√√√(1− (1− x2

2

)2
)

and Dr : eq
r

Cθ
(
r
C

) ,
the map

αr : U
E
Dr

(ρ(γ), r) −→ U IC(ρ(γ), r), (p, v) 7−→
(
p,

v

∥v∥2

)
is a homotopy equivalence. The collection {αr}r∈[0,C) is a map of filtered topological
spaces.

Proof. The proof is constructive, and we will only state an overview of the steps.
For full details, see Appendix F and G of [Bau+23b]. In the first part, we only
concentrate on the tangent component.

Let BS(p, r) = {q ∈ Sd−1 : ∥p− q∥2 < r} ⊂ B(p, r) be the internal open ball of p
in Sd−1 ⊂ Rd, and consider the maps

π : B(p, θ(r)) −→ BS(p, r), v 7−→ v

∥v∥2

ψ : BS(p, r) −→ B(p, θ(r)), w 7−→ 2− r2

2
w.

The first step of the proof is to show that π and ψ are homotopy equivalences and
that they are homotopy inverses of each other. In fact, π ◦ ψ is already the identity
and ψ ◦ π can be homotoped to the identity using a straight-line homotopy.

Next, the maps π and ψ can be extended to unions of closed balls, such that they
are still homotopy inverses of each other. Then, we note that

αr(p, v) = (p, π(v)),

and we define the new map

βr : U
I
C(ρ(γ), r) −→ UEDr

(ρ(γ), r), (p, v) 7−→ (p, ψ(v)).

After showing that the maps αr and βr are homotopy inverses to each other, the
proof is complete.
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Corollary 5.8. The intersection ⋂
x∈γ

BE
Dr

(x, r)

is non-empty if and only if ⋂
x∈γ

BI
C(x, r)

is. In particular, the corresponding nerve complexes are identical.

Proof. Let x ∈ γ. By construction of the maps α and β = {βr}r∈[0,C), if a point p is
inside BE

Dr
(x, r) then α(p) is in BI

C(x, r). On the other hand, if q ∈ BI
C(x, r), then

β(q) is in BE
Dr

(x, r). This property translates to intersections as well: if p is in the
intersection ⋂

x∈γ
BE
Dr

(x, r),

it is in all of the closed balls, thus the image αr(p) is in all balls BI
C(x, r), so in

particular, αr(p) is in the intersection of all of them. The same argument goes for
the map βr.

Corollary 5.9. Let γ be as before. There is a commutative diagram of [0, C)-filtered
topological spaces

U IC(ρ(γ)) UED•
(ρ(γ))

|ČI(ρ(γ), dC)| |ČE(ρ(γ), dD•)|

α

g

h

f ,

Where the I and E parameter in the Čech complexes indicate whether the nerve
complex is taken with respect to internal or external balls. For a fixed filtration value
r, all maps are homotopy equivalences.

Proof. From the last corollary, we know that

ČI(ρ(γ), dC) = ČE(ρ(γ), dD•).

So, we can choose the same geometric representation for both and thus assume that
hr is the identity map for all r (so h is an identity map between filtered topological
spaces). The nerve theorem (Theorem 3.6) provides us with the map f , which is a
collection of homotopy equivalences. The map α is the one from Proposition 5.7, so
it is also a collection of homotopy equivalences.

Thus, the collection g of maps

gr = αr ◦ fr ◦ hr

is a collection of homotopy equivalences as well, and a morphism of filtered topological
spaces.

This ends the discussion on the left arrow in the diagram 5.2.
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5.4 Construction of Comparison Spaces

The next ingredient for the computation of cycling signatures we want elaborate
on are the comparison spaces. The easiest way to construct a comparison space is by
drawing a grid in dimension d over X ⊆ Rd and then deleting all the boxes the time
series Γ does not touch. For this, we will make use of cubical complexes similar to
those we introduced in Section 2.4. The reference for this section is Section 4.4 in
[Bau+23b].

We recall two maps from Section 4.2.

ρ : X \Xfix −→ UTX, x 7−→
(
x,

v(x)

∥v(x)∥2

)
η : UTRd −→ UT∞Rd, (p, v) 7−→

(
p,

v

∥v∥∞

)
and introduce the new map

ϑ∞ : TRd \ (Rd × {0}) −→ UT∞Rd, (p, v) 7−→
(
p,

v

∥v∥∞

)
.

The following commutative diagram serves as an overview of how they are related.

X \Xfix UTX

TX \ (X × {0}) UT∞X

ρ

p 7→ (p,v) η

ϑ∞

η−1

We will choose a neighbourhood U of η(ρ(Γ)) and then pull it back to a comparison
space (as in Definition 5.3)

Y = η−1(U).

This allows us to do the computation with boxes Sd−1
∞ in the tangent component,

and then come back to the standard unit tangent space introduced in section 4.2.

We proceed to the explicit construction of the neighbourhood U . To construct U ,
we consider products of cubes (Definition 2.30)

Qr,k(p, q) = Qr(p)×Q1/k(q) ⊆ TRd,

where r > 0 and k ∈ N.

Using the sets Qr,k(p, q), we can construct the following cover of UT∞Rd (seen as
a subset of TRd).

Qdr,k =
{
Qr,k(p, q) : p ∈ Zd, q ∈ 1

k
Zd, ∥q∥∞ = 1

}
We define the cubical cover

Y∞ = {Q ∈ Qdr,k : Q ∩ η(U(ρ(Γ), ε)) ̸= ∅} for some ε ≥ 0. (5.3)
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So, we remove all boxes from the cover Qdr,k that have empty intersection with the
thickening of Γ. Its geometric realisation is

|Y∞| =
⋃

Qr,k(p,q)∈Y∞

Qr,k(p, q) ⊆ TX \ (X × {0}),

and we can finally define the neighbourhood

U : eqϑ∞(|Y∞|) ⊆ UT∞X (5.4)

of η(ρ(Γ)).

We now formally introduce this second, more computable form of comparison
spaces. An illustration to understand how the two kinds of comparison spaces are
related can be found in Figure 5.8.

Figure 5.8: Illustration of the map η−1 ◦ ϑ∞ and how it relates cubical comparison
spaces to comparison spaces as in Definition 5.3.

Definition 5.10. Let Γ be a time series in some ambient space X ⊆ Rd. A cubical
comparison space for Γ is a set Y∞ ⊆ Qdr,k for some r > 0 and k ∈ N, such that

Y = η−1(ϑ∞(|Y∞|)

is a comparison space (see Definition 5.3) for Γ.

5.5 Choice of the Parameters r0 and C

Next, we address the question of how to chose r0, the maximal thickening radius
for the computation of the Čech complexes and the parameter C for the definition
of the metric dC . What we do in the following differs a little from what is done in
[Bau+23b], Section 5.5 and Proposition E.1.

Let Γ ⊂ Rd be a time series and Y∞ ⊆ Qdr,k be a cubical comparison space. We
recall that we defined the metric

dC
(
(p, v), (q, w)

)
= max

{
∥p− q∥2, C∥v − w∥2

}
on the unit tangent bundle UTX.
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Proposition 5.11. Let r > 0. Consider a collection K ⊆ Qdr of d-dimensional cubes
with side length r and vertices on the grid rZd. Moreover, consider the set

U(K, s) : eqq{U(Q, s) : Q ∈ K},

where the thickenings are taken with respect to Euclidean metric. For s ∈ (0, r/2),
the spaces |U(K, s)| =

⋃
Q∈K U(Q, s) and |K| =

⋃
Q∈K Q are homotopy equivalent.

Proof. In K, two boxes intersect if and only if they are adjacent. We need to check
that there are no intersections added when passing to U(K, s). So, we take two
disjoint boxes in K and consider their thickenings in U(K, s). The bound s < r/2
guarantees that they do not intersect in U(K, s), either. This implies that the nerve
complexes of the cover U(K, s) of |U(K, s)| and K of |K| are isomorphic. Applying
the nerve theorem for closed, convex sets (e.g. Theorem 3.1. in [Bau+23a]) yields
that |U(K, s)| and |K| are homotopy equivalent.

Consider the set

UdC (Y∞, s) : eqq{UdC (Q, s) : Q ∈ Y∞}

of thickenings of boxes in Y∞. The cubes Q are of the form Qr(p)×Q1/k(q), so in
order to preserve intersections, the first component can only be thickened by less than
r/2 and the second by less than 1/(2k) for Proposition 5.11 to apply. This implies
the conditions s < r/2 and Cs < 1/(2k) by definition of dC . Setting C = 1/(rk),
and r0 = r/2, the inequalities holds true for all s < r0.

5.6 Acyclic Covers and Carriers

We have already introduced Čech complexes and cubical comparison spaces. In
this section, we construct the cycling signature using the framework we established.
So, we tackle the bottom arrow in the commutative diagram (5.2). This means that
we want to construct a function from a simplicial to a cubical complex. Mapping any
simplex to a cycle would be bad, so we will make sure this function maps simplices
to connected subcomplexes. We follow [Col82],[MM18], [Hat01] and [Bau+23b].

As in the very first section, we want to make sure to avoid pathological cases.
The following definition captures what this means in the context of this section.

Definition 5.12. Let σ ⊂ Rd be a convex, compact set. If σ ∩ Q◦ ̸= 0 for all
Q ∈ Kd(σ), then σ is said to be in general position with respect to its outer cubical
cover.

An illustration with a non-example and an example can be found in Figure 5.9.

Remark 5.13. Although we use the same word, this definition is somewhat different
from Definition 2.3. In this thesis, it should be clear from context when we mean
which definition. In both cases, it is a definition we make to avoid any strange cases.
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Figure 5.9: On the left side, we sketched a convex, compact set which is not in general
position with respect to its outer cubical cover. On the right side, we see a convex,
compact set that is.

We show that we can thicken convex, compact sets a little bit, while preserving
the same outer cubical cover. We recall the definition, Definition 3.5, of thickenings.

Lemma 5.14. Let σ ⊂ Rd be a convex, compact set. There exists a ε0 > 0 such that
for all ε ∈ [0, ε0),

K(σ) = K(U(σ, ε)).

Proof. Let L =↓ (K(Rd) \K(σ)) be the cubical complex containing all boxes of all
dimensions that do not touch σ. By construction, this implies that the Euclidean
distance d(Q, σ) is positive for all Q ∈ L. Moreover, for any C > 0, there exist only
finitely many boxes Q ∈ L for which d(Q, σ) < C. Thus, the minimum

ε0 = min
Q∈L

d(Q, σ)

is well-defined.

Let ε < ε0. It follows from the triangle inequality, that d(Q,U(σ, ε)) > 0. Thus,
K(σ) = K(U(σ, ε).

Lemma 5.15. Let σ ⊂ Rd be a convex, compact set. There exists an ε > 0 for which
K(σ) = K(U(σ, ε)), and U(σ, ε) is in general position.

Proof. Using the last lemma, we may fix an ε > 0 for which K(σ) = K(U(σ, ε)).
Let Q ∈ K(σ) be an arbitrary cube, and pick some x ∈ σ ∩ Q. By construction,
B(x, ε) ∩ Q◦ ̸= ∅, and B(x, ε) ∩ Q◦ ⊆ U(σ, ε) ∩ Q◦. Hence, U(σ, ε) is in general
position.

Lemma 5.16. Let σ ⊂ Rd be a convex, compact set. Then K(σ) is acyclic.

Proof. By the preceding lemma, we may assume that σ is in general position with
respect to its outer cubical cover K(σ). We proceed by induction on the number n of
cubes in K(σ) which have maximal dimension.

If we have a single cube of top dimension, it is clearly contractible, thus acyclic.
We now assume the claim holds for some n > 1.

We now assume that K(σ) contains n+ 1 cubes of top dimension dmax. Since by
assumption, n > 1, there exist at lest two "adjacent" cubes, i.e. there exists a positive
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integer i, such that the projection of |K(σ)| =
⋃
Q∈K(σ)Q to the i-th coordinate

satisfies
πi(|K(σ)|) = [m1,m2]

for some integers m1, m2 which satisfy m2 −m1 ≥ 2. Set l = m2 − 1.

Consider the hyperplane H = π−1
i (l), and define the two sets

A =↓ {Q ∈ Kdmax(σ) : πi(Q) ⊆ (−∞, l]}
B =↓ {Q ∈ Kdmax(σ) : πi(Q) ⊆ [l,+∞)}.

We write |A| =
⋃
Q∈AQ and |B| =

⋃
Q∈B Q to be the geometric realisations of A and

B and will use the Mayer-Vietoris theorem (see [Hat01], Mayer-Vietoris Sequences in
Chapter 2). We cannot directly apply the standard Mayer-Vietoris theorem, as the
interiors of |A| and |B| do not cover all of |Kdmax(σ)|. In fact, the hyperplane H is
not contained in |A|◦ ∪ |B|◦.

Instead, we construct open neighbourhoods UA = U(|A|, ε), UB = U(|B|, ε)
for some ε > 0 small enough. Then, |A| is a deformation retract of UA, |B| is a
deformation retract of UB and moreover, H ∩ |K(σ)| = |A| ∩ |B| is a deformation
retract of UA ∩ UB. A sketch to gain some intuition for this construction can be
found in Figure 5.10 on the left.

Figure 5.10: Sketches of the constructions for the proof of Lemma 5.16 in two
dimensions for some convex compact set σ.

Since the interiors of UA and UB now clearly cover |Kdmax(σ)|, we may apply
an adapted version of the Mayer-Vietoris theorem (also explained in [Hat01], same
chapter) to get the short exact sequence of chain complexes

0 −→ C•(A ∩B) −→ C•(A)⊕ C•(B) −→ C•(A ∪B) = C•(Kdmax(σ)) −→ 0,

and a long exact sequence

· · · −→ Hk(A ∩B) −→ Hk(A)⊕Hk(B) −→ Hk(A ∪B) −→ Hk−1(A ∩B) −→ . . .

in homology. We will show that Hk(A ∩B) = Hk(A) = Hk(B) = 0 for all k.
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For any cube Q ∈ Kdmax(σ), we can fix a point xQ ∈ σ ∩Q◦, since σ is in general
position. We define the two constants

δA =
1

2
max{l − πi(xQ) : Q ∈ A}

δB =
1

2
min{πi(xQ)− l : Q ∈ B}.

Since xQ lies in the interior of some cube of dimension dmax, we know that πi(xQ) /∈ Z.
So, δA and δB are strictly positive.

We now set

σA = σ ∩ π−1
i ((−∞, l − δA])

σB = σ ∩ π−1
i ([l + δB,+∞))

An attempt to sketch how these sets are constructed can be found in Figure 5.10 on
the right. We show that A = K(σA) and B = K(σB), thus showing that A and B
are outer cubical complexes of compact, convex sets.

Let Q ∈ A. Since xQ ∈ σ ∩ Q◦, we can deduce πi(xQ) < l − δA, thus xQ ∈ σA.
By construction, there is no other cube than Q for which xQ ∈ Q◦, so Q ∈ K(σA).

If Q ∈ K(σA), then Q ∈ K(σ) as well by definition. Moreover, σA ∈ π−1
i ((−∞, l−

δA]), so in particular, Q ⊆ π−1
i (]−∞, l]), which means Q ∈ A. Finally, this implies

K(σA) ⊆ A and therefore A = K(σA).

We have shown that A and B are outer cubical covers of the convex, compact
sets σA and σB . By construction, they both contain less than n+1 dmax-dimensional
cubes, so A and B are acyclic (i.e. Hk(A) = Hk(B) = 0 for all k).

We are left with showing that A ∩ B is acyclic as well. The set σH = σ ∩ H
is compact and convex. Moreover, it is fully contained in A ∩ B. Let πî be the
projection deleting the i-th coordinate. πî(σH) is compact and convex, and admits a
cover C = {πî(Q) : Q ∈ A∩B}. We show that C = K(πî(σH)). Let Q ∈ K(C). The
cube Q corresponds to a unique (dmax − 1)-dimensional cube P of side length 1 in
Rd which is contained in A ∩B. In particular, there are cubes QA ∈ A and QB ∈ B,
which have P as a face in common. We pick points xA ∈ σ ∩QA and xB ∈ σ ∩QB.
The line connecting xA and xB intersects P in a point x. For this point, πî(x) ∈ Q,
so C = K(πî(σH)).

Finally, since a (dmax − 1)-dimensional cube of K(C) is always adjacent to a
dmax-dimensional cube in both A and B, we know that 2#Kdmax−1(C) ≤ n. Thus, C
is acyclic by induction. Since C is homeomorphic to A ∩B by construction, A ∩B is
acyclic as well.

The proposition follows using exactness of the Mayer-Vietoris long exact sequence
in homology.

We claim that the same property holds after scaling and turning the grid.
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Corollary 5.17. Let A ∈ GLd(R) be an invertible linear map, and let σ ∈ Rd be
convex and compact. Then AK(σ) is acyclic.

Proof. Applying Lemma 5.16 and using the fact that A preserves compactness,
convexity and homology yields the result.

The next corollary translates what we just established for outer cubical complexes
(as introduced in Section 2.4) to cubical comparison spaces.

Corollary 5.18. Let σ be a compact and convex subset of UT∞Rd. For any r ∈ R
and k ∈ Z, the set

L =↓ {Q ∈ Qdr,k : Q ∩ σ ̸= ∅}

is acyclic.

Proof. Let v ∈ R2d be the vector in with vi = r for i = 1, . . . , d and vi = 1/k for
i = d+ 1 . . . , 2d. Let A be the diagonal matrix with diagonal v. Moreover, consider
the set τ : eqq{w− v/2 : w ∈ σ} ⊂ UT∞Rd. This shift ensures that the vertices of the
cubical cover lie on the integer grid, since for cubical comparison spaces, we defined
the centre of the cubes to be on the integer grid (see Section 5.4). By the previous
corollary, AK(τ) is acyclic. We show that |L| and |AK(τ)| are the identical up to a
translation by v/2.

Let Q ∈ AK(τ) and define Q̃ = {w + v/2 : w ∈ Q}. By construction, Q̃ ∩ σ ≠ ∅.
We show that Q̃ ∈ Qdr,k. Clearly, Q̃ = Qr(p)×Q 1

k
(q) for some p ∈ rZd and q ∈ 1

kZ
d.

So, we need to show ∥q∥∞ = 1. Whenever ∥q∥∞ ̸= 1, Q 1
k
(q) ∩ S1

∞ = ∅. The
explanation is that the box Q 1

k
(q) has length 1/k and center q, thus

q − 1

2k
≤ ∥x∥∞ ≤ q +

1

2k
for all x ∈ Q1/k(q).

In particular, ∥x∥∞ ̸= 1 if q ∈ 1/kZd is such that ∥q∥∞ ̸= 1. Translation is a
homeomorphism, so |L| is acyclic.

We are going to use these results to construct a function that maps simplices to
sets of the form L as in Corollary 5.18. Using the upcoming theorem, this will provide
us with the map ϕ appearing in the bottom of the diagram (5.2). To understand the
theorem, we introduce acyclic carriers from simplicial to cubical complexes.

Definition 5.19 (Acyclic Carrier). Let K be a simplicial complex and K a cubical
complex. Consider a map

F : Σ(K) −→
{
Non-empty subcomplexes of K

}
.

(a) The function F is a carrier from K to K, if for any simplex σ ∈ Σ(K) and σ′

a face of σ, F (σ′) is a subcomplex of F (σ).

(b) Moreover, F is an acyclic carrier from K to K, if F is a carrier and
H̃k(F (σ)) = 0 for all k ≥ 0, where H̃k means reduced homology.

74



(c) A map f : K −→ K, which sends simplices to cubes, is said to be carried by F ,
if f(σ) is a cube of F (σ) for all simplices σ of K.

When passing to chain complexes, a carrier F from a simplicial complex K to
a cubical complex K induces a function F which sends basis elements σ of the
vector spaces Ck(K) to sub-chain complexes of C•(K). These induced maps are
so-called algebraic carriers. In particular, acyclic carriers induce acyclic algebraic
carriers, which means the reduced homology of all chain complexes in im(F) is trivial.
Algebraic carriers can carry homomorphisms

φ : Ck(K) −→ Cl(K),

which means that φ(σ) is contained in one of the chain vector spaces of F(σ) ⊆ C•(K).
In fact, the next theorem tells us that if F is acyclic, there always exists a chain map
carried by F . This is the map we will use for the bottom arrow in the commutative
diagram (5.2).

For an introduction to reduced homology and more details on acyclic carriers, we
refer to [MM18], Sections 7 and 13.

Theorem 5.20 (Acyclic Carrier Theorem). Let K be a simplicial complex, K
a cubical complex and F an acyclic carrier from K to K. Moreover, let (C•(K), εK)
and (C•(K), εK) be the corresponding augmented chain complexes and let F be the
algebraic carrier induced by F . Then there is an augmentation-preserving chain map

ϕ : C•(K) −→ C•(K)

carried by F . Moreover, any two such maps are homotopic, with the homotopy being
carried by F as well.

For a proof of this theorem, consult [MM18], Theorem 13.4. As before, let Γ ⊂ Rd
be a time series, γ a segment of Γ and let Y∞ be a cubical comparison space for Γ.
Moreover, let R ∈ [0, r0) be the largest critical point of {Čr(ρ(γ))}r∈[0,r0), i.e. the
largest radius where a change happens in homology. Our goal is to apply the acyclic
carrier theorem (Theorem 5.20) to obtain a chain map between the chain complex
C•
(
ČR(ρ(γ))

)
and the chain complex C•(Y∞) of the cubical comparison space. This

chain map then induces the map in homology that we can ultimately use for the
computation of cycling signatures in real life.

We recall the two maps of filtered topological spaces (for r ∈ [0, C)).

η : UTRd −→ UT∞Rd, (p, v) 7−→
(
p,

v

∥v∥∞

)
α : UED•(ρ(γ)) −→ U IC(ρ(γ)), (p, v) 7−→

(
p,

v

∥v∥2

)
f :
∣∣ČE(γ, dD•)

∣∣ −→ UED•

(
ρ(γ)

)
the map constructed in (3.1).

We define a new map of filtered topological spaces

Θ: |sdČ(ρ(γ))| −→ Y∞, Θ: eqqη ◦ α ◦ f.

The following commutative diagram makes this detour a bit more understandable.
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|sdČ(ρ(γ))| Y ⊆ UT∞Rd

UED•
(ρ(γ)) U IC(ρ(γ))

Θ

f

α

η

Proposition 5.21. There exists a simplicial subdivision KR of ČR(ρ(γ)) such that
the map

F : Kr −→ Y∞, σ 7−→ F (σ) = ↓ {Q ∈ Y∞ : Q ∩ΘR(σ) ̸= ∅}

is an acyclic carrier.

Proof. We divide the proof into two steps.

First, we show that there exists a subdivision KR of ČR(ρ(γ)) such that for any
face H of the cube B∞(0, 1) ⊂ Rd, the set Θ−1

R (Rd ×H) is a subcomplex of KR. By
definition, the set UEDR

(ρ(γ), R) is compact, and it does not intersect Rd×{0} ⊂ TRd.
This is the case because with respect to the metric dC , the distance between Rd×{0}
and UTRd is the scaled distance in the tangent component, thus exactly C. By
assumption, R < C. This means that there are radii r1, r2, r3 > 0 such that

UEDR
(ρ(γ), R) ⊆ Bd

∞(0, r1)×
(
Bd

∞(0, r2) \Bd
∞(0, r3)

)
=: A ⊆ TRd.

We show that A is the geometric realisation of a simplicial complex L. To do so,
we decompose A into subsets

AH = A ∩
(
Rd × {rH : r > 0}

)
,

where H is a face of Bd
∞(0, 1). A sketch of how this might look in dimension d = 2 can

be found in Figure 5.11. By construction, the sets AH are convex. The intersection of

Figure 5.11: Visualisation of a set of the form AH in dimension d = 2 from the proof
of Proposition 5.21.

two distinct such subsets is either empty, or a face of both. In fact, A is the geometric
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realisation of a cubical complex, which can be subdivided into a simplicial complex L
without adding any vertices by Proposition 2.34. By construction,

fR : |sdČR(ρ(γ))| −→ UEDR
(ρ(γ), R) ⊆ |L|

is linear on every simplex of its domain. By Lemma 2.13, there are simplicial
subdivisions KR of ČR(ρ(γ)) and L′ of L such that

fR : |KR| −→ |L′|

is simplicial. We define the filtered simplicial complex K as follows.

K = {Kr}r<R, Kr =
{
σ ∈ KR : |σ| ⊆

∣∣Čr(ρ(γ))∣∣}.
The second step of the proof is to check that F satisfies Definition 5.19. The fact

that F (s) ⊆ F (σ) for s a face of a simplex σ is true by construction. Let σ be any
simplex of KR, and write τ = ΘR(σ). By construction of the subdivision L′, τ is
contained in Rd ×H for some face H of the cube Bd

∞(0, 1). Therefore,

ΘR

∣∣∣
σ
= (fR ◦ η ◦ αR)

∣∣∣
σ
.

In the tangent component, this is identical to the radial projection onto H. All maps
in the above composition preserve compactness and convexity, so τ is compact and
convex as well. By Corollary 5.18, F (σ) is acyclic.

Corollary 5.22. Let K be the subdivision of sdČ(ρ(γ)) from Proposition 5.21, and
let ψ1 and ψ2 be the chain maps which induce the isomorphism between singular
and cellular homology (for details on these maps, see [Hat01] Chapter 2, Cellular
Homology). There is a commutative diagram

H1(|sdČ(ρ(γ))) H1(|Y∞|)

H1(K) H1(Y∞)

H1(Θ)

H1(ψ2)

H1(ν)

H1(ψ1)

Proof. We only sketch the proof, as an in-depth approach would be very extensive to
add. For details, see [Bau+23b], Corollary 4.15.

Consider the subdivision {KR}R<C from Proposition 2.34. We define the algebraic
acyclic carrier F : C•(K)R −→ C•{Y∞} by

F(σ) = C•(F (σ)).

Then, we apply the acyclic carrier theorem, (Thm. 5.20) to get a chain map

ϕR : C•(KR) −→ C•(Y∞)

carried by F . We translate ΘR to the chain map C•(ΘR) and show that ψ2◦C•(ΘR)◦ψ1

is carried by F as well. This is done by showing that ψ2 ◦ C•(ΘR) ◦ ψ1 is chain
homotopic to ϕR, and that the chain homotopy respects the acyclic carrier F . After
applying restrictions, this yields a filtered chain map and proves commutativity of
the diagram.
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This final corollary concludes the construction of the (computable) cycling signa-
ture. We will see in the next section that the cycling signature can now be computed
comfortably, using a result (Proposition 5.24) from linear algebra.

Corollary 5.23. Let Y = η−1(ϑ∞(|Y∞|)) be a comparison space. There exists a
commutative diagram

H1(U(ρ(γ))) H1(Y )

H1(Č(ρ(γ))) H1(Y∞)

H1(iγ)

∼=

H1(ϕ)

∼=

Proof. We have seen in this chapter that any of the spaces in this diagram is isomorphic
to the corresponding space in the previous commutative diagram.

5.7 Summarised Computation Pipeline

In this section, we briefly summarise the computational pipeline used to obtain
cycling signatures. The code by Bauer et al. used in [Bau+23b] can be accessed using
the following link.

https://github.com/davidhien/CyclingSignatures.jl

The first step of the algorithm is to construct the cubical comparison space and
compute its homology. As this only depends on the given time series Γ and not on
the segments we choose to analyse later, it makes sense to do this computation in
advance. We collect all boxes Qr,k which contain a point from the time series Γ.
This is done in both components of the tangent space separately. A basis {αi}mi=1 of
the resulting cubical comparison space Y∞ is computed using a reduction algorithm
similar to the one we introduced for simplicial complexes, as mentioned in Section 2.4.
A visual example of a comparison space can be found in Figure 5.12.

Figure 5.12: On the left, we see a very short time series {v1, . . . , v11}, with the
underlying orbit drawn in pink. On the right, we illustrate a cubical comparison
space fir this time series.
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Next we consider a collection of segments γ ⊆ Γ. More exactly, we fix a number
N of segments and a choice T of segment lengths and randomly sample N segments
of length τ for every τ ∈ T .

Although we only ever mentioned Čech complexes in the context of cycling
signatures, the persistent homology computations with this algorithm are actually
done with Vietoris-Rips complexes. So, we compute persistent homology of persistent
Vietoris-Rips complexes using the machinery introduced in Section 3.3. The result
is a set of generators {ci}i∈I of the persistent homology group H1(VR(ρ(γ))). We
single out the generators {c∞1 , . . . , c∞n } which form the basis of the immortal part
H∞

1

(
VR(ρ(γ))

)
given by

H∞
1

(
VR(ρ(γ))

)
r
=
{
v ∈ H1

(
VR(ρ(γ))

)
r
: v = 0 or H1(φ

r0
r )(v) ̸= 0

}
,

where φr0r is the inclusion map VR(ρ(γ), r) ⊆ VR(ρ(γ), r0). We then use those
generators as an approximation for the basis of the immortal part H∞

1 (Č(ρ(γ)))
defined analogously. They correspond to 1-dimensional topological features that have
not disappeared at the maximal radius r0.

Next, we show how to compute the map ϕ introduced in the proof of Corollary 5.22.
Let c be a chain in C1(Č(ρ(γ), r)) for some radius r ∈ [0, r0]. Then c is a finite formal
sum

c =
∑
k

λkek, λk ∈ K and ek ∈ Σ1(Č(ρ(γ), r)) for all k.

We compute the map ϕ on the edges ek, the definition for chains then follows
by linearity. We first subdivide the edges such that two consecutive vertices in the
subdivision lie in adjacent boxes of Y∞, and such that all segments lie on the same
face of ∂B∞(0, 1) in the tangent component.

Instead of an edge, we now have a chain of edges with boundary ∂ek. We map
every vertex v of this chain to a vertex ϕr(v) that is a face of the cube Q ∈ Y∞ for
which v ∈ Q. Using this, we map every edge e = [v, w] from the subdivision to a
chain of edges in Y∞ that are faces of the boxes Q containing the vertices, and such
that

∂ϕr(e) = ϕr(∂e) = ϕr(v + w) = ϕr(v) + ϕr(w).

The image ϕr(ek) is then given by the sum of those chains, thus has boundary
∂ϕr(ek) = ϕr(∂ek) by construction. A sketch (tangent component neglected) to
understand this construction better is provided in Figure 5.13. Doing this for all r
gives the map ϕ : Č(ρ(γ)) −→ Y∞.

The last step in the algorithm is the computation of a basis for the cycling
signature, so for im(H1(ϕ)). To do this, we rewrite the basis elements α1, . . . , αm
of H1(Y∞) and the images ϕ(c∞1 ), . . . , ϕ(c∞n ) of the generators of H∞

1 (VR(ρ(γ))) as
vectors in FN2 , where N is the number of edges contained in Y∞. We set an entry
of such a vector to be 1 if the edge corresponding to the entry is contained in the
chain, and 0 else. We then define the matrix A with entries ai,j = αTi ϕ(cj) and apply
Proposition 5.24 to obtain a basis for the cycling signature.
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Figure 5.13: Intuition for how the map ϕ works. The function is applied to a Vietoris-
Rips complex constructed on a segment of the time series from Figure 5.12 and the
radii are represented by the purple discs.

Proposition 5.24. Let V and W be persistent vector spaces with a finite index
set {0, . . . , R} and let ϕ : V −→ W be a linear transformation. Moreover, let
BV
R = {v1, . . . , vn} and BW ∗

R = {α1, . . . , αm} be bases of VR and the dual space
W ∗
R, respectively, such that they are listed in increasing order with respect to their

birth radius. We define the matrix A with entries

ai,j = αi
(
ϕR(vj)

)
.

We consider the matrix A′ = AU that results from reducing A. The set{
ϕi(vj) : j ≤ i and pivot(Rj) ̸= 0

}
is a basis for im(ϕ).

A proof of this proposition can be found in [Bau+23b], Proposition 4.21.
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