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Abstract

Many Researchers today are confronted with large amounts of high dimensional
data. This data often lies on or close to a manifold. The dimension of this subman-
ifold is often much smaller than the dimension of the ambient Euclidean space. The
goal of this thesis is to show that one can obtain geometric and topological infor-
mation based on the given sample. In particular, we provide sufficient conditions
on how dense the sample has to be, in order for the homology group of the subman-
ifold to be determined from the sample. We also give a lower bound on the sample
size in order for the density-conditions to be satisfied with high confidence. The
density-conditions and the bounds on the sample size are obtained in terms of the
condition number, which measures a shapes deviation from being flat. The thesis is
based on the paper ≪Finding the Homology of Submanifolds with High Confidence
from Random Samples≫ [13] and provides the necessary background knowledge to
understand the results and gives detailed proofs of the statements.
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1 INTRODUCTION

1 Introduction

Due to technology with high computational capabilities and due to new experimental
methods modern scientist are faced with a deluge of data. This data is usually collected
in the form of very long vectors and hence lies in a very high dimensional space. However,
the underlying space these points are drawn from often has a much lower dimension than
the ambient space. Consider, for example, the data that consists of finitely many points
that are drawn randomly from a circle, as illustrated in Figure 1. Such a collection of
points is called a sample. We can see that the sample lies in R2, but the underlying circle
locally looks like a line and therefore has dimension 1.

−→

Figure 1: A sample of points drawn randomly from a circle.

Instead of a circle, one can consider an arbitrary manifold of dimension m, that is, a space
that locally looks like a Euclidean space of lower dimension. For example, a circle is a
manifold of dimension 1. Many researchers, such as Belkin and Niyogi [2], Donoho and
Grimes [6], Roweis and Saul [14], Tenenbaum et al. [15] and Zomorodian and Carlsson [17]
have worked on estimating geometric and topological properties of spaces from samples
that come form submanifolds of Euclidean spaces. These kinds of questions belong to a
class of problems called.

One property we are interested in is homology, which essentially gives information about
the number of holes and high dimensional voids in a space. These numbers are called
the Betti numbers βk. For example, β0 gives the number of 0-dimensional holes, which
can be interpreted as the number of connected components of the space. The number
β1 then gives the number of holes, β2 the number of voids and so on. For example, the
unit circle S1 has one connected component and one hole, hence β0 = β1 = 1. There are
no voids of higher dimension in S1, therefore the rest of the Betti numbers vanish. By
identifying the homology of the submanifold we can therefore extract information about
its geometric shape. Consider the sphere and the torus in Figure 2. Both have Betti
numbers β0 = β2 = 1, since both are path connected and enclose a cavity. The torus has
two 1-dimensional holes, indicated by the red and green path, and thus has β1 = 2, while
the sphere has β1 = 0 since any 1-dimensional cycle is contractible to a point. Since both
of them are 2-dimensional submanifolds of R3 (they locally look like R2) the numbers βk
vanish for k ≥ 3.
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1 INTRODUCTION

S2 T 2

Figure 2: The sphere S2 on the left and the torus T 2 are both 2-
dimensional submanifolds of R3.

Consider now a sample x of points drawn from a compact submanifoldM of RN . Regard-
ing the points as a discrete topological space would enable us to compute its homology.
However, this space will have Betti numbers βk = 0 for all k ≥ 1 and β0 is just the
number of points of the sample, which is not useful. We therefore have to approximate
the point-cloud with a space that has non-trivial homology. For this we consider the set
U given by the union of equally sized balls around each of the sample points, that is

U =
⋃
x∈x

Bε(x).

The challenge is to find the right ball-size ε, such that U has a similar shape as the point
cloud, and yet is not just a collection of non-intersecting balls. In Figure 3 we can see
the set U for the point-cloud from Figure 1 with three different radii. If the radius is
too small, we are still left with non-intersecting balls and the homology only captures
the number of points, as shown on the left. On the right, the radius is to large and the
homology will be the one of a single contractible space. The figure in the middle shows
a topological space that captures the shape from the underlying circle. Using standard
constructions, such as simplicial complexes (see Bredon [4] or Hatcher [9]) the homology
of the space U can easily be computed.

Figure 3: The set U with different radii for the point-cloud from Figure 1.
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1 INTRODUCTION

To prove that the homology of U is the same as that of M , we make use of the fact
that two spaces that are homotopy equivalent have the same homology type. Intuitively,
two spaces are homotopy equivalent, if one can be continuously deformed into the other,
without cutting the space. For example, by smoothing out the edges, a square can be
deformed into a circle without cutting.

If we can find the right ball-sizes ε, such that U and M are homotopy equivalent, then we
can deduce the homology of M from the homology of U . In Figure 3 we have seen that
the right ball-size has to be small enough, for U not to fill out any holes of M or create
new ones. In fact, it is bounded from above by a number called the reach onM . Consider
the space that is formed by thickening the circle, as shown in Figure 4. The reach R is

rr

Figure 4: Thickening of the circle to get the tubular neighborhood of the
circle.

the largest number r, such that this space can still be continuously deformed into M . On
the other hand, the ball-size also has to be large enough, so that U does not just have
the homology of a discrete set. This upper bound depends on the sample’s density on
the submanifold, since wide gaps between points require a larger radius, for the balls to
overlap.

Our first result provides a range of radii and a density-condition on the sample, for which
M is homotopy equivalent to U . In fact, we show that U deformation retracts to M ,
which implies homotopy equivalence. While the upper bound for the radii is given in
terms of the condition number

τ =
1

R

of M , the lower bound on the density-condition is given in terms of the ball-size of U .

Theorem 4.1. Let x be any finite collection of points x1, ..., xn ∈ RN such that it is

ε/2-dense in M . Then for any ε <
√

3
5
τ , we have that U strongly deformation retracts to

M . Therefore the homology of U equals the homology of M .

Clearly, the density of x in M depends on the number of points of the sample. However,
the sample could be drawn in such a manner that the points are concentrated to one part
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of the manifold. Thus, a large sample is not a guarantee that the sample is dense enough
in M . That is why, the next result considers a probabilistic setting, in which we provide
a lower bound on the number of points of the sample, in order to guarantee the required
density-condition with high probability. This lower bound depends on the ball-radius ε
and on natural invariants of the submanifold M , such as the covering number (number
of balls that are needed to cover M) and the packing number (number of balls that fit
entirely into M without intersecting each other).

We also treat the situation where the data might be drawn from a probability distribution
that is concentrated around the manifold. We introduce a model of noise, which considers
samples that are drawn according to a probability measure, which is concentrated around
the manifold M , rather on M . In particular, the sample points are allowed to lie within
distance r of the manifold, that is they are contained in the tubular neighborhood of M
with radius r. Considering again the set U , consisting of balls around each sample-point,
we provide a range for the ball-size depending on r and the condition number as well as
a density-condition in terms of r, for which U deformation retracts onto M .

Theorem 5.2. Let 0 < r <
(√

9−
√
8
)
τ and let x be a finite collection of points from

within the distance r of M . If x is r-dense in M . Then for all

ε ∈
(
(r + τ)−

√
r2 + τ 2 − 6τr

2
,
(r + τ) +

√
r2 + τ 2 − 6τr

2

)
,

the set U consisting of the balls of radius ε centered at each sample-point strongly defor-
mation retracts to M .

As for samples without noise, we provide a lower bound on the sample-size in terms of
the covering number, such that the density-condition is guaranteed with high probability.

In Chapter 2 we provide the differential geometric terminology starting with manifolds
and tangent spaces. We will use the notions of connections and the second fundamental
form to establish a relation between curvature and the condition number. The necessary
probability preliminaries are provided in Chapter 3. We will give the basic notions of a
probability space together with some examples. We define the support of a probability
measure, which we use to define probability measures that are concentrated around a
manifold. In Chapter 4 we first prove the theorem that provides sufficient conditions for
the set U to deformation retract onto M . Then we prove the theorem that gives a lower
bound on the number of points in the sample, such that the sample is dense enough onM
with high confidence. The situation where the data is drawn from around the manifold
is treated in Chapter 5. We define probability measures that are concentrated around
a submanifold and We prove analogous theorems for the deterministic and probabilistic
setting as in Chapter 4. At the end of Chapter 5 we briefly give thought to the situation
where we weaken the density-condition on the sample with noise. We can observe, that
the same or even stronger versions of our results can be derived this way.
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2 DIFFERENTIAL GEOMETRY PRELIMINARIES

2 Differential Geometry Preliminaries

In the introduction we have mentioned that a 1-dimensional submanifold of a Euclidean
space is a subspace that locally looks like a line. The tangent space at a point of a
1-dimensional submanifold is the tangent line to the submanifold passing through that
point. In this chapter we will extend these notions to the case of submanifolds of higher
dimensions. In particular, at the end of this chapter we define a quadratic form on the
tangent space, called the second fundamental form, which will help us establish a relation
between the condition number and the curvature of the submanifold. For sections Sec-
tion 2.1, Section 2.3 and Section 2.4, we mainly follow Lee [10], Merry [12] and Einsiedler
and Wieser [8]. In Section 2.5 up to Section 2.9 the terminology is based on Lee [11] and
Carmo [5]. Section 2.10 follows Niyogi et al. [13] and Lee [11].

2.1 Submanifolds and Smooth Maps

We introduce the main objects that we are working with in this thesis, namely smooth
submanifolds of Euclidean spaces. In order compare and build relations between these
objects, we define smooth maps between them. Smoothness is a notion that is well
understood in the case where we consider subsets in the 1-dimensional case, that is of R.
We will extend the definitions to subsets of RN for N ≥ 1. All the notion mention above
can of course even be extended to spaces that are not Euclidean, which is the theory
of smooth manifolds and smooth maps. Since all the spaces we are working with are
Euclidean, we will restrict our definitions to subspaces of Euclidean spaces. However, one
can extend the notions to all smooth manifolds.

To be able to state the definition of smooth manifolds, first recall some definition from
multivariable calculus.

Definition 2.1. Let U ⊂ Rn an open subset and f : U → Rm a continuous map. The
derivative of f along the vector v ∈ Rn at p ∈ U is defined by

∂vf(p) :=
d

dt

∣∣∣
t=0
f(p+ tv),

where d
dt

is the usual derivative with respect to t in all coordinates.

Denote by {ei}ni=1 the standard basis of Rn. This means that every vector v ∈ Rn can be
written as

v = (v1, ..., vn) = v1e1 + ...+ vnen.

For j = 1, ..., N , let xj be the function that sends a vector v to its j-th coordinate. That
is xj is the real-valued function xj : Rn → R, defined by

xj(v) = xj(v1, ..., vn) = vj ∈ Rn.
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2 DIFFERENTIAL GEOMETRY PRELIMINARIES

Definition 2.2. In the special case where v = ej for some j ∈ {1, ..., n}, we call the
derivative along ej of f at p

∂ejf(p) =
d

dt

∣∣∣
t=0
f(p+ tej)

the partial derivative of f at p in the j-th coordinate. We sometimes write ∂f
∂xj (p),

∂
∂xi

∣∣
p
(f) or ∂jf(p).

Example 2.3. Consider the continuous map f : R3 → R defined by

f(x, y, z) = x(y2 + sin(z)).

The partial derivatives of f are

∂xf(x, y, z) = y2 + sin(z), ∂yf(x, y, z) = 2xy, ∂zf(x, y, z) = x cos(z)

for x, y, z ∈ R.

If f = (f1, ..., fm) : U ⊂ Rn → Rm is a continuous map with componen maps f1, ..., fm,
we can compute the partial derivative of each component fi at a point p ∈ U . The
(n × m)-matrix Jf (p) whose (i, j)-th entry is the partial derivative ∂jfi(p) is called the
Jacobi-matrix of f .

Definition 2.4. Let f : U ⊂ Rn → Rm be a function with components (f1, ..., fm). The
derivative of f at p is the linear map

Df(p) : Rm → Rn

given by the (n×m)-Jacobi matrix, whose entries are the partial derivatives of f

Df(p) =


∂f1
∂x1

(p) ∂f1
∂x2

(p) . . . ∂f1
∂xm

(p)

∂f2
∂x1

(p) ∂f2
∂x2

(p) . . . ∂f2
∂xm

(p)
...

...
. . .

...

∂fn
∂x1

(p) ∂fn
∂x2

(p) . . . ∂fn
∂xm

(p)

 .

We now have the definition of the derivative of maps between general Euclidean spaces.
This enables us to define the notion of differentiable, k-differentiable and smoothness.
But first we look at a concrete example of the derivative of a maps.

Example 2.5. Let us consider the map f : R2 → R2, given by f(x, y) = (x+ y2, y + x2).
Then we have the components f1(x, y) = x + y2 and f2(x, y) = y + x2. Their partial
derivatives are

∂xf1(x, y) = 1, ∂yf1(x, y) = 2y
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2 DIFFERENTIAL GEOMETRY PRELIMINARIES

and
∂xf2(x, y) = 2x, ∂yf2(x, y) = 1.

The Jacobi matrix therefore is

Df(x, y) =

 1 2y

2x 1

 .

Definition 2.6. Let f : U ⊂ Rn → Rm be map on an open set U . We say that f is
differentiable at p, if the partial derivatives ∂jf(p) exist at p for every j ∈ {1, ..., n}. We
say that f is twice differentiable, if it is differentiable and the second partial derivatives
∂j∂kf exist for all j, k ∈ {1, ..., n}. In general, for d ≥ 2, we say f is d-differentiable,
if the partial derivatives ∂jf are (d − 1)-differentiable. If f is d-differentiable for every
d ≥ 1, we say that f is smooth.

We can now give the definition of a diffeomorphism between subsets of RN .

Definition 2.7. Let U, V ⊂ Rm. A map f : U → V is called a diffeomorphism, if it is
smooth and bijective and if its inverse f−1 is also smooth.

We are now able to define the notions of charts and transition maps, which we need in
order to define submanifolds.

Definition 2.8. Let M be a subspace of a Euclidean space. A chart (U,φ) on M consists
of an open subset U of M and a diffeomorphism φ onto an open subset of some Euclidean
space RN .

If we have two charts (U,φ) and (V, ψ) on M into RN , we can observe that the map
φ ◦ψ−1 : ψ(U ∩V ) → φ(U ∩V ) is in fact a map from an open set of RN to RN . Thus, we
can apply the notion of differentiability and smoothness from above to these maps.

Definition 2.9. Let (U,φ) and (V, ψ) be charts on some subset M of a Euclidean space.
The maps φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ) are called transition maps.

Definition 2.10. Let m ≥ 1 and M ⊂ RN be a subspace. We say that M is a subman-
ifold of dimension m of RN , if there is a collection of charts {(Uα), φα | α ∈ A} onto
Rm, such that {Uα | α ∈ A} is an open cover of M and the transition maps

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → φα(Uα ∩ Uβ)

are smooth for all α, β ∈ A with Uα ∩ Uβ ̸= ∅.

Let us have a look at some submanifolds of RN .

Example 2.11. (a) Every open set U ⊂ RN is an N-dimensional submanifold, with a
single chart (U, id).

10



2 DIFFERENTIAL GEOMETRY PRELIMINARIES

(b) Every discrete set M ⊂ RN is a 0-dimensional submanifold. A discrete set is a
subset M such that for every p ∈ M there is ε > 0, such that M ∩ Bε(p) = {p}.
For every point p ∈ M , we can consider φp : Bε(p) → Bε(0) to be the translation
map x 7→ x − p, for some small enough ε > 0. This yields a diffeomorphism
φp : {p} → {0}.

(c) Let S2 be the 2-dimensional sphere

S2 = {x ∈ R3 | ∥x∥ = 1}.

This is a 2-dimensional submanifold of R3. Let p0 = (x0, y0, z0) ∈ S2. In the
following, we build charts around p0, depending on the the values of its coordinates.

• If z0 > 0, let U+ := B2
1(0)×(0,∞), where B2

1(0) is the 2-dimensional open unit
disc with radius 1 centered at the origin. The pair (φp0 , U+), where φp0 is the
map defined by

φp0 : U+ → φp0(U+), (x, y, z) 7→ (x, y, z −
√

1− x2 − y2),

gives a chart onto R2. Indeed, the map satisfies that φp0(x, y, z) ∈ R2 × {0} if
and only if (x, y, z) ∈ U+ ∩ S2. We can see that φp0 is a diffeomorphism onto
its image.

• If z0 < 0, we consider the set U− := B2
1(0)× (−∞, 0) and the map

φp0 : U− → φp0(U−), (x, y, z) 7→ (x, y, z +
√

1− x2 − y2),

which is a diffeomorphism onto its image. Hence, (φp0 , U−) is a chart on S2

onto R2.

• If z0 = 0 and y0 > 0, we build a chart (Ũ+, φp0) by considering the set
Ũ+ := {(x, y, z) ∈ R3 | y > 0, x2 + z2 < 1}, (which is U+ from above after ex-
changing y with z) and the map

φp0 : Ũ+ → φp0(Ũ+), (x, y, z) 7→ (x, z, y −
√
1− x2 − z2).

The same argumentation as above shows that this gives a diffeomorphism from
Ũ+ ∩ S2 to R2.

• We are left with the cases z0 = 0 ∧ y0 < 0 and y0 = z0 = 0 ∧ x ∈ {−1, 1}, for
which the open set Up0 and the diffeomorphism can be found analogously.

In general, for N ≥ 3, the (N − 1)-dimensional sphere

SN−1 = {x ∈ RN | ∥x∥ = 1}

is a (N − 1)-dimensional submanifold of RN .

(d) The image of any curve γ : (−1, 1) → Rn is a submanifold of dimension 1.
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2 DIFFERENTIAL GEOMETRY PRELIMINARIES

In Example 2.11 (b), we see that a point-cloud as a submanifold of RN has dimension
0. That is why it does not make sense to consider the sample itself as a submanifold.
Instead, we imagine the points as being collected from a submanifold of RN and want to
identify the geometrical shape of that submanifold.

Let us look at smooth maps between submanifolds of RN . The goal is to state the inverse
function theorem, which says that a smooth map F : M → N between two submanifolds
of Euclidean spaces is locally a diffeomorphism, if the derivative dFp is invertible at every
p ∈ M . For this, we first need to consider a setting, in which we can differentiate these
maps.

Definition 2.12. Let M and N be smooth manifolds of Euclidean spaces with dimension
m and n, respectively. A continuous map F : M → N is called smooth if for each p ∈M
and for some (and hence all) charts φ : U → O ⊂ Rm and ψ : V → Ω ⊂ Rn on M ,
respectively on N , the composite maps

ψ ◦ F ◦ φ−1 : φ(U ∩ F−1(V )) → ψ(F (U) ∩ V )

are smooth.

Example 2.13. Consider the two 2-dimensional submanifolds M and N of R3 as shown
in Figure 5. The charts φ and ψ map an open neighborhood of p, respectively of F (p)
homeomorphically to an open set in R2. The map ψ ◦ F ◦ φ−1 is a map from an open set
of Rm to an open set of Rn and thus, we can apply the notion of smoothness to this map.

Figure 5: Smooth maps between manifolds with composite map, from
Lee [10].

Definition 2.14. Let M and N be submanifolds of RN and F : M → N a smooth map.
If F is a homeomorphism and its inverse F−1 : N →M is also smooth, then we say that
F is a diffeomorphism.
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2 DIFFERENTIAL GEOMETRY PRELIMINARIES

2.2 Homotopy and Strong Deformation Retract

To check if two spaces have the same geometrical shape, one can try to if somehow
continuously deform one space into the other one. For example, by stretching, pulling
or contracting. This brings us to the definition of a homotopy equivalence between two
topological spaces.

Definition 2.15. Let f0, f1 : X → Y be maps between two topological spaces. We say
that f0 and f1 are homotopic, if there is a continuous map F : X × [0, 1] → Y with
F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ X. In that case write f0 ≃ f1.

To say that ≪f0 and f1 are homotopic≫ is in fact an equivalence relation, that is, the
following conditions are satisfied:

• f ≃ f , for every f : X → Y ,

• f ≃ g =⇒ g ≃ f , for all maps f, g : X → Y , and

• f ≃ g and g ≃ h =⇒ f ≃ h, for all maps f, g, h : X → Y .

Definition 2.16. A map f : X → Y between two topological spaces is called a homotopy
equivalence, if there is a map g : Y → X, such that g ◦ f ≃ idX and f ◦ g ≃ idY . In
particular, if such a map f exists, we say that X and Y have the same homotopy type.

Also the relation ≪X and Y have the same homotopy≫ type is an equivalence relation.
Moreover, if f : X → Y is a homeomorphism, then f is clearly a homotopy equivalence,
by taking g = f−1.

Definition 2.17. A space that has the same homotopy type as a single point {x} is called
contractible.

There is even an equivalent definition of contractible spaces as shown in the following
proposition.

Proposition 2.18. A space X is contractible if and only if the identity map idX is
homotopic to a constant map c : X → X.

Example 2.19. Let us look at a few examples of homotopy equivalences.

(a) We show that for all N ≥ 1, the Euclidean space X = RN is contractible. Let
Y = {y0} be the space with one element and c : X → Y be the constant map c(x) for
all x ∈ X. We claim that the inclusion map i : {0} → X is the homotopy inverse to
c. In fact, we have c ◦ i = idY and for the other homotopy equivalence, we consider
the map F : X× [0, 1] → X defined by F (x, t) = tx. Then, the map F is continuous
and it satisfies

F (x, 0) = 0 = i ◦ c(x) and F (x, 1) = x = idX(x).

13



2 DIFFERENTIAL GEOMETRY PRELIMINARIES

Thus, we also have i ◦ c ≃ idX , which shows that the constant map c : X → Y is a
homotopy equivalence. But since Y is a single point, X is contractible.

(b) Let X be an open annulus in R2, centered at the origin containing the unit circle
S1. Let f : S1 → X be the inclusion map. Then it is easy to check that the map f

X

C

Figure 6: The annulus X is homotopy equivalent to a circle.

is a homotopy equivalence with homotopy inverse g, where g : X → S1 is the map
that sends every point x ∈ X to the unique point on S1 that is closest to x.

In the second example we can see that the annulus was somehow
”
squished“ down onto

the circle S1 ⊂ X. We make this notion precise in the following definition.

Definition 2.20. Let X be a topological space and A ⊂ X a subspace. A continuous map
F : X × [0, 1] → X is called a strong deformation retract, if for every x ∈ X and
every a ∈ A the following hold

• F (x, 0) = x;

• F (x, 1) ∈ A;

• F (a, t) = a for all t ∈ [0, 1].

Example 2.21. (a) In Example 2.19 (b) we considered the subspace C ⊂ X, which
was an embedded circle in the annulus. This is in fact an example of a strong
deformation retract where F is the map that moves every point x in the annulus
along a straight line to the closest point on the embedded circle.

(b) Consider the subspace S2 ⊂ R3\{0}, that is, the unit sphere as a subspace of the
Euclidean space R3 pierced at the origin.

One can check, that the map F : RN\{0} × [0, 1] → RN\{0} given by

F (x, t) := (1− t) · x+ t · x

∥x∥
,

which sends a point x onto the unit sphere along the straight ray starting at the
origin and passing through x (see Figure 7) is a strong deformation retract.
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2 DIFFERENTIAL GEOMETRY PRELIMINARIES

S2

O

F (x, 1) x

Figure 7: A deformation retract from the pierced Euclidean space to the
sphere.

2.3 Tangent Vectors, Tangent Spaces and Normal Spaces

Consider a path γ : (−1, 1) → M on some manifold M . We can compute its velocity
vector at a given t0 ∈ (−1, 1) by differentiating γ with respect to t at t0, that is

γ̇(t0) =
d

dt
γ(t)|t=t0 .

t0 γ̇(t0)γ

Figure 8: The velocity vector γ̇(t0) tanget to γ at γ(t0).

In Figure 8 we see that this is a vector tangent to the 1-dimensional submanifold im(γ)
at the point γ(t0). In fact, we say that γ̇(t0) is an element of the tangent space of M at
the point γ(t0). Instead of choosing M to be a 1-dimensional submanifold, we generalize
the notion of the tangent space to all submanifolds of Euclidean spaces. The definition
of the tangent space together with some of their properties will enable us to bring us
one step closer to the condition number of a manifold. Moreover, in this section, we will
show that we can identify the tangent space of RN with RN itself and we will provide a
canonical basis of TpRN . At the end of this section, we will equip the tangent space of a
submanifold with an inner product to get Riemannian submanifolds.
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Definition 2.22. Let M ⊂ RN be a submanifold and p ∈M . The tangent space of M
at p is the set

TpM = {γ̇(0) | γ : (−1, 1) →M is a smooth curve and γ(0) = p} ⊂ RN .

The tangent bundle of M is

TM = {(p, vp) | p ∈M, vp ∈ TpM}.

Recall the partial derivative operatores

Example 2.23. Figure 9 shows the tangent vector space TpS
2 at some point p on the unit

sphere S2.

βγw

v

TpM

M

p

Figure 9: The two tangent vectors v and w are given by v = β′(0) and
w = γ′(0).

We see that the tangent space of M at p is the plane tangent to the sphere passing through
the point p. Since any plane in R3 is isomorphic to R2, we see that TpM is isomorphic
to R2.

This makes us wonder, if this is in general true. For the case, where M = RN itself, we
have the following statement.

Proposition 2.24. For every p ∈ RN , the tangent space TpRN is canonically diffeo-
morphic to RN . In particular, the tangent bundle of RN is canonically diffeomorphic to
RN × RN .

Proof. Let p ∈ RN and v ∈ TpRN with smooth curve γv : (−1, 1) → RN , such that
γv(0) = p and γ̇v(0) = v. Define the map hp : TpRN → {p} × RN via

hp(v) := (γv(0), γ̇v(0)) .

16
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Since v is a tangent vector, γv(0) and γ̇v(0) do not depend on the choice of the curve γv.
This map has an inverse given by

h−1
p (p, x) :=

d

dt
(p+ t · x)(0).

Indeed, γ(t) = p + tx defines a smooth curve for t ∈ (−1, 1) with γ(0) = p+ tx|t=0 = 0
and γ̇(0) = d

dt
(p+ tx)(0) = x ∈ RN . In particular, hp and h

−1
p are both smooth maps and

therefore, h is a diffeomorphism. Since hp does not depend on the choice of a basis of
TpRN , the map hp is in fact a canonical diffeomorphism. Moreover, via the map

h : RN × RN → TM, (p, v) 7→ (v, hp(v)),

we get a canonical isomorphism between RN × RN and TM .

Next we provide a basis of the tangent space TpRN , using the partial derivative operators
we defined earlier. Recall that for any point p ∈ RN and any vector v ∈ RN , we have the
partial derivative operator ∂v|p defined by

∂v|p : f 7→ ∂v|p(f) =
d

dt

∣∣∣
t=0
f(p+ t · v).

Recall that for v = ej we have the partial derivative operator ∂j|p at p with respect to
the j-th coordinate. Let Par(p) be the vector space generated by the partial derivative
operator ∂j|p, for j = 1, ..., N .

Proposition 2.25. The space Par(p) is canonically isomorphic to TpRN .

Proof. Let p ∈ RN . Define the map Φp : TpRN → Par(p), by

Φp(v) 7→ ∂v|p.

First we show that Φp is linear. Let a ∈ R and v, w ∈ TpRN . By the chain rule of the
partial derivative, we have that Φp is linear in the v. Moreover, since ∂v|p is uniquely
determined by the directional vector v, the map Φp is injective.

Consider an arbitrary ∂p = a1∂1|p + ... + a1∂N |p ∈ Par(p). For v = a1e1 + ...+ aNen,
we get Φp(v) = ∂p due to the linearity in the variable v. But this means that Φp is also
surjective. Hence, Φp is a linear isomorphism and since, the isomorphism does not depend
on a chosen basis, the isomorphism is canonical.

Identifying a tangent vector v ∈ TpRN with its partial derivative operator ∂v|p enables us
to view v as an operator on the smooth real-valued functions via

v(f) := ∂v|p(f).

17
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In particular, we can write any vector v ∈ TpRN as a linear combination of the partial
derivatives along the standard basis vectors, that is,

v = v1∂1|p + ...+ vN∂N |p.

This is essentially a matter of labeling the tangent vectors that will become useful in the
setting of vector fields, which are smooth maps from M to the tangent bundle TM , such
that p is mapped into TpM .

2.4 Derivatives of Smooth Maps and The Inverse Function The-
orem

In this section we will state the inverse function theorem, which says that a smooth map
with invertible derivative at some point is a diffeomorphism on a neighborhood of p. In
order to state the theorem, we need some terminology about the derivative of a smooth
map between two submanifold of RN .

Definition 2.26. LetM and N be submanifolds of RN of dimension m and n respectively.
Let F : M → N be a smooth map and p ∈ M . If (U,φ) and (V, ψ) are charts around p
and F (p), the derivative of F at p is the linear map

DF (p) : TpM ⊂ RN → TF (p)N ⊂ RN

given by the matrix, whose entries are the partial derivatives of ψ ◦ F ◦ φ−1 at p.

Using standard notions for a (N ×N)-matrix to be invertible form linear algebra, we can
now state the inverse function Theorem:

Theorem 2.27 (Inverse Function Theorem for Manifolds). Suppose M and N are
smooth manifolds and F : M → N is a smooth map. If p ∈ M is a point such that
DF (p) is invertible, then there are connected neighborhoods U of p and V of F (p) such
that F |U : U → V is a diffeomorphism.

We will skip the proof of the Inverse Function Theorem and refer to Lee [10] for the proof.

2.5 Riemannian Manifolds

In Example 2.23 we have seen that the tangent space TpS
2 ⊂ R3 at some point on the

sphere is the plane that touches the sphere at p. In particular, the tangent space is
a 2-dimensional submanifold of R3. The question arises, what happened to the third
dimension. In fact, consider the affine space A that passes though p and is orthogonal to
the tangent plane TpS

2. Then we immediately get that R3 = TpR3 is the direct sum of the
tangent plane TpS

2 and the affine space A. We will call A the normal space of the sphere
S2 at p. However, to make sense of orthogonality on the tangent space of a submanifold

18
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of RN we need an inner product on the tangent space RN . This is a symmetric and
positive-definite map that is linear in the first argument. If we equip a manifold with an
inner product on each tangent space, we get a Riemannian manifold.

Definition 2.28. Let V be a vector space. An inner product on V is a map

⟨·, ·⟩ : V × V → R

that is

(a) symmetric: ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ V ;

(b) linear in the first argument: ⟨ax + by, z⟩ = a⟨x, z⟩ + b⟨y, z⟩ for all x, y, z ∈ V and
a, b ∈ R;

(c) positive-definite: ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ > 0 whenever x ̸= 0 for all x ∈ R.

Example 2.29. The standard inner product on RN of two vectors v = (v1, ..., vn) and
w = (w1, ..., wn) is given by ⟨v, w⟩ = v1w1 + v2w2 + ...+ vnwn.

Example 2.30. An inner product on the vector space C1([0, 1]) of continuous functions
on [0, 1] is defined as follows. Given two functions f, g ∈ C1([0, 1]) we define

⟨f, g⟩ :=
∫ 1

0

f(x)g(x)dx.

The symmetry follows directly from the symmetry of the multiplication of real numbers.
The linearity can be shown as follows.

⟨af + bh, g⟩ =
∫ 1

0

(af(x) + bh(x))g(x)dx

=

∫ 1

0

(af(x)g(x) + bh(x)g(x))dx

= a

∫ 1

0

f(x)g(x)dx+ b

∫ 1

0

h(x)g(x)dx

= a⟨f, g⟩+ b⟨h, g⟩,

where we used linearity of the integral in the third equation. The positive-definiteness
follows from the fact that x 7→ x2 is a non-negative function.

Definition 2.31. A Riemannian Manifold (M, g) is a real smooth manifold equipped
with an inner product ⟨·, ·⟩p on the tangent space TpM at each point p ∈M .

Example 2.32. Consider the Euclidean space RN . We have seen that for every point
p ∈ RN , the tangent space TpRN can be identified with RN itself, by identifing the tangent
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vectors ∂
∂xj

∣∣
p
with ej for every j = 1, ..., N . The inner product on TpR then is defined on

the basis

⟨ei, ej⟩ = δij =

{
1, if i = j,

0, otherwise.

Another set of Riemannian submanifolds are immersed submanifolds of Riemannian sub-
manifolds.

Definition 2.33. Let M ⊂ Rm and N ⊂ Rn be submanifolds of Euclidean spaces. We
say that a smooth map F : M → N is an immersion if the derivative

DF (p) : TpM ⊂ TpRm → TF (p)N ⊂ Rm

is injective. If F : M → N is an immersion, we say that M is an immersed submani-
fold of N .

Example 2.34. Let F : M ⊂ Rm → N ⊂ Rn be an immersion. If N is a Riemannian
manifold, F induces a Riemannian structure on M by defining

⟨u, v⟩p := ⟨DF (p)(u), DF (p)(v)⟩F (p),

for u, v ∈ TpM . The symmetry and linearity of ⟨·, ·⟩p follow directly from the symmetry of
⟨·, ·⟩F (p) and the linearity of both ⟨·, ·⟩F (p) and the derivative DF (p). Moreover, we have
for all u ∈ TpM

⟨u, u⟩p = ⟨DF (p)(u), DF (p)(u)⟩F (p) ≥ 0.

since ⟨·, ·⟩F (p) is positive-definite. Moreover, since DF (p)(u) = 0 implies u = 0, by the
injectivity of DF (p), we therefore get the positive-definiteness of ⟨·, ·⟩p.

Example 2.35. By Example 2.34 we see that every submanifold M ⊂ RN inherits a
Riemannian structure by restricting the innerproduct of TpRN to TpM ⊂ RN .

2.6 Tubular Neighborhoods, the Reach and the Condition Num-
ber of a Submanifold

In this section we introduce the reach and the condition number of a submanifold of
a Euclidean space. For this we first need the definition of normal spaces and tubular
neighborhoods.

Definition 2.36. Let M be a Riemannian submanifold of the Euclidean space RN . The
normal space of M at p is the orthogonal complement of TpM in TpRN ⊂ RN × RN

with respect to the inner product on RN × RN , that is

NpM := (TpM)⊥ =
{
w ∈ RN | ⟨v, w⟩ = 0,∀v with vp ∈ TpM

}
,
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where vp ∈ TpM corresponds to v ∈ RN . The normal bundle is the set

NM := {(p, w) ∈ RN × RN | p ∈M,wp ∈ NpM}.

We observe that for each point p ∈ M , the inner product on the tangent space splits
TpRN into

TpRN = TpM ⊕NpM.

Definition 2.37. If v ∈ TpRN is a tangent vector, we can write v = vT + vN , where
vT ∈ TpM is the tangential component and vN ∈ NpM is the normal component
of v.

Example 2.38. Consider M to be the space that looks like two tori glued together, as
drawn in Figure 10. The normal space NpM is the 1-dimensional linear subspace passing
through p that is orthogonal to the tangent space TpM

1.

p

n

m

TpM

M

NpM

Figure 10: The normal space NpM at p is the straight line passing
through the point p that is orthogonal to the tangent space TpM .

Consider the normal bundle NM of M . We can regard a normal vector v together with
its base point p both as in RN and thus they can be added together.

Definition 2.39. Define E : RN to be the map that adds the normal vector v to the point
p in RN , that is E(p, v) = p+ v.

Definition 2.40. A tubular neighborhood Tubr(M) with radius r > 0 of M is a
neighborhood U of M in RN that is the diffeomorphic image under E of an open subset
V ⊂ NB of the form

V = {(p, v) ∈ NM | ∥v∥ < r}.
1Actually, the plane drawn in Figure 10 is rather the set set p+ TpM , since TpM is a linear vector space
that always passes through the origin 0. In the same manner, we would need to write p+NpM for the
line through p that is orthogonal to the grey plane. However, for simplicity reasons we will write RN by
identifying v ∈ TpM with p+ v.
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Remark 2.41. Observe that the neighborhood Ur = {x ∈ RN | d(x,M) < r} is a tubular
neighborhood of M if and only if U is homotopic equivalent to M . Here

d(x,M) = min
y∈M

∥x− y∥

is the distance of x to M . This can be illustrated by the example of a 1-dimensional
submanifold that looks like a horseshoe drawn in Figure 11. If r < d/2 (see picture on the
left), then E maps the open set V = {(p, v) ∈ NM | ∥v∥ < r} diffeomorphically onto the
the neighborhood Ur. In particular, both M and Ur are homotopy equivalent to a circle.

dUr

M

x

v wp q

M

Ur

Figure 11: The point x ∈ Ur is both E(p, v) and E(q, w).

If r ≥ d/2 (see picture in the middle), then E|V : V → Ur is not injective. If x is in
the overlap of the tubular neighborhood (see picture on the right), there are two normal
vectors that have its end point in x, each with base point on one side of the two arms of
the manifold, that is E(p, v) = x = E(q, w).

Example 2.42. Consider the open set M ⊂ R2 as in Figure 12, that looks like the the
symbol ∞.

r r̃

M Ur

Figure 12: The tubular neighborhood Ur of the symbol ∞ with radius r.

If Ur = {x ∈ R2 | d(x,M) < r} for r < r̃, then Ur has the same homotopy type as the
manifold M since it deformation retracts onto M . Thus, Ur is a tubular neighborhood of
M with radius r. If the radius r of the neighborhood Ur is greater then the radius r̃ of
the holes, then Ur becomes contractible and is therefore homotopy equivalent to a point,
while M has two loops and hence is not contractible. In that case Ur is not a tubular
neighborhood.
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We now associate the condition number τ to the submanifoldM , in order to describe how
large a manifold can thickened without changing its homotopy type. We will later use it
to limit the curvature of the manifold.

Definition 2.43. The reach of M , denoted by R, is the supremum of all r > 0, for which
there is a tubular neighborhood of radius r.

Definition 2.44. Let R be the reach of M . The condition number τ of M is

τ :=

{
0, if R = ∞,
1
R
, otherwise.

Remark 2.45. By Remark 2.41, we can make the following two observations.

1. For any submanifold of RN the condition number τ is finite.

2. We can also say that the reach of M is the supremum of all r > 0 for which the
neighborhood Ur = {x ∈ RN | d(x,M) < r} is homotopy equivalent to M .

Definition 2.46. Given M , we define the set

G =
{
x ∈ RN |∃p ̸= q ∈M where d(x,M) = ∥x− p∥ = ∥x− q∥

}
.

We call the closure of G to be the medial axis of M .

Example 2.47. Let M ⊂ R2 be the horseshoe-like submanifold from Remark 2.41. Then
the medial axis of M is the ray starting at the center C of M , that passes through the
middle of the two arms of M . In fact, consider any point x on the vertical line as in
Figure 13. The two points p and q on M , as in the definition of G(M), are the base
points of the two normal vectors v and w with E(p, v) = x = E(q, w), as indicated. For
any other point y ∈ R2 the minimal distance to M is unique.

C

x
v

p

w

q

M

G(M)

Figure 13: Middle axis of the manifold M . The point a shows the center
of the two concentric open circles that bound M .
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Definition 2.48. For any point p ∈ M we say that the local feature size σ(p) is the
distance of p to the medial axis.

Then it follows directly from Remark 2.41 that τ = infp∈M σ(p).

2.7 Vector Fields and Connections

Consider a curve γ on a submanifold of RN . We can think of the image of γ as a 1-
dimensional submanifold of M . In particular, for every t ∈ [0, 1], we are provided with a
point p on M . As described in Definition 2.22, we can determine the velocity vector of
γ at any time t. Since the velocity vector γ̇(t) is a tangent vector at the point p = γ(t),
we can define a map that associates to every point p = γ(t) ∈ M a tangent vector
vp := γ̇(t) ∈ TpM , as it can be seen in Figure 14.

p1

p2

p3

p4

vp1

vp2

vp3
vp4

Figure 14: Velocity vector vpi at the point pi, for i = 1, 2, 3, 4.

This way, we can think of a map X : M → TM from the manifold to its tangent bundle
TM = {(p, v) | p ∈ M, v ∈ TM} by sending p to the pair (p, vp) = (p, γ̇(t)), where
γ(t) = p. Such maps are called vector fields on M . We now assume that M is a subman-
ifold of RN and we extend the notion of vector fields to all submanifolds of Euclidean
spaces.

Definition 2.49. A vector field X of M is a map X : M → TM that associates to
every point p ∈M a tangent vector X(p) = Xp ∈ TpM .

Denote by X (M) the set of all vector fields on M . Let X ∈ X (M) be a vector field on M
and f : M → R be a smooth real-valued function. We can think of a new vector field fX
using (fX)p := f(p)Xp ∈ TpM . This is not to be confused with the real-valued function
Xf induced by the vector field as

(Xf)(p) := Xp(f) = ∂Xpf(p) =
d

dt

∣∣∣
t=0
f(p+ tXp),

we have seen in the proof of Proposition 2.25.
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Consider the tangent vectors ∂j|p = ∂
∂xj

∣∣
p
that form a basis of TpRN and thus, also

generate TpM ⊂ TpRN . We can therefore write the evaluation Xp ∈ TpM of a vector field
as

Xp = (a1p∂1|p + ...+ aNp ∂N |p),

for some real numbers ajp that depend on the point p. Thus, by defining Xj : M → R to
be the function Xj(p) := ajp and ∂j to be the vector field on M via p 7→ ∂j|p, we see that
we can write the vector field X ∈ X (M) as

X = X1∂1 + ...+XN∂N ,

which we abbreviate from now on by X = X1∂1 + ...+XN∂N .

Remark 2.50. By the definition of the partial derivatives ∂j|p, for j = 1, ..., N , we see
that ∂j is just the operator that assigns to every point p ∈M the partial derivative operator
of the j-th coordinate at the point p.

Let X, Y ∈ X (M) be vector fields on M . We can write Y = Y 1∂1 + ...+ Y N∂N for
real-valued functions Y j, for j = 1, ..., N for the vector fields ∂j : p 7→ ∂j|p. We have
also seen that for a real-valued function f , we can define another function by Xf , via
(Xf)(p) := ∂Xpf(p). We can apply this to the functions Y j to get functions (XY j) for
j = 1, ..., N . Using them as components with the generating vector fields ∂j, we get a
new vector field (XY 1)∂1 + ...+ (XY N)∂N .

Definition 2.51. Let X, Y ∈ X (M) be vector fields on M . For j = 1, .., N , let Y j be the
component functions on Y , that is we have Y = Y 1∂1 + ...+ Y N∂N . Then we define XY
to be the vector field defined componen-twise by (XY )j = XY j.

We have seen that the map that associates to each point on a curve its velocity vector is a
vector field on the curve. In Section 2.8, we introduce geodesics, which are a generalization
of straight lines in RN . A curve on RN is a straight line if and only if its acceleration
is identically zero. However, on a arbitrary submanifold, we cannot just compute the
acceleration of a path, since the velocity vectors do not even belong to the same tangent
space. To make sense of the idea of differentiate the velocity vector field on an arbitrary
submanifold, we introduce the notion of connections, which are essentially a coordinate-
invariant set of rules for taking the directional derivatives of vector fields.

In the following, C∞(M) is the class of smooth real-valued functions.

Definition 2.52. A linear connection on M is a map ∇ : X (M)× X (M) → X (M),
written (X, Y ) 7→ ∇XY , satisfying the following properties:

(a) ∇XY is linear over C∞(M) in X:

∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C∞(M)
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(b) ∇XY is linear over R in Y :

∇X(aY1 + bY2) = a∇XY1 + b∇XY2 for a, b ∈ R

(c) ∇XY satisfies the following product rule:

∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞(M)
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Example 2.53. An example of a connection is the Euclidean connection ∇. Let X
and Y = Y 1∂1 + ...+ Y N∂N be vector fields on M . Then we define ∇XY to be the vector
field

∇X

(
Y 1∂1 + ...+ Y N∂N

)
:= (XY 1)∂1 + ...+ (XY N)∂N .

In other words, ∇XY is the vector field whose components are the directional derivatives
of the components of Y in direction of X. All the connections that we will use in this
thesis are either ∇ itself or restriction of the Euclidean connections to submanifolds.

Consider again the velocity vector field of a curve. Instead of mapping points on im(γ)
to the velocity vectors, we can also map a given time to the velocity vector at that time.
To generalize this idea we have the following definition.

Definition 2.54. Let γ : I = [0, 1] → M be a smooth curve. A vector field along γ is
a smooth map V : I → TM such that V (t) ∈ Tγ(t)M for all t ∈ I. Denote by T (γ) the
space of all vector fields along γ.

Example 2.55. Let γ : I →M be a smooth curve. The most obvious example of a vector
field along γ is its velocity vector field γ̇ ∈ T (γ) as shown in Figure 15.

γ̇(t0)
γ̇(t1)

γ

Figure 15: The velocity vector field along the curve γ. At each t the
vector field gives the velocity vector γ̇(t) with base point γ(t).

2.8 Geodesics and Parallel Transport of Vector Fields

In this section we define the notion of geodesics, which are essentially a generalization of
straight lines. For example, if two points on a sphere have to be connected by a path on
the sphere, the shortest path is not going to be a straight line, since the sphere does not
contain any straight lines. In particular, if γ is any curve in RN with velocity vector field
γ̇, we can check if γ is a straight line by checking if the acceleration γ̈ vanishes or not.
However, in an arbitrary submanifold we cannot just compute γ̈, since γ̇(t) and γ̇(t′), for
t ̸= t′ ∈ I, live in different tangent spaces and the notion of subtracting has no meaning.
This motivates a different way to define the acceleration of a curve.
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Lemma 2.56. Let ∇ be a linear connection on M . For each curve γ : I → M , the
connection ∇ determines a unique operator

Dt : T (γ) → T (γ)

satisfying the following properties:

(a) Linearity over R:

Dt(aV + bW ) = aDtV + bDtW, for a, b ∈ R.

(b) Product rule:
Dt(fV ) = ḟV + fDtV, for f ∈ C∞(I).

(c) If V is induced by a vector field X ∈ X (M), that is, for all t ∈ I we have
V (t) = X(γ(t)), then

DtV (t) = ∇dγ/dtX.

For any V ∈ T (γ) we call DtV the covariant derivative of V along γ.

We can use the notion of the covariant derivative to define the acceleration of a curve and
what it means for a curve to be a geodesic.

Definition 2.57. The acceleration of a smooth curve γ : I → M with respect to ∇ is
Dtγ̇, where γ̇ is the velocity vector field of γ.

If the connection ∇ in question is the connection of a submanifold of a Euclidean space
relative to the standard metric, then, as expected, the acceleration of γ is

Dtγ̇(t) :=
d

dt
γ̇(t) = γ̈(t),

that is the second derivative with respect to t in each component.

Definition 2.58. A curve γ is called a geodesic if its acceleration vanishes, that is
Dtγ̇ ≡ 0.

The most obvious examples of geodesics are the ones in the Euclidean space RN . A
geodesic between two points p and q in RN is straight line connecting the two points. The
following exampl e shows, that for different connections, one might has a path that is a
geodesic relative to one connection, but not relative to the other connection.

Example 2.59. Let p ∈ S1 be a point on the unit circle. Using the standard parametriza-
tion of polar coordinates, indicated by square brackets, we have

(1, φ) := (x(φ), y(φ)) = (cos(φ), sin(φ)), for φ ∈ [0, 2π),
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we can write p in polar coordinates p = (1, φ0), for some φ ∈ [0, 2π). Suppose that
0 < φ0 ≤ π and φ : [0, 1] → S1 is the path in cartesian coordinates

γ(t) := (cos(tφ0), sin(tφ0)).

Then, γ is the path in Figure 16 connecting the points q = (1, 0) and p.

p

q

γ(t)

γ̈(t)

γ̇(t)

Figure 16: A geodesic γ between q = (1, 0) and p on the sphere that is
no geodesic in R2.

Its acceleration according to the Euclidean connection is just the second time derivative
of the path with respect to the cartesian coordinates, that is,

γ̈(t) =
d2

dt2

(
cos(tφ0), sin(tφ0)

)
=
(
− φ2

0 cos(tφ0), φ
2
0 sin(tφ0)

)
.

Since φ0 ̸= 0, we see that γ̈ ̸≡ 0 and therefore, γ is not a geodesic in R2. However,
regarding γ as a curve on S1 with the polar coordinates, we see that

γ(t) = (1, tφ0).

The covariant derivative on S1 is the time derivative with respect to the polar coordinates.
Therefore, we have

Dtγ(t) =
d2

dt2
(1, tφ0) =

d

dt
(0, φ0) = (0, 0).

Thus, with respect to the connection on S1, we have Dtγ(t) ≡ 0 and hence, γ is a geodesic
on S1.

Example 2.60. We consider the submanifold S2 ⊂ R3 with the connection ∇ relative to
the standard metric on the sphere. Let p = (φ1, θ1) and q = (φ2, θ2) be two points on the
unit sphere, using spherical coordinates

(φ, θ) 7→
(
sin(φ) cos(θ), sin(φ) sin(θ), cos(φ)

)
,
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for φ ∈ φ ∈ [0, π], θ ∈ [0, 2π). Consider the curve γ : I → S2,

γ(t) = (φ(t), θ(t)) := (1− t) · (φ1, θ1) + t · (φ2, θ2).

To see that γ is a geodesic, we can calculate its acceleration Dtγ̇ according to the spherical
coordinates. In fact, we have

Dtγ̇ =
d

dt

(
γ̇(t)

)
=

d

dt

(
(φ2, θ2)− (φ1, θ1)

)
= 0,

since p and q do not depend on t. However, if we consider the acceleration with respect to
the Euclidean connection ∇, we see that Dtγ̇ ̸≡ 0, since the curve moves along the sphere
and therefore has curvature, as it can be seen in Figure 17. From now on, We will refer
to Dtγ̇ as γ̈.

p

S2

q

γ

Figure 17: A geodesic curve γ on the unit sphere S2.

Another notion that we need to simplify computation has to do with measuring the length
of a path. Let γ : I →M be a smooth curve. Then

length(γ) =

∫ 1

0

∥γ̇(t)∥dt.

We can parametrize γ by the length of the path.

Definition 2.61. Let γ : I → M be a smooth curve with length l. We call the function
s : I → J = [0, l],

s(t) :=

∫ t

0

|γ̇(r)|dr

the arc length function of γ. We can solve for t to get the function t : J → I. In
particular, we can define a new curve β : J → M as β(s) := γ ◦ t(s) = γ(t(s)). We say
that a curve of this form is said to be parametrized by arc length.

An important feature of a curve that is parametrized by arc length is, that it has velocity
vectors of length 1. To see this, let β(s) := (γ ◦ t)(s) be a curve parametrized by arc
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length. Then

∥β′(s)∥ =

∥∥∥∥ ddsγ(t(s))
∥∥∥∥ =

∥∥∥∥γ̇(t(s)) · dtds
∥∥∥∥ =

∥∥∥∥γ̇(t) · 1

γ̇(t)

∥∥∥∥ = 1. (1)

Definition 2.62. Let M be a smooth manifold and p, q ∈ M be two points. We define
dM(p, q) to be the length of a geodesic that connects p and q.

Observe that dM(p, q) is well-defined, since two geodesics connecting the same two points
must have the same length.

A further notion that relates to the definition of geodesic is the notion of parallel vector
fields along curves.

Definition 2.63. Let ∇ be a linear connection on M . We say that a vector field V along
a curve γ is parallel along γ with respect to ∇, if DtV (t) ≡ 0.

Remark 2.64. Let γ be a smooth curve on M . and V (t) the vector field along γ given
by V (t) = γ̇ = dγ

dt
. We observe that γ is a geodesic if and only if the velocity vector field

γ̇ is parallel along γ.

For the notion of parallelism, we are provided with a theorem of uniqueness.

Theorem 2.65. Given a curve γ : I →M , t0 ∈ I and a vector V0 ∈ Tγ(t0)M , there exists
a unique parallel vector field V along γ such that V (t0) = V0. This unique vector field V
is called parallel transport of V0 along γ.

Example 2.66. Let γ be any smooth curve on RN . The parallel vector fields V (t) along
γ with respect to the Euclidean connection are exactly the ones whose components are
constant. Figure 18 shows that the parallel transport assigns vectors to every t ∈ I that
have exactly the same direction and the same length, namely the one of V0.

2.9 The Second Fundamental Form

We can now introduce the second fundamental form, which measures the curvature of a
submanifold within of a Euclidean space. We will show that the second fundamental form
is bounded from above by the condition number τ in all directions. For this, let M be a
Riemannian submanifold of RN .

Consider the Euclidean connection ∇ on RN . If X and Y are vector fields on M , they
extend to vector fields X and Y on RN , that is X and Y are vector fields on RN with
X|M ≡ X and Y |M ≡ Y , respectively. Therefore we can define

∇XY :=
(
∇XY

)T
,

that is, the tangential projection of the vector field ∇XY . It can be shown that this is in
fact the Riemannian connection relative to the metric induced on M (see Carmo [5]).

31



2 DIFFERENTIAL GEOMETRY PRELIMINARIES

γ(t0)

V0

γ

V (t)

Figure 18: Parallel vector field V (t) with respect to ∇ whose components
are constant. In particular, V (t) is the parallel transport of V0 along γ.

Definition 2.67. If X (M) is the space of vector fields on M , we can define a map
B : X (M)×X (M) → X (M)N via

B(X, Y ) := ∇XY −∇XY =
(
∇XY

)N
,

where X and Y are any extensions of X and Y , respectively.

That this definition does not depend on the choice of the extensions, can be seen by the
following: If X1 and Y 1 are two different extensions of X and Y , then we have

B(X, Y )−B(X1, Y ) =
(
∇XY −∇XY

)
−
(
∇X1

Y −∇XY
)
= ∇X−X1

Y

which vanishes on M , since X −X1 = 0 on M . Similarly, we have

B(X, Y )−B(X, Y1) =
(
∇XY −∇XY

)
−
(
∇XY 1 −∇XY

)
= ∇X

(
Y − Y 1

)
.

This also vanishes on M , since Y − Y 1 = 0 on M . Hence, the map B is well-defined.
Moreover, the map B is bilinear over C∞(M) and symmetric. However, before we can
prove this, we need to define the notion of Lie brackets, since we use them to prove the
symmetry of B.

Definition 2.68. For vector fields X, Y ∈ X (M), we define the Lie bracket of X and
Y to be the vector field defined as [X, Y ] := XY − Y X.

The vector fields XY and Y X are defined as in Definition 2.51. Thus, if we write
X = X1∂1 + ...+XN∂N and Y = Y 1∂1 + ...+ Y N∂N for real-valued functions Xj and
Y j, for j = 1, ..., N , we see that

[X, Y ] = XY − Y X =
((
XY 1

)
∂1 + ...+

(
XY N

)
∂N
)
−
((
Y X1

)
∂1 + ...+

(
Y XN

)
∂N
)
.
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Component-wise we have

[X, Y ]i =
(
Xj∂jX

i
)
∂i −

(
Y j∂jX

i
)
∂i =

(
Xj∂jX

i − Y j∂jX
i
)
∂i.

Since we are only interested on what happens on M and TpM , we will omit the notation
X. If the vector field X ∈ X (M) appears in relation with ∇, this means that we apply
∇ to an extension of X.

Lemma 2.69. The map B : X (M)×X (M) → X (M)N is C∞(M)-bilinear and symmet-
ric.

Proof. The C∞(M)-linearity follows directly form the C∞(M)-linearity of ∇ and ∇ in
both arguments.

To show that B is symmetric, we first prove that the Euclidean connection ∇ and thus,
also the connection ∇, satisfies the following symmetry condition

∇XY = ∇YX + [X, Y ].

By Writing X = X1∂1 + ...+XN∂N and Y = Y 1∂1 + ...+ Y N∂N , we get by definition of
the Euclidean connection in each component(

∇XY −∇YX
)i

=
(
∇XY

)i − (∇YX
)i

=
(
XY i

)
∂i −

(
Y X i

)
∂i

=
(
XY i

)
∂i −

(
Y X i

)
∂i

=
(
Xj∂jX

i − Y j∂jX
i
)
∂i.

Comparing the components, we see that these are exactly the ones of the Lie Bracket.
Reordering the equation gives the desired symmetry. Thus, applying this symmetry con-
dition to B(X, Y ), we get

B(X, Y ) = ∇YX + [X, Y ]−∇YX − [X, Y ]

= ∇YX −∇YX

= B(X, Y ),

where we used in the second equality that any extension of X restricted to M coincides
with X.

Before we continue with defining the second fundamental form, we will give the following
two technical remarks.

Remark 2.70. Let γ : I → M be a smooth curve, ∇ a linear connection on M . If
V,W ∈ T (γ) are vector fields along γ that are induced by some vector fields X, Y ∈ X (M),
we will write ∇VW for ∇XY .
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Remark 2.71. If γ : I → RN is a curve and V (t) is a vector field along γ, then we observe
that the covariant derivative of V along γ coincides with dV

dt
(t), which is the vector field

along γ, whose components are the time-derivative of the components of V . That is if
V (t) = V 1(t)∂N + ...+ V N(t)∂N , for components V i : I → R, then

DtV (t) =
dV 1

dt
(t)∂1 + ...+

dV N

dt
(t)∂N .

Let us get back to the map B defined above. Since B is bilinear, the value B(X, Y )(p) only
depends on the values X(p) and Y (p), hence B induces a map B : TpM × TpM → NpM ,
which is bilinear and symmetric.

We are now in the position to define the second fundamental form. For p ∈ M and
η ∈ NpM with ∥η∥ = 1, the map Bη : TpM × TpM → R, defined by

Bη(v, w) := ⟨B(v, w), η⟩

is a symmetric bilinear form.

Definition 2.72. Let p ∈ M ⊂ RN and η ∈ NPM with ∥η∥ = 1. The second funda-
mental form at p along the normal vector η is the quadratic form Iη : TpM → R defined
by

Iη(u) := Bη(u, u) = ⟨η,B(u, u)⟩.

Definition 2.73. Let η ∈ NpM with ∥η∥ = 1. The norm of the second fundamental
form in direction η is given by

λη := sup
u∈TpM

Iη(u)
⟨u, u⟩

.

Observe that Bη is associated to a linear self-adjoint2 operator Lη : TpM → TpM by

⟨Lηu, v⟩ = Bη(u, v) = ⟨η,B(u, v)⟩.

Thus, we can also express λη using this operator by

λη = sup
u∈TpM

Iη(u)
⟨u, u⟩

= sup
u∈TpM

⟨u, Lηu⟩
⟨u, u⟩

.

In order to to compute the second fundamental form, it makes sense to find an expression
for the operator Lη. We get the following proposition.

Proposition 2.74. Let p ∈ M , x ∈ TpM and η ∈ (TpN) with ∥η∥ = 1. Let N be a local

2A self-adjoint operator with respect to the inner product ⟨·, ·⟩ is a linear operator L with ⟨L·, ·⟩ = ⟨·, L·⟩.
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extension η normal to M and X a local extension of x on M . Then

Lη(x) = −
(
∇xN

)T
= −

(
∇XN

∣∣
p

)T
.

Proof. Let y ∈ TpM and let Y be a local extension of y on M . Then ⟨N, Y ⟩ = 0 and
therefore

⟨Lη(x), y⟩ = ⟨B(X, Y )(p), η⟩.

By definition and the fact, that
〈 (

∇XY
)T
, N
〉
vanishes, we get〈

Lη(x), y
〉
= ⟨∇XY,N⟩(p) = −⟨∇XN, Y ⟩(p) = ⟨∇xN, y⟩.

Example 2.75. Let M be a plane in R3 of the form

M : ax+ by + cz = 0, for a, b, c ∈ R3.

Let v ∈ X (M) be a tangent vector and

n =
1

λ
(a, b, c),

with λ =
√
a2 + b2 + c2 be a unit normal vector to M . We want to compute Lη(v). By

Proposition 2.74, we have

Lη(v) = −
(
∇vη

)T
= −

(
∇v

(
1

λ
(a, b, c)

))T

.

By definition, this is the tangential component of the directional derivative of n along v,
that is

Lη(v) = −∂v
(
1

λ
(a, b, c)

)
= −1

λ
(∂va, ∂vb, ∂vc) = (0, 0, 0).

Since v was arbitrary in TpM , we see that the norm of the second fundamental form of a
plane is 0. This makes sense, since a plane in R3 has no curvature.

Example 2.76. Let M = S2
r be the sphere with radius r and η the normal vector field

that assigns to every p ∈M the normal vector at p pointing outward with unit norm. Fix
a point p ∈ S2

r and let v ∈ TpS
2
r . If γ : [0, 1] → S2

r is a curve with γ(0) = p and γ̇(0) = v,
then we can compute

Lη(v) = −∇vη,

which is the directional derivative of n along v. But since v = γ̇(0), this is the same as

d

dt

∣∣∣
t=0
n ◦ γ(t).
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But n ◦ γ(t) is the normal unit vector at γ(t) pointing outward, which is given by γ(t)
∥γ(t)∥ .

Since γ(t) is on S2
r , we get

Lη(v) =
d

dt

∣∣∣
t=0

γ(t)

∥γ(t)∥
=

d

dt

∣∣∣
t=0

γ(t)

r
=

1

r
γ̇(0) =

1

r
v.

By replacing v with v
∥v∥ , we see that the norm of the second fundamental form of S2

r is

λη =
1
r
. But since we know that for S2

r the reach is R = r, we see that λη = τ , that is the
norm of the second fundamental form of S2

r is just the condition number.

2.10 Curvature and the Condition Number

In Example 2.76 we have seen that the norm of the second fundamental form of a sphere
is the same as its condition number τ . In this section we will show that, for an arbitrary
submanifold of RN , the second fundamental form in all directions is bounded by the
condition number, that is λη ≤ τ for all normal unit vectors of the submanifold. Recall
the norm of the second fundamental form in direction of η, which is defined by

λη = sup
u∈TpM

Iη(u)
⟨u, u⟩

= sup
u∈TpM

⟨u, Lηu⟩
⟨u, u⟩

.

Let us now state the following proposition.

Proposition 2.77. If M is a submanifold of RN with condition number τ , then the norm
of the second fundamental form is bounded by τ in all directions. In other words, for all
p ∈M and for all η ∈ NpM with ∥η∥ = 1, we have

λη ≤ τ.

Proof. We proof by contradiction. Let R be the reach of the submanifold M . Let us
assume that

λη > τ =
1

R
.

This means that there is a point p ∈M and a tangent vector u ∈ TpM , such that

λη ≥
⟨η,B(u, u)⟩

⟨u, u⟩
>

1

R
.

By replacing u with u/∥u∥, we can assume that u has unit norm, so

λη ≥ ⟨η,B(u, u)⟩ > 1

R
.

Consider a geodesic curve γ : J →M parametrized by arc length, such that γ(0) = p and
γ̇(0) = u. Here J = [0, l], where l is the arc length of γ. Consider the point x := p+R · η,
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that is the point at distance R from p in the direction η. By definition of the reach of a
submanifold, we see that p is the closest point on M to the center of the R-ball given by
x, hence for all t ∈ I we have

∥γ(t)− x∥2 ≥ ∥Rη∥2 = R2. (2)

By using

∥γ(t)− x∥2 = ⟨γ(t)− x, γ(t)− x⟩
= ⟨γ(t), γ(t)⟩ − 2⟨γ(t), x⟩+ ⟨x, x⟩
= ⟨γ(t), γ(t)⟩ − 2R⟨γ(t), η⟩+R2,

the inequality (2) becomes

⟨γ(t), γ(t)⟩ − 2R⟨γ(t), η⟩ ≥ 0. (3)

Now let us define the function g : I → R via g(t) = ⟨γ(t), γ(t)⟩ − 2R⟨γ(t), η⟩. Then we
have g(0) = 0, because γ(0) = 0. Moreover,

g′(t) = ⟨γ̇(t), γ(t)⟩+ ⟨γ(t), γ̇(t)⟩ − 2R⟨γ̇(t), η⟩
= 2⟨γ̇(t), γ(t)⟩ − 2R⟨γ̇(t), η⟩.

Since γ(0) = 0 and γ̇(t) ∈ TpM and η ∈ NpM , we have g′(0) = 0. Finally, we get

g′′(t) = 2⟨γ̈(t), γ(t)⟩+ 2⟨γ̇(t), γ̇(t)⟩ − 2R⟨γ̇(t), η⟩.

Again, since γ(0) = 0 and ⟨γ̇(t), γ̇(t)⟩ = 1, due to the parametrization by arc length (see
(1)), we get

g′′(0) = 2− 2R⟨γ̇(0), η⟩.

By Remark 2.64, γ being a geodesic is equivalent to the velocity vector field γ̇ = dγ
dt

being
parallel. We now consider

B

(
dγ

dt
,
dγ

dt

)
= ∇ dγ

dt

dγ

dt
−∇ dγ

dt

dγ

dt

= Dt
dγ

dt
−Dt

dγ

dt
,

where Dt is the covariant derivative with respect to the Euclidean connection ∇ and Dt is
the covariant derivative with respect to the connection relative to the metric on M , that
is

∇ dγ
dt

dγ

dt
=

(
∇ dγ

dt

dγ

dt

)T

.
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Since dγ
dt

is parallel, we have Dt
dγ
dt

= 0 and therefore

B

(
dγ

dt
,
dγ

dt

)
= Dt

dγ

dt
= γ̈(t).

Thus, by our assumption we see, that

⟨η,B(u, u)⟩ =
〈
η, B

(
dγ

dt
,
dγ

dt

)∣∣∣∣
t=0

〉
= ⟨η, γ̈(0)⟩ > 1

R
.

Using this, we can compute

g′′(0) = 2− 2R⟨γ̇(0), η⟩ > 2− 2R
1

R
= 0.

Therefore, g has a maximum at t = 0 with g(0) = 0 and hence, there exists t∗ ∈ I with
g (t∗) < 0, which is a contradiction to (3), that is, that g(t) ≥ 0 for all t ∈ I. Thus, we
have shown that λη ≤ 1

R
= τ.

Remark 2.78. Recall that, for a normal unit vector η, the map B from Definition 2.72
induces a linear operator Lη via

⟨Lηu, v⟩ = ⟨η,B(u, v)⟩.

An important feature of this self-adjoint operator Lη is that ∥Lη∥ ≤ τ , where

∥Lη∥ = sup
u,v∈TpM\{0}

⟨v, Lηu⟩
∥v∥∥u∥

,

is the standard operator norm.

We have seen that for a compact submanifold the condition number is finite. Hence,
Proposition 2.77 shows that the norm of the second fundamental form of our manifold
M is bounded. Therefore, the manifold cannot curve too much locally. Thus, the angle
between the tangent spaces of two different points that are nearby cannot be too large.

Let p and q be two points with associated tangent spaces TpM and TqM , where we consider
them transported to the origin according to the Euclidean connection on RN . We can
compare tangent vectors in each tangent space with each other. Thus, for any vectors
u ∈ TpM and v ∈ TqM , we define the angle θ between them, using the standard formula

cos(θ) =
|⟨u′, v′⟩|
∥u′∥ · ∥v′∥

,

where ⟨·, ·⟩ is the standard inner product in RN and u′, v′ are the vectors obtained by
parallel transport of u and v, respectively, to the origin.
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q

p

θ

M
TpM

TqM

u

v

u′

v′

O

Figure 19: Angle between two tangent vectors u and v relative to different
points p and q, after parallel transporting them to the origin O.

From now on we omit the prime notation, that is, when we write ⟨u, v⟩ for two tangent
vectors in different tangent spaces, we mean the standard inner product between the
parallel transport of u and v to the origin according to the Euclidean connection on RN .
In order to define the angle between the two tangent spaces, we maximize over TpM and
minimize over TqM , that is, the angle ϕ between TpM and TqM is defined by

cos(ϕ) = min
u∈TpM

max
v∈TqM

⟨u, v⟩
∥u∥∥v∥

.

Moreover, recall the dM(p, q), that is, the length of a geodesic connecting p and q.

Proposition 2.79. Let M be a submanifold of RN with condition number τ . Let p and q
be two points on M . Let ϕ be the angle between the tangent spaces TpM and TqM . Then

cos(ϕ) ≥ 1− τdM(p, q).

Proof. Consider two points p, q ∈ M connected by a geodesic curve γ : J = [0, l] →M ,
that is parametrized by arc length, such that γ(0) = p and γ(L) = q, where L is the
arc length of the curve γ. Let vp ∈ TpM with ∥vp∥ = 1 and consider V (t) to be the
parallel transport of vp along γ, with respect to the connection ∇ on M . Then we have
vq := V (l) ∈ TqM . Moreover, since V is parallel, we have that ⟨V (t), V (t)⟩ is constant on
all of J and since ⟨V (0), V (0)⟩ = ∥vp∥2 = 1, we have ⟨V (t), V (t)⟩ = 1 for all t ∈ J .

Let us have a closer look at the vector field V along γ. We would like to express the vector
V (l) = vq in terms of V (0) = vp. To do this, we will use the fundamental theorem of

calculus. According to Remark 2.71, the components of DtV (t) are dV i

dt
(t), for real-valued

functions V i : J → R. Since DtV (t) is another vector field along the curve γ, we can
integrate along γ. Using the fundamental theorem of calculus on the components we then
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get ∫ l

0

(
DtV

)i
dt =

∫ l

0

dV i

dt
(t)dt =

(
V i(l)− V i(0)

)
.

If we define w to be the vector with components wi = (V i(l)− V i(0)), we can write
V (l) = V (0) +w, where this addition is to be understood after parallel transportation to
the origin. But then we have

⟨V (0), V (l)⟩ = ⟨V (0), V (l) + w⟩
= ⟨V (0), V (0)⟩+ ⟨V (0), w⟩
= 1 + ⟨V (0), w⟩.

If θ is the angle between vp and vq, we then get

cos(θ) = ∥⟨V (0), V (l)⟩∥
= ∥1 + ⟨V (0), w⟩∥
≥ 1− ∥⟨V (0), w⟩∥,

since ∥vp∥ = ∥vq∥ = 1 and thus, we get

cos(θ) ≥ 1− ∥w∥. (4)

Observe that vp was arbitrary. If we chose vp, such that

cos(ϕ) = min
u∈TpM

max
v∈TqM

⟨u, v⟩
∥u∥∥v∥

= max
v∈TqM

⟨vp, v⟩
∥vp∥∥v∥

= max
v∈TqM

⟨vp, v⟩,

where we assume ∥vp∥ = ∥v∥ = 1 in the last equality, this implies, that

cos(ϕ) ≥ cos(θ) ≥ 1− ∥w∥. (5)

Observe that we have DtV (t) = ∇ dγ
dt
V (t) and since V is parallel along γ with respect to

∇, we see that (
∇ dγ

dt
V (t)

)T
= ∇ dγ

dt
V (t) = 0.

Therefore, ∇ dγ
dt
V (t) =

(
∇ dγ

dt
V (t)

)N
. But note that we defined the bilinear map B to be

the component of ∇ dγ
dt
V (t) in the normal direction, see (2.67). Hence, we get

DtV (t) = B

(
dγ

dt
, V (t)

)
.
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Now consider η := 1
∥DtV (t)∥ · DtV (t), that is the normed vector in direction of DtV (t).

Then, we see that

∥DtV (t)∥ =
1

∥DtV (t)∥
⟨DtV (t), DtV (t)⟩

= ⟨η,DtV (t)⟩

= ⟨η,B
(
dγ

dt
, V (t)

)
⟩

= ⟨dγ
dt
, LηV (t)⟩ ≤ ∥γ̇(t)∥∥LηV (t)∥.

But by Remark 2.78, the operator norm of Lη is bounded from above by τ and thus, we
have

DtV (t) ≤ ∥γ̇(t)∥∥Lη∥ ≤ ∥γ̇(t)∥ · τ.

Using the definition of w, we get

∥w∥ = ∥
∫ l

0

DtV (t)dt∥

≤
∫ l

0

∥DtV (t)∥dt

≤ τ

∫ l

0

∥γ̇(t)∥dt ≤ τ · dM(p, q),

where the last inequality follows from the fact that γ is a geodesic from p to q. Combining
(5) and what we just found, we get that

cos(ϕ) ≥ 1− ∥w∥ ≥ 1− τdM(p, q),

which finishes the proof.

The next proposition shows a relationship between the number dM(p, q) between two
points and the Euclidean distance. This can then be used to give a bound on the angle
between TpM and TqM , that only depends on the condition number τ and the Euclidean
distance ∥p− q∥RN , where we think of p and q as points in RN .

Proposition 2.80. Let M be a submanifold of RN with condition number τ . Let d ≤ τ
2

and p, q ∈ M be two points in M with Euclidean distance ∥p− q∥RN = d. Then dM(p, q)
is bounded by

dM(p, q) ≤ 1

τ

(
1−

√
1− 2dτ

)
.

Proof. Let d ≤ τ
2
and consider two points p, q ∈M with Euclidean distance ∥p−q∥RN = d

and let γ : J = [0, l] → M be a geodesic curve starting at p, parametrized by arc length,
that connects the points p and q. If s := dM(p, q), then we have γ(0) = p and γ(s) = q.
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Since γ is a geodesic, by Remark 2.64, we see that the vector field dγ
dt

along γ is parallel
with respect to ∇, and we have seen in the proof of Proposition 2.77 that

γ̈ = B (γ̇, γ̇) .

Using the bound from Proposition 2.77, we get that for any η ∈ Nγ(t)M with ∥η∥ = 1, we
have

∥γ̈∥ = ∥B (γ̇, γ̇)∥ ≤ λη ≤ τ. (6)

We now relate the Euclidean distance d to the geodesic distance s. Observe that by the
fundamental theorem of calculus we have

γ(s)− γ(0) =

∫ s

0

γ̇(t)dt,

where we consider p and q as points in RN . Moreover, using the fundamental theorem of
calculus on γ̇, we get

γ̇(t) = γ̇(0) +

∫ t

0

γ̈(r)dr.

By defining u(t) :=
∫ t

0
γ̈(r)dr, where this integral is to be thought in every component of

γ̈(t), we get γ̇(t) = γ̇(0) + u(t). In particular, we have for every t ∈ J , using (6), that

∥u(t)∥ = ∥
∫ t

0

γ̈(r)dr∥ ≤
∫ t

0

∥γ̈(t)∥dr ≤ τ · t.

But now we can bring everything together to get

∥γ(s)− γ(0)∥RN = ∥
∫ s

0

γ̇(t)dt∥

= ∥
∫ s

0

(γ̇(0) + u(t)) dt∥

≥ ∥
∫ s

0

γ̇(0)dt∥ − ∥
∫ t

0

γ̈(r)dr∥

≥ s · ∥γ̇(0)∥ −
∫ t

0

∥γ̈(r)∥dr

≥ s− τ ·
∫ s

0

t dt,

where we used, that γ is parametrized by arc length in the last line. But this gives us

d = ∥γ(s)− γ(0)∥RN ≥ s− 1

2
τs2. (7)
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The inequality in (7) is satisfied only if

s ≤ 1

τ
− 1

τ

√
1− 2dτ or s ≥ 1

τ
+

1

τ

√
1− 2dτ .

However, if d = 0 that means that p = q and thus s = 0 and we observe that only the
first inequality applies to this case. But the first inequality gives us exactly

dM(p, q) ≤ 1

τ

(
1−

√
1− 2dτ

)
.

Example 2.81. Let us again consider the two points q = (1, 0) and p = (1, φ0) in polar
coordinates on the unit circle from Example 2.59. We want to Proposition 2.79 to find a
lower bound on the angle ϕ between TqS

1 and TpS
1. Proposition 2.79 gives us

cos(ϕ) ≥ 1− τdS1(p, q).

For the unit circle we have τ = 1. Moreover, we have seen in Example 2.59 that the curve
γ : [0, 1] → S1 given by

γ(t) := (cos(tφ0), sin(tφ0)),

is a geodesic between p and q. Thus, we are left with computing its length.

length(γ) =

∫ 1

0

∥(̇γ)(t)∥dt.

The norm of the velocity vector γ̇ at t is given by

∥γ̇(t)∥ =
∥∥∥(− φ0 sin(tφ0), φ0 cos(tφ0)

)∥∥∥ =
√
φ0 = φ0,

since φ0 ≥ 0. Hence, ϕ is bounded by the relation

cos(ϕ) ≥ 1− τdS1(p, q) = 1− φ0.

Remark 2.82. Combining Proposition 2.79 and Proposition 2.80 we get, that if p and q
are two points in M with d = ∥p− q∥ ≤ τ/2, then

cos(ϕ) ≥ 1− τdM(p, q)

≥ 1− τ · 1
τ

(
1−

√
1− 2dτ

)
=

√
1− 2dτ .

With this proposition we have finished our preparation in terms of background and in
terms of differential geometry.
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3 Probability Preliminaries

In this chapter we give the necessary terminology about probability spaces to prove these
bounds and in order to prove the following lemma.

Theorem 3.3. Let α > 0 and δ > 0. Let {Ai}li=1 be a finite collection of measurable
sets and let µ be a probability measure on

⋃l
i=1Ai such that for all 1 ≤ i ≤ l, we have

µ(Ai) ≥ α. Let x = {x1, ..., xn} be a set of i.i.d. draws according to µ. Then if

n ≥ 1

α

(
log l + log

1

δ

)
,

we have
µ (x ∩ Ai ̸= ∅, for all i) ≥ 1− δ.

The bounds on the sample size for capturing the homology with high confidence will be
shown in terms of natural invariants of the underlying submanifold, such as the covering
number and the packing number. In the second part of this chapter we will define these
invariants and show how they relate to each other. In Section 3.1 we follow the notions
of Durrett [7] and in Section 3.2 the notion follow the one in Wainright [16] and Bölcskei
[3].

3.1 Probability Measure and its Support

Let us start with the definition of probability measures.

Definition 3.1. A probability space is a triple (Ω,F , µ), consisting of the set of out-
comes Ω, the set of events F and the probability measure µ that satisfy the following
conditions.

• Ω ⊂ RN is a non-empty subset.

• F is a σ-algebra, that is a non-empty collection of subsets of Ω satisfying:

(a) ∅,Ω ∈ F ,

(b) A ∈ F =⇒ Ω \ A ∈ F and

(c) if {Ai}i≥0 are countably many disjoints sets in F , then
⋃

i≥0Ai ∈ F .

• P : F → [0, 1] is a non-negative function, such that

(a) µ(A) ≥ µ(∅) = 0, for all A ∈ F and

(b) if {Ai}i≥0 are countably many disjoint sets in F , then

µ

(⋃
i≥0

Ai

)
=
∑
i

µ(Ai).
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Let us look at some basic examples of probability spaces.

Example 3.2 (Discrete Probability Measure). Let Ω be a discrete set, that is, Ω is
finite or countably infinite. Let F be the set of all subsets of Ω, that is F = P(Ω). Let
p : Ω → [0, 1] be a function with

p(ω) ≥ 0,∀ω ∈ Ω and
∑
ω∈Ω

p(ω) = 1.

Define µ : F → [0, 1] as µ(A) =
∑

ω∈A p(ω). Then (Ω,F , µ) is a probability measure. In
many case, where Ω is finite, one considers the function p(ω) = 1/|Ω|.
Definition 3.3. The Borel σ-algebra B(M) of a subset of RN is the smallest σ-algebra
containing the open sets of M . We call B ∈ B(M) a Borel set.

Example 3.4 (Measures on the real line). Let Ω := [a, b] be a compact interval and
F the Borel sets on R. Since every open set can be approximated by a union of countably
many intervals of the form (c, d], for a ≤ c < d ≤ b, it suffices to define the probability
measure on these intervals. We define µ : B([a, b]) → [0, 1] to be

µ
(
(c, d]

)
:=

d− c

b− a
.

This function defines a probability measure on the interval Ω. In the case, where N ≥ 2
and Ω = M ⊂ RN is a compact subset, we can again consider the Borel sets B(M) and
the non-negative function µ : B(M) → [0, 1] defined as

µN(B) :=
vol (B)

vol (M)
,

where vol (·) is the N-dimensional volume on RN . For N = 1, the measure µN is the same
as the measure µ defined on the compact interval. These measures are called uniform
probability measures.

Lemma 3.5. Let Ai ⊂M be measurable sets and A ⊂
⋃m

i=1Ai. Then

µ(A) ≤
m∑
i=1

µ(Ai).

A further notion in order to make sense of
”
drawing random“ from a submanifold is

independence.

Definition 3.6. Let (Ω,F , µ) be a probability space. We say that events Ai ∈ F for
i = 1, ...l are independent if and only if

µ

(
l⋂

i=1

Ai

)
=

l∏
i=1

µ(Ai).
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We say that events are independent and identically distributed (short i.i.d., if they
are independent and have the same probability distribution, that is, they belong to the
same probability space.

We now have enough to state the following lemma, which, once expressed by information
about our submanifold M , will provide an estimate on the number of data points needed
to capture the homology of M with high confidence.

Lemma 3.7. Let α > 0 and δ > 0. Let {Ai}li=1 be a finite collection of sets and let µ
be a probability measure on

⋃l
i=1Ai, such that we have µ(Ai) ≥ α, for all 1 ≤ i ≤ l. Let

x = {x1, ..., xn} be a set of i.i.d. draws according to µ. Then, if

n ≥ 1

α

(
log l + log

1

δ

)
,

we have
µ (x ∩ Ai ̸= ∅, for all i) ≥ 1− δ.

Proof. For i = 1, ..., l, let Ei be the event
”
x ∩ Ai is empty“. Then, by the independence

of the events Ai, we have

µ(Ei) = µ

(
n⋂

j=1

{xj /∈ Ai}

)

=
n∏

j=1

µ(xj /∈ Ai)

= (1− µ(Ai))
n ≥ (1− α)n.

Therefore, we have

µ

(
l⋃

i=1

Ei

)
≤

l∑
i=1

µ(Ei)

≤
l∑

i=1

(1− α)n = l(1− α)n.

Let now n ≥ 1
α

(
log l + log 1

δ

)
. We want to show that l(1− α)n ≤ δ. For this, we consider

the function
f(x) = x · ex − ex + 1, for x ≥ 0.

We observe that f(0) = 0 and f ′(x) = x · ex ≥ 0, when x ≥ 0. Hence, f is monotonically
increasing, therefore, for all x ≥ 0, we have f(x) ≥ 0. Applied to x = α, we see that
f(α) ≥ 0 implies

αeα − eα + 1 ≥ 0,
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which simplifies to
e−α ≥ (1− α).

We can use this to show that

l(1− α)n ≤ le−αn

≤ le−α· 1
α
·(log l+log 1

δ ) = δ.

Putting all together, we get that

µ (x ∩ Ai ̸= ∅,∀i) = µ

(
l⋂

i=1

{x ∩ Ai ̸= ∅}

)

= 1− µ

(
l⋃

i=1

Ei

)
≥ 1− l(1− α)n ≥ 1− δ.

In Section 5.2 we will consider a probability measure that is concentrated around the
manifold. What we mean is, that it has support on a neighborhood of M .

Definition 3.8 (Ambrosio et al. [1]). The support of the measure µ is the set defined by

supp(µ) :=
{
x ∈ RN : µ(U) > 0 for each open neighborhood U of x

}
.

3.2 Covering Number and Packing Number

In this section we will give the definitions of the covering number of a manifold, which
is the minimal number of balls that covers the manifold, as well as the packing number,
which is the maximal number of balls that fit into the manifold.

Definition 3.9. Let ε > 0. An ε-covering of M ⊂ RN is a set {x1, ..., xl} ⊂M , such that
for every x ∈ M , there exists 1 ≤ i ≤ l, such that x ∈ Bε (xi). The ε-covering number
C(ε) is the cardinality of the smallest ε-covering.

Definition 3.10. Let ε > 0. An ε-packing of M ⊂ RN is a set {x1, ..., xl} ⊂ M , such
that ∥xi − xj∥ > 2ε, for any 1 ≤ i < j ≤ l. The ε-packing number P (ε) is the cardinality
of the largest ε-packing.

Example 3.11. An ε-covering of M , see for example Figure 20 on the left, is a collection
of balls centered at elements in M with radius ε that covers all of M , that is

M ⊂
l⋃

i=1

Bε (xi) .
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An ε-packing, see for example Figure 20 on the right, is a collection of non-intersecting
balls with radius ε and centered in M .

2ε
2ε

Figure 20: Left: An ε-covering of the compact submanifold M . All
the balls have radius ε and center in M . Thus, in this case C(ε) ≤ 25.
Right: An ε-packing of the compact submanifold M . All the balls have
radius ε and center in M . Thus, in this case P (ε) ≥ 14.

The following lemma puts the covering number in relation to the packing number and
shows that they essentially provide the same measure of size of a set.

Lemma 3.12. Let M be as above and ε > 0. Then P (2ε) ≤ C(2ε) ≤ P (ε).

Proof. For the first inequality consider a minimal 2ε-covering and a maximal 2ε-packing
of M . By definition of the 2ε-packing no two centers can lie in the same ball of the
2ε-covering. Thus, there are at least as many balls in the 2ε-covering as centers in the
2ε-packing, which shows that P (2ε) ≤ C(2ε).

For the second inequality consider a maximal ε-packing {x1, ..., xl}, that is l = P (ε).
Suppose that x1, ..., xl does not form a minimal 2ε-covering, that is there is x ∈ M such
that ∥x−xi∥ > ε, for all 1 ≤ i ≤ l. But then we have Bε(x)∩Bε(xi) = ∅ for all 1 ≤ i ≤ l,
hence {x1, ..., xl, x} forms an ε-packing of size l + 1. But this contradicts the fact that
l = P (ε). Therefore, {x1, ..., xl} is a 2ε-covering, which proves C(2ε) ≤ P (ε).
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4 Capturing the Homology of a Submanifold from

Samples

In the first part of this chapter we will discuss the conditions on the data sample, in order
to capture the homology group of the underlying submanifold from the union of balls
centered at the data points. In the second part we will use the results from Section 2.10
to provide an upper bound on the number of points in the sample, such that the homology
group of the unerlying submanifold can be found with high confidence.

4.1 Deterministic Setting

Let M be a compact Riemannian submanifold of the Euclidean space RN . Consider
a finite collection of points x = {x1, ..., xn} ⊂ M , which illustrates the sample, and
Euclidean balls Bε (xi) of radius ε centered at xi. We define the open set U ⊂ byRN

U :=
⋃
x∈x

Bε (x) .

We want to prove the following theorem.

Theorem 4.1. Let x be any finite collection of points x1, ..., xn ∈ RN , such that it is
ε/2-dense in M . Then, for any ε <

√
3/5τ , we have that U strongly deformation retracts

onto M . Therefore the homology of U equals the homology of M .

We start with the definition of an ε-dense set in M .

Definition 4.2. Let ε > 0. A subset S ⊂ M is said to be ε-dense, if for every p ∈ M
there is x ∈ S, such that ∥x− p∥ < ε.

Consider the canonical map π : U →M , which is given by the restriction of the canonical
projection π0 : Tubτ (M) →M , that is

π(x) = argmin
p∈M

∥x− p∥.

We observe that the fibres π−1(p) are given by NpM ∩U ∩Bτ (p).We need the intersection
with Bτ (p), in order to eliminate distant regions that may intersect with NpM .

Therefore,

π−1(p) =
⋃
x∈x

Bε(x) ∩NpM ∩Bτ (p).

We now define a set st(p) that turns out to be star shaped relative to p and equal to the
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fibre π−1(p) proving that π−1(p) contracts to p. Let us define st(p) as

st(p) =
⋃

{x∈x;x∈Bε(p)}

Bε(x) ∩NpM ∩Bτ (p).

Clearly, st(p) ⊆ π−1(p). Figure 21 shows, how the intersections Bε(x) ∩NpM ∩Bτ (p) are
formed, in the case where the submanifold M is the unit circle S1. Moreover, it shows
why we need the intersection with Bτ (p).

p
x1

x2

x

Bε(x)

Bτ (p)

M

Bε(x1) ∩NpM ∩Bτ (p)

Bε(x2) ∩NpM ∩Bτ (p)

Figure 21: The two colored lines represent two intersections of st(p).
For the fibre π−1(p) the corresponding ball Bε(xi) in the intersection
Bε(xi) ∩NpM ∩Bτ (p) does not necessarily have to contain p itself.

We can see in Figure 21, why the intersection with Bτ (p) is necessary. Without it, the
line segment of NpM that intersects Bε(x) on the right of the picture would be in π−1(p)
as well, however π does not map this line segment to p, but to its antipodal point instead.
In particular, the following lemma is true.

Lemma 4.3. Let p ∈ M . Then the set st(p) is star shaped relative to p and therefore
contracts to p.

Proof. Let q ∈ st(p) be arbitrary. We need to show that the line segment pq is entirely
contained in st(p). Since p and q are both in NpM , which is an affine subspace of RN ,
the line segment pq is in NpM . Moreover, by definition of st(p), there is an x ∈ x with
x ∈ Bε(p), such that q ∈ Bε(x). But since x ∈ Bε(p), we also have p ∈ Bε(x) and by
convexity of Bε(x) the line segment pq is also contained in Bε(x). Last, the line segment
is contained in Bτ (p), due to its convexity and thus

pq ⊆ Bε(x) ∩NpM ∩Bτ (p),

for some x ∈ x with x ∈ Bε(p), which shows that pq ⊆ st(p).

The next lemma shows that the set st(p) and the fibre π−1(p) are in fact the same.

Lemma 4.4. Let p ∈M , then st(p) = π−1(p).
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Proof. Since we already know that st(p) ⊂ π−1(p), we need to show the other inclusion.
Thus, we consider an arbitrary v ∈ Bε(q)∩NpM ∩Bτ (p), where q ∈ x and q /∈ Bε(p). For
such a v, we can consider the worst case scenario, shown in Figure 22a on the left, where
p is such that σ(p) = τ .

p

v

q

ε

A b

NpM

TpM
θ

(a) The point q could potentially
lie anywhere outside the two circles,
but not inside, since otherwise we
would have σ(q) < σ(p). However,
the distance ∥v−q∥ is greatest, when
q is on one of the two circles with ra-
dius τ . Therefore, this is the worst
case. Without loss of generalities,
one may consider q lying on the top
circle.

p

v

q

x d

A

NpM

TpM
θ

(b) The point x lies within ε/2-
distance of p, but could potentially
lie anywhere outside of the two cir-
cles of radius τ . With the assump-
tion that q is on the top circle, how-
ever, the worst case for x is, when it
lies on the bottom circle, as shown
in the picture.

In order to show that v ∈ st(p), we need to find x ∈ x such that v ∈ Bε(x)∩NpM . Since
x is ε/2-dense in M , we can find x ∈ x within ε/2-distance of p. We consider again the
worst case scenario for the position of x, which is shown in Figure 22b. To show that
such x exists, we first show that the distance A = ∥v − p∥ does not exceed ε2/τ . Using
this bound, we show that for the most unfavourable position of x, as in Figure 22b, we

have ∥v − x∥ < ε if and only if ε <
√

3
5
τ .

Thus, let us first prove the following lemma.

Lemma 4.5. The distance A = ∥v − p∥ is at most ε2/τ .

Proof. We consider the configuration of v, q and p that makes the distance ∥v − p∥ as
large as possible. It suffices to reason about this in the plane passing through these
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points. Following Figure 22a, we have

A = b sin(θ) +
√
∥v − q∥2 − b2 cos2(θ) ≤ b sin(θ) +

√
ε2 − b2 cos2(θ),

where we used that v ∈ Bε(q) and where b = 2τ sin(θ). This gives us

A ≤ 2τ sin2(θ) +
√
ε2 − 4τ 2 sin2(θ) cos2(θ).

To find the maximal A, we calculate dA
dθ
, which is given by

dA

dθ
= 2τ sin(θ)− 4τ 2 sin(2τ) cos(2τ)

2
√
ε2 − τ 2 sin2(2τ)

= 2τ sin(2θ)

(
1− τ cos(2θ)√

ε2 − τ 2 sin2(2τ)

)
.

If ε < τ , we have

dA

dθ
< 2τ sin(2θ)

(
1− τ cos(2θ)√

τ 2 − τ 2 sin2(2τ)

)

= 2τ sin(2θ)

(
1− τ cos(2θ)√

τ 2(1− sin2(2τ))

)
= 0.

Thus, A is monotonically decreasing with θ and in order to get the maximal A, the angle
θ must be as small as possible. In particular, θ is minimal when b = 2τ sin(θ) = ε. With
this value of θ we get

A ≤ 2τ sin2(θ) +
√
ε2 − 4τ 2 sin2(θ) cos2(θ)

= 2τ sin2(θ) +
√
4τ 2 sin2(τ)(1− cos2(τ)).

But this simplifies to A ≤ 4τ sin2(θ) = ε2/τ . Since this is the largest value that A can
take, we have shown, that A is at most ε2/τ.

What is left to show is, that there exists x ∈ x with v ∈ Bε(x)∩NpM . By the ε/2-density,
there is an x ∈ x such that x ∈ Bε/2(p). Consider Figure 22b for the most unfavorable
position of x. By the same argument as in the proof of Lemma 4.5, we see that

A =
√

∥v − x∥2 − b2 cos2(θ)− b sin(θ),

where d = 2τ sin(τ) = ε/2. Using this value, we get

A =

√
∥v − x∥2 − ε2

4

(
1− ε2

16τ 2

)
− 2τ

ε2

16τ 2
.
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From the picture we see, that the worst case happens, when A takes the largest value
possible, which is at most ε2/τ due to Lemma 4.5. Plugging in this value for A gives us√

∥v − x∥2 − ε2

4

(
1− ε2

16τ 2

)
− 2τ

ε2

16τ 2
=
ε2

τ
,

which leads to √
∥v − x∥2 − ε2

4

(
1− ε2

16τ 2

)
=

9

8

ε2

τ
.

Squaring both sides and solving for ∥v − x∥2 gives

∥v − x∥2 = 81

64

ε4

τ 2
− ε2

4
.

But since this expression represents the largest value that ∥v − x∥2 can take, we see that
∥v − x∥ < ε if and only if

81

64

ε4

τ 2
− ε2

4
< ε2,

which simplifies to
ε2

τ 2
<

3

5
.

Hence, we have shown that ∥v− x∥ < ε if and only if ε <
√

3
5
τ. This finishes the proof of

Lemma 4.4.

Proof of Theorem 4.1. We can now construct a strong deformation retract form U to M
by

F : U × [0, 1] → U, F (x, t) := t · π(x) + (1− t) · x.

The map F is well-defined and continuous, because st(p) = π−1(p) ⊂ U is star shaped for
all p ∈M . Moreover we have

• F (x, 0) = x for every x ∈ U ,

• F (x, 1) = π(x) ∈M for every x ∈ U ,

• F (a, t) = t · π(a) + (1− t)a = t · a+ (1− t) · a = a, for every a ∈M ,

where the last condition follows from the fact, that π(a) = a for every a ∈ M . Thus,
we see that F is a strong deformation retract form U to M and thus, the homology of U
equals the homology of M , which finishes the proof.
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4.2 Probabilistic Setting

Let us again consider a compact submanifoldM of the Euclidean space RN with condition
number τ . In this section we will show the following theorem.

Theorem 4.6. Let M be a compact submanifold of RN and let ε <
√

3/5τ . Consider a
finite collection of points x̄ = {x1, ..., xn} of M , drawn in an i.i.d. fashion according to
the uniform probability measure on M and let δ > 0. If

n ≥ 1

α

(
log l + log

1

δ

)
,

where

l = C(ε/4) and α =
1

P (ε/4)
,

then we have with probability greater than 1− δ that M is ε/2 dense.

We start with a series of lemmas as preparation for the proof of the theorem. For this,
consider the tangent space TpM of M at the point p and let f : RN → TpM be the
canonical projection. We begin with the following lemma.

Lemma 4.7. Let ε > 0 and A = M ∩ Bε(p). The derivative of df is non-singular at all
points q ∈ A.

Proof. We prove by contradiction and assume, that there is q ∈ A, so that df is singular.
Then TqM is oriented so that the vector with origin q and end f(q) lies in TqM .

Since q ∈ Bε(p), we have d = ∥q − p∥RN < τ/2. By combining Proposition 2.79 and
Proposition 2.80, we get, using Remark 2.82, that

cos(ϕ) ≥
√

1− 2d

τ
> 0,

where ϕ is the angle between the tangent spaces TqM and TpM . But cos(ϕ) > 0 implies
that |ϕ| < π

2
, which contradicts the fact that the vector from q to f(q) is orthogonal to

TpM and lies in TqM .

Lemma 4.8. Let p ∈ M be a point and k the dimension of M . Let ε > 0 and consider
A =M ∩Bε(p). If θ = arcsin

(
ε
2τ

)
, then, in terms of k-dimensional volumes, we have

vol (A) ≥
(
cos(θ)

)k
vol
(
Bk

ε (p)
)
,

where Bk
ε (p) is the k-dimensional ball in TpM centered at p.

Proof. Let Bk
r (p) be the k-dimensional ball of radius r = ε ·cos(θ), where θ = arcsin(ε/2τ)

on the tangent space TpM , which is illustrated in Figure 24. We can see, that the image of
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p TpMf(q′)f(q)

q

q′

TqM
Tq′M

Figure 23: Singularity of df at the point q and non-singularity within A,
illustrated by the red line segment within the blue circle.

A, illustrated by the red line within the blue dashed circle, in the tangent space contains
Bk

r (p), since the curvature of M cannot be greater than the one of the big circle with
radius τ .

Consider the image of A under f . If we can show, that Bk
r (p) ⊂ f(A), we are done,

because then

vol (A) ≥ vol (f(A)) ≥ vol
(
Bk

r (p)
)
=
(
cos(θ)

)k
vol
(
Bk

ε (p)
)
,

where we used
vol
(
Bk

d·ε(p)
)
= dk · vol

(
Bk

ε (p)
)
,

for d ≥ 0. To see that Bk
r (p) ⊂ f(A), we notice that f is an open map since it is a

projection map onto an open subset and moreover, by Lemma 4.7, its derivative is non-
singular at every point q ∈ A, thus df(q) is invertible at every point in A, in particular at
p ∈ A. Therefore, we can apply the inverse function theorem (Theorem 2.27) to get that
f is locally invertible at p and hence, there is a ball Bk

r (p), such that

f−1
(
Bk

s (p)
)
⊂ A.

We can increase s and denote by s′ the smallest s, for which

f−1
(
Bk

s′(p)
)
̸⊂ A and f−1

(
Bk

s′(p)
)
⊂ A.
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p

ε TpM

M

Bk
r (p)

θ

Figure 24: The green ball B1
r (p) is contained in the projection of the set

A =M ∩Bε(p) to TpM .

Here, Bk
s′(p) denotes the closure of the k-dimensional ball of radius s with center p. This

implies, that there is x ∈ ∂Bk
s′(p) with q = f(x) /∈ A and q ∈ A, since f is an open map.

Therefore, q is in the boundary of A and thus, ∥q− p∥RN = ε. We see that s′ = ε · cos(φ),
where φ is the angle between the lines qp and f(q)p. By the curvature bound implied by
τ , we see that |φ| ≤ |θ|. This gives s′ = ε cos(φ) ≥ ε cos(θ) = r.

The way we defined s′, we now see, that f−1
(
Bk

r (p)
)
⊂ A and thus, Bk

r (p) ⊂ f(A), which
finishes the proof.

Proof of Theorem 4.6. We want to apply Lemma 3.7 to our setting form Section 4.1. For
this we have to define the numbers l, the measurable sets Ai for 1 ≤ i ≤ l and the bound
α. For our setting, we consider a minimal cover of the manifold M by balls of radius
ε/4. Let {yi : 1 ≤ i ≤ l} be the centers of balls that constitutes such minimal cover.
Hence l = C(ε/4) is the ε/4-covering number. For 1 ≤ i ≤ l, we choose the sets Ai to be
Ai := Bε/4(yi) ∩M . Since µ is the uniform probability measure on M , we have

µ(Ai) ≥
vol (Ai)

vol (M)
,

for all i ≤ i ≤ l. With θ = arcsin (ε/8τ), let us define the value α to be

α :=

(
cosk(θ)

)
vol
(
Bk

ε/4(p)
)

vol (M)
.
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Then, for all 1 ≤ i ≤ l, Lemma 4.8 provides that µ(Ai) ≥ α. Our setting now satisfies the
requirements from Lemma 3.7, so for any δ > 0, if

n ≥ 1

α

(
log l + log

1

δ

)
,

we have with probability greater than 1−δ that for each 1 ≤ i ≤ l, that x∩Ai is not empty.
To show that this implies ε/2-density, we pick p ∈ M arbitrary. Since {yi : 1 ≤ i ≤ l}
constitute a covering, there is such an yi with p ∈ Bε/4(yi). Because we have with high
probability that Ai ∩ x ̸= ∅, there is x ∈ x, such that x ∈ Bε/4(yi). Combining them
yields, that for this particular x we have, using the triangular inequality, that

∥p− x∥ ≤ ∥p− yi∥+ ∥yi − x∥ < ε

4
+
ε

4
=
ε

2
.

But this is exactly saying, that with probability greater than 1− δ the data sample x lies
ε/2-dense in M .

In particular, using Lemma 4.8, we immediately get a simple bound on the packing number

P (ε) ≤ vol (M)

vol (M ∩Bε(p))
≤ vol (M)

(cosk(θ)) vol (Bk
ε (p))

, (8)

where p ∈M is a point and θ = arcsin(ε/2τ). Hence, using ε/4 instead, we get

P
(ε
4

)
≤ vol (M)

(cosk(θ)) vol
(
Bk

ε/4(p)
) =

1

α
.

Putting everything together, we get the theorem.

Theorem 4.1 and Theorem 4.6 together show that if we were to draw enough sample points
from the submanifoldM , we get the necessary density condition with high probability and
thus, we can compute the homology with high confidence by computing the homology of
U . In particular, using Lemma 3.12 and the bound on the packing number found in (8),
we obtain the lower bound on the sample size entirely in terms of the condition number.

Unfortunately, in many problems, the sample might not exactly lie on the manifold itself,
for the draws happen with a certain level of noise. The next section discusses exactly this
problem and makes sure, that also with noise, we can still compute the homology of the
manifold M with high confidence.
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5 Capturing the Homology of a Submanifold from

Samples with Noise

In this chapter we introduce noisy data, that is, a sample is drawn according to a prob-
ability distribution from around the manifold, rather from the manifold. Similar as in
Section 4.1, we provide necessary conditions, such that the set U deformation retracts
onto the submanifold. In the second part of this chapter we discuss again the probabilis-
tic setting and apply Lemma 3.7 to provide an upper bound on the number of points in
the sample, such that the set U captures the homology group of M with high confidence.
In the last section, we discuss the setting of samples with noise with a weaker density
condition. Applied for the special setting in Theorem 4.1, we will be able to improve the
bound on the ball size of U .

5.1 Deterministic Setting

We will proceed in a similar fashion as in Section 4.1. The main difference is, that our
sample set does not need to be contained in M . In the following, we will prove this
theorem.

Theorem 5.1. Let 0 < r <
(√

9−
√
8
)
τ and let x be an r-noisy set of finite points that

is r-dense in M . Then for all

ε ∈
(
(r + τ)−

√
r2 + τ 2 − 6τr

2
,
(r + τ) +

√
r2 + τ 2 − 6τr

2

)
,

the set U defined by

U :=
⋃
x∈x

Bε(x)

strongly deformation retracts to M .

Before we begin with the prove, we define the notion of r-noisy sets.

Definition 5.2. Let 0 < r < τ . A finite set x is called r-noisy, if it is contained in the
tubular neighborhood Tubr(M).

Proof of Theorem 5.1. First, we show, that for the choice of ε, we have M ⊂ U . For this,
we observe, since r < τ , that we have

(r + τ)−
√
r2 + τ 2 − 6τr

2
≥ (r + τ)−

√
r2 + τ 2 − 2τr

2
,

which simplifies to

(r + τ)−
√

(r − τ)2

2
=

(r + τ)− (τ − r)

2
= r.
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Therefore, for the choice of ε from the statement, we certainly have ε > r. Let now
p ∈ M , then there is x ∈ x, such that p ∈ Br(x), since x is r-dense in M . By the fact
that ε > r, we see that

p ∈ Br(x) ⊂ Bε(x) ⊂ U

and thus, M ⊂ U .

Consider the projection π0 : Tubr(M) → M from the tubular neighborhood to M and
let π : U → M be its restriction to U . We claim that for each p ∈ M , the fibre π−1(p)
contracts to the point p. We prove this by showing that π−1(p) is star-shaped with respect
to p. Let v ∈ π−1(p) and consider the line segment vp. Let q ∈ x, such that v ∈ Bε(q),
which exists since v ∈ π−1(p) ⊂ U . If q ∈ Bε(p), we have vp ⊂ Bε(p) ∩ Bε(q) due to
the convexity of balls in RN . But this means that vp ⊂ π−1(p) and therefore π−1(p) is
star-shaped and hence, it contracts to p.

Let us assume that q /∈ Bε(p). Since x is r-dense in M , there is x ∈ Br(p) ⊂ Bε(x). We
want to show that for this x, we have v ∈ Bε(x), so we can use the same argumentation
as before to see, that the fibre of p contracts to p.

As in the proof of Theorem 4.1, it is enough to reason in the plane passing through the
point v, p and q, as shown in Figure 25, where TpM and NpM intersect with this plane
in the point p.

We want to find a sufficient condition, so that v ∈ Bε(x). In Figure 25 we see that
v ∈ Bε(x) as long as ∥v − p∥ < ε− r. Rearranging and squaring gives(

τ − (ε− r)
)2
< A2 ≤ (τ − r)2 − ε2, (9)

where the latter inequality follows by using the Pythagorean theorem on the triangle
drawn in the upper circle. Expanding the squares, it becomes

ε2 − ε(τ + r) + 2τr < 0.

This quadratic inequality is satisfied, whenever

ε ∈

(
(τ + r)−

√
(r + τ)2 − 8τr

2
,
(r + τ) +

√
(r + τ)2 − 8τr

2

)

=

(
(r + τ)−

√
r2 + τ 2 − 6τr

2
,
(r + τ) +

√
r2 + τ 2 − 6τr

2

)
,

provided that the term under the square root is strictly greater than 0, that is

r2 + τ 2 − 6τr > 0.
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v

p

x

q

TpM

NpM

r

A

τ

Figure 25: The picture shows the configuration of the points p, v, q and
x that make the distance ∥v − x∥ as large as possible. The two pair of
concentric circles of radius τ and τ − r indicate, that q cannot lie inside
the smaller of the two circles, due to the curvature of M . However, the
point q could potentially lie anywhere outside the circle with radius τ−r,
but similar as in Figure 22a, the distance A is maximal when q is on the
circle.

However, this quadratic inequality in r is satisfied as long as

r <
6τ −

√
36τ 2 − 4τ 2

2
= (3− 2

√
2)τ =

(√
9−

√
8
)
τ,

or

r <
6τ +

√
36τ 2 − 4τ 2

2
= (3 + 2

√
2)τ =

(√
9 +

√
8
)
τ.

Since r > τ implies that Tubr(M) has different homology than M , the second condition
cannot be taken into account.

Altogether, we have shown that, as long as r <
(√

9−
√
8
)
τ and

ε ∈
(
(r + τ)−

√
r2 + τ 2 − 6τr

2
,
(r + τ) +

√
r2 + τ 2 − 6τr

2

)
,

we have that vp ∈ Bε(x) and thus π−1(p) contracts to p.
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The map F : U × [0, 1] → U defined by

F (x, t) = (1− t)x+ tπ(x)

gives a strong deformation retract from U to M .

5.2 Probabilistic Setting

Let M be a submanifold of the Euclidean space RN and let µ be a probability measure
on RN . Let 0 < r < τ be a positive value. Different then in the previous chapters, our
probability measure is not concentrated on the manifold M itself, but rather around it.
To be precise, we assume that the probability measure µ has support within Tubr(M).
We prove the following theorem.

Theorem 5.3. Let M be a compact submanifold of RN and let 0 < r <
(√

9−
√
8τ
)
.

Suppose that l := C(r/2) is the r/2-covering number of M . For any r-noisy data set
x = {x1, ..., xn}, drawn in an i.i.d. fashion according to a probability measure µ that is
r-concentrated around M and for any δ > 0, if

n >
1

kr/2

(
log(l) + log

(
1

δ

))
,

then we have with probability greater then 1− δ that x is r-dense in M .

First, we define the setting of a measure that also respects draws within a tubular neigh-
borhood of M .

Definition 5.4. We say that the probability measure µ is r-concentrated around M , if
it satisfies the following two conditions:

(a) We have that supp(µ) ⊂ Tubr(M).

(b) For every 0 < s < r, there is ks > 0, independent of p, such that

inf
p∈M

µ (Bs(p)) > ks.

Before we state the result on the number of data points we need, in order to meet the
requirements from Theorem 5.1, that is, that x is r-dense in M , we discuss an example
of a measure that is r-concentrated around M .

Example 5.5. Let 0 < r < τ . Consider the uniform probability measure µr on the tubular
neighborhood Tubr(M), that is for every measurable set A ⊂ Tubr(M), we have

µr(A) =

∫
A

x

vol (Tubr(M))
dµr.
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Observe that we need the factor 1/ vol (Tubr(M)), in order to achieve µA (Tubr(M)) = 1.

Define the measure µ on the Borel sets of RN by

µ(B) := µr (B ∩ Tubr(M)) , for all Borel sets B ⊂ R.

Clearly, supp(µ) ⊂ Tubr(M) and since for every p ∈M and for every 0 < s < r, the ball
Bs(p) is entirely contained in Tubr(M), we see that

µ (Bs(p)) = vol (Bs(p)) > 0,

which does not depend on p, but only on the number s. This shows that µ is indeed a
r-concentrated measure around M .

We can now prove Theorem 5.3.

Proof of Theorem 5.3. For the proof we choose p ∈ M to be be arbitrary, δ > 0 and we
set l := C(r/2). Suppose that

n >
1

kr/2

(
log(l) + log

(
1

δ

))
.

Let {y1, ..., yl} be a minimal r/2-covering. We define

Ai := Br/2(yi), for i = 1, ..., l.

By definition of an r/2-covering, there is j ∈ {1, ..., l}, such that p ∈ Aj. In particular,
by assumption on µ, we have for every 1 ≤ i ≤ l that

µ(Ai) ≥ inf
q∈M

µ
(
Br/2(p)

)
> kr/2.

We can apply Lemma 3.7, to see that with probability greater than 1− δ we have

x ∩ Ai ̸= ∅, for every 1 ≤ i ≤ l.

Hence, there is x ∈ x, such that x ∈ Aj for the j from above. But for this x we have,
using the triangle inequality, that

∥x− p∥ ≤ ∥x− yj∥+ ∥p− yj∥ <
r

2
+
r

2
= r.

Since we chose p to be arbitrary, this shows that x is in fact r-dense with probability
greater than 1− δ.

Similar as in Chapter 4, if we put Theorem 5.1 and Theorem 5.3 together, we can see
that, if we were to draw enough sample points from around the submanifold M , we can
compute the homology with high confidence by computing the homology of U .
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5.3 Improving Bound for Deterministic Setting without Noise

In Section 5.1 we assumed the sample x to be r-dense in M , where r is the level of noise
allowed on the sample. The following result gives conditions on the ball-size, in order
that U captures the homology group of M , given that x is s-dense in M for an arbitary
0 < s < r.

Theorem 5.6. Let 0 < r <
(√

9−
√
8
)
τ and let x be an r-noisy set of finite points that

is r-dense in M . For 0 < s < r, suppose that x is s-dense in M . Provided that

(τ − w)2 < (τ − r)2 − ε2 and w =
√
β2 − (s2 − ε2)− β,

where β = s2

2τ
+ r − r2

2τ
the set U defined by

U :=
⋃
x∈x

Bε(x)

strongly deformation retracts to M .

Proof. Once again we consider the worst possible case on the position of some arbitrary
v ∈ Bε(q) ∩ TPM ∩Bτ (p), where q /∈ Bε(p). Following the same argumentation in the
plane as in the previous chapter, we can see the worst case shown in Figure 26. The worst
case is achieved, when the distance ∥v− q∥ and ∥x− p∥ are maximal within the provided
bound. Since v ∈ Bε(q), we draw the worst case ∥v − q∥ = ε and since x is s-dense, we
draw ∥x− p∥ = s.

Following Figure 26, we find two equations describing the relations of w and β to the
rest of the parameters r, s, ε and τ . By describing b2 in two different ways, we get first
equation

(τ − r)2 − (τ − β)2 = s2 − β2. (10)

The other equation follows from the Pythagorean theorem on the rectangular triangle
with side lengths ε, b and w + β, that is

s2 − β2 + (β + w)2 = ε2, (11)

where we used that b = s2 − β2. Solving (10) for β gives us β = s2

2τ
+ r − r2

2τ
, whereas

simplifying (11) gives us
w2 + 2βw + (s2 − ε2) = 0.

This equation possibly has two solutions, namely

w =
√
β2 − (s2 − ε2)− β or w = −

√
β2 − (s2 − ε2)− β,

whereas the latter is impossible since w is a distance and thus w ≥ 0. Hence we get

β =
s2

2τ
+ r − r2

2τ
and w =

√
β2 − (s2 − ε2)− β.
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A

w

β

τ

ε

ε

s

v q

p

x

b

r

TpM

NpM

Figure 26: A picture showing the worst case of the position of x. In order
for v to be in Bε(x), the distance A has to be greater than τ − w.

In order to get the homotopy type between U and M , we want to show that the fibres
π−1(p) as described in Section 4.1 retract to the point p. This is true, provided that v
lies within ε-distance of the data point x. But following Figure 26, this is the same as
requiring that the distance A is greater than τ − w. Hence, we have the same homotopy
type between U and M , provided that

(τ − w)2 < (τ − r)2 − ε2, (12)

with the above relation on β and w.

The following examples treat two special cases, namely when s = r and when r = 0.
Following the equations (10)-(12), we can observe that the first case reduces to the results
found in 5.1.

Example 5.7. Let us set s = r. From (10), we get that

(τ − r)2 − (τ − β)2 = r2 − β2,
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which simplifies to 2τ(r − β) = 0. From (10), we get that also β = r. Putting s = β = r
in (11), provides

r2 − r2 + (r + w)2 = ε2,

from which it follows that w = ε − r. At last ,we insert w = ε − r in (12) and get the
inequality

(τ − (ε− r))2 < (τ − r)2 − ε2,

which is exactly what we found in the inequality (9) in Section 5.1.

Example 5.8. Consider the second case to be r = 0. Using (12), we get

(τ − w)2 < τ 2 − ε2,

which is the same as requiring that w2 − 2τw + ε2 < 0. This shows that we require

w > τ −
√
τ 2 − ε2. (13)

Solving (10) for β gives us β = s2/2τ , which we can substitute in (11) to get the quadratic
equation in w

s2 − s4

4τ 2
+

(
s2

2τ
+ w

)2

= ε2.

This equation has the positive solution

w = − s2

2τ
+

√
ε2 − s2 +

s4

4τ 2
,

which together with (13) gives rise to the following condition:

− s2

2τ
+

√
ε2 − s2 +

s4

4τ 2
> τ −

√
τ 2 − ε2. (14)

The inequality (14) provides a range for s and ε, for which we achieve a homotopy equiv-
alence between U and M . For the special case where s = ε/2 (compare with the density-
choice we made in Theorem 4.1), the inequality (14) simplifies to

ε4 + 51ε2τ 2 − 48τ 4 < 0. (15)

which is satisfied whenever 0 < ε2 < 0.9244τ 2 or 0 < ε < 0.96τ .

Observe that in Theorem 4.1 we required ε to be in (0,
√

3/5τ) ≈ (0, 0.77τ), whereas in
Example 5.8 we found that ε can also be in the interval (0, 0.96τ). Thus, Example 5.8
gives a slightly stronger version of Theorem 4.1 in terms of the balls-size ε. This is due
to the fact, that we require ε to be in such a way that st(p) is equal to π−1(p), which is a
stronger condition than simply assuming Bε(q) ∩Bε(x) ∩ vp ̸= ∅.
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Furthermore, if we assume the condition number τ and the noise factor r to be out of
our control, the sample complexity entirely depends upon the number s, which gives
information about the density of the data sample. In order to draw the fewest number of
sample points, it is necessary to maximize s, which can be achieved by taking the largest
s possible that satisfies Equation (14).
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