
OPTIMIZING FUNCTIONS BASED ON SIGNED
BARCODES

Differentiability of functions based on signed barcodes arising
from multiparameter persistence modules

A thesis submitted to attain the degree of

MASTER OF SCIENCES
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Abstract

Single parameter persistent homology is a tool that captures the underlying topological features
of a data set by analyzing how its topology varies along a single parameter filtration function.
Leveraging the full power of persistence involves incorporating it into loss functions in machine
learning algorithms. This has proven wildly successful in a wide range of domains and has
motivated the study of multiparameter persistence, a generalization that allows for tracking
the evolution of topology over multiple filtration functions rather than a single one. Although
multiparameter persistence captures more information than single parameter persistence, the
representation theory of multiparameter persistence modules is wild and so in contrast to the
single parameter setting there is no complete invariant. However, due to the potential of multi-
parameter persistence, a large body of work has been devoted to studying incomplete invariants.
One promising invariant is the recently introduced signed barcode, which is obtained via a signed
decomposition of the rank invariant of a persistence module. The main contribution of this thesis
is a novel result that proves that stochastic gradient descent converges almost surely on definable,
locally Lipschitz loss functions on signed barcodes. This enables signed barcodes to be incorpo-
rated into machine learning algorithms, just like their single parameter counterpart. In order
to make the thesis as self-contained as possible, we provide a brief review of single parameter
persistence as well as a slightly altered proof that stochastic gradient descent converges on loss
functions based on standard persistence barcodes. We also provide an overview of the theory of
rank decompositions and signed barcodes.

i



Acknowledgements

I am fortunate to have been advised by Dr. Sara Kalǐsnik Hintz and Dr. Steve Oudot. It was
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Chapter 1

Introduction

Over the past two decades, topological data analysis (TDA) has emerged as a powerful new tool
that leverages tools from algebraic topology to study the underlying “shape of data”.

Figure 1.1: The single parameter persistence pipeline.

Classical or single parameter persistent homology was developed in the early 2000’s by Carls-
son, Edelsbrunner, and Harer as an extension simplicial homology, which is a robust invariant
that captures geometric features of simplicial complexes, to discrete data sets that one encoun-
ters in practice. It accomplishes this by constructing a filtered simplicial complex and tracks
the evolution of simplical homology across the filtration. This information is encoded in a per-
sistence module, which can then be characterized up to isomorphism by a complete invariant
known as a persistence barcode or diagram. The first successful applications of TDA involved
using the persistence diagram to infer geometric characteristics of the underlying data. We point
the reader to [CVJ21] for a comprehensive survey of single parameter persistence and the first
significant applications. For sake of completeness, we provide a brief overview of single parameter
persistence in Chapter 2.

Although the pipeline depicted in Figure 1.1 proved effective in multiple domains, it became
apparent that incorporating persistence diagrams into machine learning algorithms would unlock
a wide range of new applications. Multiple works such as [GHO16] and [PSO18a] began defining
functions on the space of persistence diagrams and sought to optimize them, i.e. find minima
or maxima. These first papers were tailored to their respective applications, namely physics and
shape matching. While the language and hypotheses used in each setting was different, the key
conclusion that both papers arrived at is that the pipeline depicted in Figure 3.2 is differentiable.
[Car+21] formalized this notion and used classical results from o-minimal theory to prove that
the map associating a point cloud to its persistence diagram is differentiable almost everywhere.
Moreover, they proved that the map fulfilled the conditions set out in [Dav+20] and were thus
able to guarantee the convergence of stochastic gradient descent on loss functions defined on
persistence diagrams. Since the space of persistence diagrams comes equipped with a metric,
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most applications use the distance to a fixed persistence diagram as a loss function. Intuitively,
one can design a loss function that takes a point cloud as input and moves its points to form a
desired shape by encouraging the formation of cycles. [San+23] and [DCL22] are two examples
of successful real world applications of this framework. In Chapter 3, we give a slightly altered
version of the proof of the main result of [Car+21], namely that stochastic gradient descent
converges on loss functions defined on persistence diagrams.

Figure 1.2: The multiparameter persistence pipeline.

Single parameter persistence is now reasonably well-understood and software packages such as
[EB] and [Bau21] among others have made applying it relatively easy. Consequently, a significant
portion of current research in persistence revolves around multiparameter persistence. Often,
data comes with multiple functions of interest that one could use to construct a filtered simplicial
complex. However, single parameter persistence forces the user to pick one of these functions and
ignore the others. In order to address this, Carlsson and Zomorodian introduced multiparameter
persistence in [CZ09]. Unfortunately, it turns out that when simplical homology is applied to a
multifiltered simplicial complex, such as the one depicted in the second step of Figure 1.2, the
resultant persistence modules cannot be classified up to isomorphism like the single parameter
persistence modules. In other words, there is no complete invariant analogous to the persistence
diagram in Figure 1.1. One of the central problems is to define incomplete invariants in the
multiparameter setting that share some of the same desirable properties. One such invariant
is the signed barcode which was introduced by Botnan, Oppermann, and Oudot in [BOO22].
Intuitively, the persistence barcode in the single parameter case is equivalent to expressing the
rank invariant of a persistence module as a sum of rank invariants of indicator modules supported
on intervals. [BOO22] generalizes this to the multiparameter setting by allowing negative signs in
the sum, i.e. the signed barcode is equivalent to expressing the rank invariant of a multiparameter
persistence module as a Z-linear combination of indicator modules supported on intervals. This
results in the multiparameter persistence pipeline depicted in Figure 1.2. In Chapter 4, we follow
[BOO22] and review the theory of rank decompositions and signed barcodes.

Just as with the single parameter persistence pipeline, we would like to incorporate loss
functions based on signed barcodes into machine learning algorithms. This is the content of
Chapter 5, which contains two novel mathematical results. We begin by proving that a coarser
invariant, namely the Betti signed barcode, of multiparameter persistence modules is differen-
tiable almost everywhere. This result is useful in its own right, since computing signed barcodes
is, at least at the time of writing, rather slow. Computing the Betti signed barcode on the other
hand is much faster, since it is derived from decompositions of the Hilbert function of a persis-
tence module and is a strictly coarser invariant. A similar approach can then be used to prove
that the map depicted in Figure 1.2 is differentiable almost everywhere. Due to the results in
[Dav+20], we can then conclude that stochastic gradient descent converges on appropriate loss
functions defined on signed barcodes.
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Chapter 2

A Brief Review of Single
Parameter Persistence

In its most common form, persistent homology aims to use simplicial homology to study the
underlying geometric features of point cloud data. It does so by producing a persistence diagram
(or equivalently a barcode) for a given point cloud X ⊂ Rd. Before delving into the full generality,
we introduce this pipeline using an example. For a more comprehensive introduction to persistent
homology, we refer the reader to [Car09], [EM13] or [Oud15].

The prototypical example used to demonstrate the persistent homology pipeline is the dataset
X ⊂ R2 depicted in Figure 2.1. Visually, we see immediately that X appears to be sampled
from a circle. Algebraic topology and in particular simplicial homology [Hat02] is the perfect
tool to formalize this intuition. It is easy to compute, especially over Z2, and has many desirable
properties such as functoriality and homotopy invariance.

Unfortunately, simply interpreting X as a set of 0-simplices and applying simplicial homology
delivers the following underwhelming result

Hn(X) =

{
Z# of points
2 n = 0

0 otherwise
.

Ideally, we would like to see a single connected component being captured by 0-dimensional

Figure 2.1: Data set X consisting of 20 points sampled from the unit circle.
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homology and non-trivial 1-dimensional homology to reflect the circular geometry of X.

2.1 Filtrations and posets

Instead of naively applying simplicial homology to a point cloud X, we first construct a filtered
simplicial complex using the points of X. The idea here is to track the evolution of topological
features as we change a certain parameter. We can then discern important topological features
of the data from those arising from noise by looking at which features persist through the
filtration. In the 1-parameter case, one works with filtrations indexed over the posets R,Z or N.
However, seeing as the main objective of this thesis is to work with multiparameter filtrations,
we introduce the notion of filtrations indexed over arbitrary posets. Recall, first the definition
of a poset category.

Definition 2.1 (Poset category). A poset is a set P endowed with a partial order relation ≤
which satisfies the following axioms:

1. Reflexivity: a ≤ a ∀a ∈ P;

2. Antisymmetry: a ≤ b and b ≤ a =⇒ a = b;

3. Transitivity: a ≤ b and b ≤ c =⇒ a ≤ c.

If a ≤ b or b ≤ a, we say that a and b are comparable.
A poset P can be interpreted as a category, whose objects are simply the elements of P with

a unique morphism between a, b ∈ P if and only if a ≤ b. We will denote this category by P.

Definition 2.2 (Filtered simplical complex). Let K be a finite simplicial complex and P be
a poset. A P-indexed filtration of K is an increasing sequence (Kr)r∈P of subcomplexes of K
with respect to inclusion, i.e. Kr ⊂ Ks for all r ≤ s and K =

⋃
r∈P Kr. A filtration is 1-critical

if for each σ ∈ K, there is a unique minimal ϕσ ∈ P such that σ ∈ Kr for all r ≥ ϕσ. We refer
to ϕσ as the birth index of σ.

Combining Definition 2.1 and Definition 2.2 leads to the following lemma.

Lemma 2.1 (Filtrations are functors). A P-indexed filtration of a simplicial complex K is
a functor

P→ Simp

r 7→ Kr

r ≤ s 7→ Kr ↪→ Ks,

such that Kr is a subcomplex of K for all r and K = ∪rKr.

There are multiple ways to construct a filtered simplicial complex from point cloud data, but
the most common one is the Vietoris Rips (VR) complex.

Definition 2.3 (Vietoris Rips (VR) complex). Let X be a finite subset of some metric space
and r ∈ R≥0. Then, the VR complex V R(X, r) of X at radius r is a simplicial complex defined
as follows:

1. add one vertex for each point of X;

2. the n-simplex spanned by the vertices x0, . . . , xn is in V R(X, r) if and only if d(xi, xj) < r
for all 0 ≤ i, j ≤ r.

4



Figure 2.2: The 0-, 1-, and 2-simplicies of the VR complex of a noisy circle.

Clearly, V R(X, r) ⊂ V R(X, s) for all r ≤ s.

Intuitively, one begins with the points as vertices. An edge connecting two points is then
added to V R(X, r) if and only if the two points are within a distance r, the triangle spanning
points x, y, and z is included if and only if all the points lie within r of each other, and so on.

Lemma 2.2 (VR complexes form filtrations). Let X be a finite metric space composed
of n-elements. Then sending r → V R(X, r) for all r ≥ 0 and r → ∅ for all r < 0 defines an
R-indexed filtration of ∆n−1, which is the simplicial complex consisting of an n− 1-simplex and
all of its faces.

Proof. The fact that the VR-complexes form a filtration is clear from the definition. If X is finite,
then for R = max{d(x, y)|x, y ∈ X} we have V R(X,R) = V R(X, r) for all r ≥ R since every
pair of points is within R of each other and so no new simplices can be added. In particular,
the VR-complexes define a finite filtration. Given that every pair of points is within R of each
other, V R(X,R) must be the simplicial complex containing all possible faces of a simplex with
n vertices ∆n−1. ■

The Vietoris-Rips complex of the dataset X from Figure 2.1 is illustrated in Figure 2.2.
Note that since we are solely interested in 1-dimensional persistent homology, only the 1- and
2-simplices are displayed. The central topological feature of the data - the central circle - persists
through a significant portion of the filtration.

2.2 Persistence Modules

To track the evolution of topological features across a filtration, we apply the n-dimensional
homology functor (over an arbitrary but fixed field k) to each subcomplex in the filtration. In
the 1-parameter case, where P = N, we obtain a sequence of vector spaces

Hn(K0)→ Hn(K1)→ · · · → Hn(K),

where the maps are inclusion induced. This is an example of a persistence module.

Definition 2.4 (Persistence modules). A persistence module is a functor M : P → Vec
from an arbitrary poset to the category of vector spaces. We will restrict ourselves to functors
to the category vec of finite dimensional vector spaces, which are known as pointwise finite
dimensional persistence modules.

Remark 2.1 (Persistence modules as compositions). As hinted at above, persistence modules are
often the composition of two functors. The first functor takes us from the poset to the category of
topological spaces, or as is often the case in practice, to the subcategory of simplicial complexes.
We then apply the homology functor over a fixed field to end up in the category of vector spaces.
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Remark 2.2 (Persistence modules are a functor category). Let P be a poset. Then the category of
persistence modules from P is a functor category. As alluded to by the name, the objects of this
category are functors, in this case from P to vec. The morphisms are natural transformations.
Moreover, since we land in the category of vector spaces, we can talk about direct sums of
persistence modules.

For details regarding functor categories and natural transformations, we point the reader to
[ML78]. Instead, we present a relevant example.

Example 1 (Morphisms of 1-parameter persistence modules). LetM,N : R→ vec be persistence
modules. Then, a natural transformation η :M→N is a sequence of maps ηr :M(r)→ N (r)
for all r ∈ R such that the following diagram commutes

. . . M(r) M(s) M(t) . . .

. . . N (r) N (s) N (t) . . .

ηr ηs ηt

for all r ≤ s ≤ t. If each ηr is an isomorphism, then we say M∼= N .

Definition 2.5 (Indecomposable persistence modules). We say that a persistence module
M : P→ vec is indecomposable ifM∼=M′ ⊕M′′ impliesM′ = 0 orM′′ = 0.

Applying 1-dimensional homology over Z2 to the filtration in Figure 2.2, we obtain

H1(Kr) =

{
Z2 0.85 < r < 1.79

0 otherwise
.

This is a special kind of persistence module known as an interval module, since it is an indicator
module supported on an interval. While the notion of an interval is clear in this setting, we take
this opportunity to define intervals for arbitrary posets. This will be important when we discuss
multiparameter persistence.

Definition 2.6 (Connected posets, locally finite posets, and intervals). A poset P is
connected if for every p, q ∈ P, there exists a sequence

p = p0, p1, . . . , pn = q

such that pi and pi+1 are comparable for all i.
A poset P is locally finite if for all p ≤ q ∈ P , the set [p, q] = {r ∈ P | p ≤ r ≤ q} is finite.
A subset I ⊂ P is convex, if r, t ∈ I and s ∈ P with r ≤ s ≤ t, then s ∈ I.
Let P be a poset, then a subset I ⊂ P is an interval, if I is connected and convex. We denote

by Int(P), the collection of all intervals of P.

For further details and examples of the objects in Definition 2.6, see section 2.3 of [Set].

Definition 2.7 (Interval modules). Let P be a poset and I ⊂ P be an interval. Then the
associated interval module is the functor

kI : P→ vec

kI(p) =

{
k p ∈ I

0 otherwise.

with identity morphisms between two copies of k and zero morphisms to, from or between 0-spaces.
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The identity morphisms between copies of k at every element of a convex and connected set
make kI indecomposable. Due to the structure theorem for 1-parameter persistence modules,
interval modules are an important class of indecomposables.

Theorem 2.1 (Structure theorem for single parameter persistence modules). Let
M : R→ vec be a persistence module. Then, there exists a collection of intervals I in R such
that

M∼=
⊕
I∈I

kI .

This collection is unique and is called the barcode ofM.

In other words, Theorem 2.1 states that barcodes are a complete invariant of persistence
modules. There are different (but equivalent) ways to prove Theorem 2.1 owing to the differ-
ent ways one can view persistence modules. While we defined persistence modules as functors
from posets, they were first viewed as finitely generated graded modules (see [ZC05]). In this
case, the corresponding structure theorem from classical commutative algebra guaranteed to
decomposition. Alternatively one can view persistence modules as quiver representations and
under this framework, single parameter persistence modules are representations of An quivers
(see [Oud15]). A classical theorem from representation theory - Gabriel’s theorem - then delivers
a similar decomposition. Unfortunately, Gabriel’s theorem also tells us that there is no hope for
a decomposition into interval modules for other indexing posets such as R2 or even Z2. For a
detailed exposition on the different perspectives and the proofs of the decomposition under each
framework see [Set].

2.3 Persistence Barcodes and Diagrams

The barcode provides two equivalent visual summaries that are used in practice to interpret
the topological features of the data. The barcode is obtained by simply plotting the intervals
obtained from the decomposition. In this case, each bar corresponds to the lifespan of a cycle
and hence longer bars represent features that characterize the geometry of the data while shorter
bars may be attributed to noise.

Alternatively, given an interval I = (a, b) in the barcode, one can plot the point (a, b) ∈ R2.
Doing this for each interval in the barcode results in the persistence diagram. Note that all points
in the persistence diagram must lie above the diagonal, since a feature must have a nonnegative
lifespan. Points far above the diagonal represent persistent features, while those lying near the
diagonal are short-lived features attributable to noise. The 1-dimensional persistence barcode
and diagram of the noisy circle is depicted in Figure 2.3 and as desired the circular nature of the
dataset has been isolated. We call the map that associates to a filtration of a finite simplicial
complex its persistence diagram or barcode, the persistence map and denote it by Pers.

2.4 Metrics on the space of persistence diagrams

The space of persistence diagrams (or equivalently barcodes) can be equipped with a metric.

Definition 2.8 (Wasserstein and bottleneck distances). Let D,D′ be persistence diagrams
interpreted as finite multisets of R2 ∪∞. A partial matching between D and D′ is a subset
χ ⊂ D ×D′ such that

7



Figure 2.3: The 1-dimensional persistence diagram and barcode of the noisy circle from Figure 2.1
(computed using Gudhi[EB]).

1. each point in D is matched with at most one point in D′, i.e. for each a ∈ D there is at
most one (a, b) ∈ χ.

2. each point in D′ is matched with at most one point in D, i.e. for each b ∈ D′ there is at
most one (a, b) ∈ χ.

The cost of a matching χ is

c(χ) = (
∑

(a,b∈χ)

∥a− b∥p∞ +
∑

a∈D∪D′ unmatched

∥ax − ay
2

∥p∞)1/p)

where p > 0 and ∥∥∞ denotes the l∞-distance. The degree-p Wasserstein distance is then

Wp(D,D′) = inf
χ

(c(χ))

The bottleneck distance between is obtained as the limit limp→∞ Wp(D,D′) and is denoted by
dB.

The stability theorem for persistent homology states that the persistence map is 1-Lipschitz
with respect to the bottleneck distance. Observe first that a 1-critical filtration of a simplicial
complex K is simply a function

ϕ : K → R
σ 7→ ϕσ

where ϕσ denotes the birth index of σ. This allows us to interpret a filtration of a simplicial
complex K as an element of the free vector space RK . Since the basis of RK is composed of the
simplices of K, a filtration is a vector in RK . This interpretation will play an important role in
Definition 3.7.

Theorem 2.2 (Stability theorem). Let K be a simplicial complex and ϕ, ω : K → R be filtra-
tions. Then,

dB(Pers(ϕ),Pers(ω)) ≤ ∥ϕ− ω∥∞ = sup
σ∈K
|ϕσ − ωσ|

8



Remark 2.3. Theorem 2.2 holds for an arbitrary topological space X and functions f, g : X → R.
In this case one constructs filtrations using sublevel sets of f and g, i.e. Xr = {x ∈ X|f(x) < r}
and similarly using g. Computing the homology over the filtration in a given dimension then
yields a persistence module and consequently both f and g induce persistence diagrams for which
Theorem 2.2 holds.

9



Chapter 3

Optimizing Functions Based on
Standard Persistence Diagrams

One of the earliest and most intuitive motivating works that sought to optimize loss functions
defined on persistence diagrams was [GHO16]. They wished to study an important question in
physics, namely the geometric origins of rigidity in solids in an amorphous state. As pointed out
in [Wya05], statistical physics can provide a description of different states of matter such as liquid
or solid states. Crucially however, amorphous solids exhibit a number of anomalous characterstics
and are poorly understood by physics. Given that amorphous solids are ubiqutious (glass is a
prime example of an amorphous solid), a better understanding of the geometric properties of these
solids is extremely important. In [Hir+16], applied the classical persistent homology pipeline to
this question by interpreting atomic configurations as point clouds. They were able to use
persistence diagrams to discern molecules in an amorphous state from those in crystalline and
liquid states. In particular, they noted that the persistence diagrams (see Figure 3.1) of atomic
configurations of atoms in an amorphous state exhibited characteristic curves while those from
liquid and crystalline sates did not. Indeed, this exhibits the power of the persistence diagram
as a tool in its own right, since the diagram can classify the three states. Classification does
not however answer the more fundamental question: what shapes in the atomic configuration of
amorphous solids make them rigid? In [GHO16] the authors build on [Hir+16], in an attempt
to answer this question. Their idea was to start with a point cloud P corresponding to the

Figure 3.1: Persistence diagrams of the liquid (left), amorphous (center), and crystalline states
(right) taken from [Hir+16]. The amorphous state exhibits three curves labelled Co, Cr, and Cp,
while the other states do not.
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atomic configuration of an amorphous solid and compute its persistence diagram D. They
noted that since the three characteristic curves of D represented the geometric features of the
amorphous state, moving to a diagram D′ which is constructed by moving the points along
a normal direction to the curves would correspond to breaking the geometry responsible for
amorphousness. Doing this in small enough steps and simultaneously deforming P to P ′ such
that the persistence diagram of P ′ is D′ would identify the geometric origins of rigidity. In
essence, they seek to differentiate the persistence map. As we will soon see in Section 3.8 this
is equivalent to optimizing the function Wp(D,D′), where W (D,D′) denotes the p-Wasserstein
distance.

In general, we seek to find minima of functions of the form RN → R where RN is the space
of point clouds composed of n points in Rd and the map is given by first constructing a filtra-
tion, then applying the persistence map to the filtration, and finally an appropriate R-valued
loss function to the persistence diagram. The standard method to optimize such functions is
stochastic subgradient descent.

3.1 Overview

The rest of this chapter is devoted to proving that stochastic subgradient descent converges on
the composition of the maps in the bottom row of Figure 3.2. The map Φ constructs a filtration of
a simplicial complex K from a set A ⊂ RN . Next the associated persistence diagram is computed
by the persistence map Pers = µ ◦ Λ ◦ Ω ◦Ψ ◦ ρ. The discretization map ρ converts an R-indexed
filtration to a N-indexed filtration. Next, the map Ψ applies the simplicial homology functor to
the N-indexed filtration obtained by ρ. The corresponding decomposition into interval modules
is computed by Ω. We then unravel the discretization to obtain the barcode corresponding to
the original R-indexed filtration using Λ. The last step is to plot the intervals as points in R2 to
obtain the persistence diagram. Finally, we post-compose with appropriate loss function L.

N2p ⊕ Nq R2p ⊕ Rq R2p ⊕ Rq

A RK NK vec Int(N) Int(R) D ⊂ R2 ∪ {∞} RΦ ρ Ψ

f◦Ω◦Ψ

Ω Λ µ

fg

Λ̃ µ̃

g f hk

L

Figure 3.2: Decomposition of the persistence map.

Remark 3.1. In this chapter persistence modules refer to functors R→ vec or N→ vec and
filtrations are always R- or N-indexed.

3.2 Stochastic subgradient descent and definable functions

Since the map F = L ◦ Pers ◦ Φ is not smooth in general, we need to use results from non-smooth
analysis to solve the optimization problem

min
x∈RN

F (x). (3.1)

Although the persistence map is not smooth, it is locally Lipschitz (in fact Lipschitz by Theo-
rem 2.1). So if we assume that Φ and L are locally Lipschitz, then the composition L is locally
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Lipschitz. By Rademacher’s theorem, locally Lipschitz functions are differentiable almost every-
where. This allows us to generalize the notion of a gradient in the following manner [Dav+20].

Definition 3.1 (Clarke subdifferential). Let f : Rn → R be locally Lipschitz and Ω be the
subset of Rn on which f is differentiable. The Clarke subdifferential of f at x is

∂f(x) = conv{ lim
i→∞

∇f(xi) : lim
i→∞

xi = x, xi ∈ Ω}

where conv denotes the convex hull.

There is always a sequence {xi} ∈ Ω that converges to x, since the complement of Ω has
Lebesgue measure zero.

Remark 3.2. Clearly if f is differentiable, the Clarke subdifferential reduces to the standard
gradient.

Stochastic subgradient descent (SGD) uses the Clarke subdifferential to iterate in the direction
of steepest descent

xk+1 = xk − αk(yk + ξk) yk ∈ ∂f(xk) (3.2)

where {αk} is a sequence of step sizes and stochasticity is added by the random sequence {ξk}.
Solving Equation 3.1 using SGD, would entail the sequence of iterates {xk} converging to a critical
point. In this context, x is a critical point if 0 ∈ ∂f(x). In their seminal work [Dav+20], Davis
and coauthors proved that under standard assumptions on the step sizes {αk} and noise {ξk},
SGD converges on any locally Lipschitz function that is definable on an o-minimal structure. This
is a large class of functions that encompasses semialgebraic functions, the exponential function
and semianalytic functions among others. Our approach will be to prove that the persistence
map is semialgebraic and then assuming that Φ and L are also definable we use [Dav+20] to
guarantee that SGD converges to a critical point on the composition almost surely.

Since we will primarily be working with semialgebraic functions, it is not strictly necessary
to understand the definitions of definable functions in general. Nevertheless, we provide a quick
overview of the relevant definitions here for completeness and critically in order to state Corollary
5.9 of [Dav+20] which is the key result we will use.

3.2.1 An excursion into o-minimal theory

The building blocks of o-minimal theory are definable sets. These are intended in some sense to
be generalizations of semi-algebraic sets.

Definition 3.2 (Definable sets and o-minimal structures). An o-minimal structure on R
is a family {Dn}n∈N where each Dn is a set of subsets such that the following are satisfied for all
n ∈ N:

1. D1 is a finite union of intervals and points.

2. Dn is a boolean algebra on Rn.

3. If A ∈ Dn, then A× R ∈ Dn+1.

4. If A ∈ Dn+1, then its projection π(A) ∈ Dn where π denotes the projection onto the first n
coordinates.

5. Every algebraic set in Rn is contained in Dn.
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A set is called definable if it belongs to Dn for some n. A map whose graph is a definable set is
called definable.

We will primarily work with semi-algebraic sets but will point to examples of filtrations which
are definable but not semi-algebraic justifying the generality afforded by o-minimal theory.

Definition 3.3 (Semi-algebraic sets). We say a subset A ⊂ Rn is semi-algebraic if it can
be written as a finite union of sets of the form {x ∈ Rn|f(x) = 0, f ∈ R[x1, . . . , xn]} and of the
form {x ∈ Rn|f(x) < 0, f ∈ R[x1, . . . , xn]}.

Note that the key difference between semialgebraic and algebraic sets is that inequalities are
allowed in semialgebraic sets, allowing semialgebraic sets to be closed under projections while
algebraic sets are not.

Proposition 3.1 (Semialgebraic sets define an o-minimal structure). The family {Dn}n∈N
where Dn = {A ⊂ Rn|A is semialgebraic} is an o-minimal structure on R.

Proof. We verify the axioms listed in Definition 3.2:

1. The zero locus of a polynomial f ∈ R[x] is either a finite set of points of the entire real
line. On the other hand sets of the form {x ∈ R|f(x) < 0, f ∈ R[x]} are clearly made up
of a finite union of intervals or the entire real line.

2. This is clear since unions and intersections of semialgebraic sets are semialgebraic.

3. Let A ⊂ Rn be semialgebraic, then A× R = A ∪ {x ∈ Rn+1|xn+1 = 0} is a union of semi-
algebraic sets.

4. This is the content of the famous Tariski-Seidenberg theorem - see [Dri98] for details.

5. This holds true by definition.

■

Definable maps and sets have desirable closure properties.

Proposition 3.2 (Closure properties of definable sets). 1. The interior, boundary, and
closure of a definable set is definable

2. The image of a definable set under a definable map is definable.

3. The composition of two definable maps is definable

A key property of definable sets, and indeed the reason we chose to use them in this setting,
is that they admit Whitney stratifications. Intuitively, a Whitney stratification of a topological
space is a partition of the space, such that the pieces of the partition glue together “nicely”.

Definition 3.4 (Stratification). A stratification of a set X ⊂ Rd is a finite filtration

∅ ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = X

such that

1. Fi is closed in X for all i.

2. The sets Si = Fi \ Fi−1 are smooth manifolds of dimension i with finitely many connected
components and are called the strata of X.
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The family S = {Si}i forms a partition of X and is referred to as a stratification of X. We say
that a stratification is definable if each stratum Si is definable in an o-minimal structure.

Arbitrary stratifications may behave very badly, in the sense that the topology might vary
wildly along singularities. For this reason, Whitney imposed conditions on stratification that
exclude such situations. He originally proposed two conditions (A) and (B), but Mather proved
that in fact (B) =⇒ (A), and so we will only present condition (B).

Definition 3.5 (Whitney’s condition (B)). Let X and Y be smooth manifolds.

The pair (X,Y ) satisfies the Whitney regularity condition (B) at x ∈ X if the following condition
holds. Suppose there exist sequences {xn}n ∈ X and {yn}n ∈ Y , such that

lim
n→∞

xn = lim
n→∞

yn = x.

Then, limn→∞ ln ⊂ limn→∞Tyn
Y , where Tyn

Y denotes the tangent space of Y at yn and ln
denotes the line spanned by yn − xn.

We say that Y is Whitney regular over X, if (X,Y ) satisfies condition (B) at every x ∈ X.

A stratification is Whitney, if (Si, Si−1) satisfies condition (B) for all i .

Definition 3.6 (Stratification of maps). Let X ⊂ Rd. A map f : X → R admits a Whitney
stratification, if its graph admits a Whitney stratification.

We can now finally state the key convergence result.

Theorem 3.1 (SGD converges on Whitney stratifiable maps (Corollary 5.2 of [Dav+20])).
Let f : Rd → R be a locally Lipschitz map that admits a Whitney stratification. Let {αk} be a
sequence of step sizes and {ξk} be a random sequence that satisfy Assumption C of [Dav+20].
Then almost surely, every sequence {xk} produced by Equation 3.2 converges to a critical point
of f and the corresponding function values {f(xk)} converge.

Remark 3.3. Assumption C imposes 3 weak requirements on the sequence of step sizes and the
sequence of noise. It requires that step sizes be nonnegative, square summable, but not summable.
It defines {ξk} in a manner that imposes bounds on its values. It is a rather technical requirement,
but easily satisfiable and not particularly relevant for this exposition.

Crucially by theorems 1.3 and 2.2 of [Tos+10], definable sets and maps admit Whitney
stratifications.

Theorem 3.2 (Definable sets and maps admit Whitney stratifications). Let A ⊂ Rn be
a definable set, then there exists a definable Whitney stratification S of A.

Let A ⊂ Rd be definable and f : A→ B be a definable map, then there exists a definable
Whitney stratification of f . Furthermore, there exists a definable Whitney stratification of A
such that the restriction of f to each stratum of A is differentiable.

Theorem 3.1 and Theorem 3.2 together yield the following corollary.

Corollary 3.1 (SGD converges on definable maps). Let f : Rd → R be a locally Lipschitz
map that is definable on some o-minimal structure. Let {αk} be a sequence of step sizes and
{ξk} be a random sequence that satisfy Assumption C of [Dav+20]. Then almost surely, every
sequence {xk} produced by Equation 3.2 converges to a critical point of f and the corresponding
function values {f(xk)} converge.
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Remark 3.4. The idea of using the results in [Dav+20] to prove that SGD converges on func-
tions based on persistence diagrams first appeared in [Car+21]. Our approach of proving that
SGD converges maps based on signed barcodes is inspired by this paper. However, in contrast
to [Car+21] our approach goes directly through the space of persistence modules rather than
using the row reduction algorithm to go directly from filtrations to persistence diagrams. This
approach has two advantages. Firstly, there is no analogue of the row reduction algorithm for
signed barcodes, indeed one does not even have persistence pairs. Hence, when working in the
multiparameter case, we are forced to go through the space of persistence modules. Adapting
the proof in [Car+21] for the single parameter case to fit in this framework, makes the jump to
multiparameter persistence a bit easier. Secondly, it allows us to work in one homology degree at
a time, i.e. the persistence map sends a filtration to its persistence diagram in a fixed homology
degree i. This is in contrast to [Car+21], where the persistence map sends a filtration to the
union of persistence diagrams in all dimensions.

3.3 Definable parameterized families of filtrations.

We can now apply the results of the previous section to our setting. Recall from Section 2.3, that
a filtation of a simplicial complex K can be interpreted as an element of the free vector space
RK .

Definition 3.7 (Parameterized family of filtrations). Let K be a simplicial complex and
A be a set. A family of parameterized filtrations is a map

Φ : A→ RK

x 7→ Φ(x)

such that τ ⊂ σ implies Φ(x)τ ≤ Φ(x)σ for all x ∈ A. In other words, Φ(x) ∈ RK is a filtration
of K. If Φ is a definable map, we call the family definable. Denote by FiltK ⊂ RK the subspace
of vectors that define valid filtrations of K.

Example 2 (VR filtrations form a parameterized family). Consider the set of point clouds with
n > 0 points embedded in Rd, d > 0. Each such point cloud can be expressed as a vector in
Rdn = RN . Let K = ∆n and Φ : RN → RK be the map that send a point cloud x to its VR
filtration. By Lemma 2.2, this defines a parameterized family of filtrations.

Moreover, the map Φ is definable. Indeed, given x = (x1, . . . , xn) ∈ RN and a simplex σ ∈ K,
we have Φσ(x) = maxi,j∈σ ∥ xi − xj ∥. The Euclidean norm and max are both semi-algebraic and
hence definable. Consequently, their composition Φ is definable.

As promised, we now present a family of filtrations, which is not semi-algebraic but still
definable.

Example 3 (Weighted Rips Filtrations). Consider again n points embedded in Rd and let f : Rd → R
be a function. Then, the family of f -weighted Rips filtrations is a map Φ : A = (Rdn → ∆n) de-
fined as follows: let x ∈ A and σ ∈ ∆n, then

Φσ(x) =


2f(xi) σ = [i]

max{2f(xi), 2f(xj), ∥xi − xj∥+ f(xi) + f(xj)} σ = [i, j], i ̸= j

max{Φ[i,j](x)|i, j ∈ σ}

where [i, j] denotes the full simplex spanned by the vertices i . . . , j. The Euclidean distance
function and max are semialgebraic and hence definable. Consequently, Φ is definable if and
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only if f is definable. The o-minimal framework allows us to use a wide range of functions such
as Gaussian kernels, which involves the exponential function and is thus not semialgebraic. It is
however definable.

3.4 Filtrations and preorders

The key observation made in [Car+21] is that the preorder induced by a given filtration com-
pletely determines the pairs of simplices that generate the points of a persistence diagram.

Definition 3.8 (Persistence pairs). Let Φ(x) ∈ RK be a filtration and M∼=
⊕

I∈I kI be its
persistence module and interval decomposition. We call a pair of simplices (σ, τ) a persistence
pair if (Φσ(x),Φτ (x)) ∈ I. Further, we say a simplex σ is essential if (Φσ(x),+∞) ∈ I.

Geometrically speaking, a pair (σ, τ) represents the fact that a cycle is created when σ enters
the filtration and is then killed when τ enters the filtration. An essential simplex σ represents a
cycle that is created when σ is added to the filtration but is never killed. An example of this is
the single connected component that always survives throughout the filtration when considering
0-dimensional homology.

Remark 3.5 (The row reduction algorithm and persistence pairs).

Proposition 3.3 (Filtrations impose preorder). Let Φ(x) ∈ RK be a filtration of a simplicial
complex K. Then, Φ(x) imposes a preorder on the simplices of K. Moreover, if one fixes a total
ordering of the vertices of K beforehand, then this preorder can be extended to a total order.

Proof. Let σ, τ be simplices of K. We say σ ≤ τ if Φσ(x) ≤ Φτ (x). This is not a total order,
since we may have Φσ(x) = Φτ (x).

Suppose we have a total order on the vertices {v1, . . . , vn} of K. This ordering can just be
any arbitrary indexing. In the case of point clouds for example, the indexing is given by the data
structure used to store the point cloud (a NumPy array for instance). Using this total order,
[Bau21] describes a means of refining the partial order to a total order. Let σ, τ ∈ K be distinct
simplices such that Φσ(x) = Φσ(x). If dimσ ̸= dim τ , then we can order them according to their
dimension. If their dimensions are equal, then we order them using the lexicographic order on
their vertices ■

These preorders can be used to define a linear partition of FiltK .

Lemma 3.1 (Preorders induce a partition of the filter space.). There exists a linear (and
hence semialgebraic) partition of the subspace FiltK ⊂ RK .

Proof. We use the imposed orders to define a partition of FiltK as follows. Let ≤ be a partial
order on the simplices of K. Note that since K is finite, there are only finitely many partial
orders. Define a partition of FiltK as follows

O≤ = {Φ(x) ∈ FiltK |Φ(x) imposes a partial order on K equal to ≤}.

Two filtrations Φ(x),Φ(y),∈ RK induce the same preorder on the simplices of K if

vσ ≤ vτ ⇐⇒ wσ ≤ wτ

holds for all σ, τ ∈ K. The partition is completely defined by inequalities between coordinates,
and thus linear. ■
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The partition described above is a semi-algebraic (and hence definable) stratification of FiltK .
If two filtrations Φ(x),Φ(y) ∈ RK lie in the same partition element, we say that the filtrations
lie in the same stratum.

Crucially, we can use this stratification of FiltK to stratify the underlying geometric space
A, over which Φ is defined.

Remark 3.6 (Stratification of the underlying geometric space.). Define a partition of A by sets
of the form

A≤ = {x ∈ A|Φ(x) imposes a preorder equal to ≤ on the simplices of K}

Two elements x, y ∈ A are in the same stratum of A if the filtrations Φ(x) and Φ(y) they induce
lie in the same stratum of FiltK . In the context of differentiability, this means a point y that lies
within a small enough neighborhood of x ∈ A, will induce a filtration Φ(y) that lies in the same
stratum as Φ(x).

The key fact that we will prove over the course of the next two sections is the following: if
Φ(x),Φ(y) ∈ FiltK lie in the same stratum, then their persistence pairs and essential simplices
are identical. In other words, the simplices that generate the bars on either barcode are the
same. The only thing that changes is the length of the bars, which is determined by the birth
indices of the simplices.

3.5 Discretization

Rather than working with an R-indexed filtration, we would like to discretize the filtration to
obtain one indexed by N. The discretization map is in some sense a means of isolating solely the
order imposed by a given filtration and is defined component wise as follows

ρ : RK → NK

vσ 7→ #{τ ∈ K|τ ≤ σ}. (3.3)

Note that in this case ≤ denotes the total order on the simplices obtained by extending the
partial order imposed by Φ(x) to a total order. Using the total order instead of a partial order,
ensures that after discretization no two simplices have the same birth index. This fact will be
important in Section 3.7.

Proposition 3.4 (Discretization is constant on similar preoders). The map ρ : RK → NK

is semialgebraic. More precisely, the restriction of ρ to each stratum of FiltK defined in Lemma 3.1
is constant.

Proof. Suppose now that Φ(x),Φ(y) ∈ O≤ for some partial order ≤. Although we used the total
order in Equation 3.3, the definition really only depends on the partial order. Indeed, as long
as the same rules are always used to extend a given partial order to a total order, for example
by using a fixed indexing of the simplices as described in Proposition 3.3, then the total order
obtained from two equivalent preorders will be the same.

A map whose restriction is constant on each element of a semialgebraic partition is trivially
semialgebraic. In particular, this means that ρ is definable on an o-minimal structure. ■

Remark 3.7. Given a partition element O≤ ⊂ FiltK , each ρ(O≤) ⊂ NK contains only a single
element. Moreover, ρ(O≤) defines a partition of the subspace of vectors that define a filtration
in NK . This is equivalent to the partition one would obtain by using the imposed preorder as in
the case of RK and is hence semialgebraic.
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3.6 From filtrations to barcodes

The next step in the pipeline is to apply the simplicial homology functor to the N-indexed
filtration we obtained in the previous section. The map Ψ : NK → vec associates to a filtration
ρ(Φ(x)) ∈ NK the corresponding persistence module M. Importantly, M is the persistence
module of a discretized filtration in NK . Consequently, given two filtrations Φ(x),Φ(y) ∈ RK that
lie in the same stratum, the persistence modules after discretization Ψ(ρ(Φ(x))) and Ψ(ρ(Φ(y)))
are identical.

We then apply Theorem 2.1, to define Ω : vec→ Int(N) which decomposes persistence mod-
ules into interval modules. Again, since two filtrations in the same stratum are mapped to the
same persistence module by Ψ ◦ ρ, decomposing into interval modules by Ω results in the same
barcode.

To prove that the composition of these two maps is definable, we first need to lift them to
spaces in which it makes sense to talk about definability. Let I ⊂ Int(N) be a barcode and denote
by p the number of intervals of the form (a, b), a < b <∞, and by q the number of intervals of
the form (a,∞). Since the barcode does not change along a single stratum of FiltK , the numbers
p and q do not vary either. So, as long as we remain in the same stratum, which is the case if we
consider small enough neighborhoods, then we can lift Int(N) to the space N2p ⊕ Nq by a map
f . Each of the p intervals of the form (a, b) ⊂ N can be embedded in R2. The p intervals can
then be put in non-decreasing order using the lexicographic order on R2, enabling us to express
the p intervals as a vector in R2p. The q intervals of the form (a,∞) can be embedded in Nq in
the obvious manner.

f : Int(N)→ N2p ⊕ Nq

({(a1, b1), . . . , (ap, bp), (c1,∞), . . . , (cq,∞)}) 7→ ((a1, b1, a2, b2, . . . , ap, bp), (c1, . . . , cq))

Remark 3.8. We emphasize that due to the nature of the lift f , the codomain of f ◦ Ω ◦Ψ ◦ ρ
varies along FiltK ⊂ RK , however; it is constant on each stratum of FiltK . This is sufficient for
our purposes, since we only need to prove that the map is differentiable on each stratum and
hence differentiable almost everywhere.

Clearly this map has a left inverse g, making it a lift and leading to the following diagram.

N2p ⊕ Nq

FiltK Int(N)Ω◦Ψ

fg
f◦Ω◦Ψ

We can now prove that the composition f ◦ Ω ◦Ψ is definable by proving that its restriction to
each partition element is constant as in Proposition 3.4.

Proposition 3.5. The map f ◦ Ω ◦Ψ is semialgebraic. More precisely, there exists a semi-
algebraic partition of the subspace of filtration vectors filtK ⊂ NK such that the restriction of
f ◦ Ω ◦Ψ to each partition element is constant.

Proof. We will work with the semialgebraic partition of filtK defined in Remark 3.7. Two el-
ements lie in the same stratum of FiltK ⊂ RK if and only if they lie in the same stratum of
filtK ⊂ NK .

Each stratum of filtK has a single element and so the composition f ◦ Ω ◦Ψ is trivially
constant when restricted to each stratum. Consequently, the map is semialgebraic and definable
on an o-minimal structure. ■
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Remark 3.9. Proposition 3.4 and Proposition 3.5 together imply that the restriction of f ◦ Ω ◦Ψ ◦ ρ
to each stratum of FiltK ∈ RK is constant and hence the map is definable.

3.7 Unraveling the discretization

The barcodes computed in Section 3.6 correspond to a discretized ρ(Φ(x)) ∈ NK and not to Φ(x)
which is the filtration that actually captures the topology of the underlying data. We now want
to recover the barcodes that correspond to the actual filtration by using the preimage of ρ. In
other words, given a barcode I ⊂ Int(N) we wish to construct a barcode J ⊂ Int(R). We do
so by first finding the simplex pairs (or essential simplices) that generate each interval in I and
then using the filtration function Φ to recover their birth indices, and hence the barcode.

It is easiest to define this map upstairs on elements of N2p ⊕ Nq. The first step is to recover
the simplices that generate each of the intervals in the barcode.

κ̃ : N2p ⊕ Nq → K2p ⊕Kq

((a1, b1, a2, b2, . . . , ap, bp), (a1, . . . , aq)) 7→ ((σ1, τ1, σ2, τ2, . . . , σp, τp), (ω, . . . , ωq))

This is possible since each interval (a, b) or (a,∞) is associated to a pair of simplices or an
essential simplex. Owing to the use of a total order in Equation 3.3, no two simplices have the
same birth index after discretization, ensuring that κ̃ is well-defined. We post compose κ̃ with

η̃ : K2p ⊕Kq → R2p ⊕ Rq

((σ1, τ1, σ2, τ2, . . . , σp, τp), (ω, . . . , ωq)) 7→ ((Φσ1(x),Φτ1(x), . . . ,Φσp(x),Φτp(x)), (Φω1(x), . . . ,Φωq (x)))

to obtain the map Λ̃. Due to the lift f : Int(N)→ N2p ⊕ Nq and an identically defined lift
Int(R)→ R2p ⊕ Rq, the map Λ̃ induces a map Λ : Int(N)→ Int(R).

Since the values of p and q (and hence the codomain of f ◦ Ω ◦Ψ ◦ ρ) vary over the strata of
FiltK ⊂ RK , we will prove that Λ̃ ◦ f ◦ Ω ◦Ψ is affine over each stratum of FiltK .

Proposition 3.6 (Λ̃ is affine on each stratum). The restriction of the map Λ̃ ◦ f ◦ Ω ◦Ψ ◦ ρ
to each stratum of FiltK is definable.

Proof. By Proposition 3.4 and Proposition 3.5, we know that the map f ◦ Ω ◦Ψ ◦ ρ is constant
on each stratum. Post composing with κ̃ does not change this, since it just maps each interval
of the barcode to the simplices that generates it. This depends only on the discretized barcode
obtained by the map Ω ◦Ψ ◦ ρ, which is constant on each stratum of FiltK . The map η̃ then
simply sends each simplex σ to its birth index Φσ(x). This map is definable as long as the
filtration function Φ is definable. ■

3.8 Functions based on persistence diagrams.

The final step in the pipeline is to define loss functions that optimize for certain topological
features. It is easiest to define such loss functions on the space of persistence diagrams (i.e. a
subset of R2 ). Mapping a collection I ⊂ Int(R) to a persistence diagram D ⊂ R2 is simple, we
just need to send an interval (a, b) to the point (a, b) ⊂ R2 and an interval (a,∞) to the point
(a,∞) ⊂ R2 ∪ {∞}. This map clearly lifts to the identity on R2p ⊕ Rq.

Theorem 3.3 (The persistence map is definable). The map Pers : FiltK → R2 ∪ {∞} de-
fined by the composition µ ◦ Λ ◦ Ω ◦Ψ ◦ ρ is definable. Moreover, there exists a definable strati-
fication of FiltK such that the restriction of Pers to each stratum is differentiable.
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Proof. Over the course of the past few sections, we have proven that each of the maps in the
composition is definable. By Proposition 3.2, the composition of definable maps is definable and
so Pers is definable. Applying Theorem 3.2 yields the second statement. ■

We can now define loss functions on the space of persistence diagrams. In order for differen-
tiability to continue to hold, we require these loss functions to be definable (as a map from the
lifted space R2p ⊕ Rq ) and locally Lipschitz.

One such loss function is the bottleneck or Wasserstein distance to another fixed diagram
D′, i.e. L(D) = dB(D,D′) or L(D) = Wp(D,D′). Indeed, this is precisely the loss function used
in the motivating example at the beginning of the chapter, where D′ would be the persistence
diagram obtained by moving the points on the curves of diagram D upward in the normal
direction. These functions are clearly definable, since they involve minimums and Euclidean
distance functions.

Another example of a loss function is the persistence image defined in [Ada+17]. Given a
weight function w : R2 → R and σ ∈ R>0, the persistence image of a diagram D is given by the
function

ID : R2 → R

q 7→
∑
p∈D

w(p) exp(−∥p− q∥2

2σ2
).

This yields a loss function on the space of persistence diagrams as follows. Fix a point q ∈ R2,
a weight function w and σ > 0, then define

L(D) = ID(q).

Since the exponential function, sums, multiplication, and the Euclidean norm are all definable,
L is definable as long as the weight function w is definable. In [Ada+17], conditions for Lipschitz
continuity are laid out.

Putting everything together yields the main result of this chapter.

Theorem 3.4 (SGD converges on persistent homology based maps). Let A ⊂ RK be
definable, K be a finite simplicial complex and Φ : A→ RN be a locally Lipschitz family of filtra-
tions that is definable on an o-minimal structure. Let L : R2 ∪ {∞} → R be a locally Lipschitz
function that is definable on an o-minimal structure. Assume further, that the sequences of
step sizes {αk} and noise {ξk} satisfy condition C of [Dav+20]. Then, the iterates {xk} pro-
duced by SGD converge almost surely to a critical point of L ◦ Pers ◦ Φ and the function values
L ◦ Pers ◦ Φ(x) converge.

3.9 Experiments

One of the first optimization tasks that one might attempt is point cloud optimization. Here,
one aims to optimize a point cloud so that its shape moves toward some desired target shape. In
[Car+21], the authors begin with a point cloud sampled uniformly from the unit square S = [0, 1]2

and aim to maximize its 1-dimensional homology, i.e. create cycles. Their loss function is the
Wasserstein distance to the empty diagram. By maximizing L ◦ Pers ◦ Φ they are able to move
the points of the uniform point cloud to one with many cycles. Our experiment is based on a
similar idea. Our goal is to optimize a uniformly distributed point cloud, so that its shape is
similar to that of S1 ∨ S1. The initial point cloud X we wish to optimize, as well as the target
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(a) Initial point cloud X comprised 200 points
sampled uniformly from the unit square.

(b) Target point cloud Y comprised of 200 points
sampled from the wedge product of two circles.

Figure 3.3

shape Y we wish to converge to are depicted in Figure 3.3a and Figure 3.3b. Let D′ denote
the 1-dimensional persistence diagram of Y . Let Φ : R(2)(200) → ∆200 be VR-filtrations, Pers be
1-dimensional persistence, and L be the Wasserstein distance to D′. We apply Adam [KB17],
to optimize L(X) and obtain Figure 3.4a. Note that while the 1-dimensional homology of the
optimized point cloud and the target are remarkably similar, there appear to be more connected
components in the optimized point cloud. This is due to the fact, that we only considered
1-dimensional homology.
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(a) Point cloud after 200 iterations of Adam.
(b) The loss function plotted against number of it-
erations.

Figure 3.4
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Chapter 4

A Primer on Multiparameter
Persistence

Although single parameter persistence is a powerful tool that has proven successful in multiple
domains, it has some drawbacks. Firstly, it is not adept at differentiating certain kinds of noise.
Consider for example, the dataset depicted in Figure 4.1. Most of the points are sampled from a

(a) Points sampled from a circle with uniformly
distributed background noise and a Gaussian ker-
nel density estimate.

(b) H1 persistence diagram of the dataset on the
left.

Figure 4.1: Point cloud with a dense circle and its corresponding persistence diagram.

circle, like in Figure 2.1, but with some additional noise in the form of uniformly sampled points.
However, as witnessed by the densities of the points (computed using a Gaussian kernel estimate),
the circle is still the primary geometric feature of the data. Unfortunately, the persistence
diagram in dimension 1, obtained using a VR complex, no longer captures this feature, and
contains points close to the diagonal. It is unable to detect the fact the points along the circle
have a much higher density. This makes sense, since the VR complex will include the edges
spanned by the noisy points at the same time as those spanned by the denser ones, because the
distances between two noisy points or a noisy point and a given point on the circle does not
depend on the density of the points. One way to rectify this, could be to fix a density threshold
p and only include points whose density values are above this threshold. In the above example,
discarding points whose density values are lower than 0.10 would remove most of the noisy points.
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Figure 4.2: Points sampled from a circle with uniformly distributed background noise and a
Gaussian kernel codensity function.

But just as in the 1-parameter case, where we glean more information by considering different
radii for the VR complexes and tracking the persistence of features as the radii change, we would
like to vary the density threshold and track the evolution of features along 2 parameters instead
of just 1. This leads to the function-rips bifiltration.

Definition 4.1 (Function-Rips bifiltration). Let X be a finite metric space and γ : X → R≥0

be function on X. Then, the corresponding superlevel function-Rips bifiltration of X is given by
VR(γ−1(a,∞), r) for each (a, r) ∈ R≥0 × R≥0. Analogously, the corresponding sublevel function-
Rips bifiltration of X is given by VR(γ−1(0, a), r) for each (a, r) ∈ R≥0 × R≥0.

Common choices for γ include a Gaussian kernel, nearest neighbor functions or disk kernels.
The corresponding function-Rips bifiltrations are called density-Rips bifiltrations, since they take
high values on points in regions of high density and low values on sparse regions. In practice,
one often uses a codensity function, i.e. a function whose values are low on regions of high
density and high on low density regions. Points of high density would then appear first in the
corresponding sublevel filtration. A codensity function on the noisy circle is depicted in Figure 4.2
and the corresponding sublevel density-Rips bifiltration is depicted in Figure 4.3. This bifiltration
isolates the main cycle, since the noisy points appear only toward the top as the density threshold
is lowered. Note that the single parameter VR complex is simply the subcomplex on the top row
of the figure, which is clearly unable to detect the cycle.

Often, the underlying data already comes equipped with a function of interest. For example,
persistent homology has been applied to drug discovery, where one aims to use topology to iden-
tify drug candidates that are most likely to bind to a particular molecular target. Here there are
multiple other parameters that one might want to use in a filtration such as atomic mass, partial
charge or bond type. In [Dem+22], the authors were able to use multiparameter persistence to
significantly improve the performance in comparison to single parameter persistence.
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Figure 4.3: Density-Rips bifiltration of points sampled from a circle with noise in the center.

4.1 The non-existence of barcodes for multiparameter per-
sistence modules

As alluded to earlier, there is no direct analogue to the barcodes one obtains from interval
decompositions of 1-parameter persistence modules. Indeed, a classical result from representation
theory known as Gabriel’s theorem states that persistence modules of the form Rn → vec or even
Zn → vec cannot be decomposed into interval modules for n > 1. We point the reader to [Oud15]
for details on the representation theory of quivers arising from persistence modules and a proof
of Gabriel’s theorem in this setting. We instead present an example of a simple 2-parameter
persistence module that cannot be decomposed into interval modules.

Example 4 (Indecomposable 2-parameter persistence module). The main obstacle to decompos-
ing the k2 in the center of the persistence module depicted in Figure 4.4 is the fact that the rank
of the horizontal map that passes through it is 1, while the rank of the vertical map passing
through it is 0. TODO

4.2 Rank decompositions and signed barcodes

Although interval decompositions in the classical sense are impossible in this setting, allowing
for negative signs in the decomposition offers us a way out. We do this by expressing invariants
of persistence modules as signed sums of invariants of interval modules. One such invariant is
the rank invariant. It is instructive to briefly revisit the 1-parameter case to better understand
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Figure 4.4: An example of an indecomposable Z2-indexed persistence module

the rank invariant.

Definition 4.2 (The one parameter rank invariant). Let P ∈ {R,Z}, M : P→ vec be a
persistence module. Then, the rank invariant ofM is a map

RkM : Int(P)→ Z
I 7→ RkIM = rank(M(a)→M(b))

where rank(M(a)→M(b)) is the rank of the linear map between the vector spaces M(a) and
M(b).

In the one parameter case the rank invariant is a complete invariant of persistence modules.
In particular, one can use the barcode to decompose the rank invariant of M into the sum of
rank invariants of interval modules.

Proposition 4.1 (Rank invariant and barcodes). Let P ∈ {R,Z}, M : P→ vec be a per-
sistence module. Then there exists a collection of intervals I ⊂ Int(P) such that

RkM =
∑
I∈I

RkkI .

Proof. By Theorem 2.1, we can write M∼=
⊕

I∈I kI . Thus given an interval J , we have

RkJM = RkJ(
⊕
I∈I

kI)

=
∑
I∈I

RkJkI

■

One can go in the other direction as well.

Proposition 4.2. The barcode barc(M) of a persistence module M can be recovered from the
rank invariant RkM.

Proof. Let I = (a, b) ⊂ N be an interval. We provide an explicit formula for the number of copies
of I in barc(M) in terms of the rank invariant.

Denote by C(I) the number of intervals in barc(M) containing I. Intuitively,

RkIM = rank(M(a)→M(b))
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counts the number of features alive between times a and b. However, a feature alive between a
and b might have been born before a or die after b. The bar corresponding to a particular feature
represents its entire lifespan, which is an interval containing (a, b). Hence,

C(I) = RkIM .

A standard result from combinatorics, the inclusion-exclusion principle (see [All10]), yields:

#(a, b) =

{
C((a, b))− C((a, b + 1))− C((a− 1, b)) + C((a− 1, b + 1)) 0 ≤ a < b <∞
C((a,∞))− C(a− 1,∞) 0 ≤ a < b =∞

.

Hence,

#(a, b) =

{
Rk(a,b)M− Rk(a,b+1)M− Rk(a−1,b)M+ Rk(a−1,b+1)M 0 ≤ a < b <∞
Rk(a,∞)M− Rk(a−1,∞)M 0 ≤ a < b =∞

. (4.1)

■

By allowing negative signs in the sum of the rank invariant in Proposition 4.1, [BOO22]
extends the result to multiparameter persistence modules. The intervals in the decomposition
are then called the signed barcode of the persistence module.

4.3 Rank decompositions

In their paper [BOO22] introducing signed barcodes, the authors begin by proving that under
mild finiteness conditions, arbitrary functions of the form r : I → Z can be decomposed as a
signed sum of rank invariants of interval modules. We first need to extend the notion of the rank
invariant to intervals of arbitrary posets.

Definition 4.3 (Generalized rank invariant). LetM : P→ vec be a persistence module and
let I ⊂ P be a collection of intervals of P. Then the generalized rank invariant of M over I is
the map

RkIM : I → Z
I 7→ RkIM(I) = rank(lim←−M

∣∣
I
→ lim−→M

∣∣
I
)

whereM
∣∣
I
denotes the restriction ofM to the interval I.

The map lim←−M
∣∣
I
→ lim−→M

∣∣
I

exists, and is in fact canonical, since I is connected and convex
(see Theorem 2.1 of [Set]). Furthermore, since M is assumed to be pointwise finite dimensional
and the morphism lim←−M

∣∣
I
→ lim−→M

∣∣
I

factors through the finite dimensional internal spaces of

M
∣∣
I
, rank(lim←−M

∣∣
I
→ lim−→M

∣∣
I
) is finite. An important - and easy to visualize - collection of

intervals are rectangles.

Definition 4.4 (Rectangles). A rectangle or segment of a poset P is an interval of the form

⟨s, t⟩ = {u ∈ P|s ≤ u ≤ t}.

Example 5 (The usual rank invariant). Let I be the collection of rectangles in a poset P. We call
the generalized rank invariant over I the usual rank invariant. This is due to the fact, that for
a rectangle ⟨s, t⟩, we have lim←− I = s and lim−→ I = t, making the usual rank invariant an intuitive
extension of the one parameter rank invariant. Just like the single parameter rank invariant, the
usual rank invariant at a rectangle I can be interpreted as the number of features that are alive
between s and t.
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Figure 4.5: An invalid rank decomposition of the usual rank invariant with blue intervals be-
longing to R and red intervals belonging to S (from [BOO22]).

Definition 4.5 (Rank decomposition). Let I be a collection of intervals in P. A rank
decomposition of a function r : I → Z is a pair of multisets (R,S) composed of intervals in I
such that

r = RkIkR − RkIkS (4.2)

where kR =
⊕

R∈R kR and similarly for kS . The decomposition is minimal if R∩ S = ∅.

Note that the equation above is an equation relating functions I → Z which means it holds
if and only if

r(I) = RkIkR(I)− RkIkS(I) ∀I ∈ I.

We are interested in the special case where r = RkIM, whereM : P→ vec. Before proceeding
to proving the existence of rank decompositions, let us look at an example to illustrate the
importance of the collection I in Definition 4.5.

Example 6. Consider again the indecomposable module on the 3×3 grid G depicted in Figure 4.4.
Let I denote the collection of rectangles in G and let RkM be the usual rank invariant. A rank
decomposition (R,S) of RkM must consist only of rectangles. This excludes the decomposition
depicted in Figure 4.5. This is due to the fact that the large blue interval on the left is clearly not
a rectangle. This decomposition is perhaps the first one that might come to mind, if we ignore
the condition that intervals must come from the underlying family. Intuitively, one begins by
adding the large non-rectangular interval J to R, because it is precisely the interval on whichM

is supported. However, we have rank(k

(
0 1

)T

−−−−−→ k2

(
1 0

)
−−−−→ k) = 0 but on the same interval in J

the rank is 1 since we have identity maps throughout. To rectify this we add the vertical interval
to S, to ensure the sum is 0. But this results in 0 spaces throughout the vertical interval and

causes the ranks of both k

(
0 1

)T

−−−−−→ k2 and

(
1 0

)
−−−−→ k to be zero, while both of these ranks are 1

in the M. To correct for this we add the these two maps individually to R. This maintains the
rank of the composition at 0, while ensuring that the ranks of each of the smaller intervals is 1.
Hence, the decomposition satisfies Equation 4.2 but since not all intervals of R are rectangles,
it is not a rank decomposition of the usual rank invariant. A valid decomposition is depicted
in Figure 4.6. We will later compute it explicitly using Corollary 4.2. Note that the condition
requiring the decomposition to be over the same family of intervals as the rank invariant itself
is essential, as it ensures uniqueness.

If a rank decomposition exists, then it can be made minimal. Moreover, such a minimal
decomposition is unique. To prove this we need the following important fact about the rank
invariant, which we will use again when proving existence.
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Figure 4.6: A rank decomposition of the usual rank invariant with blue rectangles belonging to
R and red rectangles belonging to S (from [BOO22]).

Proposition 4.3 (Ranks and multiplicities). Let I be a collection of intervals of a poset P
and R be a multiset of intervals taken from I. Then,

RkIkR(J) = #{R ∈ R|J ⊆ R} ∀J ∈ I.

Proof. Let J ∈ I and R ∈ R be arbitrary, then kR
∣∣
J

is simply the indicator module kR∩J . Keep-
ing this in mind, we write the following decomposition of kR

kR
∣∣
J

=
⊕
R∈R

kR∩J =
⊕
R∈R
J⊆R

kJ ⊕
⊕
R∈R̃

kR,

where R̃ = {R ∈ R|R ⊊ J}. Since RkIkR(J) = RkIkJ(J) = 1 for all J ⊆ R and the rank com-
mutes with finite sums, we have that RkI

⊕
R∈R
J⊆R

kR(J) = #{R ∈ R|J ⊆ R}. Consequently, we

need to show that RkI
⊕

R∈R̃ kR(J) = 0. It suffices to show that RkIkR(J) = 0 for all R ⊊ J .

In this case either lim←− kR
∣∣
J

= 0 or lim←− kR
∣∣
J

= 0 (this is best understood using the Example 7).

We can write R̃ = R′ ∪R′′, where R′ consists only of subintervals where the limit lim←− kR
∣∣
J

= 0

vanishes and R′′ where the colimit lim−→ kR
∣∣
J

= 0 vanishes. Of course, this decomposition may
not be unique, since there might exist subintervals where both the limit and colimit vanish.
This does not matter since all we simply need to show that both RkI

⊕
R∈R′ kR(J) = 0 and

RkI
⊕

R∈R′′ kR(J) = 0. Using the fact that the direct sum commutes with the colimit, we have

RkI
⊕

R∈R′′

kR(J) = rank(lim←−
⊕

R∈R′′

kR
∣∣
J
→ lim−→

⊕
R∈R′′

kR
∣∣
J

)

= rank(lim←−
⊕

R∈R′′

kR
∣∣
J
→

⊕
R∈R′′

lim−→ kR
∣∣
J

)

= rank(lim←−
⊕

R∈R′′

kR
∣∣
J
→ 0)

= 0.

Although the direct sum does not commute with limits, the direct product does. Expressing the
direct sum as a subrepresentation of the direct product allows us to use a similar method to prove
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RkI
⊕

R∈R′ kR(J) = 0. Since the rank commutes with finite direct sums, these two statements
together imply that RkIkR(J) = 0 for all R ⊊ J , concluding the proof. ■

Example 7. Let P = Z, I be the standard collection of intervals, J = (a, b), and R = (c, d) with
c = a ≤ d < b. The restriction kR

∣∣
J

is depicted below

k k k 0 0 0

a = c d b

In this case, lim−→ kR
∣∣
J

= 0 and since maps to 0 always have rank 0, RkIkR(J) = 0. In category the-
ory language, we say R is closed under predecessors in I. On the other hand, if a < c ≤ d = b,we
obtain

0 0 k k k k

a c d = b

and consequently lim←− kR
∣∣
J

= 0. In this case R is closed under successors in I. For R ⊊ J to hold
it cannot be closed under both successors and predecessors in I, and hence either the limit or
colimit will always be zero.

Proposition 4.4 (Minimal rank decompositions are unique). Let I be a collection of
intervals in a poset P and r : I → Z be a function. Assume that there exists a rank decomposition
(R,S) of r. Then, we can obtain a unique minimal rank decomposition r.

Proof. A rank decomposition (R,S) is unique if R∩ S = ∅. So, given (R,S), we can simply
remove common elements in the intersection to obtain a disjoint pair (R∗,S∗). Note that we need
to remove elements from the intersection with the appropriate multiplicity, i.e. if I appears in R
with multiplicity n and in S with multiplicity m with n ≥ m, we include I with multiplicity n−m
in R∗ and with multiplicity 0 in S. The resultant pair (R∗,S∗) is still a rank decomposition,
since removing common elements in this manner does not alter the difference of their ranks.

Suppose now that (R′,S ′) and (R,S) are two distinct rank decompositions of r. We can
think of a rank decomposition as a Z-linear combination of the rank invariants of interval mod-
ules RkIkI with I ∈ I. Indeed, given an interval I ∈ R, set αI = multIR−multIS. This yields
r =

∑
I∈I αIRkIkI . Two distinct minimal rank decompositions of r result in two such Z-linear re-

alizations of r. Let r =
∑

I∈I αIRkIkI and r =
∑

I∈I α′
IRkIkI be the Z-linear combinations cor-

responding to (R,S) and (R′,S ′) respectively. Distinctness means that the set {I ∈ I|αI ̸= α′
I}

is nonempty. Let J be the maximal element (with respect to inclusion) of this set. We have∑
I∈I

αIRkIkI −
∑
I∈I

α′
IRkIkI = r − r = 0∑

I∈I
(αI − α′

I)RkIkI = 0

Evaluating the sum at the maximal element J we obtained above yields∑
I∈I

(αI − α′
I)RkIkI(J)

But by Proposition 4.3,

RkIkI(J) =

{
RkJ(kI) = 1 I ⊆ J

0 otherwise.
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By maximality of J , ∑
I∈I

(αI − α′
I)RkIkI(J) = (αJ − α′

J) ̸= 0

which is a contradiction. ■

We now follow sections 3, and 5.1 of [BOO22] to prove that functions r : I → Z with locally
finite support admit unique minimal rank decompositions, that they are easily computed using
Möbius inversions, and finally discuss the case we are interested in, namely when r is the rank
invariant of a finitely presentable persistence module.

4.3.1 Möbius inversions

One of the most elegant ways to prove the existence of rank decompositions is to use Möbius
inversions. Under certain finiteness assumptions, these inversions also provide concrete formulas
to compute rank decompositions. Recall first that a collection of intervals can be interpreted as
a poset with inclusion ⊂ as the order.

Definition 4.6 (Incidence algebra). Let I be a locally finite collection of intervals, that is
⟨I, J⟩ = {K ∈ I : I ⊆ K ⊆ J} is finite for all I ⊆ J ∈ I. The incidence algebra over I consists
of all functions of the form

f : {⊆} → Z
(J, I) 7→ f(J, I) J ⊇ I

with multiplication given by convolution

(f ⋆ g)(J, I) =
∑

J⊇K⊇I

f(J,K)g(K, I).

The multiplicative unit is 1J=I which sends identical pairs to 1 and all other pairs to 0.

Incidence algebras are useful, because functions r : I → Z with locally finite support define
a right module over the incidence algebra over I with multiplication being given by

(r ⋆ f)(J, I) =
∑
J⊇I

r(J)f(J, I).

Definition 4.7 (Möbius Inversion). The Möbius inversion µ is defined as the multiplicative
inverse of

ζ(J, I) =

{
1 J ⊇ I

0 otherwise
.

It can be computed recursively using

µ(J, I) =

{
1 J = I

−
∑

J⊇K⊋I µ(J,K) otherwise.
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We now want to express r : I → Z with locally finite support as the Möbius inversion of an
easily calculable function. To that end consider a multiset of intervals R and the corresponding
multiplicity function

multR : I → Z
I 7→ multIR = multiplicity of I in R.

Rephrasing Proposition 4.3 using multR leads to the following lemma.

Lemma 4.1 (Ranks and multiplicities). Let R be a multiset of intervals of a poset P and I
be a collection of intervals. Then,

RkIkR = multR ⋆ ζ.

Theorem 4.1 (Existence of rank decompositions). Let I be a locally finite collection of
intervals, and let r : I → Z have locally finite support. A pair (R,S) of intervals of I is a rank
decomposition of r if and only if

r ⋆ µ = multR−multS.

In particular R and S are given by

R =
⊔
I∈I

(r⋆µ)(I)>0

I(r⋆µ)(I), S =
⊔
I∈I

(r⋆µ)(I)<0

I(r⋆µ)(I)

where I(r⋆µ)(I) denotes I being included with multiplicity (r ⋆ µ)(I).

Proof. We have

(R,S) is a rank decomposition of r ⇐⇒ r = RkIkR − RkIkS

⇐⇒ r = multR ⋆ ζ −multS ⋆ ζ

⇐⇒ r = (multR−multS) ⋆ ζ

⇐⇒ r ⋆ µ = multR−multS.

■

Imposing extra conditions on the collection of intervals I allows us to derive a more explicit
formula for µ and consequently for the multiplicities of intervals in the rank decomposition of a
given locally finite function. These conditions are usually satisfied for collections that appear in
applications. In order to state the relevant proposition, we need the following definition.

Definition 4.8 (Join). Let P be a poset and a, b ∈ P. A join of a and b is an element j ∈ P
such that

1. x ≤ j and y ≤ j.

2. For any w ∈ P with x ≤ w and y ≤ w, we have j ≤ w.

In other words, j is the least upper bound of x and y. A join need not always exist, but is unique
when it does and is denoted by x ∨ y.
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Proposition 4.5 (Inclusion-exclusion formula for Möbius inversions). Let I be a locally
finite collection of intervals and assume that for each I ∈ I, there exists a finite set I+ ⊆ I such
that

{J ∈ I|J ⊋ I} = {J ∈ I|∃K ∈ I+ : J ⊇ K}

and that any subset I+ has a join in I. Then

µ(J, I) =

1 J = I∑
x⊂I+

∨x=J

(−1)#x otherwise.

The first condition of the assumption states that any element in the strict upset of I is in
the upset of some element of I+. The second assumption ensures that least upper bound of any
subset of I+ is also an interval, allowing us to replace elements of the upset of I with joins of
elements from I+. We will see explicit examples of I+ in the next section.

Proof. ■

Applying the formula for µ obtained in Proposition 4.5 to the equation in Theorem 4.1 yields
the following corollary

Corollary 4.1. Let I be a locally finite collection of intervals and assume that for each I ∈ I,
there exists a finite set I+ ⊆ I such that

{J ∈ I|J ⊋ I} = {J ∈ I|∃K ∈ I+ : J ⊇ K}

and that any subset I+ has a join in I. Then, a pair (R,S) is a rank decomposition of a function
r : I → Z with locally finite support if and only if

multIR−multIS = r(I)−
∑

∅̸=x⊆I+

(−1)#xr(∨x) ∀I ∈ I.

Proof. By Theorem 4.1,

r ⋆ µ = multR−multS.

Consequently,

multIR−multIS = (r ⋆ µ)(I) ∀I ∈ I

=
∑
J⊇I

r(J)µ(J, I) ∀I ∈ I

= r(I)µ(I, I) +
∑
J⊋I

r(J)µ(J, I) ∀I ∈ I

= r(I) +
∑
J⊋I

r(J)
∑
x⊆I+

∨x=J

(−1)#x ∀I ∈ I

= r(I) +
∑

∅̸=x⊆I+

r(∨x)(−1)#x ∀I ∈ I

■
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Remark 4.1. In practice, we use Corollary 4.1 to compute rank decompositions. Given an interval
I, multIR−multIS is the multiplicity of I in the decomposition. If it is positive, we include it
with the appropriate multiplicity in R and if it is negative we include it in S. Hence, computing
the rank decomposition of r amounts to evaluating the right-hand side for every interval I ∈ I.
There are certain tricks one might use to reduce the number of times r(I) is actually computed,
but it remains highly inefficient. The choice of I+ plays an important role, since a small I+ could
substantially reduce the sum and hence make computing the decomposition more efficient.

4.4 Applying rank decompositions to rank invariants of
multiparameter persistence modules.

We can now apply the results we obtained to the specific case when r is the rank invariant of
a multiparameter persistence module. In applications, we almost always deal with persistence
modules indexed over finite posets such as a finite grid G =

∏d
i=1[1, ni] ⊂ Rd. The collection

I is most often taken to be the collection of rectangles in G, but other options such as hook
modules or even the collection of all intervals is possible. Since G is finite, these collections are
trivially locally finite and the rank invariant indexed over any of these collections has locally
finite support. Consequently, Theorem 4.1 yields:

Corollary 4.2. Let I be a collection of intervals in a finite grid G =
∏d

i=1[1, ni] ⊂ Rd and
M : G→ vec be a persistence module. The rank invariant RkIM admits a unique rank decom-
position (R,S) over I.

If I is the collection of rectangles we can determine I+ and apply Proposition 4.5 to obtain
an explicit formula to determine (R,S).

Corollary 4.3. Let I be a collection of rectangles in a finite grid G =
∏d

i=1[1, ni] ⊂ Rd and
M : G→ vec be a persistence module. The usual rank invariant RkIM admits a unique rank
decomposition (R,S) comprised of rectangles. Moreover, the (R,S) is given by

R =
⊔

⟨s,t⟩,s≤t
α⟨s,t⟩>0

⟨s, t⟩α⟨s,t⟩ , S =
⊔

⟨s,t⟩,s≤t
α⟨s,t⟩<0

⟨s, t⟩α⟨s,t⟩

where

α⟨s,t⟩ =
∑
s′≤s

∥s−s′∥∞≤1

∑
t′≥t

∥t−t′∥∞≤1

(−1)∥s−s′∥1+∥t−t′∥1rank(M(s′)→M(t′)). (4.3)

Proof. Let I = ⟨s, t⟩ with s ≤ t be a rectangle. Then, set

I+ = {⟨s′, t′⟩|s′ ≤ s, t′ ≥ t : ∥s′ − s∥∞ ≤ 1, ∥t′ − t∥∞ ≤ 1}.

Clearly, any rectangle that contains ⟨s, t⟩ must contain at least one of the rectangles in I+ and
the join of any subset of I+ is trivially a rectangle. Applying Proposition 4.5 using I+ yields the
desired result. ■

Figure 4.6 is not very compact and for other modules, the decomposition might involve many
more rectangles. Moreover, many of the rectangles intersect, so plotting the entire decomposition
on a single grid is not particularly useful. Instead, for each rectangle ⟨a, b⟩ in R we only plot the
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Figure 4.7: Signed barcode of the decomposition in Example 8 (from [BOO22]).

diagonal connecting a and b. Since the rectangle is completely characterized by this diagonal,
we do not lose any information. We plot the diagonals arising from rectangles in R blue and
those arising from rectangles in S in red to differentiate between the two. This motivates the
term signed barcode.

Definition 4.9 (Signed barcode). Let I be a collection of rectangles in a poset P and (R,S)
be a rank decomposition of a function r : I → Z. Then, the corresponding signed barcode is the
pair (B,R), where B is the collection of diagonals of rectangles in R and R is the collection of
diagonals of rectangles in S.

Example 8 (Computing the rank decomposition). As promised, we now compute the rank de-
composition of the usual rank invariant of M depicted in Figure 4.4 using Equation 4.3. We
index the underlying G = 3× 3 grid in the natural way. Begin with rectangles of the form
⟨(0, 0), b⟩, where b ≥ (0, 0). Any rectangle in ⟨(0, 0), b⟩+ would also be of this form, since there
is no s < (0, 0) in G. Since M((0, 0)) = 0, RkIM(⟨(0, 0), b⟩) = 0 for all b ≥ 0. Consequently,
α⟨(0,0),b⟩=0. A similar argument can be used to show α⟨a,(2,2)⟩ = 0 for all a ≤ (2, 2), since the
maps would always end in 0. For the remaining rectangles we compute the multiplicities using
the formula. We exclude rectangles that start at (0, 0) or end at (2, 2) from all the I+’s in the
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computation below for the reasons mentioned above.

α⟨(1,0),(2,0)⟩ = rank(M(1, 0)→M(2, 0))− rank(M(1, 0)→M(2, 1)) = 1− 1 = 0

α⟨(1,0),(2,1)⟩ = rank(M(1, 0)→M(2, 1)) = 1

α⟨(1,0),(1,1)⟩ = rank(M(1, 0)→M(1, 1))− rank(M(1, 0)→M(1, 2))− rank(M(1, 0)→M(2, 1))

= 1− 0− 1 = 0

α⟨(1,0),(1,2)⟩ = rank(M(1, 0)→M(2, 1)) = 0

α⟨(2,0),(2,1) = rank(M(2, 0),M(2, 1))− rank(M(1, 0)→M(2, 1)) = 1− 1 = 0

α⟨(0,1),(1,1)⟩ = rank(M(0, 1)→M(1, 1))− rank(M(0, 1)→M(2, 1))− rank(M(0, 1)→M(1, 2))

= 1− 1− 1 = −1

α⟨(0,1),(2,1)⟩ = rank(M(0, 1)→M(2, 1)) = 1

α⟨(0,1),(0,2)⟩ = rank(M(0, 1)→M(0, 2))− rank(M(0, 1)→M(1, 2)) = 1− 1 = 0

α⟨(0,1),(1,2)⟩ = rank(M(0, 1)→M(1, 2)) = 1

α⟨(1,1),(2,1)⟩ = rank(M(1, 1)→M(2, 1))− rank(M(0, 1)→M(2, 1))− rank(M(1, 0)→M(2, 1))

= 1− 1− 1 = −1

α⟨(1,1),(1,2)⟩ = rank(M(1, 1)→M(1, 2))− rank(M(1, 0)→M(1, 2))− rank(M(0, 1)→M(1, 2))

= 1− 0− 1 = 0

α⟨(0,2),(1,2)⟩ = rank(M(0, 2)→M(1, 2))− rank(M(0, 1)→M(1, 2)) = 1− 1 = 0

The only thing remaining to check is the multiplicity of the singletons αa,a for each a = (ax, ay) ∈ G.

α(1,0) = rank(idM(1,0))− rank(M(1, 0)→M(2, 0))− rank(M(1, 0)→M(1, 1)) + rank(M(1, 0)→M(2, 0))

= 1− 1− 1 + 1

One can verify that the multiplicity of every singleton is 0 except (1, 1). In that case we have

α(1,1) = rank(idM(1,1))− rank(M(0, 1)→M(1, 1))− rank(M(1, 1)→M(2, 1))

− rank(M(1, 0)→M(1, 1))− rank(M(1, 1)→M(1, 2)) + rank(M(0, 1)→M(2, 1))

+ rank(M(0, 1)→M(1, 2)) + rank(M(1, 0)→M(2, 1))

= 2− 1− 1− 1− 1 + 1 + 1 + 1 = 1

Consequently, we have

R = {⟨(1, 0), (2, 1)⟩, ⟨(0, 1), (2, 1)⟩, ⟨(0, 1), (1, 2)⟩, ⟨(1, 1), (1, 1)⟩}
S = {⟨(0, 1), (1, 1)⟩, ⟨(1, 1), (2, 1)⟩}.

This is precisely the decomposition depicted in Figure 4.6.
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Figure 4.8: Signed barcode in dimension 1 of the circle with noise in the center. Left: raw
signed barcode with positive bars colored blue and negative bars colored red. Right: Cleaned
up signed barcode, where positive and negative bars that are extremely close to each other and
hence cancel one another out have been removed for better readability.

The 1-dimensional signed barcode of the noisy circle depicted in Figure 4.2 is in Figure 4.8.
The figure on the left is a bit hard to read due to the large number of bars that almost overlap
one another. Since a blue bar and a red bar that represent the same rectangle “cancel” each
other out, we can remove these bars from the picture to obtain a more interpretable figure like
the one on the right. Concretely this is done as follows. Let ϵ > 0 and let ⟨b1, b2⟩, ⟨r1, r2⟩ be
rectangles in R and S respectively. If ∥r1 − b1∥2 ≤ ϵ and ∥r2 − b2∥2 ≤ ϵ, then we remove the
corresponding bars from the figure. In other words, if the both end points of a red and blue bar
are ϵ-close to one another we remove the bar from the figure. Now that we have a cleaner figure,
observe how the bars in Figure 4.8 capture the evolution of the cycles through the bifiltration of
the circle in Figure 4.3.

4.5 Hilbert decompositions

Over the past few sections, we explored how the rank invariant can be used to construct a signed
decomposition of persistence modules. Such a decomposition can also be constructed using the
Hilbert function instead of the rank invariant.

Definition 4.10 (Hilbert function). Let M : P→ vec be a persistence module. Then the
associated Hilbert function is

HilM : P→ Z
i 7→ dim(M(i)).

Remark 4.2 (RkM is strictly finer than Hil(M)). The Hilbert function can be recovered from
the rank invariant, since dim(M(i)) = rank(M(i)→M(i)).

Definition 4.11 (Free persistence module). A persistence module P : P→ vec is free if it
there exists a set barc(P) ⊂ P such that

P ∼=
⊕

i∈barc(P)

ki+

where i+ = {j ∈ P|j ≥ i}. We say that P is of finite rank if barc(P) is finite.
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In other words, free persistence modules are isomorphic to direct sums of indicator modules
supported on upsets of elements of the poset.

Remark 4.3. The rank of a free persistence module is unrelated to its rank invariant. This is an
unfortunate coincidence.

Remark 4.4. Free persistence modules are interval decomposable with the intervals being the
upsets of the elements in their barcode.

We can now define the notion of a Hilbert decomposition.

Definition 4.12 (Hilbert decomposition). The Hilbert decomposition of a function η : P → Z
consists of a pair of free persistence modules (P,Q) of finite rank such that η = HilP −HilQ.
The decomposition is minimal if P ∩Q = ∅ The Betti signed barcode of η is (barc(P), barc(Q)).

We are interested in the case η = HilM, whereM : P→ vec is finitely presented. We prove
that HilM admits a Hilbert decomposition by using projective resolutions to “approximate”M
and then applying a Möbius inversion. Free persistence modules are projective in the sense of
homological algebra, i.e. they are the projective objects in the category of persistence modules.
The following proof is adapted from [BBH23].

Proposition 4.6 (Free persistence modules are projective). Let i ∈ P. Then, M ∼= ki+
is a projective in the category of persistence modules.

Proof. Assume M ∼= ki+ , then we need to show that the functor hom(ki+ ,−) is exact. It suffices
to construct a natural isomorphism hom(ki+ ,−) ≃ (−)(i). To that end consider

Ψ : hom(ki+ ,−)→ (−)(i)

(ki+
φ−→ N ) 7→ φi(ki+)

Recall, that (ki+
φ−→ N ) is itself a natural transformation and φi is the map ki+(i)→ N (i). This

map is clearly surjective. Injectivity: φ ∈ ker Ψ implies Ψ(φ) = φi(k) = 0. Let j ≥ i, then we
have the following commutative diagram

ki+(i) = k ki+(j) = k

N (i) N (j)

id

φi(k)=0 φj(k)

Since φ is a natural transformation, the square must commute, forcing φj(k) = 0 for all j ≥ i.
If j /∈ i+, then φj is trivially 0, since ki+(j) = 0. Hence, φ = 0. ■

In light of Proposition 4.6, we will use the terms projective and free interchangeably.

Definition 4.13 (Finitely presentable modules). A persistence module M : P→ vec is
finitely presentable if it is the cokernel of a map φ : F → G, where F and G are free persistence
modules of finite rank. Denote by vecfp(P) the category of finitely presentable persistence modules
over P.

Finitely presented modules trivially admit a projective resolution.
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Definition 4.14 (Projective resolutions). A projective resolution of a persistence module
M is an exact sequence

· · · → Pn → Pn−1 → . . .P1 → P0 →M→ 0

where each Pi is a projective module. A projective resolution P• →M is minimal if the rank of
Pk is minimal among all possible kth terms of a projective resolution of M for each k ∈ N. In
other words, if Q• →M is another projective resolution of M, the rank of Qk is at most the
rank of Pk for all k ∈ N.

Proposition 4.7 (Finitely presented modules admit projective resolutions). LetM : P→ vec
be a finitely presented. ThenM admits a minimal projective resolution of finite length.

Proof. We can construct a minimal projective resolution inductively. Begin with the exact se-

quence 0→ P1
f−→ P0 →M→ 0 obtained from the fact thatM is finitely presented. If ker f = 0,

then we already have a minimal resolution. If not, we can extend the sequence to 0→ ker f → P1
f−→ P0 →M→ 0.

We can only repeat this process finitely many times, since P1 is of finite rank and the ranks get
smaller as we progress. The resultant resolution is minimal by construction. ■

Theorem 4.2 (Existence of projective resolutions). Let M : P→ vec be a finitely pre-
sented. Then HilM admits a minimal Hilbert decomposition.

Proof. By Proposition 4.7, there exists a minimal projective resolution P• →M of finite length
n. Let i ∈ P be arbitrary, then by the exactness of

Pn → Pn−1 → . . .P1 → P0 →M→ 0

and the rank nullity theorem we have

dimM(i) =

n∑
k=0

(−1)k dimPk.

The Hilbert decomposition is thus given by (
⊕

k∈2N Pk,
⊕

k∈2N+1 Pk). ■

Example 9 (Hilbert decomposition). Let M : G→ vec be the indecomposable in Figure 4.9,
where G is 5× 5 grid.

k k 0 0 0

k k k 0 0

k k k 0 0

k k k k k

k k k k k

Figure 4.9: Indecomposable “staircase” module indexed over a 5× 5 grid. The generator is
colored blue, the cogenerators are red, and relations between cogenerators are orange.
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There is a single generator at a = (0, 0), two cogenerators at b = (1, 3) and d = (2, 1), and a
relation between cogenerators at c = (2, 3). The minimal projective resolution is then

0→ kc+ → kb+ ⊕ kd+ → ka+ →M

and (ka+ ⊕ kc+ , kb+ ⊕ kd+
) is the Hilbert decomposition. The Betti signed barcode is ({a, c}, {b, d}).

Figure 4.10: Minimal projective resolution of the module depicted in Figure 4.9.

4.6 Stability of rank and Hilbert decompositions

Just as in the 1-parameter case, convergence of SGD requires that the maps involved are locally
Lipschitz. Theorem 2.2 guaranteed that 1-parameter persistence is Lipschitz with respect to the
bottleneck distance. Theorem 2.2 directly related the bottleneck distance between two persistence
diagrams to the infinity norm on the space of filtration functions, however there is often an
intermediate step involved. One first proves that the map sending a filtration to its persistence
module is stable and then proving that the map sending a persistence module to its diagram is
stable. In order to do this, one needs to define a metric on the space of persistence modules. The
interleaving distance [Cha+09] was introduced as a psuedometric for single parameter persistence
modules M : R→ vec, and it has been proven to be Lipschitz with respect to the infinity norm
on filtration functions in a manner similar to Theorem 2.2. [Les15] extended the interleaving
distance to modules of the form M : Rn → vec.

Definition 4.15 (Interleaving distance). Let M : Rn → vec and ϵ ≥ 0 ∈ Rn. The ϵ-shift is
a persistence moduleM[ϵ] : Rn → vec, with objects

M[ϵ](r) =M(r + ϵ) r ∈ Rn

and morphisms

(M[ϵ](r)→M[ϵ](s)) = (M(r + ϵ)→M(s + ϵ)) r ≤ s ∈ Rn.

The ϵ-shifts define an endofunctor on the category of Rn-indexed modules. It sends an ob-
ject M to M[ϵ]. A morphism η :M→N is mapped to η[ϵ] :M[ϵ]→ N [ϵ] that associates each
ηr :M(r)→ N (r) to η[ϵ]r :M(r + ϵ)→ N (r + ϵ).

We say that M,N : Rn → vec are ϵ-interleaved if there exist morphisms f :M→N [ϵ] and
g : N →M[ϵ] such that

g[ϵ] ◦ f = ϕ2ϵ
M f [ϵ] ◦ g = ϕ2ϵ

N

where ϕ2ϵ
M :M→M[ϵ] is the morphism that sends eachM(a) toM(a + ϵ).

The interleaving distance betweenM and N is given by

dI(M,N ) = inf{ϵ ≥ 0 ∈ Rn|M and N are ϵ interleaved }.
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The following stability theorem was proven for 1-parameter persistence modules in [Cha+09]
and for Rn-indexed modules in theorem 5.3 of [Les15].

Theorem 4.3 (Stability of the interleaving distance). Let X,Y be topological spaces and
f : X → Rn, g : X → Rn be functions. Let M : Rn → vec be the persistence module obtained
from obtaining homology in dimension i to the sublevel sets of f . Similarly, let N : Rn → vec be
the persistence module obtained from sublevel sets of g. Then,

dI(M,N ) ≤ ∥f − g∥∞

In [OS21], the authors extend the bottleneck distance to a psuedometric on the space of Betti
signed barcodes. They do this by interpreting classical persistence diagrams as point measures
and the bottleneck distance as an optimal transport distance between point measures. Betti
signed barcodes can be interpreted as signed measures and there are examples from measure
theory such as the Kantorovich norm, which extend distances on positive measures to dissimi-
larities on signed measures. We refer to [OS21] for details and simply present the definition and
the relevant stability result.

Definition 4.16 (Bottleneck dissimilarity). Let B = (barc(P), barc(Q)) and C = (barc(R), barc(S))
be Betti signed barcodes, then their bottleneck dissimilarity is

d̂B(B,C) = db(barc(P) ∪ barc(S), barc(Q) ∪ barc(R))

where db is the standard bottleneck distance from Definition 2.8.

Theorem 4.4 (Stability of Hilbert decompositions). Let n ≥ 2 and M,N : Rn → vec be
finitely presentable persistence modules. Let B = (barc(P), barc(Q)) and C = (barc(R), barc(S))
be the Betti signed barcodes ofM and N respectively. Then,

d̂B(B,C) ≤ (n2 − 1)dI(M,N ).

In particular, Theorem 4.3 and Theorem 4.4 prove that the map that assigns a filtration
to its Hilbert decomposition is Lipschitz. The proof of Theorem 4.4 is based primarily on the
fact that Hilbert decompositions arise from projective resolutions of persistence modules. An
interleaving between two persistence modules can be used to establish a relationship between
their projective resolutions and consequently their Hilbert decomposition. It turns out that rank
decompositions of the rank invariant can also be obtained by projective resolutions, where the
projective objects are defined relative to a certain exact structure. We refer to [BOO22] for details
on rank exact sequences and the relative projective resolutions that arise. This interpretation
of the rank decomposition, allows the results in [OS21] to be adapted to rank decompositions
in [Bot+22]. In particular, theorem 6.1 of [Bot+22] states that signed barcodes of two finitely
presented Rn-indexed modules are Lipschitz with respect to bottleneck dissimilarity and the
interleaving distance analogous to Theorem 4.4.
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Chapter 5

Optimizing Functions Based on
Signed Barcodes

We now come to the main objective of this thesis, the differentiability and optimization of func-
tions based on signed barcodes. Just as in the one parameter case, we prove that the map that
assigns to multifiltration its signed barcode is definable in an o-minimal structure. We begin by
proving this for Betti signed barcodes arising from Hilbert decompositions, and then adapt that
proof to signed barcodes arising from rank decompositions. The reason for doing so, is that the
lifts involved in the first case are much more intuitive and easier to understand. The jump from
Hilbert decompositions to rank decompositions is then not very big. In either case the first few
steps of the pipeline, namely the ones that construct discretized multifiltrations and persistence
modules are the same. Analogous to Chapter 3, we want to prove that the bottom row of the
following diagram is definable on an o-minimal structure.

N2 ⊕ (Nd)#K N2 ⊕ (Rd)#K N2 ⊕ (Rd)#K

A (Rd)K (Nd)K vecfp(Nd) (Freefg(Nd))2 (Freefg(Rd)2 Betti Signed barcodesΦ ρ

Ψ

f◦Ω◦Ψ

Ω Λ λ

Λ̃

fg f ′g′
h

id

Figure 5.1: Decomposing the map that assigns to each multifiltered simplicial complex its Betti
signed barcode.

The map Φ constructs from each element of A, a d-parameter filtration of a finite simpli-
cial complex K. Next, the map ρ discretizes this filtration to construct a grid indexed over
Nd. Applying the simplicial homology functor in a given dimension over a fixed field, yields
a finitely presented persistence module indexed over the poset Nd. Note that the persistence
module is finitely presented, since K and hence any multifiltration of K is finite. We then use
Theorem 4.2, to obtain the minimal Hilbert decomposition of the discretized persistence module.
Here Freefg((P) denotes finitely generated, free persistence modules indexed over P. The map
Λ unravels this discretization and delivers the minimal Hilbert decomposition of the original
persistence module. Finally, we map each of the components in the Hilbert decomposition to
their generators to obtain the Betti signed barcode.
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5.1 Multifiltrations and the standard grid

5.1.1 Multiparameter filtrations

Definition 5.1 (Multifiltered simplicial complex). Let K be a finite simplicial complex.
A d-filtration of K is an increasing sequence (Kr)r∈Rd of subcomplexes of K with respect to
inclusion, i.e. Kr ⊂ Ks for all r ≤ s and K =

⋃
r∈Rd Kr. A d-filtration is 1-critical if for each

σ ∈ K, there is a unique minimal Φσ ∈ Rd such that σ ∈ Kr. We refer to Φσ as the birth index
of σ.

Equivalently, one can view a 1-critical d-filtration of K as a vector Φ in the free vector space
(Rd)K , where Φσ is the birth index of σ ∈ K. This makes use of the fact that the basis vectors
of (Rd)K are simply the simplices themselves. Note that if τ ⊂ σ, then Φτ ≤ Φσ, so that the
vector does indeed define a filtration.

Remark 5.1. A filtration Φ induces a preorder on the elements of K as follows: τ ≤ σ if Φτ ≤ Φσ,
where we use the product order on Rd to compare Φτ and Φσ.

Definition 5.2 (Parameterized family of filtrations). Let K be a finite simplicial complex,
and A a set. A map Φ : A→ (Rd)K is called a parametrized family of (d)-filtrations if for any
x ∈ A and σ, τ ∈ K with τ ⊂ σ, we have Φτ (x) ≤ Φσ(x).

Remark 5.2. This induced preorder can be extended to a total order. Begin by fixing an indexing
of the simplices of K in a manner consistent with face relations, i.e. if σi ⊂ σj , then i ≤ j. Such
an ordering of simplices of K exists, because K is finite. Note that each simplex can be uniquely
identified by its index. Now, if τ and σ are distinct simplices, such that Φσ(x) = Φτ (x) or if
they are incomparable with respect to Φ, use the total order induced by the indexing described
above to order them. Henceforth, the relation ≤ on the simplices of K will denote the total order
on K obtained by extending the preorder induced by a filtration Φ using the fixed indexing of
simplices.

We will refer to the set of vectors in (Rd)K that define a 1-critical d-filtration on K by FiltK .
Since K is finite, any filtration Φ ∈ (Rd)K can be discretized and represented as a vector in
(Nd)K . This is due to the fact that the filtration is finite, and so the new simplices are added
to the filtration only finitely many times. We define the discretization ρ on the basis vectors of
(Rd)K as follows:

ρ : (Rd)K → (Nd)K

(vσ)i 7→ #{τ ∈ K : (vτ )i ≤ (vσ)i} i ∈ {1, . . . , d}

Lemma 5.1. Let v ∈ (Rd)K be a 1-critical, d-filtration of K and ρ(v) ∈ (Nd)K be its discretiza-
tion. Then the discretized birth indices ρ(v)σ and ρ(v)τ are distinct for all distinct σ, τ ∈ K.

Proof. The lemma hinges on the fact that the relation ≤ is a total order on K, obtained by
extending the partial order. In fact, the statement does not hold if only used the partial order.
Let v ∈ (Rd)K be a 1-critical, d-filtration of K and τ, σ ∈ K, such that ρ(vσ)i = ρ(τ)i for all
i ∈ {1, . . . , d}. Then,

#{ν ∈ K : (vν)i ≤ (vσ)i} = #{ν ∈ K : (vν)i ≤ (vτ )i} for all i.

This means that vσ = vτ in the total order, which forces σ = τ since the total order extends the
induced partial order in a manner that uniquely identifies each simplex. ■
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Implicitly, ρ projects the birth indices (vσ)σ∈K onto each parameter i ∈ {1, . . . , d} and
reparameterizes each projected set by the integers {1, . . . ,#K}. The map ρ depends solely
on the preorder induced by the filtration on the simplices of K, yielding the following result.

Proposition 5.1. The map ρ : FiltK → (Nd)K is semi-algebraic, and thus definable on an o-
minimal structure. More precisely, there exists a linear partition of Filtk such that the restriction
of ρ to each element of this partition is a constant map.

Proof. We begin by defining a semi-algebraic partition of FiltK in a manner similar to that of
Proposition 3.2 of [Car+21]. Let O denote the set of all possible preorders on the simplices of K.
Since K is finite, O is also finite. The set F≥ = {Φ ∈ FiltK : Φ induces a preorder on K equal to ≥},
where ≥∈ O is a preorder on K, is defined by linear equalities and hence linear.

By construction ρ uses only information contained in the induced preorder, and so the re-
striction of ρ to each partition element is constant. A map, whose restriction is constant on each
element of a semi-algebraic partition, is semi-algebraic. ■

Visually, the fact that ρ is constant on each partition element, simply means that two filtra-
tions that have the same preorder induce the same grid.

5.2 From multifiltrations to persistence modules

Just as with the standard barcodes in one-parameter persistence, computing Betti signed bar-
codes of multifiltrations can be done without explicitly going through the space of persistence
modules. However, in order to prove definability, we work directly with the persistence modules.

Ψ : (Nd)K → vecfp(Nd)

v 7→ the nth persistence module M of the multifiltration of K given by v

Remark 5.3. Since Ψ acts on a filtration indexed by Nd, the persistence modules we consider are
defined on Nd rather than on Rd. In particular, M is not the persistence module that corresponds
to a filtration Φ ∈ (Rd)K , but rather to its discretization ρ(Φ).

This map is Lipschitz with respect to the supremum norm on (Nd)K and the interleaving
distance on persistence modules, by the weak stability theorem [Cha+16].

5.3 The discretized minimal Hilbert decomposition

Given a persistence module M : Nd → vec, Theorem 4.2 guarantees the existence of a minimal
Hilbert decomposition (P,Q) of Hil(M). Define

Ω : vecfp(Nd)→ (Freefg(Nd))2

M 7→ (P,Q) where P and Q form the minimal Hilbert decomposition.

We prove that Ω ◦ Ψ is semialgebraic by lifting this map to (Nd)K → N2 ⊕ (Nd)K and showing
that this map is semialgebraic.

Observe first that barc(P ) can be represented as a vector in (Nd)rankP by using the lexico-
graphic order on Nd to order the elements of barc(P ) in non-decreasing order. An analogous
representation exists for barc(Q) as well, leading to the map f , where barc(P ) and barc(Q)
denote the vectorization described above.

f : (Freefg(Nd))2 → (Nd)K → N2 ⊕ (Nd)#K

(P,Q) 7→ (rankP, rankQ,barc(P ),barc(Q), 0)
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Remark 5.4. Since rankP + rankQ ≤ #K, we pack any remaining indices with zeros. We map
into N2 ⊕ (Nd)#K rather than into N2 ⊕ (Nd)rankP+rankQ, since the latter would vary as the
preorder induced by filtrations in (Nd)K varies.

This map clearly has a left inverse g, since P and Q are completely characterized by their
barcodes and the first two coordinates allow us to discern the two barcodes in the vector
(rankP, rankQ,barc(P ),barc(Q), 0). This yields the following commutative diagram:

N2 ⊕ (Nd)#K

(Nd)K (Freefg(Nd))2

f◦Ω◦Ψ
fg

Ω◦Ψ

The left inverse of f makes f ◦ Ω ◦Ψ a lift of Ω ◦Ψ.

Theorem 5.1. The map f ◦Ω ◦Ψ is semialgebraic. More precisely, there exists a semialgebraic
partition of (Nd)K such that f ◦ Ω ◦ Ψ restricted to each element of the partition is a constant
map.

Proof. Let filtK ⊂ (Nd)K denote the image ρ(FiltK). We can define a partition filtK semi-
algebraically in a manner similar to that of Proposition 5.1. Further, by Proposition 5.1 each
partition element consists of a single vector. Consequently, Ψ is constant on each partition
element of filtK . Since Ω depends solely on the persistence module given by Ψ, which is constant
across a given partition element, Ω ◦ Ψ is also constant along each partition element. Post
composing with f does not affect this constancy across the element. ■

5.4 Recovering the Betti signed barcode

In order to recover the minimal Hilbert decomposition of the persistence module that corresponds
to our original filtration v ∈ (Rd)K , and hence its Betti signed barcode, we need to unravel the
discretization in ρ to find the actual barcodes. This map will be affine on each stratum and
hence definable.

Since free persistence modules are completely characterized by their barcodes, we may define a
map Λ : (Freefg(Nd)2 → (Freefg(Rd))2 by defining a map on each element of (barc(P ),barc(Q)).
To make proving the semi-algebraic nature of the lift of Λ clearer and to compute derivatives,
we further decompose Λ = η ◦ κ, where κ : (Freefg(Nd))2 → (Kd)rankP ⊕ (Kd)rankQ. Let
i = (ij)1≤j≤d ∈ barc(P ). Let i = (ij)1≤j≤d ∈ barc(P ), then κ sends ij to σ ∈ K, such that
ρ(vσ)j = ij and σ ≤ τ for all τ ∈ K that fulfill ρ(vτ )j = ij . The map is well-defined, because
the total order assigns each simplex a unique identifier and so the second minimality condition
guarantees uniqueness.

The map η : (Kd)rankP ⊕ (Kd)rankQ → N2 ⊕ Freefg(Rd) is also defined component wise. We
construct P ′ ∈ Freefg(Rd) using the elements of (Kd)rankP . Each element (σ1, . . . , σd) ∈ Kd

defines an element (Φσ1(a))1, (Φσ2(a))2, . . . , (Φσd
(a))d ∈ Rd of barc(P ′), where (Φσ(a)j denotes

the jth component of Φσ(a) ∈ Rd. We define Q′ ∈ Freefg(Rd) analogously using elements of
(Kd)rankQ.

Remark 5.5. Clearly, rankP ′ = rankP and rankQ′ = rankQ. The minimality condition makes κ
well-defined, however; the map η ◦ κ does not depend on this and one could in principle choose
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any simplex that fulfills the first condition. Indeed, suppose there exist σ, σ′ ∈ K such that
ρ(σ)j = ij for some i ∈ barc(P ) or barc(Q) and 1 ≤ j ≤ d, then per construction of ρ, we must
have (Φσ(a))j = (Φ′

σ(a))j . In other words, η(σ′) = η(σ).

The definition of Λ on the elements of the barcodes allows us to easily lift the map to
Λ̃ = η̃ ◦ κ̃ : N2 ⊕ (Nd)#K → N2 ⊕ (Rd)#K , where κ̃ : N2 ⊕ (Nd)#K → N2 ⊕ (Kd)#K and
η̃ : N2 ⊕ (Kd)#K → N2 ⊕ (Rd)#K . The map is the identity on the first two elements, i.e.
(rankP, rankQ) 7→ (rankP, rankQ). It then maps each of the first p + q vectors in (Nd)#K to
(σi ∈ K)i ∈ Kd, in the manner defined by κ and all of leftover zeros used in the vectorization
to σ1 ∈ K. Next, η̃ remains the identity on the first two elements and maps each of the first
p + q elements of (Kd)#K to an element in Rd in the manner defined by η, and any remaining
components arising from the image of zeros under κ̃ to zero. In particular, we have the following
commutative diagram:

N2 ⊕ (Nd)#K N2 ⊕ (Rd)#K

(Freefg(Nd))2 (Freefg(Rd))2

Λ̃

Λ

fg f ′g′

The map f ′ is defined in the same manner as f and possesses a right inverse g′ for the same
reason as f .

Proposition 5.2. The map Λ̃ is definable. More precisely, there exists a semialgebraic partition
of Im(f) ⊂ N2 ⊕ (Nd)#K , such that the restriction of κ̃ to each partition element is a constant
map and the restriction of η̃ to the image of each partition element under κ̃ is definable.

Proof. The sets Op,q = {f(P,Q) : rankP = p, rankQ = q} ⊂ N2⊕ (Nd)#K are given by equalities
and define a semialgebraic partition of Im(f). Observe, that this partition is the pushforward of
the partition defined in Proposition 5.1. On each partition element the map κ̃ is constant. It is
trivially constant on the first two components. Consider i ∈ Nd, which corresponds to an element
of barc(P ) or barc(Q), then each component of κ̃(i) is completely determined by the map ρ
which in turn is characterized by the preorder induced by Φ(a) on K. Hence, the restriction of
κ̃ to each partition element is a constant map.

The map η̃ is constant on the fist two coordinates and assigns to each vector v ∈ Kd a vector
comprised of coordinates of the birth times of each simplex in v. Just as in the one parameter
case, η̃ simply assigns to each simplex in v its birth index. Since Φ is definable, this map is
definable.

Consequently, the restriction of Λ̃ to each component of the partition is definable. ■

Finally, the map

λ : (Freefg((Rd))2 → Betti Signed barcodes

(P,Q) 7→ (barc(P ),barc(Q))

yields the Betti signed barcode. This map is clearly semialgebraic because it lifts to the identity
on N2 ⊕ (Rd)#K . We have now proven that each map in the composition on the bottom row of
Figure 5.1 is definable and thus obtain the following theorem.
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Theorem 5.2. Let Φ be a family of 1-critical, d-parameter filtrations that is definable on an
o-minimal structure. Then, A admits a finite Whitney stratification, and λ ◦Λ ◦Ω ◦Ψ ◦ ρ ◦Φ is
differentiable on each stratum.

Proof. We have proven that each map involved in the composition are definable. Consequently,
by Proposition 3.2 the composition is definable. The second statement follows from Theorem 3.2.

■

Finally, using the fact that λ ◦ Λ ◦ Ω ◦Ψ ◦ ρ is Lipschitz (by Theorem 4.4) we can prove that
SGD converges on loss functions based on Betti signed barcodes

Theorem 5.3 (SGD converges on maps based on Betti signed barcodes). Let A ⊂ RN

be definable and K be a finite simplicial complex. Suppose that Φ : A→ (Rd)K , d ≥ 2 is a locally
Lipschitz family of filtrations that is definable on an o-minimal structure and that L : N2 ⊕ (Rd)#K

is a locally Lipschitz loss function that is definable on an o-minimal structure. Assume further,
that the sequences of step sizes {αk} and noise {ξk} satisfy condition C of [Dav+20]. Then, the it-
erates {xk} produced by SGD converge almost surely to a critical point of L ◦ λ ◦ Λ ◦ Ω ◦Ψ ◦ ρ ◦ Φ
and the corresponding function values converge.

5.5 Differentiability of signed barcodes

One can proceed similarly to prove the differentiability of signed barcodes arising from minimal
rank decompositions of the rank invariant.

N2 ⊕ (N2d)#K N2 ⊕ (R2d)#K N2 ⊕ (R2d)#K

A (Rd)K (Nd)K vecfp(Nd) (Intrect(Nd))2 (Intrect(Rd))2 Signed barcodesΦ ρ

Ψ

f◦Ω◦Ψ

Ω Λ λ

Λ̃

fg f ′g′
h

id

Figure 5.2: Decomposing the map that assigns to each multifiltered simplicial complex its signed
barcode.

The maps Φ, ρ, and Ψ are the same as those in Figure 5.1. Instead of computing the Hilbert
decomposition, Ω computes the minimal rank decomposition of a persistence module. As before,
we then unravel the discretization and construct the signed barcodes.

5.5.1 The discretized minimal rank decomposition

We then apply Corollary 5.2 of [BOO22] to obtain a minimal rank decomposition (R,S) of the
usual rank invariant of M ∈ vecfp(Nd), where R and S are multisets of rectangles contained in∏d

i=1[1,#K]. The map Ω constructs the indicator module supported on the elements of R and
S.

Ω : vecfp(Nd)→ (Intrect(Nd))2

M 7→ (P,Q)

P =
⊕
I∈R

kI and Q =
⊕
I∈S

kI (with appropriate multiplicities)
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As discussed in section 6.1 of [BOO22], one can represent the minimal rank decomposition (R,S)
by associating each rectangle in R with its positive slope diagonal and with positive sign, while
rectangles in S are represented by their diagonals with positive slope and with a negative sign. In
particular, a rectangle ⟨s, t⟩ ∈ R ⊂ Nd can be completely characterized by the pair (s, t) ∈ (Nd)2.
Define

barc(R) = {(s, t) ∈ (Nd)2 : ⟨s, t⟩ ∈ R} with multiplicity

barc(S) = {(s, t) ∈ (Nd)2 : ⟨s, t⟩ ∈ S} with multiplicity.

Observe that there is a lexicographic order on the multisets barc(R) and barc(S), allowing for
a natural embedding into (N2d)#R and (N2d)#S . This allows us to adapt the lifting map f from
earlier to this setting.

f : (Intrect(Nd))2 → N2 ⊕ (N2d)#K

M 7→ (
∑

⟨s,t⟩∈R

Rkk⟨s,t⟩(s, t),
∑

⟨s,t⟩∈S

Rkk⟨s,t⟩(s, t),barc(R),barc(S), 0)

The expression
∑

⟨s,t⟩∈R Rkk⟨s,t⟩(s, t) is just #R and similarly for #S. We map into N2 ⊕ (N2d)#K

and pack any remaining indices with zeros for the same reason discussed in Remark 5.4. Clearly,
this map has a left inverse g leading to the following commutative diagram:

N2 ⊕ (N2d)#K

(Nd)K (Intrect(Nd))2

f◦Ω◦Ψ
fg

Ω◦Ψ

The left inverse of f makes f ◦ Ω ◦ Ψ a lift of Ω ◦ Ψ. The following theorem is almost identical
to Theorem 5.1.

Theorem 5.4. The map f ◦Ω ◦Ψ is semialgebraic. More precisely, there exists a semialgebraic
partition of (Nd)K such that f ◦ Ω ◦ Ψ restricted to each element of the partition is a constant
map.

Proof. Since the map Ψ remains unchanged, its restriction is constant over each partition element
defined in Theorem 5.1. The minimal rank decomposition depends solely on the persistence
module obtained by Ψ. Indeed, Corollary 4.2 provides an explicit Möbius inversion formula to
compute the minimal rank decomposition in this case. This formula is simply an alternating sum
of the usual rank invariant of the underlying persistence module, which is invariant over each
partition element. Finally, postcomposing with the lift f preserves this property. ■

5.5.2 Unraveling the discretization

The signed barcodes obtained in the previous section are the ones associated with the discretiza-
tion of the original filtration. Just as with the Hilbert decomposition, we define a map whose
restriction is affine on each partition element, to unravel the discretization. We define a map
Λ : (Intrect(Nd))2 → (IntrectRd))2. Keeping with our earlier construction, Λ is defined on the
elements of barc(R),barc(S), and decomposes into Λ : η ◦ κ. The map

κ : (Intrect(Nd))2 → (K2d)#R ⊕ (K2d)#S
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is defined in the same way as earlier, with each element (s, t) ∈ barc(R) being assigned a pair
((σj)1≤j≤d, (τj)1≤j≤d), with the simplices being assigned using the left inverse of ρ (and the total
order if needed) as earlier. Next define the map

η : (K2d)#R ⊕ (K2d)#S → (Intrect(Rd))2

by using the elements of (K2d)#R to construct the barcode for the positive module in the
decomposition. Each pair ((σj)1≤j≤d, (τj)1≤j≤d) ∈ K2d is sent to (s, t) = ((Φσj )j , (ΦP τj))
defining a rectangle in Rd. Setting P ′ to be the indicator module supported on these rectangles
and S′ to be the module supported on the rectangles arising from the birth indices of (K2d)#S

completes the definition of Λ. Once again, Λ can be lifted to a map

Λ̃ = η̃ ◦ κ̃ : N2 ⊕ (N2d)#K κ̃−→ N2 ⊕ (K2d)#K η̃−→ N2 ⊕ (R2d)#K

for the same reason as earlier. This map is the identity on the first two components. Using
reasoning identical to that used in Proposition 5.2, we can prove the identical statement for this
map.

Proposition 5.3. The map Λ̃ is definable. More precisely, there exists a semialgebraic partition
of Im(f) ⊂ N2 ⊕ (N2d)#K , such that the restriction of κ̃ to each partition element is a constant
map and the restriction of η̃ to the image of each partition element under κ̃ is definable.

Consequently, we have:

Theorem 5.5. Let Φ be a family of 1-critical, d-parameter filtrations that is definable on an
o-minimal structure. Then, A admits a finite Whitney stratification, and λ ◦Λ ◦Ω ◦Ψ ◦ ρ ◦Φ is
differentiable on each stratum.

As with Hilbert decompositions, λ ◦ Λ ◦ Ω ◦Ψ ◦ ρ is Lipschitz, and so the results above to-
gether deliver the following theorem.

Theorem 5.6 (SGD converges on maps based on signed barcodes). Let A ⊂ RN be de-
finable and K be a finite simplicial complex. Suppose that Φ : A→ (Rd)K , d ≥ 2 is a locally Lip-
schitz family of filtrations that is definable on an o-minimal structure and that L : N2 ⊕ (R2d)#K

is a locally Lipschitz loss function that is definable on an o-minimal structure. Assume further,
that the sequences of step sizes {αk} and noise {ξk} satisfy condition C of [Dav+20]. Then, the it-
erates {xk} produced by SGD converge almost surely to a critical point of L ◦ λ ◦ Λ ◦ Ω ◦Ψ ◦ ρ ◦ Φ
and the corresponding function values converge.

5.6 Conclusion and ongoing work

Theorem 5.3 and Theorem 5.6 tell us that SGD converges definable, locally Lipschitz functions
defined on Betti signed barcodes and signed barcodes. In ongoing work we aim to provide a few
examples for such loss functions and demonstrate the power of both methods using a few toy
experiments. Given the fact that multiparameter persistence carries far more information than
single parameter persistence, we hope that optimizing functions using signed barcodes instead of
standard persistence diagrams will deliver significant improvements in performance. The main
challenges at the moment are to make the computation of signed barcodes more efficient as well
as to design interesting loss functions.
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[Dem+22] Andaç Demir et al. “ToDD: Topological Compound Fingerprinting in Computer-
Aided Drug Discovery”. In: Advances in Neural Information Processing Systems.
Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 27978–27993.
url: https://proceedings.neurips.cc/paper_files/paper/2022/file/

b31f6d65f2584b3c4347148db36fe07f-Paper-Conference.pdf.

[DCL22] Zhetong Dong, Jinhao Chen, and Hongwei Lin. “Topology-controllable Implicit Sur-
face Reconstruction Based on Persistent Homology”. In: Computer-Aided Design
150 (2022), p. 103308. issn: 0010-4485. doi: https://doi.org/10.1016/j.cad.
2022.103308. url: https://www.sciencedirect.com/science/article/pii/
S001044852200077X.

[Dri98] L. P. D. Van Den Dries. Tame Topology and O-minimal Structures. 1st ed. Cam-
bridge University Press, May 1998. isbn: 9780521598385 9780511525919. doi: 10.
1017/CBO9780511525919. url: https://www.cambridge.org/core/product/

identifier/9780511525919/type/book (visited on 07/03/2023).

[EM13] Herbert Edelsbrunner and Dmitriy Morozov. “Persistent Homology: Theory and
Practice”. In: European Congress of Mathematics Kraków, 2 – 7 July, 2012. Ed. by
Rafa l Lata la et al. Zuerich, Switzerland: European Mathematical Society Publishing
House, Nov. 30, 2013, pp. 31–50. isbn: 9783037191200. doi: 10.4171/120-1/3. url:
https://ems.press/doi/10.4171/120-1/3 (visited on 08/25/2023).

[EB] Gudhi Editorial Board. Gudhi. Version 3.7.1. url: https://gudhi.inria.fr.

[GHO16] Marcio Gameiro, Yasuaki Hiraoka, and Ippei Obayashi. “Continuation of point
clouds via persistence diagrams”. en. In: Physica D: Nonlinear Phenomena 334 (Nov.
2016), pp. 118–132. issn: 01672789. doi: 10.1016/j.physd.2015.11.011. url:
https://linkinghub.elsevier.com/retrieve/pii/S0167278915002626 (visited
on 06/07/2023).

[Hat02] Allen Hatcher. Algebraic topology. Cambridge ; New York: Cambridge University
Press, 2002. 544 pp. isbn: 9780521791601 9780521795401.

51

https://proceedings.mlr.press/v139/carriere21a.html
https://proceedings.mlr.press/v139/carriere21a.html
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1145/1542362.1542407
https://doi.org/10.1007/978-3-319-42545-0
http://link.springer.com/10.1007/978-3-319-42545-0
http://link.springer.com/10.1007/978-3-319-42545-0
https://doi.org/10.1007/s10208-018-09409-5
http://link.springer.com/10.1007/s10208-018-09409-5
http://link.springer.com/10.1007/s10208-018-09409-5
https://proceedings.neurips.cc/paper_files/paper/2022/file/b31f6d65f2584b3c4347148db36fe07f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b31f6d65f2584b3c4347148db36fe07f-Paper-Conference.pdf
https://doi.org/https://doi.org/10.1016/j.cad.2022.103308
https://doi.org/https://doi.org/10.1016/j.cad.2022.103308
https://www.sciencedirect.com/science/article/pii/S001044852200077X
https://www.sciencedirect.com/science/article/pii/S001044852200077X
https://doi.org/10.1017/CBO9780511525919
https://doi.org/10.1017/CBO9780511525919
https://www.cambridge.org/core/product/identifier/9780511525919/type/book
https://www.cambridge.org/core/product/identifier/9780511525919/type/book
https://doi.org/10.4171/120-1/3
https://ems.press/doi/10.4171/120-1/3
https://gudhi.inria.fr
https://doi.org/10.1016/j.physd.2015.11.011
https://linkinghub.elsevier.com/retrieve/pii/S0167278915002626


[Hir+16] Yasuaki Hiraoka et al. “Hierarchical structures of amorphous solids characterized by
persistent homology”. In: Proceedings of the National Academy of Sciences 113.26
(June 28, 2016), pp. 7035–7040. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.
1520877113. url: https://pnas.org/doi/full/10.1073/pnas.1520877113

(visited on 07/03/2023).

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
arXiv:1412.6980 [cs]. Jan. 2017. url: http://arxiv.org/abs/1412.6980 (visited
on 08/09/2023).

[Les15] Michael Lesnick. “The Theory of the Interleaving Distance on Multidimensional
Persistence Modules”. In: Foundations of Computational Mathematics 15.3 (June
2015), pp. 613–650. issn: 1615-3375, 1615-3383. doi: 10.1007/s10208-015-9255-
y. url: http://link.springer.com/10.1007/s10208-015-9255-y (visited on
08/16/2023).

[LOT22] Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. “A Framework for Differential
Calculus on Persistence Barcodes”. In: Foundations of Computational Mathematics
22.4 (Aug. 2022), pp. 1069–1131. issn: 1615-3375, 1615-3383. doi: 10.1007/s10208-
021-09522-y. url: https://link.springer.com/10.1007/s10208-021-09522-y
(visited on 08/25/2023).

[ML78] Saunders Mac Lane. Categories for the Working Mathematician. Vol. 5. Graduate
Texts in Mathematics. New York, NY: Springer New York, 1978. isbn: 9781441931238
9781475747218. doi: 10.1007/978-1-4757-4721-8. url: http://link.springer.
com/10.1007/978-1-4757-4721-8 (visited on 07/02/2023).

[Moo+20] Michael Moor et al. “Topological Autoencoders”. In: Proceedings of the 37th Inter-
national Conference on Machine Learning. ICML’20. JMLR.org, 2020.

[OS21] Steve Oudot and Luis Scoccola. “On the Stability of Multigraded Betti Numbers and
Hilbert Functions”. In: (2021). doi: 10.48550/ARXIV.2112.11901. url: https:
//arxiv.org/abs/2112.11901.

[Oud15] Steve Y. Oudot. Persistence theory: from quiver representations to data analysis.
eng. Mathematical Surveys and Monographs volume 209. Providence, Rhode Island:
American Mathematical Society, 2015. isbn: 9781470434434 9781470425456.

[PSO18a] Adrien Poulenard, Primoz Skraba, and Maks Ovsjanikov. “Topological Function
Optimization for Continuous Shape Matching”. en. In: Computer Graphics Forum
37.5 (Aug. 2018), pp. 13–25. issn: 01677055. doi: 10.1111/cgf.13487. url: https:
//onlinelibrary.wiley.com/doi/10.1111/cgf.13487 (visited on 06/07/2023).

[PSO18b] Adrien Poulenard, Primoz Skraba, and Maks Ovsjanikov. “Topological function op-
timization for continuous shape matching”. In: Computer Graphics Forum. Vol. 37.
5. Wiley Online Library. 2018, pp. 13–25.

[San+23] Ainkaran Santhirasekaram et al. “Topology Preserving Compositionality for Robust
Medical Image Segmentation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops. 2023, pp. 543–552.

[Set] Siddharth Setlur. “Examining Persistent Homology from Three Different Theoretical
Perspectives.” Bachelor Thesis. ETH Zürich. url: https://n.ethz.ch/~ssetlur/
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