PARTIAL REGULARITY FOR BIHARMONIC MAPS,
REVISITED

MICHAEL STRUWE

ABSTRACT. Extending our previous results with Tristan Riviére for harmonic
maps, we show how partial regularity for stationary biharmonic maps into
arbitrary targets can be naturally obtained via gauge theory in any dimensions
m > 4.

1. INTRODUCTION

In [9], jointly with Tristan Riviere we presented a new approach to the partial
regularity for stationary weakly harmonic maps in dimension m > 2 as a special
case of a regularity result for elliptic systems

(1) ~Au' =09 .Vu! in B

on a ball B = B™ C R™ with Q = (Q¥) € L?(B, so(n) ® A'R™) and with u =
(ul,...,u") € H(B,R") satisfying the Morrey growth assumption

xeB,r>0

1/2
1
(2) sup (m / (|Vul? + |Q|2)dx> < e(m).
r B, (z)NB

A key ingredient in this new approach is the natural use of gauge theory, which
is motivated by the anti-symmetry of the 1-form Q = Q%. Previously, Riviere [8]
already had recognized this structure as the essential structure of the harmonic
map system in m = 2 space dimensions, allowing him to obtain an equivalent
formulation of this equation in divergence form. His results generalize to a large
number of conformally invariant equations of second order. Subsequently, Lamm
and Riviere [6] obtained a similar equivalent formulation of the biharmonic map
system as a conservation law in the “conformal” case of m = 4 space dimensions.
However, just as the methods of [8] no longer seem applicable when m > 2, also
the approach in [6] seems to fail in dimensions m > 4.

Our aim in this short note is to extend the approach in [9] to fourth order equa-
tions and to recover the known partial regularity results for stationary (extrinsic)
biharmonic maps into an arbitrary closed target manifold N C R" by a simpler
method and under minimal regularity assumptions. In particular, we show the fol-
lowing result which improves the pioneering work of Chang-Wang-Yang [3] and the
later results by Changyou Wang [14] and Strzelecki [10] in this regard.

Theorem 1.1. Let N*¥ C R" be a closed submanifold of class C3. Let m > 4 and
suppose u € H?(B; N) is a stationary biharmonic map on a ball B = B™ C R™.
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There exists a constant €9 > 0 depending only on N and m with the following
property. Whenever on some ball Bg(xo) C B there holds

(3) R4—m/ (|V2u|* + |Vu|*)dz < o,
Br(zo)

then u is Hélder continuous (and hence as smooth as the target permits) on Bp/3(xo).
In particular, u is smooth off a set S C B of vanishing (m — 4)-dimensional Haus-
dorff measure.

In the following section we first derive a useful form of the biharmonic map equa-
tion. In Section 3 we give an overview of Morrey spaces and recall the interpolation
results and results from gauge theory that we need. Finally, we present the proof
of Theorem 1.1 in Section 4. It would be interesting to see if our method can be
extended to general linear systems of fourth order that exhibit a structure similar
to the one of equation (4) below, as is the case for second order systems (1) or in
the “conformal” case m = 4 considered in [6]. It is a pleasure to thank Tristan
Riviere for interesting discussions in an early stage of this work.

2. BIHARMONIC MAPS

In a first step we cast the equation for a biharmonic map v € H?(B,R") into
the form

(4) A’y = A(D-Vu) +div(E-Vu) +F-Vuin B

previously considered in [6] in dimension m = 4. In contrast to [6], however, here we
decompose the function F as F = G + AQ with Q = (Q¥) € HY(B, so(n) ® AIR™).
The coefficient functions D, E, G, and ) naturally depend on u and satisfy the
growth conditions
|D| + 19 < C|Vul,
(5) |E| + |VD| +|VQ| < C|V?u| + C|Vul?,
|G| < C|V2u||Vu| + C|Vul>.

To see (4) consider for simplicity the case of a biharmonic map u = (u!,...,u™)
to a closed hypersurface N C R™ with normal v. As in [9], the general case is
obtained in similar fashion with the help of a smooth local orthonormal frame
V1,...,v for the normal bundle along N. Denoting as 7ny: U C R® — N the
projection from a tubular neighborhood U of N onto N and letting w = v owu, then
dry(u) =id—w®w: R® — T, N is the projector onto the tangent space along the
map u.

From the variational characterization of weakly biharmonic maps u € H?(B, N)
we have

d

(/ |Amn (14 ep)]? dx) = 2/ Au - A(dry (u)) dx

B B

for all p € C§°(B,R™). Hence we may write the biharmonic map system as

0 = drn (u)A%u = A(dry (u)Au) — 2V (dry (u)) - VAu — A(dry (u)) Au
= A% — A((w @ w)Au) + 2V(w @ w) - VAu + A(w ® w)Au.

e=0

(7)
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Observing that w’/ Vu? = 0, following Hélein [5] we rewrite
8)  (w@w)Au) = w'w Avw = —w'Vuw - Vil = (0w Vu' —w'Vuw?) - Vu,
where we tacitly sum over repeated indices. Similarly, we have
(V(w@w)- VAu)i = V(w'w') - VA
9) = A(V(w'w?) - Vul) — 2V (w'w?) - V2u! — VA(w'w?) - V!
= A(w'Vw? - Vu?) — 2div(V(w'w?) - Vu?) + VA(w'w?) - V.

Finally, we have
(10) (A(w® w)Au)l = A(w'w)Av! = div(A(w'w?)Vu?) — VA(w'w?) - Vud
and from (7) we obtain the equation

Ayt = 3A((w! V' — w'Vw?) - Vu?) + 4div(V2 (w'w?) - Vu?)

(11) . o , o :
— div(A(w'w? )V’ ) — VA(w'w’) - V.

This equation has the structure (4), that is, in components,
A*u' = A(DY 0o’ ) + 00 (EZ305u7) + Fi 0o’ in B.

Indeed, we may let
(12) D = 3(w 9w’ — w'dau?), E:jﬁ = 40,05 (w'w?) — SapA(w'w?),
satisfying the estimates
(13) |D| < C|Vul, |E| + |VD| < C|V?u| + C|Vul*.
For the remaining term we once more use the identity w’/ Vu’ = 0 to expand
(14) VA(w'w’) ', Vuj: = (u/Vij - wJVsz) . Vuj —GY v
= Aw'Vu! —wVu') - Vv — GY - V|
where the coefficient functions Gy and G involve sums of terms like V2w'Vuw/.
Hence these functions may be estimated

(15) |G| + |G1| < C|Vu||V?u| + C|Vul?.

Finally, we let

(16) QY = (w'dw! —widw'), 1 <i,j <n,
satisfying
(17) Q| < C|Vul, |[VQ| < C|V2u| + C|Vul?.

Note that the constants C' in (13), (15), and (17) only depend on a C2-bound for
v and hence may be chosen uniformly for a closed manifold N of class C3.

Finally recall that a weakly biharmonic map u is called stationary if it also
is a critical point for the Hessian energy with respect to variations of the form
wo (id + e7), where 7 € C§°(B;R™), |e| << 1.
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3. MORREY SPACES AND GAUGE THEORY

Recall that for any 1 < p < oo and any s < m a function f € L?(B) belongs to
the homogeneous Morrey space LP*(B) on a ball B C R™, provided that

1

(18) 17120 = sup (—s / Ifl”dw> <o,

zo€B,r>0 \ 7 JB,(z0)NB
and f € BMO(B), if
(19) (MErom = sup <T_m/ |f = fr,mo|p> < 00,

ro€EB,r>0 B, (z0)NB
where
(20) friao = ][ fdx,
Br,«(Io)ﬁB

denotes the average of f on the set B, (xzg) N B. Note that Holder’s inequality for
1 < p < g < m implies the bound
(21) 1f | om=rmy < If]lLam—acn)
for any f € L™~ 9(B).
For k € N and s = m — kp we also use the notation f € Li’m_kp(B)7 provided

that f € WkP(B) with V!f € LP™~(B) for 0 < [ < k. For any f € Li’m_kp(B)
Poincaré’s inequality

(22) [ dapazer [ v
Br(mo)ﬁB BT(II:Q)QB

then implies the bound

(23) [flermosy < ClIVfllLem—»s)-

An important role in our proof of Theorem 1.1 is played by the following refine-
ment of the Gagliardo-Nirenberg interpolation result, due to Adams-Frazier [1]. A
very elegant proof using H*-BMO duality was later given by Strzelecki [11].

Proposition 3.1. For any s > 1 there exists a constant C such that for any
u € W25 N BMO(R™) with compact support there holds

||VU||%23(Rm) S C[U]BMO(R"”)||VQU| Ls(R™)-

With the help of (23) Proposition 3.1 may be localized and scaled to yield the
following estimate in Morrey norms. A similar result is stated in [14], Proposition
4.3.

Proposition 3.2. For any 1 < s < m/2 there exists a constant C' such that for
any ball B C R™ and any u € LY™ **(B) there holds

IVl 2020 3 < CIIVllimos ([ V%0

Lsim—2s(B) T ||VU,| Ls,m—s(B)).

Since the argument is somewhat delicate we briefly present the proof of Propo-
sition 3.2 in Appendix A.

With these prerequisites we can now state the results from gauge theory that we
need for dealing with equation (16). As shown by Meyer-Riviere [7], Theorem 1.3,
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and Tao-Tian [12], Theorem 4.6, the results from Uhlenbeck [13] on the existence
of Coulomb gauges may be extended to connections in suitable Morrey spaces. We
state their result on an arbitrary ball B C R™; all norms refer to B. In order to
emphasize the Coulomb gauge condition, we write the gauge-equivalent connection
1-form as *d¢.

Lemma 3.3. There exists € = ¢(m,n) > 0 and C > 0 with the following property:
For every Q € L™ * N LY"~4(B, so(n) @ A'R™) with

(24) VO 12ms + 1190 B < e(m, )

there exist P € H?(B;SO(n)) and £ € H?(B, so(n) @ A™2R™) such that
(25) dPP~' + PQP™! = xd¢ on B

and

(26) d(x§) =0 on B, |, =0.

In addition, we have P, £ € L™ *(B) with
V2 Pll2 s + [V Pl amms + [Vt + V€] 2

(27) 9
< IV 2t + 92 1m) < C(rm, ).
Note that via Proposition 3.2 from (27) we also obtain that P, ¢ € L™ *(B)
with

(28)  |IVPllzam-—a + |IVE][am-1 < C(|[VQ|g2im—s + [|Q|Z4,m-s) < Ce(m,n).

4. PROOF OF THEOREM 1.1

Throughout the following we assume that condition (3) is satisfied on B3(0) for
some number g = go(m, N) > 0 to be determined in the sequel. As was shown in
[3], Lemma 4.8, or [14], Lemma 5.3, for a stationary biharmonic map this implies
the Morrey bound

(29) ey = ||v2u||2L2vm*4(Bg(0)) + ||Vu||i4,m,4(32(0)) < Ceo;

with a constant C' = C'(N, m). Clearly we may assume that £; < 1. The bound
(29) is a consequence of the monotonicity inequality for stationary biharmonic
maps, which was formally derived by Chang-Wang-Yang [3], Proposition 3.2; for
stationary biharmonic maps of class H? a rigorous derivation of this key result was
later given by Angelsberg [2]. In Appendix B we show how the bound (29) may
be derived from the monotonicity inequality directly, without further use of the
biharmonic map system. This result may be of independent interest.

As in [9] we interpret the 1-form Q € H'(B; so(n)®@A'R™) arising in equation (4)
as a connection in the SO(n)-bundle u*T'N. Taking account of (17) and (29), from
Lemma 3.3 for sufficiently small g = €¢(IN, m) > 0 we can find a gauge transforma-

tion P, transforming €2 into Coulomb gauge. Applying the gauge transformation
P to Au, in a first step we obtain

PA*u+ VAP - Vu = div(V(PAu) — 2VPAu + APVu)

30
(30) = A(PAw) — 2div*(VP @ Vu) + div(2V*P - Vu + APVu),
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where we let div?(VP ® Vu) = 0,05(0a P du) for short. Observing the identity
P(A(D - Vu) 4 div(E - Vu) + F - Vu) = A(PD - Vu)
+ div((PE — 2VPD)-Vu) + (APD 4+ PF — VP - E) - Vu,
from (4) and (30) then we find
A(PAu) = A(PD - Vu) + 2div*(VP ® Vu) — div(2V?P - Vu + APVu)

(31)

32
32 +div((PE — 2VPD) - Vu) + (VAP + APD + PF = VP - E) - Vu.
Letting
Dp)iF = 6P DI + 20, P,
(33) (Dp) B 8

(Ep)iky = PIEI — 20,PT DY} — 55 AP™ — 20,05 P™
and setting
Gp=VAP+ APD + PF —VP - E —xdA{P
=VAP + APD+ PG+ PAQ—VP -E—-A((VP+PQ)P1P),
we finally obtain the gauge-equivalent form

(35) A(PAu) = div*(Dp @ Vu) + div(Ep - Vu) + Gp - Vu + *dA¢ - PVu

(34)

of equation (4), where
[Dp| < C(|Vu| +|VP]),
(36)  [VDp|+ Ep| < C(V2ul +Vul? + [V2P| + [V PP),
Gp| < C(IV?u| + [V?P))(IVu| + [V P]) + C([Vul® + |V PP).

We regard (35) and (25) as a coupled system of equations for u and P.

Fix numbers 1 < p < m/2 < ¢ < m with 1/p+1/g = 1. Our aim in the following
is to derive a Morrey-type decay estimate

(37) / |VulP do < Cr™m—ptor
By (zo)

for all zp € B1(0) and all 0 < r < 1 with uniform constants C' and o« > 0. By
Morrey’s Dirichlet growth theorem then u € C%(B;(0)), as claimed.

Fix z¢ € B1(0). For 0 < r < 1 define
qjl(“? 7') = ||VU||I£,WL,,,(BT(%)), \IJZ(U;T) = ||Au||Z£p«m72p(Br(m0))v
and similarly for P. For a suitable constant 0 < v < 1 to be determined below then
we let
U(u;r) = Wi(uyr) +97 " Wa(us ),
and likewise for P. Finally, with the constant Cs > 1 determined in Lemma 4.4
below we let
U(r) =U(P;r) 4+ CoW(u;r).
For the proof of (37) then it suffices to show that for all » < 1 we can bound
(38) U(r) < Crr/t

with a constant C' independent of zy and r. In view of (29), moreover, we only
need to verify (38) for r < 2.
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Our argument will also involve scaled estimates for V2u. Note that we can
estimate V2u in terms of Au by means of the Calderon-Zygmund inequality.

Proposition 4.1. For any s > 1, any 0 < v < 1 there exists a constant C such
that for any R > 0 and any u € W N W, *(Bg(0)) there holds

V24|

Lsm=25(B,r(0)) < C(| |Au|

Ls:m—2s(Br(0)) + ||Vu| Ls,'nl—s(BR(O))).

On any ball Br(z1) C Bg,(z¢) with 0 < Ry < y we split
(39) PAu = f +h,
where Ah =0 in Br(x1) and where f|aBR(x1) =

Our first task now is to show that the component f in this decomposition is of
“lower order” in the following sense.

Lemma 4.2. With a uniform constant C' there holds

(40) R / [P dz < CerW(v~Ry).
Br(z1)

Proof. By scale invariance of the expressions, we may scale so that Br(x1) =
B1(0). In a first step we establish the estimate

(41) 1fllzr < Cer(||Vullz2e + [V P[220 + |[Vul[Zs + [V PI[Z4)-

Here and in the following computations all norms refer to the domain B = B1(0).
To see (41), note that by duality we have
(12) iflr<c s fedn
weL4(B));ll¢llra<lJB

For any ¢ € LY(B) with ||¢||re < 1 denote as ® the solution to the Dirichlet

problem A® = ¢ on B with ® = 0 on dB. By the Calderon-Zygmund inequality

and Sobolev’s embedding then with ¢* > m satisfying qi = % — % we have & €
W?24n Wol’q* (B)) — C'~™/4"(B), and there holds
(43) |®[[zoe < Cl|®][wz20 < CllllLe < C.

Hence we deduce that

[fller <C sup /BfACDda:.

PEW2ANW T (B))i]| 2]y 2,0 <1
For any such ® we now integrate by parts and use (35) to split
(44) /BfAd)da::/BA(PAu)édx:I+II+III+IV.
By (36), (27), (28), and (29) the terms

I+11= / div(div(Dp ® Vu) + (Ep - Vu))® dx
B

:—/ (div(Dp®Vu)+(Ep-Vu)) -V dx
B
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can be estimated
I+1I< C/ (IV2u| + |V2P| + |Vul* + |[VP|*)(|Vu| + |VP))|V®| dz
B

(45) < C(IVullgs + V2Pl 2 + ||Vl 24 + IV PI3)
~(IIVullp2e + [[VP[120)[[V®|| L+
S 081(||VU||L2P + ||VP||L2P)
Observe that %+ﬁ+%:1+%—%<1.
Next we again use (36) to estimate
|Gp - Vu| < C((|V?u| + |[V2P)(|Vu| + [VP|) + C(|Vul> + |[VP*))|Vy|
< C(|V2u| 4 |V2P| + |[Vul® + [VP]*)(|Vul? + |[VP[?).

Hence by (27), (28), and (29) again we can bound

III:/ Gp-Vuddx
B

4
M6) < o(|1V2ul| s + (V2P| 12 + |[Vul 2a + [V P][2)([Vul 2a + [V P][24)
< Cer(||Vul24 + ||V P|24).

Upon integrating by parts, finally, we have
1V = / *dAE - PVu® dx = / dAE N PPdu = / A& du N d(PP),
B B B

and we can bound this term
1V < ClIV*|| 2 ([IVul |20 [V | Lo + [[Vul| L4 ][V P][£4)

(47) ) )
< Car(l[Vullpze + [[Vul[za + [[VP[|74).

Our claim (41) follows upon inserting the bounds (45), (46), and (47) into (44).
Upon scaling the bound (41) we obtain
2p—m P p
(48) e ~/BR(301) |f|p dr < Cgl(||Vu||L2p’m72p(3R($1)) + ||VP||L2”’”L72”(BR(<T1))
+ ||VU||L4 m-4(Bg(z1)) T ||VP||iﬁ,m—4(BR(ml)))-
We use Proposition 3.2, Proposition 4.1, and (21) to bound

IVl =20 (B (o))
< C||Vu||il m=1(Bg(z1)) (||V2U||I£p,m—2p(BR(rl)) + ||vu||1£p,m—p(BR(ml)))
< Ol s ooy IV 2, oy + I o)
< ClIVUll s (g (o)) 2 (w7 Ro) < CU*(usy ™ Ry < CU*(y™ ' Ro).

Using also (27), similarly we can bound

(50) ||VP||I£2p,m—2p(BR(ml)) < C‘I/(’Y_lR)-
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Again invoking Propositions 3.2 and 4.1 together with (21) and (29), moreover, we
find

IVl Zem=s(2nary
< ONVully s 1@y VUl 2 s a1V 22 (e
(51) < C||vu||1[j,Pw”L*P(BR(m1))(||v2u||1[j,2v"”*4(BR(r1:1)) FIVUllL am—1(Br(ar))
< C||Vu||’£p,m,p(BRo(mo))(||V2u||’£2,m,4(32(0)) +IVullLam-1(5,(0)))
< Ce1¥(u; Ro) < CU(y ' Ry),

and similarly for P. Then from (48) we obtain
(52) rre [ g < Ce v )
Br(z1)

as claimed. O

Lemma 4.3. For any constant 0 < v < 1 and any 0 < Ry < 7 there holds
(53) U(u;yRy) < C1yP¥ (u; Ro) + Cy*P =2 U (v~ Ry)
with a uniform constant Cy independent of v < 1.

Proof. On Bg(x1) C Bg,(zo) we split PAu = f + h as in (39) above, where

Ah =0 in Bgr(z1) and with f|6BR(I1) =0

For r < R then from the Campanato estimates for harmonic functions, as in
Giaquinta [4], proof of Theorem III.2.2, p.84 f., we conclude that

/ Al do < C hP dz + C I[P da
BT(II,'l) Br(ml) BT(II,'l)

(54) <C (%>m/]3 P dx + C IfIP da

r(z1) B, (x1)

\" P P
gc(R) /B |AulP da + C IfIP da.

r(z1) Br(z1)

Fixing r = vR and scaling, from Lemma 4.2 we obtain

r2p_m/ |Au|? dx
Br(fl,'l)

S C’YZPR2p7m/

Br(z1)
< Cy*PUy(u; Ry) + Cy*P e W (v~ Ry).

Also passing to the supremum with respect to Br(z1) C Br,(zo) on the left hand
side, we thus find

(55) U (u;vRo) < Cy*PWsy(u; Ro) + Cy*P~"e1W(y ' Ro).

|Au|P dx + Cy*P~™ R?P~™ / |f|P dx
BR(avl)

Similarly, we split u = ug + u1 on Bgr(x1) C Bgr, (o), where Aug = 0 and with
u; = 0 on 0Bg(x1). As above then we obtain

(56) / |[VulP de < C <£)m/ |[VulP de + C [Vuq|P da.
By (a1) R/ JBpa) Br(w1)
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But since u; € Wy P(Bgr(z1)) with Au; = Au € LP(Bg(x;)), the Calderdn-
Zygmund inequality yields that

(57) / [Vuy P de < C’Rp/ |Au|P dx.
Br(z1) Br(z1)

Upon scaling, for r = vR we thus find the inequality

rp_m/ |Vul|P dx
Br(ml)

< CAPRP™™ /

BR(avl)
< CyP¥(u; Ro).

\VulP dz + CP~™CR*~™ / | Aul? da
BR(Il)

After passing to the supremum with respect to Br(x1) C Br,(z0), similar to (55)
then we obtain

(58) Uy (u;7Ro) < CyPE (u; Ry).

Since v < 1 we may combine (54) and (58) to deduce the bound
W (u;vRo) = Vi (u;yRo) +v~ " Wa(u; v Ro)
< C19PW (u; Ro) + Cy*P 21U (v 1 Ry)

with a uniform constant C; independent of v < 1. |

(59)

Lemma 4.4. For any constant 0 < v < 1 and any 0 < Ry < y there holds
(60)  W(P;vRo) < Coy?U(P; Ry) + CoW(u; vRo) + Cery ™ (y ' Ry)

with a uniform constant Cy > 1 independent of v < 1.

Proof. Recalling the definition (16) of €2, we see that
|d * Q| < O(|dul* + |Aul).
From (25) and (17) then it follows that
|AP| = |d*dP|=|d* (dPP™) 4+ (=1)™ xdP A dP™?|
< |dPP? + |d « (PRPY)| < C(dP[ + [dP||] + |d )
< O(|dP|?* + |dul? + |Aul)

and
IAP||ze < C(I|dPI[Lep + l|dull72, + | Aul|zr).
Using (49) and (50), with a constant Cy independent of 0 < v < 1 we may bound

2
\I’Q(Pa’YRO) S C”Au”gme*ZP(BWRO (wo)) + C”dPHLp2p,nL72p(B’YRO(IO))

2
+ C||du||LZ;p,m72p(BwR0(mo))

< CoWUy(u;yRy) + CU?(Ry) < CoWy(u;vRo) + Ce1 U (v ' Ry).

Possibly choosing a larger constant Cs, moreover, similar to (58) we have

(61) U1 (P;yRo) < CyPW (P Ro) + CyP~ " W2 (P; Ro) < Coy"U(P; Ro).
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Combining (53), (60), and Lemma 4.2, we deduce the bound
U (PiyRo) +2C2 ¥ (u; 7 Ro)

< C3vPU(Ro) + CoW(u; vRo) + Cy*P~*™e1 ¥ (v ! Ry).
where the constant Cj3 is independent of 0 < v < 1. With our choice of

U(r) =9(P;r)+ CoW(u;r)
it follows that for all Ry < « we have
U(yRy) < C3vPU(Rg) + Cy*P 7" e1 W (v ' Ry)
< C3yP(1+ Can?™"er) U (7~ Ro)

with a constant Cy possibly depending on . That is, for all Ry < 1 there holds
(64) U(y2Ry) < CoyP(1 4 CyyP~2™e ) )U(Ry).

Choose 0 < v < 1 such that 2037”/2 =1 and let &1 > 0 be such that CyyP~2"e; =
1. Letting § = 42 < 1, then for any R < 1 we find

(65) U(6R) < 2057PU(R) = 4*/2¥(R) = 6”4 (R).

For any 0 < r < § determine k € N such that §*t! < r < 6*. From (65) then by
iteration we obtain

(66)  W(r) < V(%) < 6P/ AW (oF1) < ... < GFPAW(1) < CrPA (1) < CrP/A,

(62)

(63)

as desired. The proof is complete.

APPENDIX A

For completeness, here we present the proof of Proposition 3.2. Clearly we may
suppose that B = B;(0). Given u € Ly™ **(B) we may extend u to a function
v e Ly *(By(0)) with

Vol
V20|

with some constant C' = C(m) independent of w. Shifting v by a constant, if
necessary, we may assume that 019 = 0. Let ¢ € C§°(B2(0)) be a smooth cut-off
function with 0 < ¢ < 1 and such that ¢ =1 on B;(0). Applying Proposition 3.1

s,m—2s

to the function w = vp € Lg (R™) and using (23), we obtain

Tem—s(my0y) < ClIVul

2
(67) Loy

Ls:m=25(B5(0)) < C’||V2u| Lsm—25(B)

LS,?‘VL72S (]Rm,)
< CHVU}”LLW).—I(RM,) ||V2w|

The claimed estimate thus follows if we can bound

(68) IVl Z20.m-20 () < Clw] parogem)l| Vw)|

Ls,m—2s(Rm)-

(69) V|| prm-1(gmy < Ol V|| prm-1(p)
and
(70) [Vl Lem=2s(Rm) S C(||V2u||stm*25(B) + ||VU||LS«WS(B))-

For Br(z1) C B2(0) we estimate
[Vw| < C(IVol + v = Tra, | + TR )
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and use (22) to obtain
/ |[Vw|dx < C |Vo|dz + CR™|0R, 4, |-
Br(z1) Br(z1)

We conclude that

(71) ||Vw||Ll,'m,—l(]Rm) < CHquLl’m—l(B) +C sup RlﬁR,m1|-
BR(.’L‘l)CBQ(O)

But for Br/s(22) C Br(x1) we can estimate

|1_}R,w1 - 17R/2,fcg| = ‘ f (/(_)R7I1 - 'U) dx
Brya(z2)

<C |oR,z, —v|dx < CRl_m/ |Voldx
Br(z1) Br(z1)
< CHVUHLL”L*l(BQ(O)) < CHqulem*l(B)-

Hence for any Br(z1) C B2(0) we can bound
(72) [0R,2,| < Cllog R||Vul[L1.m-1(5) + [01,0] = Cllog R[|[Vul[L1.m-1 ()
and (69) follows from (71).
For Br(x1) C B2(0) similarly we estimate
[V2w| < C(IV?0] + V0| + [0 = Tra, | + [0R, )
to conclude the bound
IV 2w][ osm—20 ey < C(]|[V0]

L#m=25(B5(0)) + ||V'U| Ls:m=2s(B5(0))

+  sup R*fimal),
BRr(z1)CB2(0)

and (70) follows from (67) and (72).

APPENDIX B

Assume that condition (3) is satisfied on B3(0). To show the Morrey bound
(29) it suffices to show that at every Lebesgue point z¢o C Bz(0) of the function
|V2u|? + |Vu|? for any 0 < r < 1 and some radius r/2 < p < r there holds

(73) p4*m/ |Aul? dx + p3*m/ |Vu|? do < Ceg
B,(z0) 0B, (o)

with a constant C' = C(N,m). Indeed, by elliptic regularity theory the bound (73)
implies that u € H3/2(B,(z¢)) N HZ,.(B,(x0)) with

7‘47’”/ |V2u? dx—|—r27m/ |Vu|? dx
Br/g(Io) Br/3(I0)

< Cp4*m/ |Aul? dz + p?’*m/ |Vu|? do < Cey.
Bp(wo) 63»(930)

(74)

Since N is compact, we also have |u| < C(N) almost everywhere and (29) follows
from interpolating

(75) / |Vul*dz < C sup |u|2/ (|V2ul? 4+ 72| Vu|?) dx.
B./4(z0) By./3(zo) B,./3(x0)
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To see (73) fix a Lebesgue point zy C B2(0) as above. After a shift of coordinates
we may assume that o = 0. Also let B, = B,.(0) for brevity. Using the notation
U = On, etc., we may write the monotonicity formula of [3], Proposition 3.2, in
the form

o 2 o 2
(76) o(r)—o(p) = / (w +(m—2) | U::L| )dx,
B.\B, || ||
where o(r) = o1(r) + o(r) with
(77) o1(r) = 7‘4‘“‘/ |Aul? dz + r?"m/ |Vul? do
B, B,
and
(78) oa(r) = 7‘377”/ (2z%uapus + 3|Vul* — 4r72|2%uq|?) do.
9B,

Note that for a “good” radius r > 0 we can bound

lo(r)] < Cr4*m/ |Au|2dx—|—Cr5*m/ (IV2ul? + 72| Vul?) do
(79) B, 8B,
< orttm / (IV2%ul? + r~2|Vul?) da.
Ba,

Since we assume that zo = 0 is a Lebesgue point for the function |V2u|? + |Vu|?
we then conclude that

(80) hrill%)nf lo(r)] = 0.
Moreover, from (3) we have |o(1)| < Ceg. Hence from (76) we deduce the bound
« 2 a 2
(81) J R [y
By || |J3|

For any r < 1 then we have

/zh<lf< pg_m/ (lug + 2%uapl® + 4r~ 2z ual?) do
r p<r

(82) B

< C |'Ll,ﬁ +xaua5|2

e U g

B\B,/2
But estimating

(83)  20%apug +3|Vul? = 2(us + 2%Uap)ug + [ Vul® > ~|ug + %uapl’,

we can bound

(34) o2(p) = —p*™ /8 ("0 + 47 a0 ) o
P
and from (82) we conclude that
sup o2(p) > —Ceo.
(85) r/2<p<r

For a suitable radius r/2 < p < r the monotonicity estimate (76) then yields the
bound

(86) a1(p) < o(1) = o2(p) < Cep;
that is, we have (73), as desired.
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Observe that in contrast to [3], Lemma 4.8, or [14], Lemma 5.3, we do not use

the biharmonic map equation.
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