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Abstract. Extending our previous results with Tristan Rivière for harmonic
maps, we show how partial regularity for stationary biharmonic maps into
arbitrary targets can be naturally obtained via gauge theory in any dimensions
m ≥ 4.

1. Introduction

In [9], jointly with Tristan Rivière we presented a new approach to the partial
regularity for stationary weakly harmonic maps in dimension m ≥ 2 as a special
case of a regularity result for elliptic systems

(1) −∆ui = Ωij · ∇uj in B

on a ball B = Bm ⊂ R
m with Ω = (Ωij) ∈ L2(B, so(n) ⊗ ∧1

R
m) and with u =

(u1, . . . , un) ∈ H1(B, Rn) satisfying the Morrey growth assumption

(2) sup
x∈B, r>0

(

1

rm−2

∫

Br(x)∩B

(|∇u|2 + |Ω|2) dx

)1/2

< ε(m).

A key ingredient in this new approach is the natural use of gauge theory, which
is motivated by the anti-symmetry of the 1-form Ω = Ωij . Previously, Rivière [8]
already had recognized this structure as the essential structure of the harmonic
map system in m = 2 space dimensions, allowing him to obtain an equivalent
formulation of this equation in divergence form. His results generalize to a large
number of conformally invariant equations of second order. Subsequently, Lamm
and Rivière [6] obtained a similar equivalent formulation of the biharmonic map
system as a conservation law in the “conformal” case of m = 4 space dimensions.
However, just as the methods of [8] no longer seem applicable when m > 2, also
the approach in [6] seems to fail in dimensions m > 4.

Our aim in this short note is to extend the approach in [9] to fourth order equa-
tions and to recover the known partial regularity results for stationary (extrinsic)
biharmonic maps into an arbitrary closed target manifold N ⊂ R

n by a simpler
method and under minimal regularity assumptions. In particular, we show the fol-
lowing result which improves the pioneering work of Chang-Wang-Yang [3] and the
later results by Changyou Wang [14] and Strzelecki [10] in this regard.

Theorem 1.1. Let Nk ⊂ R
n be a closed submanifold of class C3. Let m ≥ 4 and

suppose u ∈ H2(B; N) is a stationary biharmonic map on a ball B = Bm ⊂ R
m.
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There exists a constant ε0 > 0 depending only on N and m with the following
property. Whenever on some ball BR(x0) ⊂ B there holds

(3) R4−m

∫

BR(x0)

(|∇2u|2 + |∇u|4)dx < ε0,

then u is Hölder continuous (and hence as smooth as the target permits) on BR/3(x0).
In particular, u is smooth off a set S ⊂ B of vanishing (m− 4)-dimensional Haus-
dorff measure.

In the following section we first derive a useful form of the biharmonic map equa-
tion. In Section 3 we give an overview of Morrey spaces and recall the interpolation
results and results from gauge theory that we need. Finally, we present the proof
of Theorem 1.1 in Section 4. It would be interesting to see if our method can be
extended to general linear systems of fourth order that exhibit a structure similar
to the one of equation (4) below, as is the case for second order systems (1) or in
the “conformal” case m = 4 considered in [6]. It is a pleasure to thank Tristan
Rivière for interesting discussions in an early stage of this work.

2. Biharmonic maps

In a first step we cast the equation for a biharmonic map u ∈ H2(B, Rn) into
the form

(4) ∆2u = ∆(D · ∇u) + div(E · ∇u) + F · ∇u in B

previously considered in [6] in dimension m = 4. In contrast to [6], however, here we
decompose the function F as F = G+∆Ω with Ω = (Ωij) ∈ H1(B, so(n)⊗∧1

R
m).

The coefficient functions D, E, G, and Ω naturally depend on u and satisfy the
growth conditions

|D| + |Ω| ≤ C|∇u|,

|E| + |∇D| + |∇Ω| ≤ C|∇2u| + C|∇u|2,

|G| ≤ C|∇2u||∇u| + C|∇u|3.

(5)

To see (4) consider for simplicity the case of a biharmonic map u = (u1, . . . , un)
to a closed hypersurface N ⊂ R

n with normal ν. As in [9], the general case is
obtained in similar fashion with the help of a smooth local orthonormal frame
ν1, . . . , νk for the normal bundle along N . Denoting as πN : U ⊂ R

n → N the
projection from a tubular neighborhood U of N onto N and letting w = ν ◦u, then
dπN (u) = id−w⊗w : R

n → TuN is the projector onto the tangent space along the
map u.

From the variational characterization of weakly biharmonic maps u ∈ H2(B, N)
we have

(6) 0 =
d

dε

∣

∣

∣

∣

ε=0

(
∫

B

|∆πN (u + εϕ)|2 dx

)

= 2

∫

B

∆u · ∆(dπN (u)ϕ) dx

for all ϕ ∈ C∞
0 (B, Rn). Hence we may write the biharmonic map system as

0 = dπN (u)∆2u = ∆
(

dπN (u)∆u
)

− 2∇(dπN (u)) · ∇∆u − ∆
(

dπN (u)
)

∆u

= ∆2u − ∆((w ⊗ w)∆u) + 2∇(w ⊗ w) · ∇∆u + ∆(w ⊗ w)∆u.
(7)



PARTIAL REGULARITY FOR BIHARMONIC MAPS, REVISITED 3

Observing that wj∇uj = 0, following Hélein [5] we rewrite

((w ⊗ w)∆u)i = wiwj∆uj = −wi∇wj · ∇uj = (wj∇wi − wi∇wj) · ∇uj ,(8)

where we tacitly sum over repeated indices. Similarly, we have

(

∇(w ⊗ w) · ∇∆u
)i

= ∇(wiwj) · ∇∆uj

= ∆(∇(wiwj) · ∇uj) − 2∇2(wiwj) · ∇2uj −∇∆(wiwj) · ∇uj

= ∆(wi∇wj · ∇uj) − 2div(∇2(wiwj) · ∇uj) + ∇∆(wiwj) · ∇uj .

(9)

Finally, we have

(10)
(

∆(w ⊗ w)∆u
)i

= ∆(wiwj)∆uj = div(∆(wiwj)∇uj) −∇∆(wiwj) · ∇uj ,

and from (7) we obtain the equation

∆2ui = 3∆((wj∇wi − wi∇wj) · ∇uj) + 4div(∇2(wiwj) · ∇uj)

− div(∆(wiwj)∇uj) −∇∆(wiwj) · ∇uj .
(11)

This equation has the structure (4), that is, in components,

∆2ui = ∆(Dij
α ∂αuj) + ∂α(Eij

αβ∂βuj) + F ij
α ∂αuj in B.

Indeed, we may let

(12) Dij
α = 3(wj∂αwi − wi∂αwj), Eij

αβ = 4∂α∂β(wiwj) − δαβ∆(wiwj),

satisfying the estimates

(13) |D| ≤ C|∇u|, |E| + |∇D| ≤ C|∇2u| + C|∇u|2.

For the remaining term we once more use the identity wj∇uj = 0 to expand

∇∆(wiwj) · ∇uj = (wi∇∆wj − wj∇∆wi) · ∇uj − Gij
1 · ∇uj

= ∆(wi∇wj − wj∇wi) · ∇uj − Gij · ∇uj ,
(14)

where the coefficient functions G1 and G involve sums of terms like ∇2wi∇wj .
Hence these functions may be estimated

|G| + |G1| ≤ C|∇u||∇2u| + C|∇u|3.(15)

Finally, we let

(16) Ωij = (widwj − wjdwi), 1 ≤ i, j ≤ n,

satisfying

(17) |Ω| ≤ C|∇u|, |∇Ω| ≤ C|∇2u| + C|∇u|2.

Note that the constants C in (13), (15), and (17) only depend on a C2-bound for
ν and hence may be chosen uniformly for a closed manifold N of class C3.

Finally recall that a weakly biharmonic map u is called stationary if it also
is a critical point for the Hessian energy with respect to variations of the form
u ◦ (id + ετ), where τ ∈ C∞

0 (B; Rm), |ε| << 1.
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3. Morrey spaces and gauge theory

Recall that for any 1 ≤ p < ∞ and any s < m a function f ∈ Lp(B) belongs to
the homogeneous Morrey space Lp,s(B) on a ball B ⊂ R

m, provided that

(18) ‖f‖p
Lp,s(B) = sup

x0∈B , r>0

(

1

rs

∫

Br(x0)∩B

|f |pdx

)

< ∞ ,

and f ∈ BMO(B), if

(19) [f ]pBMO(B) = sup
x0∈B , r>0

(

r−m

∫

Br(x0)∩B

|f − f̄r,x0
|p

)

< ∞ ,

where

(20) f̄r,x0
= −

∫

Br(x0)∩B

f dx,

denotes the average of f on the set Br(x0) ∩ B. Note that Hölder’s inequality for
1 ≤ p ≤ q < m implies the bound

(21) ‖f‖Lp,m−p(B) ≤ ‖f‖Lq,m−q(B)

for any f ∈ Lq,m−q(B).

For k ∈ N and s = m − kp we also use the notation f ∈ Lp,m−kp
k (B), provided

that f ∈ W k,p(B) with ∇lf ∈ Lp,m−lp(B) for 0 < l ≤ k. For any f ∈ Lp,m−kp
k (B)

Poincaré’s inequality

(22)

∫

Br(x0)∩B

|f − f̄r,x0
|p dx ≤ Crp

∫

Br(x0)∩B

|∇f |p dx

then implies the bound

(23) [f ]BMO(B) ≤ C||∇f ||Lp,m−p(B).

An important role in our proof of Theorem 1.1 is played by the following refine-
ment of the Gagliardo-Nirenberg interpolation result, due to Adams-Frazier [1]. A
very elegant proof using H1-BMO duality was later given by Strzelecki [11].

Proposition 3.1. For any s > 1 there exists a constant C such that for any
u ∈ W 2,s ∩ BMO(Rm) with compact support there holds

||∇u||2L2s(Rm) ≤ C[u]BMO(Rm)||∇
2u||Ls(Rm).

With the help of (23) Proposition 3.1 may be localized and scaled to yield the
following estimate in Morrey norms. A similar result is stated in [14], Proposition
4.3.

Proposition 3.2. For any 1 < s ≤ m/2 there exists a constant C such that for

any ball B ⊂ R
m and any u ∈ Ls,m−2s

2 (B) there holds

||∇u||2L2s,m−2s(B) ≤ C||∇u||L1,m−1(B)(||∇
2u||Ls,m−2s(B) + ||∇u||Ls,m−s(B)).

Since the argument is somewhat delicate we briefly present the proof of Propo-
sition 3.2 in Appendix A.

With these prerequisites we can now state the results from gauge theory that we
need for dealing with equation (16). As shown by Meyer-Rivière [7], Theorem I.3,
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and Tao-Tian [12], Theorem 4.6, the results from Uhlenbeck [13] on the existence
of Coulomb gauges may be extended to connections in suitable Morrey spaces. We
state their result on an arbitrary ball B ⊂ R

m; all norms refer to B. In order to
emphasize the Coulomb gauge condition, we write the gauge-equivalent connection
1-form as ∗dξ.

Lemma 3.3. There exists ε = ε(m, n) > 0 and C > 0 with the following property:

For every Ω ∈ L2,m−4
1 ∩ L4,m−4(B, so(n) ⊗ ∧1

R
m) with

(24) ||∇Ω||L2,m−4 + ||Ω||2L4,m−4 ≤ ε(m, n)

there exist P ∈ H2(B; SO(n)) and ξ ∈ H2(B, so(n) ⊗ ∧m−2
R

m) such that

dPP−1 + PΩP−1 = ∗dξ on B(25)

and

d(∗ξ) = 0 on B, ξ
∣

∣

∂B
= 0.(26)

In addition, we have P, ξ ∈ L2,m−4
2 (B) with

||∇2P ||L2,m−4 + ||∇P ||L2,m−2 + ||∇2ξ||L2,m−4 + ||∇ξ||L2,m−2

≤ C(||∇Ω||L2,m−4 + ||Ω||2L4,m−4) ≤ Cε(m, n).
(27)

Note that via Proposition 3.2 from (27) we also obtain that P, ξ ∈ L4,m−4
1 (B)

with

||∇P ||L4,m−4 + ||∇ξ||L4,m−4 ≤ C(||∇Ω||L2,m−4 + ||Ω||2L4,m−4) ≤ Cε(m, n).(28)

4. Proof of Theorem 1.1

Throughout the following we assume that condition (3) is satisfied on B3(0) for
some number ε0 = ε0(m, N) > 0 to be determined in the sequel. As was shown in
[3], Lemma 4.8, or [14], Lemma 5.3, for a stationary biharmonic map this implies
the Morrey bound

(29) ε4
1 := ||∇2u||2L2,m−4(B2(0))

+ ||∇u||4L4,m−4(B2(0))
< Cε0;

with a constant C = C(N, m). Clearly we may assume that ε1 ≤ 1. The bound
(29) is a consequence of the monotonicity inequality for stationary biharmonic
maps, which was formally derived by Chang-Wang-Yang [3], Proposition 3.2; for
stationary biharmonic maps of class H2 a rigorous derivation of this key result was
later given by Angelsberg [2]. In Appendix B we show how the bound (29) may
be derived from the monotonicity inequality directly, without further use of the
biharmonic map system. This result may be of independent interest.

As in [9] we interpret the 1-form Ω ∈ H1(B; so(n)⊗∧1
R

n) arising in equation (4)
as a connection in the SO(n)-bundle u∗TN . Taking account of (17) and (29), from
Lemma 3.3 for sufficiently small ε0 = ε0(N, m) > 0 we can find a gauge transforma-
tion P , transforming Ω into Coulomb gauge. Applying the gauge transformation
P to ∆u, in a first step we obtain

P∆2u + ∇∆P · ∇u = div
(

∇(P∆u) − 2∇P∆u + ∆P∇u
)

= ∆(P∆u) − 2div2(∇P ⊗∇u) + div(2∇2P · ∇u + ∆P∇u),
(30)
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where we let div2(∇P ⊗∇u) = ∂α∂β(∂αP ∂βu) for short. Observing the identity

P
(

∆(D · ∇u) + div(E · ∇u) + F · ∇u
)

= ∆(PD · ∇u)

+ div
(

(PE − 2∇PD) · ∇u
)

+ (∆PD + PF −∇P · E) · ∇u,
(31)

from (4) and (30) then we find

∆(P∆u) = ∆(PD · ∇u) + 2div2(∇P ⊗∇u) − div
(

2∇2P · ∇u + ∆P∇u
)

+ div
(

(PE − 2∇PD) · ∇u
)

+ (∇∆P + ∆PD + PF −∇P · E) · ∇u.
(32)

Letting

(DP )ik
α = δαβP ijDjk

β + 2∂αP ik,

(EP )ik
αβ = P ijEjk

αβ − 2∂αP ijDjk
β − δαβ∆P ik − 2∂α∂βP ik

(33)

and setting

GP = ∇∆P + ∆PD + PF −∇P · E − ∗d∆ξP

= ∇∆P + ∆PD + PG + P∆Ω −∇P · E − ∆
(

((∇P + PΩ)P−1)P
)

,
(34)

we finally obtain the gauge-equivalent form

∆(P∆u) = div2(DP ⊗∇u) + div(EP · ∇u) + GP · ∇u + ∗d∆ξ · P∇u(35)

of equation (4), where

|DP | ≤ C(|∇u| + |∇P |),

|∇DP | + |EP | ≤ C(|∇2u| + |∇u|2 + |∇2P | + |∇P |2),

|GP | ≤ C(|∇2u| + |∇2P |)(|∇u| + |∇P |) + C(|∇u|3 + |∇P |3).

(36)

We regard (35) and (25) as a coupled system of equations for u and P .

Fix numbers 1 < p < m/2 < q < m with 1/p+1/q = 1. Our aim in the following
is to derive a Morrey-type decay estimate

(37)

∫

Br(x0)

|∇u|p dx ≤ Crm−p+αp

for all x0 ∈ B1(0) and all 0 < r < 1 with uniform constants C and α > 0. By
Morrey’s Dirichlet growth theorem then u ∈ C0,α(B1(0)), as claimed.

Fix x0 ∈ B1(0). For 0 < r < 1 define

Ψ1(u; r) = ||∇u||pLp,m−p(Br(x0))
, Ψ2(u; r) = ||∆u||pLp,m−2p(Br(x0))

,

and similarly for P . For a suitable constant 0 < γ < 1 to be determined below then
we let

Ψ(u; r) = Ψ1(u; r) + γ−mΨ2(u; r),

and likewise for P . Finally, with the constant C2 ≥ 1 determined in Lemma 4.4
below we let

Ψ(r) = Ψ(P ; r) + C2Ψ(u; r).

For the proof of (37) then it suffices to show that for all r < 1 we can bound

(38) Ψ(r) ≤ Crp/4

with a constant C independent of x0 and r. In view of (29), moreover, we only
need to verify (38) for r < γ2.
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Our argument will also involve scaled estimates for ∇2u. Note that we can
estimate ∇2u in terms of ∆u by means of the Calderòn-Zygmund inequality.

Proposition 4.1. For any s > 1, any 0 < γ < 1 there exists a constant C such
that for any R > 0 and any u ∈ W 2,s ∩ W 1,s

0 (BR(0)) there holds

||∇2u||Ls,m−2s(BγR(0)) ≤ C(||∆u||Ls,m−2s(BR(0)) + ||∇u||Ls,m−s(BR(0))).

On any ball BR(x1) ⊂ BR0
(x0) with 0 < R0 < γ we split

(39) P∆u = f + h,

where ∆h = 0 in BR(x1) and where f
∣

∣

∂BR(x1)
= 0.

Our first task now is to show that the component f in this decomposition is of
“lower order” in the following sense.

Lemma 4.2. With a uniform constant C there holds

(40) R2p−m

∫

BR(x1)

|f |p dx ≤ Cε1Ψ(γ−1R0).

Proof. By scale invariance of the expressions, we may scale so that BR(x1) =
B1(0). In a first step we establish the estimate

||f ||Lp ≤ Cε1(||∇u||L2p + ||∇P ||L2p + ||∇u||2L4 + ||∇P ||2L4).(41)

Here and in the following computations all norms refer to the domain B = B1(0).

To see (41), note that by duality we have

||f ||Lp ≤ C sup
ϕ∈Lq(B));||ϕ||Lq≤1

∫

B

fϕ dx.(42)

For any ϕ ∈ Lq(B) with ||ϕ||Lq ≤ 1 denote as Φ the solution to the Dirichlet
problem ∆Φ = ϕ on B with Φ = 0 on ∂B. By the Calderòn-Zygmund inequality
and Sobolev’s embedding then with q∗ > m satisfying 1

q∗
= 1

q − 1
m we have Φ ∈

W 2,q ∩ W 1,q∗

0 (B)) ↪→ C1−m/q∗

(B), and there holds

(43) ||Φ||L∞ ≤ C||Φ||W 2,q ≤ C||ϕ||Lq ≤ C.

Hence we deduce that

||f ||Lp ≤ C sup
Φ∈W 2,q∩W 1,q∗

0
(B));||Φ||W2,q ≤1

∫

B

f∆Φ dx.

For any such Φ we now integrate by parts and use (35) to split
∫

B

f∆Φ dx =

∫

B

∆(P∆u)Φ dx = I + II + III + IV.(44)

By (36), (27), (28), and (29) the terms

I + II =

∫

B

div
(

div(DP ⊗∇u) + (EP · ∇u)
)

Φ dx

= −

∫

B

(

div(DP ⊗∇u) + (EP · ∇u)
)

· ∇Φ dx
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can be estimated

I + II ≤ C

∫

B

(|∇2u| + |∇2P | + |∇u|2 + |∇P |2)(|∇u| + |∇P |)|∇Φ| dx

≤ C(||∇2u||L2 + ||∇2P ||L2 + ||∇u||2L4 + ||∇P ||2L4)

· (||∇u||L2p + ||∇P ||L2p)||∇Φ||Lq∗

≤ Cε1(||∇u||L2p + ||∇P ||L2p).

(45)

Observe that 1
2 + 1

2p + 1
q∗

= 1 + 1
2q − 1

m < 1.

Next we again use (36) to estimate

|GP · ∇u| ≤ C
(

(|∇2u| + |∇2P |)(|∇u| + |∇P |) + C(|∇u|3 + |∇P |3)
)

|∇u|

≤ C(|∇2u| + |∇2P | + |∇u|2 + |∇P |2)(|∇u|2 + |∇P |2).

Hence by (27), (28), and (29) again we can bound

III =

∫

B

GP · ∇uΦ dx

≤ C(||∇2u||L2 + ||∇2P ||L2 + ||∇u||2L4 + ||∇P ||2L4)(||∇u||2L4 + ||∇P ||2L4)

≤ Cε1(||∇u||2L4 + ||∇P ||2L4).

(46)

Upon integrating by parts, finally, we have

IV =

∫

B

∗d∆ξ · P∇uΦ dx =

∫

B

d∆ξ ∧ ΦPdu =

∫

B

∆ξ du ∧ d(ΦP ),

and we can bound this term

IV ≤ C||∇2ξ||L2(||∇u||L2p ||∇Φ||Lq∗ + ||∇u||L4 ||∇P ||L4)

≤ Cε1(||∇u||L2p + ||∇u||2L4 + ||∇P ||2L4).
(47)

Our claim (41) follows upon inserting the bounds (45), (46), and (47) into (44).

Upon scaling the bound (41) we obtain

R2p−m

∫

BR(x1)

|f |p dx ≤ Cε1

(

||∇u||pL2p,m−2p(BR(x1))
+ ||∇P ||pL2p,m−2p(BR(x1))

+ ||∇u||2p
L4,m−4(BR(x1))

+ ||∇P ||2p
L4,m−4(BR(x1))

)

.

(48)

We use Proposition 3.2, Proposition 4.1, and (21) to bound

||∇u||2p
L2p,m−2p(BR(x1))

≤ C||∇u||pL1,m−1(BR(x1))

(

||∇2u||pLp,m−2p(BR(x1))
+ ||∇u||pLp,m−p(BR(x1))

)

≤ C||∇u||pLp,m−p(BR0
(x0))

(

||∇2u||pLp,m−2p(BR0
(x0))

+ ||∇u||pLp,m−p(BR0
(x0))

)

≤ C||∇u||pLp,m−p(BR0
(x0))

Ψ(u; γ−1R0) ≤ CΨ2(u; γ−1R0 ≤ CΨ2(γ−1R0).

(49)

Using also (27), similarly we can bound

(50) ||∇P ||pL2p,m−2p(BR(x1))
≤ CΨ(γ−1R).
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Again invoking Propositions 3.2 and 4.1 together with (21) and (29), moreover, we
find

||∇u||2p
L4,m−4(BR(x1))

≤ C||∇u||pL1,m−1(BR(x1))
(||∇2u||pL2,m−4(BR(x1))

+ ||∇u||pL2,m−2(BR(x1))
)

≤ C||∇u||pLp,m−p(BR(x1))
(||∇2u||pL2,m−4(BR(x1))

+ ||∇u||pL4,m−4(BR(x1))
)

≤ C||∇u||pLp,m−p(BR0
(x0))

(||∇2u||pL2,m−4(B2(0)) + ||∇u||pL4,m−4(B2(0)))

≤ Cε1Ψ(u; R0) ≤ CΨ(γ−1R0),

(51)

and similarly for P . Then from (48) we obtain

(52) R2p−m

∫

BR(x1)

|f |p dx ≤ Cε1Ψ(γ−1R0),

as claimed. �

Lemma 4.3. For any constant 0 < γ < 1 and any 0 < R0 < γ there holds

Ψ(u; γR0) ≤ C1γ
pΨ(u; R0) + Cγ2p−2mε1Ψ(γ−1R0)(53)

with a uniform constant C1 independent of γ < 1.

Proof. On BR(x1) ⊂ BR0
(x0) we split P∆u = f + h as in (39) above, where

∆h = 0 in BR(x1) and with f
∣

∣

∂BR(x1)
= 0.

For r < R then from the Campanato estimates for harmonic functions, as in
Giaquinta [4], proof of Theorem III.2.2, p.84 f., we conclude that

∫

Br(x1)

|∆u|p dx ≤ C

∫

Br(x1)

|h|p dx + C

∫

Br(x1)

|f |p dx

≤ C
( r

R

)m
∫

BR(x1)

|h|p dx + C

∫

Br(x1)

|f |p dx

≤ C
( r

R

)m
∫

BR(x1)

|∆u|p dx + C

∫

BR(x1)

|f |p dx.

(54)

Fixing r = γR and scaling, from Lemma 4.2 we obtain

r2p−m

∫

Br(x1)

|∆u|p dx

≤ Cγ2pR2p−m

∫

BR(x1)

|∆u|p dx + Cγ2p−mR2p−m

∫

BR(x1)

|f |p dx

≤ Cγ2pΨ2(u; R0) + Cγ2p−mε1Ψ(γ−1R0).

Also passing to the supremum with respect to BR(x1) ⊂ BR0
(x0) on the left hand

side, we thus find

Ψ2(u; γR0) ≤ Cγ2pΨ2(u; R0) + Cγ2p−mε1Ψ(γ−1R0).(55)

Similarly, we split u = u0 + u1 on BR(x1) ⊂ BR0
(x0), where ∆u0 = 0 and with

u1 = 0 on ∂BR(x1). As above then we obtain
∫

Br(x1)

|∇u|p dx ≤ C
( r

R

)m
∫

BR(x1)

|∇u|p dx + C

∫

BR(x1)

|∇u1|
p dx.(56)
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But since u1 ∈ W 1,p
0 (BR(x1)) with ∆u1 = ∆u ∈ Lp(BR(x1)), the Calderòn-

Zygmund inequality yields that
∫

BR(x1)

|∇u1|
p dx ≤ CRp

∫

BR(x1)

|∆u|p dx.(57)

Upon scaling, for r = γR we thus find the inequality

rp−m

∫

Br(x1)

|∇u|p dx

≤ CγpRp−m

∫

BR(x1)

|∇u|p dx + Cγp−mCR2p−m

∫

BR(x1)

|∆u|p dx

≤ CγpΨ(u; R0).

After passing to the supremum with respect to BR(x1) ⊂ BR0
(x0), similar to (55)

then we obtain

Ψ1(u; γR0) ≤ CγpΨ(u; R0).(58)

Since γ < 1 we may combine (54) and (58) to deduce the bound

Ψ(u; γR0) = Ψ1(u; γR0) + γ−mΨ2(u; γR0)

≤ C1γ
pΨ(u; R0) + Cγ2p−2mε1Ψ(γ−1R0)

(59)

with a uniform constant C1 independent of γ < 1. �

Lemma 4.4. For any constant 0 < γ < 1 and any 0 < R0 < γ there holds

Ψ(P ; γR0) ≤ C2γ
pΨ(P ; R0) + C2Ψ(u; γR0) + Cε1γ

−mΨ(γ−1R0)(60)

with a uniform constant C2 ≥ 1 independent of γ < 1.

Proof. Recalling the definition (16) of Ω, we see that

|d ∗ Ω| ≤ C(|du|2 + |∆u|).

From (25) and (17) then it follows that

|∆P | = |d ∗ dP | = |d ∗ (dPP−1) + (−1)m ∗ dP ∧ dP−1|

≤ |dP |2 + |d ∗ (PΩP−1)| ≤ C(|dP |2 + |dP ||Ω| + |d ∗ Ω|)

≤ C(|dP |2 + |du|2 + |∆u|)

and
‖∆P‖Lp ≤ C(‖dP‖2

L2p + ‖du‖2
L2p + ‖∆u‖Lp).

Using (49) and (50), with a constant C2 independent of 0 < γ < 1 we may bound

Ψ2(P ; γR0) ≤ C‖∆u‖p
Lp,m−2p(BγR0

(x0))
+ C‖dP‖2p

L2p,m−2p(BγR0
(x0))

+ C‖du‖2p
L2p,m−2p(BγR0

(x0))

≤ C2Ψ2(u; γR0) + CΨ2(R0) ≤ C2Ψ2(u; γR0) + Cε1Ψ(γ−1R0).

Possibly choosing a larger constant C2, moreover, similar to (58) we have

Ψ1(P ; γR0) ≤ CγpΨ1(P ; R0) + Cγp−mΨ2(P ; R0) ≤ C2γ
pΨ(P ; R0).(61)

�
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Combining (53), (60), and Lemma 4.2, we deduce the bound

Ψ(P ;γR0) + 2C2Ψ(u; γR0)

≤ C3γ
pΨ(R0) + C2Ψ(u; γR0) + Cγ2p−2mε1Ψ(γ−1R0).

(62)

where the constant C3 is independent of 0 < γ < 1. With our choice of

Ψ(r) = Ψ(P ; r) + C2Ψ(u; r)

it follows that for all R0 < γ we have

Ψ(γR0) ≤ C3γ
pΨ(R0) + Cγ2p−2mε1Ψ(γ−1R0)

≤ C3γ
p(1 + C4γ

p−2mε1)Ψ(γ−1R0)
(63)

with a constant C4 possibly depending on γ. That is, for all R1 < 1 there holds

Ψ(γ2R1) ≤ C3γ
p(1 + C4γ

p−2mε1)Ψ(R1).(64)

Choose 0 < γ < 1 such that 2C3γ
p/2 = 1 and let ε1 > 0 be such that C4γ

p−2mε1 =
1. Letting δ = γ2 < 1, then for any R < 1 we find

Ψ(δR) ≤ 2C3γ
pΨ(R) = γp/2Ψ(R) = δp/4Ψ(R).(65)

For any 0 < r ≤ δ determine k ∈ N such that δk+1 < r ≤ δk. From (65) then by
iteration we obtain

Ψ(r) ≤ Ψ(δk) ≤ δp/4Ψ(δk−1) ≤ · · · ≤ δkp/4Ψ(1) ≤ Crp/4Ψ(1) ≤ Crp/4,(66)

as desired. The proof is complete.

Appendix A

For completeness, here we present the proof of Proposition 3.2. Clearly we may
suppose that B = B1(0). Given u ∈ Ls,m−2s

2 (B) we may extend u to a function

v ∈ Ls,m−2s
2 (B2(0)) with

||∇v||2Ls,m−s(B2(0))
≤ C||∇u||2Ls,m−s(B),

||∇2v||Ls,m−2s(B2(0)) ≤ C||∇2u||Ls,m−2s(B)

(67)

with some constant C = C(m) independent of u. Shifting v by a constant, if
necessary, we may assume that v̄1,0 = 0. Let ϕ ∈ C∞

0 (B2(0)) be a smooth cut-off
function with 0 ≤ ϕ ≤ 1 and such that ϕ ≡ 1 on B1(0). Applying Proposition 3.1

to the function w = vϕ ∈ Ls,m−2s
2 (Rm) and using (23), we obtain

||∇u||2L2s,m−2s(B) ≤ C[w]BMO(Rm)||∇
2w||Ls,m−2s(Rm)

≤ C||∇w||L1,m−1(Rm)||∇
2w||Ls,m−2s(Rm).

(68)

The claimed estimate thus follows if we can bound

||∇w||L1,m−1(Rm) ≤ C||∇u||L1,m−1(B)(69)

and

||∇2w||Ls,m−2s(Rm) ≤ C
(

||∇2u||Ls,m−2s(B) + ||∇u||Ls,m−s(B)

)

.(70)

For BR(x1) ⊂ B2(0) we estimate

|∇w| ≤ C
(

|∇v| + |v − v̄R,x1
| + |v̄R,x1

|
)
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and use (22) to obtain
∫

BR(x1)

|∇w| dx ≤ C

∫

BR(x1)

|∇v| dx + CRm|v̄R,x1
|.

We conclude that

(71) ||∇w||L1,m−1(Rm) ≤ C||∇u||L1,m−1(B) + C sup
BR(x1)⊂B2(0)

R|v̄R,x1
|.

But for BR/2(x2) ⊂ BR(x1) we can estimate

|v̄R,x1
− v̄R/2,x2

| =

∣

∣

∣

∣

−

∫

BR/2(x2)

(v̄R,x1
− v) dx

∣

∣

∣

∣

≤ C −

∫

BR(x1)

|v̄R,x1
− v| dx ≤ CR1−m

∫

BR(x1)

|∇v| dx

≤ C||∇v||L1,m−1(B2(0)) ≤ C||∇u||L1,m−1(B).

Hence for any BR(x1) ⊂ B2(0) we can bound

(72) |v̄R,x1
| ≤ C| log R|||∇u||L1,m−1(B) + |v̄1,0| = C| log R|||∇u||L1,m−1(B)

and (69) follows from (71).

For BR(x1) ⊂ B2(0) similarly we estimate

|∇2w| ≤ C
(

|∇2v| + |∇v| + |v − v̄R,x1
| + |v̄R,x1

|
)

to conclude the bound

||∇2w||Ls,m−2s(Rm) ≤ C
(

||∇2v||Ls,m−2s(B2(0)) + ||∇v||Ls,m−2s(B2(0))

+ sup
BR(x1)⊂B2(0)

R2|v̄R,x1
|
)

,

and (70) follows from (67) and (72).

Appendix B

Assume that condition (3) is satisfied on B3(0). To show the Morrey bound
(29) it suffices to show that at every Lebesgue point x0 ⊂ B2(0) of the function
|∇2u|2 + |∇u|2 for any 0 < r < 1 and some radius r/2 < ρ < r there holds

ρ4−m

∫

Bρ(x0)

|∆u|2 dx + ρ3−m

∫

∂Bρ(x0)

|∇u|2 do ≤ Cε0(73)

with a constant C = C(N, m). Indeed, by elliptic regularity theory the bound (73)
implies that u ∈ H3/2(Bρ(x0)) ∩ H2

loc(Bρ(x0)) with

r4−m

∫

Br/3(x0)

|∇2u|2 dx + r2−m

∫

Br/3(x0)

|∇u|2 dx

≤ Cρ4−m

∫

Bρ(x0)

|∆u|2 dx + ρ3−m

∫

∂Bρ(x0)

|∇u|2 do ≤ Cε0.

(74)

Since N is compact, we also have |u| ≤ C(N) almost everywhere and (29) follows
from interpolating

∫

Br/4(x0)

|∇u|4 dx ≤ C sup
Br/3(x0)

|u|2
∫

Br/3(x0)

(|∇2u|2 + r−2|∇u|2) dx.(75)
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To see (73) fix a Lebesgue point x0 ⊂ B2(0) as above. After a shift of coordinates
we may assume that x0 = 0. Also let Br = Br(0) for brevity. Using the notation
uα = ∂αu, etc., we may write the monotonicity formula of [3], Proposition 3.2, in
the form

σ(r) − σ(ρ) =

∫

Br\Bρ

( |uβ + xαuαβ |
2

|x|m−2
+ (m − 2)

|xαuα|
2

|x|m
)

dx,(76)

where σ(r) = σ1(r) + σ2(r) with

σ1(r) = r4−m

∫

Br

|∆u|2 dx + r3−m

∫

∂Br

|∇u|2 do(77)

and

σ2(r) = r3−m

∫

∂Br

(2xαuαβuβ + 3|∇u|2 − 4r−2|xαuα|
2) do.(78)

Note that for a “good” radius r > 0 we can bound

|σ(r)| ≤ Cr4−m

∫

Br

|∆u|2 dx + Cr5−m

∫

∂Br

(|∇2u|2 + r−2|∇u|2) do

≤ Cr4−m

∫

B2r

(|∇2u|2 + r−2|∇u|2) dx.

(79)

Since we assume that x0 = 0 is a Lebesgue point for the function |∇2u|2 + |∇u|2

we then conclude that

lim inf
r↓0

|σ(r)| = 0.(80)

Moreover, from (3) we have |σ(1)| ≤ Cε0. Hence from (76) we deduce the bound
∫

B1

( |uβ + xαuαβ|
2

|x|m−2
+ (m − 2)

|xαuα|
2

|x|m
)

dx ≤ Cε0.(81)

For any r < 1 then we have

inf
r/2<ρ<r

ρ3−m

∫

∂Bρ

(|uβ + xαuαβ|
2 + 4r−2|xαuα|

2) do

≤ C

∫

Br\Br/2

( |uβ + xαuαβ|
2

|x|m−2
+ (m − 2)

|xαuα|
2

|x|m
)

dx ≤ Cε0.

(82)

But estimating

2xαuαβuβ + 3|∇u|2 = 2(uβ + xαuαβ)uβ + |∇u|2 ≥ −|uβ + xαuαβ|
2,(83)

we can bound

σ2(ρ) ≥ −ρ3−m

∫

∂Bρ

(|uβ + xαuαβ|
2 + 4ρ−2|xαuα|

2) do.(84)

and from (82) we conclude that

sup
r/2<ρ<r

σ2(ρ) ≥ −Cε0.(85)

For a suitable radius r/2 < ρ < r the monotonicity estimate (76) then yields the
bound

(86) σ1(ρ) ≤ σ(1) − σ2(ρ) ≤ Cε0;

that is, we have (73), as desired.



14 MICHAEL STRUWE

Observe that in contrast to [3], Lemma 4.8, or [14], Lemma 5.3, we do not use
the biharmonic map equation.
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