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1 The Fourier Transform of Tempered Distribu-
tions

1.1 The Fourier transforms of L! functions

Theorem-Definition 1.1. Let f € L'(R" C). Define its Fourier transform f as
follows:

VEER" f(€) = (2m)3 / e f(x) do.

n

We have that f € L*=(R") and

(L1) 1Pl < @m)7E Nl
Moreover | € CO(R") and
(12 tim|7€)] = 0.

|§]—+o0
We shall also sometimes denote the Fourier transform of f by F(f).

Remark 1.2. There are several possible normalizations for defining the Fourier
transform of an L! function such as for instance

fiey= [ e*sayd

None of them gives a full satisfaction. The advantages of the one we chose are the
following:

i) fr— fwill define an isometry of L? as we will see in Proposition 1.5.

ii) With our normalization we have the convenient formula (see Lemma 1.11)

but the less convenient formula (see theorem 1.62)

—

gx f=@n)"*gf.

Proof of Theorem 1.1. The first part of the theorem that is inequality (1.1) is
straightforward. We prove now that f € C°(R"). Let f € C5°(R™) such that

fr — f strongly in L'(R").

It is clear that since fr € C§°(R™) the functions . are also C. Inequality (1.1)
gives L
1 = felloo@ny < 2m)72 (I = fill gy

Thus fis the uniform limit of continuous functions and, as such, it is continuous. It
remains to prove that |f|(£) uniformly converges to zero as || converge to infinity.
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In Proposition 1.9 we shall prove that (1.2) holds if f € C§°(R"). Let f € L'(R"),
let ¢ > 0 and let ¢ € C§° such that

(1.3) If = elloimny < g (2m)2.
There exists B > 0 such that
(1.4) €l >R = [3(6)] < 2.

Combining (1.3) and (1.4) together with (1.1) applied to the difference f — ¢, we
obtain

€] > R=> [F(©)] < |If — @l +13(6)|
<e.

This implies (1.2) and Theorem 1.1 is proved. O
Exercise 1.3. Prove that for any a € R,

— 1 _le?
€_a|x‘ = — ¢ 4a |

(2a)

0|3

Prove that for any a € R,

—_— -~

fa(x) = a" f(ag)
where f,(z) := f(2) for any x € R™.

It is then natural to ask among the functions which are continuous, bounded in
L*> and converging uniformly to zero at infinity, which ones are the Fourier trans-
form of an L' function. Unfortunately, there seems to be no satisfactory condition
characterizing the space of Fourier transforms of L'(R™). We have nevertheless the
following theorem.

Theorem 1.4. (Inverse of the Fourier transform)

Let f € L'(R";C) such that f € L*(R";C) then

Ve R f(x) = (2m) % / € i) d.

n

Proof of Theorem 1.4. We can of course explicitly write

em)t [ e flgde=emt [ eta [ e )ay

n RTL

The problem at this stage is that we cannot a-priori reverse the order of integrations
because the hypothesis for applying Fubini’s theorem are not fullfilled:

(& y) > eV f(y) ¢ L'(R" x R")

unless f = 0.



. . . . . 2je)? . .
The idea is to insert the Gaussian function e~ where  is a positive number
that we are going to take smaller and smaller. Introduce

L(w)i= (2m) " [ evte [ ay

e2)g?

(&y) e i SV f(y) € LR x R")

Now we have

and we can apply Fubini’s theorem.

We have in one hand

. 52 2
Le) = m) [ e figa
We can bound the integrand uniformly as follows:
fo|<1F+ol.

By assumption, the right-hand side of the inequality is integrable and we have
moreover, for every x and &

2012
iz 676 ‘f‘

Ve, & e R" e

~

lim €€ =5 Flg) = ¢ fle).

e=0

Hence dominated convergence theorem implies that for any z € R

(1.5) lim L.(z) = (27)"% f( ) et de.

e=0

Applying Fubini gives also

L) =Cn) [ fay [ et S g

=en [ JwF Fe T4 (y — z) dy

using Exercise 1.3, we then obtain

n *‘U*I|2 2%
L@ =07 [ )T Zay
One proves without much difficulties that for any Lebesgue point = € R for f the
following holds

_ly==” 1\2 22

ti ()4 [ ) e 2 dy = fa).
Continuing this identity with (1.5) gives the theorem. O

The transformation

feri®)— @n? [ e pee

Vv
will be denoted f or also F~1(f).



Proposition 1.5. Let f and g € L'(R";C). Then

| f@ @ "= | J@)gla)da”

Rn

Let f € L'(R";C) such that f € L'(R™;C), then

_ ~ ~

Rnf(l‘) fla)da™ = [ (&) f(§) dE™ .

Rn
This last wdentity is called Plancherel identity.

Proof of Proposition 1.5. The proof of the first identity in Proposition 1.5 is a
direct consequence of Fubini’s theorem. The second identity can be deduced from
the first one by taking g := F~!(f) and by observing that

FHH=F). =

The second identity is an invitation to extend the Fourier transform as an isom-
etry of L2. The purpose of the present chapter is to extend the Fourier transform to
an even larger class of distributions. To that aim we will first concentrate on looking
at the Fourier transform in a “small” class of very smooth function with very fast
decrease at infinity: the Schwartz space.

1.2 The Schwartz Space S(R")

The Schwartz functions are C*° functions whose successive derivatives decrease faster
than any polynominal at infinity. We shall use below the following notations:

Va = (aq,...,a,) € N? % =M. . aon
) ) 1 n

8181 aﬂn

ox{"  Oxn"

VB=(B1,....B) EN"  Of:= (f)

and |of := > «;.
Definition 1.6. The space of Schwartz functions is the following subspace of C*°(R™; C):
p e C*R"C) st
SRY) :={ WeEN Nyp):= sup [J2* ¢ @n) < +00
la] <p
1Bl <p

The following obvious proposition holds

Proposition 1.7. S(R") is stable under the action of derivatives and the multipli-
cation by polynomials in Clxy, ..., x,).

We prove now the following proposition:



Proposition 1.8. There ezists C,, > 0 s.t. Yo € S(R")

Z 2% 8% L1rny < Cp Npins1 ().
laf <p
Bl <p

Proof of Proposition 1.8. We have

dx
P o(x dm”ﬁ/ —_—
1.6 [ oot < | i
<Gy /\/p+n+1(90)'

(14 |=["*1) [a°] [0%|(x) da”

This concludes the proof of the proposition. O
The following proposition is fundamental in the theory of tempered distributions

we are going to introduce later on.

Proposition 1.9. Let ¢ be a Schwartz function on R", then it’s Fourier transform
is also a Schwartz function. Moreover for any p € N there exists Cy,, > 0 such that

Np(D) < Crp Npinsa1 ().

Hence the Fourier transform is a one to one linear transformation from S(R™) into
itself. We shall see in the next sub-chapter that it is also continuous for the topology
induced by the ad-hoc Fréchet structure on S(R).

Before proving Proposition 1.9, we need to establish two intermediate elementary
lemmas whose proofs are left to the reader. (They are direct applications respectively
of the derivation with respect to a parameter in an integral as well as integration
by parts. Both operations are justified due to the smoothness of the integrands as
well as the fast decrease at infinity).

We have first
Lemma 1.10. Let ¢ € S(R™), then ¢ is a C function and
Vi=1,....n O, (&) = F(—ix; ).
We have also the following lemma:

Lemma 1.11. Let ¢ € S(R"), then

—

Vi=1,...,n Oz,0 = 15 P(§).

Observe that the two previous lemmas are illustrating the heuristic idea accord-
ing to which Fourier transform exchanges derivatives or smoothness with decrease
at infinity.

Proof of Proposition 1.9. By iterating Lemma 1.10 and Lemma 1.11, we obtain
that ¢ € C'"° and we have

€207 (&) = |F(2(29)) .
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Hence using inequality (1.1) we obtain

Np(@: sup H&O‘@f@HLw(mn)
la| <p
1Bl <p
= Ssup “F(afi((xﬁ(p))”LW(R")
laf <p
1Bl <p

< sup  (27)7F)0%(2%9)|| 11

laf <p
1Bl <p
< Chp Sup Hlﬁ 95 ¢l @ny < Cnp Nptnta (),
ol <p
Bl <p+n+1
where we used (1.6). This concludes the proof of the proposition. O

We shall now use the Fourier transform on S(R™) in order to extend by duality
the Fourier transform to the “dual” space to S(R") as the first identity of proposition
1.5 is inviting to do. The idea behind is that S(R™) is a relatively small space and
we expect the “dual” to be big and we would then extend Fourier to this larger
space. Now the question is to give a precise meaning to the dual space to S(R").
The classical framework of Banach space is not sufficient since (S(R"),N,,) is not
complete. We have to build a topology out of the countable family of norms (N,)pen-
This is the purpose of the next subsection.

1.3 Fréchet Spaces
Definition 1.12. Let V' be a R (or C) vector space
NV =Ry
s a pseudo-norm if
i) VAER (orC), Ve e V. N(Ax) = |\ N(z)
ii) Ve,y e V. N(z+y) < N(z)+N(y).
In other words, a pseudo-norm is a norm without the non-degeneracy axiom.

Definition 1.13. (Fréchet Space)

LetV be a R or C vector space equipped with an increasing sequence of pseudo-norms
No < Npa

such that the following non-degeneracy condition is satisfied

Np(x)zo}
< =0.
VpeN

6



Introduce on V. x V' the following distance:
+oo

Ve,y e Voo d(z,y) = Z 2P min{1, N, (z — y)}.
p=0

We say that (V, (N,)pen) defines a Fréchet space if (V,d) is a complete metric space.

Examples of Fréchet Spaces (left as exercise)

i) A Banach space (V.| - ||) for the constant sequence of norms N, () := || - || is
Fréchet.

ii) The space of smooth functions C*°(B}%(0)) over the ball of R” of center 0 and
radius R is a Fréchet space for the sequence of CP-norms

VpeN |fller == sup  [0°f[(x).
x € B}(0)
laf <p

iii) The space C*°(R") of smooth functions over R" is a Fréchet space for the
sequence of CP-norms over By (0)

VpeN fllersawy == sup  [0°f|(x).
x € B, (0)
la| <p

iv) We first recall the following classical notations.
Let € C%R"™)  then we define supp ¢ := {x, p(z) # 0}

Let K be a compact subset of R". For any p € N denote C%- = {¢ € C?(K)
and suppp C K} and

leller = D 10°@lloc -

la|<p

(C%, || - llc») is a Banach space.
v) Let K be a compact subset of R™. Denote
Cx ={peC™ supp p C K}.

O is a Fréchet space for the collection of pseudo-norms (norms in fact) P;(+) =
I
Proof of the fact that C¢ is complete for d where d(f, g) = > ;0 27 min{ P;(f—
9),1} :

Ci-



Let f,, be a Cauchy sequence in (C5,d), thanks to proposition 1.15
Vi Ye>0 INEeEN P(fn,—fm)<e VYn,m>N.
— YV a: sup|0®fu(x) — 0% fn(x)] = 0 for n,m— co.

zeK

In other words, for any mmulti-index o 0” f,, converges uniformly towards a
continuous function v, which is clearly supported in K. Then the conclusion
follows from the following classical result from Analysis 2 Let f,, be a sequence

of C*! functions on € and arbitrary open subset of R™

i)  f, converges everywhere to f .

ii)  0;f, converges uniformly to a continuous map g;.
Then f € C! and 0, f = g;.

Applying iteratively this result to the situation above gives : 0%vy = v,. Since
the 0% f,, uniformly converge towards v,, Pi(f, — 1) tends to zero for any i.
This implies that vy is in C'% and the space is closed for d.

Remark 1.14. Let Q2 be an open set of R™. The space C§°(2) of compactly
supported C* function of §2 does not have such a simple topology but it is
the union of the spaces Cj’(oj where K; 1s a sequence of compact sets such that
UjENKj = Q.

vi) The space L{ _(R") of measurable functions of R"™ which are L? on every com-

pact of R"(q € [1, 00]) is Fréchet for the family of pseudo-norms

(LY(Bx»(0))

peEN’

vii)

(S(Rn)v (M)PEN)7

where N, are the pseudo-norms defined in Definition 1.6 define a Fréchet Space.
O

In practice the distance d is never really used and can also be replaced by

do(2,y) == Zap min{1, N, (z — y)},

peEN

where a = (a,)pen 18 an arbitrary sequence of positive number such that »_ ya, <
+00. The following proposition happens to be very useful in the context of Fréchet
space.

Proposition 1.15. Let F = (V,(N,)yen) be a Fréchet space, then the following
three assertions hold true:



i) Let (fn)nen be a sequence of elements from V

fo % fe=WpeN Ny(fu—f) — 0.

n=--+oo n=-+oo

i) (fu)nen is a Cauchy sequence in (F,d) if and only if (fn)nen s a Cauchy
sequence for all the pseudo-norms N,.

iii) Fach of the pseudo-norm N, is continuous in (F,d).

Proof of Proposition 1.15. First we prove the assertion i):

fo % f=VpeNmin{l,N,(f,— f)} — 0

n=-+4oo n=-+oo
<~ VpeN N,(fn—Ff) — 0.

n=-+0oo

We now prove the reciprocal of i):

Let € > 0 and choose ) € N such that
+oo
—p E
Z 27 < 5"
p=Q

Since N,(f,, — f) — 0 for every p there exists N € N such that

n—-+o0o
Vp<@ and n> N Np(fn—f)gi.
Thus Vn > N:
+o0
27F min{lva<fn - f)}
p=0
Q-1 +oo
<Y 2PN(fu— )Y 27
p=0 p=Q
9 3
This implies that f, % f. This proves i).
n—-—+0o
The same arguments imply ii).
The proof of iii) is straightforward. Indeed, let p € N
d(f,9) <27Pe = Np(f —g) <e.
This concludes the proof of Proposition 1.15. O

The following proposition extends a well-known fact in normed space topology.



Proposition 1.16. Let F = (V,(N,)pen) and G = (W, (My)sen) be two Fréchet
spaces and let L 'V — W be a linear map. The following three assertions are
equivalent:

i) L is continuous at 0,

ii) L is continuous everywhere,

iii) Vge N 3C,>0and IpeN, st.VfeF MLf)<CyN,(f).

Proof of Proposition 1.16. The implication ii) = i) is tautological. We are now
proving i) = iii).

Since L is continuous at 0, for any neighbourhood V of 0 € W, there exists an
open neighbourhood U of 0 € V' such that

LU) C G.

In other words, & € L=*(V). Let ¢ € N and choose V, = M_*([0,1)). Since M,
is continuous in (W, dq), due to Proposition 1.16, V, is an open set containing 0.
Because the topology in F' is a metric topology, there exists a; > 0 such that

Bar(0) C Uy € L7 (V)

where ng (0) denotes the ball of center 0 € V' and radius «, for the Fréchet distance
dr. In other words, we have

(1.7) > 27 min{1L, N, (f)} < ag = M, (L(f)) < L.

peN

Let py € N such that

“+o0o
(1.8) S oorc %.
p=po+1
Since N, is increasing with respect to p
Qg p Qg
(19) Nonlf) < 28— 3 27 N () <
p<po

Hence, combining (1.7), (1.8) and (1.9), we obtain for any f € V'

Y

Nw() < 5

— M, (L(f)) <1

using the homogeneity of the two pseudo-norms M, and M,, we have proved

My(L()) < = No()

q

Hence we have proved the implication i) = iii).

10



In order to conclude the proof of Proposition 1.16, it suffices to establish the
implication iii) = ii).

We assume iii) and we are going to prove that L is continuous. Since the topolo-
gies of both F' and G are metric, it suffices to show that for any sequence f,, € V'
converging to f € V for dp, then

(1.10) lim dg(L(f,), L(f)) = 0.

n—-+o0o

Because of Proposition 1.15 i) in order to establish (1.10), it suffices to prove

(1.11) ¥ge N lim My (L(fa — ) = 0.

Let ¢ € N, because we are assuming iii), there exists py € N and C,; > 0 such that
VgeV My(L(g)) < Cy Ny(g).

Let € > 0. Let N be large enough such that

V>N Ny (fo—f) <

)

Q‘m

q

then we have

vn>N M, (L(f.— ) <e.

This implies (1.11) and L is continuous everywhere. O

The following theorem is the extension of Fréchet spaces of the famous Banach-
Steinhaus theorem for normed spaces.

Theorem 1.17. (Banach-Steinhaus for Fréchet Spaces)

Let F = (V,(N,)pen and G = (W, (My)gen) be two Fréchet spaces. Let L, be a
sequence of linear maps from V into W and assume that each L,, is continuous from
F into G. Assume moreover that for any f € V the sequence L, f converges to a
limit Lf in W. Then L defines a linear and continuous map.

Proof of Theorem 1.17. The linearity of L is straightforward. It remains to
prove that L is continuous. For any ¢ € N and positive number A we introduce the
following subset of V:

Cl={feV st. Vne N M,(L,f) < A}.

First, we observe that C9 is a closed set. Indeed, it is the intersection of closed sets

Ch =) (Mgo L,)"'([0, A]).

neN

We now claim that

(1.12) U ci=Vv.

11



Indeed, by assumption, dp(L,f, Lf) — 0, this implies that

n—-+0o0o

Vge N sup My(L,f) < +oo.

neN

Thus if one takes A > sup, ey My(Ly,f), one has that f € C% and this proves the
claim (1.12).

Obviously A > A" = C%, C C'%. Thus
V=] .
jEN

By assumption (V,dr) is a complete metric space to which we can apply Baire’s
theorem and there exists j, € N such that ngo has a non-empty interior:

C;]jo 7 0.

Let f(] c Cq

2907

then there exists o > 0 such that

Bir (fo) € Cgy =[] (Mg 0 L)~ ([0,2°)).

290

neN
In other words:
(1.13) dr(f, fo) < o = sup M,(L,f) <27,
neN

Let pp € N such that

—j «
(1.14) > 27<

Jj=po+1

Since N, is increasing with respect to p

(0%
B .

Noo (f = fo) < % = Z 277 N, (f = fo) <
=0

Thus, because of (1.13) and (1.14), we deduce

Npo(f_fo) < % — dp (f, fO) < «

= sup M,(L,f) <27,

neN

Since sup,,ey My(Ly fo) < 270, we have

Ny (h) < % = sup M, (L,h) < 2701,

neN

The homogeneity of the pseudo-norms gives then

sup M, (Loh) < 2 2001 N (R).

neN @

12



Since L, h — Lh by continuity of M,, we deduce

n—-+0o

M, (Lh) < = 200FL AL (R).

a
4
This holds for arbitrary ¢ € N. Then, from the characterization of continuity given

by Proposition 1.16 iii), we deduce that L is continuous. O

It is now time to define the dual of the Schwartz Space in the Fréchet Space
theory.

1.4 The space of tempered distributions S'(R")

The Schwartz space S(R™) is from now on equipped with the Fréchet topology issued
by the sequence of pseudo-norms N, introduced in Definition 1.6.

Definition 1.18. The space of tempered distributions denoted S'(R™) is the space
of continuous and linear maps from S(R™) into C.

We have the following important characterization of tempered distributions: The
action of a linear form 7" on ¢ € S'(R™) will be denoted either T'(¢) or (T, ¢).

Proposition 1.19. Let T be a linear map from S(R™) into C. The following equiv-
alence holds

T e S (R") <= 3C >0 and p € N such that

(1.15) Vo € S(R™) [T, )] < CNy(op).

The minimal p € N for which (1.15) holds is called the order of the tempered distri-
bution T

The space of tempered distribution can be seen as a subspace of the more “coarse”
space of general distributions.

Definition 1.20.

o Let Q be an arbitrary open subset of R™, a distribution T in € C R™ is a
linear function between C§°(§2) and R with the following properties: ¥ K C
compact 3 p € N and a constant C'x > 0, such that

Vo € CF = (T, 9)| < Ck sup [|0°¢||c.

| <p
(p and Cg: depend on T and K.)

o [fthere is p € N such that for any compact subset K of () the above inequality
holds for this fized p, but where C' can be depending on K, the minimal integer
p such that this true is called the “order of T and denoted ord(T'). If no such
a p exists then we say that T has infinite order.

e D'(Q) is denoting the space of §). O
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Observe that general distributions in D/'(R™) don’t always have an order. The
L. function on R given by ¢ — ¢’ is an element of D'(R) but cannot be an element
of §’'(R™) for that reason: indeed, one easily proves that for any p € N

Lo(t) dt
“up Jr ete(t)dt
©eC(R) /\/;9(90)
Consider ¢ > 0 compactly supported such that ngo = 1 and take for £ € N
r(t) :== p(t — k). We have N,(¢x) < CkP but

li k7P e pr(t) = .
i, J e el = 4o

Remark 1.21. In other words the space of general distributions on an open subset
Q of R™, usually denoted D'(2), is the space of linear maps from C§°(2) into R and
continuous on each O (viewed as a Fréchet Space) where K; are compact subsets
of R™ such that K; C K1 and Q = J,oy Ki. We won’t be working with D'(R™) (or
even with D'(QY)) further and we shall restrict to S'(R™). The main reason is that
D'(R™) is not “compatible” with the Fourier transform, it is too large.

Remark 1.22. The space of tempered distributions S’'(R™) is exactly the subspace
of general distributions on R™ made of elements of finite order. That is T € S'(R")
if and only if T € D'(R"™) and there exists p € N and C € RY such that

Vo e Co(R™) [T, 9)] < CNy(e) .

The proof of this last fact is a consequence of the following density result which is
left as a exercise : for any p € N there holds

(1.16) ¥ o € S(R™) I (pr)ren € (CER)NY 5.t lim Ny(op—¢) =0.

k——+o0

The proof of Proposition 1.19 follows from a direct application of the characterization
of continuity in Fréchet space given by Proposition 1.16 iii). Indeed, C equipped
with the modulus norm is interpreted as a Fréchet space with

Vae C M,(a) :=|al.
Example of elements in &’'(R")
i) We have for any p € [1, +o0]
LP(R™) C S'(R™).

Indeed, let f € LP(R™), for any ¢ € S(R™) Hoélder inequality gives

| [ @) ete)da] < Wl Nl

(Lt ™Y T
<l | [ e o () ds

< Cop 1f e Nag1 ().

14



i)

iii)

Let a € R™, the Dirac Mass 0, : ¢ € S(R™) — ©(a) is obviously a tempered
distribution of order 0:

(00> )] < No(e).

More generally, let {2 be a bounded open set. Denote M (Q) the space Signed
Radon Measures on €. This is the dual space to C°(2) (see [3]).

Elements of M(Q) are tempered distributions of order 0.

example: Let N C R™ be a smooth oriented closed (compact without bound-
ary) sub-manifold of R” and denote by wy the volume of the induced metric

on N. We have that ¢ ngpr = (u, ) a signed Radon measure and a
tempered distribution of orderord(u) = 0 since obviously

/WN < HsOHOO'/wN-
N N

We shall now meet our first Calderén-Zygmund Kernel in this course.

The function ¢t —— % misses by “very little” to be an L' function. This is
a measurable function which is only in the L'-weak space (see the following

chapters).

Nevertheless one can construct a tempered distribution out of % that we shall
denote pv(%) where pv stands for principal value. We proceed as follows.
Observe that

Vo e S(R) Ve >0 / @’dt<+oo.

[t|>e

Moreover

(1.17) lim @ dt = (pv(3),¢) € C

E—O0 |t|>6

exists. Indeed, we write

/t|>a @dtzﬁlm @dt+/_1€@dt+/gl @dt'

Using the fact that % is odd, we have also

p(t) e(t) p(t) — ¢(0)
Af|>a T "= /t|>1 t et /5<|t<1 t .

Since ¢ in particular is Lipschitz, we have that W(t);@(o) is uniformly bounded

in L* which justifies the passage to the limit (1.17). Moreover we obviously
have

(0 G)-e)| < elite®lls +11¢/1x)
< ceM(p).
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This proves that pv(;) € S'(R).

One can also without too much difficulty establish that the order of pv($) is
exactly 1.

iv) The space C[z; ...x,] of complex polynomials in R" is included in S'(R™).
more generally we define

Definition 1.23. The space of slowly growing functions denoted G(R™) is the sub-
space of C'*° functions f in R™ such that

VB = (Pry...,0n) TImgeN and Cz3 >0
such that
10° () < Cp(1 + |z])™.

Exercise: Let f € G(R™) prove that the map

o SE) — [ 1) pla)da
defines a tempered distribution that we shall simply denote by f.
Observe that Clzy,...,z,] C G(R").
Proposition 1.24. Let f € G(R"™) the multiplication by f
M; SR") — S(R")
p—fe
is a continuous linear map from S(R™) into itself.

Proof of Proposition 1.24. Let f € G(R"), ¢ € N and ¢ € S(R") we have using
mostly Leibnitz rule and triangular inequality

My(fe)= sup [[a*0°(f ©)l|Loe@n)
la] <gq

18] < q

< sup Z C,pllz® 07 56_7f||L°°(R”)
lal < q <8
18] <4q

< sup S Cogll 2] 107l () (14 J)™ oo ey
lal <q H<p
18] < q

<Oy S Noya@) < C Nt s ().

181<q IFl<q
This implies the proposition. O

The following proposition is a direct consequence of Proposition 1.24.
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Definition-Proposition 1.25. Let f € G(R"™) be a slowly increasing function for
any T € S'(R™), we define the multiplication of T by f as follows:

Vo e S(R™) (f,T,p):= (T, f ).

This multiplication denoted fT is a tempered distribution.

1.5 The weak convergence of Distributions

Definition 1.26. A sequence of tempered distributions (Ty)ken is said to converge
weakly if for any ¢ € S(R™) the sequence (T, ) converges in C. From Banach
Steinhaus theorem for Fréchet spaces we deduce that there exists T € S'(R™) such
that

lim <Tk7 Q0> = <T7 90>'

k—+o00

The weak convergence of a sequence (Ty)ren in S'(R™) towards an element T €
S'(R™) is denoted

Example:
uj € LP, 1 <p < oo, ujﬂu in LP
that is
Vf e LP(R™) = (LP(R™)) /ujf—> /uf
this implies
u; — uin S'(R™).
Observe that S(R") is dense in L¥'(Q), p’ # oo (Exercise). 2

Exercise: Let ¢ € C2°(R") such that [5, ¢(x)dz =1 denote gi(z) := 28 o(2%x).
Prove that
or — 6 in S'(R").

1.6 The derivative of a tempered distribution

Definition-Proposition 1.27. Let T € S'(R") for any j = 1,...,n we denote by
Oz, T the partial derivative of T along the direction x; which is the following element
of S'(R™)

(1.18) Vo € S(R™) (0,1, ) = —(T,0:,¢).

2We also have for any (u;);jen € L™ such that

u; Xu in o (L®(R™),LY(R™))

then u; = u in S'(R™).

17



Proof of Proposition 1.27. Let T' € §'(R"). It is clear that the map 0,,T" defined
by (1.18) is linear. Let p € N and ¢ > 0 such that

(T, ) < e Np(p)-
By (1.18) we have

(0, T, o) = (T’ O, 0)| < ¢ Ny (Ony)
< cNpra(p)-

Hence from the characterization of tempered distributions given by Proposition
(1.9), we deduce that d,,7 € S’(R") and this concludes the proof of Proposition
1.27. O

More generally, by iterating proposition 1.27, we deduce that for any 7' € S'(R")
and any a = («,...,a,) € N” the linear map on S(R") given by

Vo € S(Rn) <aaT’ (70> = (_1)‘01' <T7 0%, 50>

is an element of §'(R™).
example:

i) Let T be a C'-function, then, thanks to partial integration, the classical and
the distributional derivatives coincide.

ii) We introduce the function given explicitly by

«a, for t>a
Ha,a =
0, for t<a

and called Heaviside-Function.
Let ¢ € C°(R), suppp C [-R,R] and a € [—-R, R].

R R
<H;,aa 90> = _<Ha,a> 90/> = _/ 041352@@/ = —Oé/ gpl
R a
= 0‘90(@) = <0“5a7 90>-

This implies
H),, = ad, .

For the second derivative we have
(H] 4 ) = —(H,, o, ¢") = —(ada, ¢') = —ay(a) = (ad'a, ).

This implies
H] , = ad, .

18



iii) log(z) € L'(R) + L*(R) C §'(R). Let ¢ a function in C{°([—R, R]).

(log 2])’, ) = — / log |z] '

= lim — log |x| ¢

e—0 5§|CE‘§R

—€ R
= lim — (/ log || ¢’ + / log |z| go’)
e—0 _R c

= lim <_1ogggp(—a)+/_‘fﬂ+1og€¢(€)+/jﬁ>

R T

- lim /:>a @ +loge [p(e) = p(=2)] | — <pv (i) ,so>-
- =0(e)

From these computations we deduce

1
log |z = pv (—) :
T

1.7 The Support of a tempered Distribution

Definition-Proposition 1.28. Let T' € S'(R™). There exists a mazimal open sub
subset of R"™, w, such that Vo € C3°(w) there holds (T, ) = 0. Where the property of
being mazimal has to be understood in the following sense: For any w' open satisfying

wCw and Ve eCFW) (T,p)=0

then w = w'.
w® = R"\w s called the support of T'. ([l

We shall need two intermediate lemma for proving proposition 1.28.

Lemma 1.29. Let K C R", be a compact subset of R™ and let U C R", open such
that K C U. Then there exists © € C§°(U) such that

0<O <.
O=1on K.

Proof of lemma 1.29: Let ¢ > 0 such that 3¢ < dist(K, U°). Introduce x.(z) to
be the characteristic function of the open set of points which are at a distance less
than e from K. That is

1 in case dist(x,K) < ¢,

Xe(x) :=
0 otherwise
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Let® g € C* such that supp g C B1(0) and [, g = 1. We then introduce

f(x) == (Xe x 9:)(x) =/ Xe(y) ge(z — y) dy,

n

where

0.0) =~ (%)

€
Clearly f € C™, since x. € L'(R") and g. € C§°(R"). We are now proving

i) f(x)=1on K
ii) f(x) =0 outside U

Proof of i):
supp g C B1(0) = supp, g-(x) C B:(0) ,
indeed T
g:(2) #0 | 2| <1
and
suppy 9=(x — y) C B:(x) ,
indeed

gelx —y) #0 & |z —y| <e.
Let now x € K : g.(x — y) # 0 implies dist(y, K) < e. This gives for such an

re K
/nxs(y)gs(:v—y)—/n gs(x—y)—/n g(z) =1.

Proof of #): From i) we have: supp, g.(v — y) C B.(x). Since z € U¢, from the
choice of ¢ we have

/ Xe(¥)ge(x —y)dy =0, since B.(x)NK.={ze€ R" dist (z,K) < e} =0.

n

Finally we take © = f. O

Lemma 1.30. (Existence of a partition of unity). Let K C R", K be a com-
pact subset of R™ and let Oy,...,0p a finite covering of K by open sets, that is
K C Ule O;,0; open. Then there exists ©; € C§°(0;) such that 0 < ©; < 1 and
SPr ei=1mmkK.

Proof of lemma 1.30: Let € > 0. From the previous lemma, for each O; there
exists f; with the following properties :

30ne can take for instance

¢ TP when |z] < 1,
g(z) =
0 for |x| > 1
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o fi € C5(0s)
e 0 fi<1
. fizlon(éiﬁK),

where

O; :={x€0; | dist (x,0%) >¢e}.
We now choose ¢ > 0 small enough in such a way that
P ~
K. :={r e R" dist (x,K) <&} c | O;
i=1
We consider f given by the previous lemma such that
f=1 onK and f=0 in U°:=R"\K.,.

Finally we denote fy:=1 — f. Observe that by construction

P
Z fi=1 onR".
j=0
Let
];fii falls x € O;
Oi(x) = ijo fi(z)
0 otherwise
(0,)i=1.p is solving the expected requirements and the lemma is proved. O

Proof of proposition 1.28. Let
I:={0|0 CcR",0 open Yy € C(O) : (T, p) =0}

and denote w := |J,c; O. Being a union of open sets, w is open. Let ¢ € Cg°(w).
We claim that (T, ¢) = 0. Denote by K the support of ¢. We have

KCw:UO.
O€r

Since K is compact, one can extract from (O)pes a finite sub covering of K , Hence
thereexist P € Nand3d Oq,...,0p € [ with K C Uf:l O;. Thanks to the previous

.....

K and supp ©; C O;. We decompose ¢ accordingly, that is
P
o = Zcpi, on K where ¢; = 0,0 € C;° (0;).
i=1

Since ¢ is supported on K, the identity holds on the whole of R™. Since O; € I we
have (T, ¢;) = 0. We deduce by linearity of T the desired identity (7, ¢) = 0. It
follows moreover from the definition that w is maximal. O
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Notation 1.31. We shall be denoting E'(R™) the subspace of S’'(R™) with compact
Support.

example
i) do: supp do= {0}
i) 0% : supp 0% = {0}

Observe that for a compactly supported distribution, there is a natural extension

of the duality from S(R") to C>°(R™).

Definition-Proposition 1.32. (Duality Extension)
Let T € E'(R™), and let 0 € CP(R™), such that 0 = 1 on suppT. We define
Vo € C(R")

<T, <P>£’,C°° = <T, 9g0>g/73 .

(T, p)er oo is independent of the choice of 6.
Proof of the proposition 1.32: Let 6,0 € C°(R") with 6 =60 =1 on suppT.

There holds
<T7 990> - <T7 9/§0> = <T7 (9 - 0/)90> = 07
since
0—0 =0 on suppu,

which implies
0— 0 € C°((suppu)) .

This concludes the proof of proposition 1.32. O

Proposition 1.33. Let T' € E'(R™) and let p be the order of T. Consider moreover
© € Cg°(R™), such that 0%¢ = 0 on suppT for any « such that |a| < p. Then it
holds
(T, ¢y =0.
O

Proof of Proposition 1.33: Let K := suppl. By definition K is compact.
Denote 1k, the characteristic function of the set of points at a distance to K less

or equal than 2¢
1z € Ky (x),

1 K28 (SC) =
0 otherwise

where
Ko = {z; dist(z, K) < 2¢} .

Let ¢, = 1k,_* X, where

e CREO), [ x=1 ad ()= (2) -

n en 9
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We have that 1. € C*°(R") and from the definition of the convolution operator we
have

Supp (1k,. * Xe) € Supp (1x,.) + Supp (xe) C Supp (1x,.) -

Hence we deduce

Y. € C(R") .
We claim that ¢. =1 on K.. Indeed, let x € K., there holds

oee) = [ 1) (T22) dy

3

Observe that supp(x (£)) C B-(0). Hence, for x (*=%) # 0 there need to be [z—y| <
e which is implying dist(y, K.) < € which itself implies y € K,.. Hence

%(w):/w %X(x;y) dy =1

which concludes the proof of the claim.

We decompose ¢ as follows

0 =Y+ (1 - )p.

From the claim we just proved we deduce supp (1 —¢.)p C K¢ Hence (T, (1 —
1) p) = 0 since SuppT = K. Thus we have (T, ¢) = (T, ¢i.).

We claim that for any o € N” there exists of C', > 0 such that
10°Yeloc < Cag™:
Indeed, we have on one hand
O (Lkae * Xe) = Lia x 0°Xe
and on the other hand a direct computation gives
0 xe = @) = [0°xc | = 7 C,

Combining these two facts we obtain

1 €T —
10292 =] / 1K25<y>8—nagx( €y> dyH

< rlloe 10%xclh < eIy

This implies the claim.

Let z € K., we consider y € K such that |x — y| < 4e. Taylor expansion at y
gives for any v with |y| < p gives the existence of £ in the segment [z, y] such that

B~
O o(x) Z 0% Z Pp( h '
lal<p g —7)
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where

and
x—y=_(hy,...,hy), K" =h{"---hy" .

From the hypothesis we have for any y € K = Supp(T) p(y) = 0 V|y| < p.
Combining this hypothesis with the Taylor expansion we obtain

107l o (1t0e) < Cyp 711

Finally we bound

|<T7 90>| = |<T7 ¢¢6>| <C Z ||aa(§0¢a)“L°"(K3s)

la|<p
<C Z Z H8PY('OHL"o(Kss) aaiwwes”ooc’y
l|<p [v[<]a|
S C Z Cl/€p+1f\a| S C%TE .
la|<p

This holds for any arbitrary small € hence we deduce |(T, )| = 0. This concludes
the proof of proposition 1.33 O

1.8 The Fourier transform of a tempered distribution

We define now the Fourier transform of a tempered distribution. This definition is
motivated by the first identity in Proposition 1.5.

Definition-Proposition 1.34. Let T' be _a tempered distribution. We define the
Fourier transform of T that we denote by T or F(T) to be the following linear map
on S(R™)

p € SRY) (T, @) := (T, ),

T is a tempered distribution as well.

Proof of Proposition 1.34. Let 7' € §’'(R") and let p be the order of T"and C' > 0
such that
Vo € SR") (T, 9)| < cNy()-

Using Proposition 1.9 we then deduce
p € S(R") (T, 0)| = KT, )| <cNp(P)
<c Npins1(0).

Using one more time the characterization of S'(R™) given by Proposition 1.19, we
deduce that T is a tempered distribution.

Example: Let a € R" we have

Vo€ SB) (Bug) = (0 F) = Bla) = (2m) 3 [ e pla) do



Hence

~

0, = (27)72 e7T € L®°(R").

In other words, the Fourier transform exchanges the “most concentrated” measure
into the “most dispersed” wave function. This phenomenon is known as the Heisen-
berg Uncertainty Principle in quantum mechanics. O

Example: More generally, given o = (q, ..., a,) € N” we have, using Lemma 1.10,

—

(00 04, ) = (=) (6,,0.8)
= (—1)(5,, (~i)llzog)
= (i)l (27) "% / eI 2 o(z) d.
Hence we have established
(1.19) On 0y = (1)1¥1(2m)72 e7 2% € G.

Exercise: Prove that

and more generally ’
Vo € N 29 = (27)2 il 9% .

O

Excercise: We shall now compute the Fourier transform of pv(%). First, we claim
that

(1.20) tpo(;) =1 in S'(R),

where the product by ¢ has to be understood in the sense given by Proposition 1.25.
Indeed,

Vo € S(R) <tpv(%),g0> = <pv(%), t<p(t)>

= lim (t)dt = / () dt.

e—0 |t‘>6

This proves (1.20). The computation above of the Fourier transform of 1 gives then
]-“(tpv(%)) = (27)% Jo-

Using now Proposition 1.40, we have

pr pv(%) = —3 tpv(%) = —i\/ﬁﬂso-

Let H(t) be the Heaviside function equal to the characteristic function of R;. An
elementary calculus gives

d
= H(t) = 6.
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Hence

—

(1.21) % [pv(%) +iv2r H(t)| = 0.

We shall now need the following lemma:
Lemma 1.35. Let T be an element of S'(R) such that

d
— T =
dt 0,

then T is the multiplication by a constant.

Proof of Lemma 1.35. Let ¢ € S(R). It is not difficult to prove that if
f%o o(t)dt = 0, then t — fjoo ©(s)ds is still a Schwartz function. Hence since

—00

% ffoo o(s)ds = (t), we have by assumption of the lemma V¢ € S(R) such that
J23 els)ds =0

(T, p) = 0.
Let ¢ € S(R) arbitrary. We have then

2 fjozo p(s)ds >

T, pt)—e —
< (p( ) fj-oo 6_52 dS

This gives
too (T et
T, o) = / " T () dt
(T, ¢) e e s p(t)

7t2>

Hence T' is the multiplication by the constant I+<OT.+ This concludes the proof

2 .
5% ds

of the lemma. O

Combining (1.21) and lemma 1.25, we obtain that there exists a constant A € C
such that

—

pv(%) = —iV2r H(t) + A.

Observe that for any even function ¢(t), one has

(0. 5o

It is not difficult to prove that a Schwartz function is even if and only if it’s Fourier
transform is even too. Hence for any even function we have

/m(—z'\/%H(t)JrA)@(t)dt:o,

[e.9]

this implies that —iv/27m H(t) + A is odd and we have proved that

—

1 ) .
pv(;) =—5 V2 sign(?).
As mentioned above, this function belongs to the family of Calderén-Zygmund mul-
tipliers that we are going to study more systematically in section 7.
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Theorem 1.36. The Fourier transformation realises an isomorphism S = 9,
whose inverse is given by F ' = F where F is defined as follows

(F(T), @) = (u, F(¢))-

and F is the operation defined previously on L*(R™) (and A fortiori on S(R™)

Fifell®)—n [ e

n

v
will be denoted f or also F~'(f). A )
Consider moreover T; € 8" =T € S" in S’, then T; =T in S'. O

Proof of theorem 1.36.
Vo e SR")  (FF(T), p) = ((F(T), F(p) = (T, FF () = (T, ¢) .
Moreover we have
This implies ) R
T; =T in S'(R™) .
O
Theorem 1.37. Let T € £'(R"), then we have T € G(R™) and Y¢ € R" there

holds ) '
T(C) = (27T)_n/2 <T, 6_2x<>g/7coo .

where the duality £, C*° has to be understood in the sense of proposition 1.32. [

Before proving theorem 1.37 we establish the following lemma.

Lemma 1.38. Let k € N* and ¢ : z € R" — ¢, € S(R™) such that for any
p in N ¢ realizes a C* map from R™ into the normed space (S(R"),N,) for every
p € N. Then for any T € S'(R™)

r— (T(y), p=(y))

is in C*(R™) and there holds

Vy=nmm) 0 <k 0T (W), ¢(y) = (T(y), 0l¢p=(y))

Proof of lemma 1.38 It suffices to establish the lemma for £ = 1. The assumption
is saying that for any 2° € R™ there exists d,,¢ € C°(R, S(R™)) such that

9020+h<y) — Pz0 (y) - Z?:l azigorohi

=0
Id

Np

lim
h—0
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In other words we have for any p € N

(122) lim  sup Y0y paoen(y) — ¥y 0 pun(y) — 311 Y0, O, Puo

"0 ol <p A Lge (R™)
18] <p
Hence, assuming T has order ¢ there holds
o | ST @) o000 () = (T 000 (y)) = 30T, Ouiipuo)
h—0 ‘h‘
“9Bop, — 0P, -5 Y2080, pLoh
<lim sup Y 0y peo4n(y) — y ysooh(y) 2121 Y0y O, a0 0
— |a‘ <gq | ‘ L?(R")
18] < q

Hence we have proved that © — (T'(y), ¢.(y)) is differentiable at every point and
the differential equals

n

Z(T, Oy, ) dz; .

i=1
The continuity of each partial derivative 0,,(T,p.) = (T,0.,p.) at an arbitrary
point 2 is deduced from the following inequality

|<T7 a:m@m) - <T’ aﬂ?icpﬂcoﬂ S C ||8$z§0$c - 8177;@330”/\/,1

combined with the hypothesis asserting the continuity of + — 9,,¢, from R" into
S’(R™). This concludes the proof of lemma 1.38. O
Proof of theorem 1.37: Let

V= <T7 €_ix<>g/7coo = <7—‘7 06_1'1()8/75

where 6 € C3°(R™) and 6 = 1 on suppT.
Claim 1: v € G(R™).

Proof of claim 1: We have using lemma 1.38
O v =T, 0¢ (7)) = (T, ()" a”e™<).
Since T € &'(R™) there holds for some p € N

(T, (i)l 2™ ) < C ) 197 (2% ) || e suppun)

1BI<p

<O (1 +[¢]P),
hence

0¢ o] < C"(1+[CP)

which implies
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veGRY).

A

Claim 2: v="T.

Proof of claim 2: Let p € S(R™). Since v € G(R™), its action on any element in
S(R™) is given by the classical multiplication followed by the integration operation.
Hence we have

(0,0} = {0(), #(O) = [ 0(0) wl)dC

— [ twla), e p(0)dg

= [ ) o0y = (ut). [ o)

= (2m)" (u(z), (@) = (2m)" (@, ¢),

where the third inequality is using the first part of the proof of proposition 1.44 .
Hence we have proved the claim 2 and this concludes the proof of theorem 1.37. O

We shall end this subsection by first proving the following important proposi-
tion known also under the name of “Schwartz Lemma” and then we will apply this
proposition in order to establish a characterization of harmonic tempered distribu-
tions (theorem 1.41).

Proposition 1.39. Let T be a tempered distribution supported at the origin that is
to say Vo € S(R™) such that ¢ = 0 in a neighborhood of 0, then (T, p) = 0. Then,
there exists p € N such that for any f = (B4, ..., Bn) satisfying |B| < p, there exists

cg € C such that
T=> Cy0%,.

|BI<p

Proof of Proposition 1.39. Let p be the order of T. Let p € S(R™) we proceed
to the Taylor expansion of ¢ to the order p at the origin: for any v € N* and |y| < p
there exists a, independent of ¢ such that

o) =Y a;97p(0)2" + Ry(x)

[vI<p
where R
im B
lz|—=0  |z|P
Moreover Vv, |v| < p
R
(1.23) im 1@

i
|0 |zP=1l]|
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Let x be a non-negative cut-off function in C°(B;(0)) such that x is identically
equal to one on By (0). By assumption

(T ) = (T, x9) + (T, (1 = x) )
= (T, x ).
We have, using the Taylor expansion of ¢,
(Toxe) =Y a,070(0) (T, x(x) 27) + (T, x(x) Ry(x)).
IvI<p

Observe that the functions x(x)z” are Schwartz functions and hence (7', x(z) z7)
are well-defined complex numbers. We claim that

(1.24a) (T, x(x) Ry(z)) = 0.

This claim implies obviously the proposition. Observe that this follows immediately
from Proposition 1.33, but we choose to give a direct proof here. Let

x

N-(z) =1~ X(*)

3

where 0 < ¢ < 1. By assumption we have
<T7 X Rp> = <T7 X Rp 775> + <T7 X Rp Xs)
= <T> Rp XE>7

where x.(z) = x(x/¢e). Since T is of order p, there exists ¢ > 0 such that

(1.24b)

(T, Pyxe)| < CNP<RPX6)'

We have, using Leibnitz formula and triangular inequality,

No(By xe) = Z Hajaaﬁ(RpXE)HL"O(R")

laf < p
1Bl <p
(1.25) < >N a0 R0 Xe e
‘Oél <p v<pB
1Bl <p
<G > Y 07 R, 0 Xell 2y
IBI<p v<B
We clearly have
a7 —
(1.26) 107 x:|(z) < T 15.(0)()

where 1p_(g)() is the characteristic function of the ball centered at the origin and
of radius €. Because of (1.23) we have

10°77 Ry(2) 15, (0) (@) | ey = 0(”7777).
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Combining this inequality with (1.25) and (1.26) we obtain
Noy(R, x.) = 0( Sy Ep—w—ﬂ—m)_
1Bl<p <8
Since 7 < 8, we have |5 — 5| + [yl = 5 — 5 + X2 7 = |5, Hence

lii% Nop(Ryxe) =0
From (1.24b) we deduce (1.24a) and this concludes the proof of Proposition 1.39. O

Proposition 1.40. Let T' € S8'(R"™), then for any o = (aq,...,a,) and any =
(B1, ..., Bn) we have respectively

0T = (=)l go T
and
9T = A8 T,

where the products x*T and fﬁf have to be understood in the sense of Proposition
1.25.

Proposition 1.40 is a direct consequence of Lemma 1.10 and Lemma 1.11. We
have the following theorem:

Theorem 1.41. Let T be an harmonic tempered distribution that is an element of
S'(R™) satisfying
Vo € S(R") (AT, p) = (T, Ap) =0.

Then T is a polynomaial.

Remark 1.42. This result is a bit “counter-intuitive” since we know many more
harmonic functions than polynomials. For instance in R? every holomorphic func-
tion is harmonic but is not necessarily a polynomial (i.e. f(z) = e*). This illustrates
the difference between 8" and D’'. S’ being in a sense the space of distributions for
which one can define a Fourier transform.

Proof of Theorem 1.41. For any ¢ € S(R™) we have
0= <AT’ @) = <T7 A(z/5>

(1.27) — (T, [z*¢)

Let ¢ € S(R™) such that 1 is identically 0 in a neighborhood of 0. Then ¢ (z)/|z|* =
@(x) is still an element of S(R™).
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Then we deduce from (1.27) that for such a 1 we have (T,v) = 0. In other
words, the support of the Fourier transform of 7" is included in the origin. Applying
Proposition 1.39 to T', we deduce the existence of p € N and C3 € C for any § € N*

with |8| < p such that
T=> c50 6.

1BI1<p

Using Proposition 1.40, we deduce that

CZIB\
=Y 5)2;

1BI<p

This implies the theorem. O

1.9 Convolutions in S'(R")
1.9.1 The convolution of two Schwartz functions

Let ¢ and ¢ be two Schwartz functions, we recall the classical definition of the
convolution

% P(z) = / (@ — y)¥(y) dy

=/ Uz —y) e(y)ldy.

We have the following proposition

Proposition 1.43. Let ¢ and ¥ be two Schwartz Functions, then for any p € N

(1.28) No(p x9) < Cpn Nyp(0) N1 (1).

and then @ x 1 is also a Schwartz function.

Proof of Proposition 1.43.We have

No(p 1) = sup xﬂ/ oz —y) 0*P(y) dy
la| <p "
1B <p

Lo (Rn)

— sup / ( —y+y)ple —y) 0 v(y) dy
la] <p "
1Bl <p

Loo(R™)
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Using the binomial formula, we obtain

Nolp*w) < sup Y Ca,

[l = al et = P 070l 0) dy

ol <p ~<p L= (R™)
1B <p
<N [ X Wil dy
laf <p
Bl <p
< Gy Ny(0) Ny (¥) -
This concludes the proof of proposition 1.43. O

1.9.2 Convolution of a tempered distribution with a Schwartz function

Definition-Proposition 1.44. Let T' € S'(R") and let ¢ € S(R™).
For any x € R" we define

Txp(x) == (T(y), oz —y))s;,s,-
then
(1.29) T xp e C*R"),
and there holds
(1.30) Va = (aq,...,a,) € N? T xp) =T %% = 0T * .

Moreover
peSMR") — TxpeCFR"),
is continuous between the Fréchet spaces S(R™) and C*(R").
In case T € E'(R™), and ¢ € S(R™) then

(1.31) Txpe SR .

moreover
peSR") — Txpe SR
18 continuous map between Fréchet spaces.

In case T € E'(R"), and ¢ € C§°(R™) then

(1.32) T %@ e C;°(R™)
and
(1.33) suppT x o C suppT + supp p.
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Proof of proposition 1.44. Claim 1: We claim that
r € R" = o(z —y) = ¢.(y) € S'(R")

is C* as a map from R™ into the normed spaces (S'(R"), N,) for any p € N. We fix
p € N arbitrary and we prove that the map is in C*'(R", (S'(R™), N,)). We have

Paro+h — Pao — Z Oz o n

i=1 N,

= sup ||v° (8 olxog+h—1y) — 0Fp(xg — Zf) O, 0(x0 —y) h )
laf <p Lo (R™)
1B <p

Let ¢ > 0 and R > 0 that we shall fix depending on ¢ and ¢ later. We have the

existence of &, o, depending on zg, h, o,y between y and y — h such that
(1.34)

sup ||y° ((3;‘g0(x0 +h—y) — %p(z — Z 05 O, p (0 — )h‘)
la| <p Lo (R™\ B (0))
1Bl <p ’ ‘
= Sup 8 <_ Z 0y, 0, 0(20 — &g hyay) h' — Z 9 0 p(o — y) hi)
lal <p i=1 i=1 Lge (R™\BR(0))
Bl <p

< 2Np(o) || R

We now fix R > 0 large enough so that 2N,;1(p) R~ < £/2. Now we bound

sup B (03@(1'0 +h—y) = 0yp(zy — Z 0, 0, 0(0 — y) b )
ol <p L2 (Br(0))
1Bl <p
<Cp R Y |[0%p(zo + h—y) — Ogp(zo — y Za O, (20 — y) '
oo <p L3 (BR(0))
<Cp R Y |[= D 05,05 0(x0 — Eagpay) B+ Z 050y, 0(x0 — y) !
lo|<p i=1 i=1 L (Br(0))
S Cp RP Z Z Hayzagsp(% - Sxo,h,a,y) - agayiSO(iEO - y)HLgo(BR(O)) |hl|
laf<p =1

Since ¢ is C* on R", for any |a| < p and any @ = 1---n, 9,0y is uniformly
continuous on Bp1(%) and since £, pa.y —y| < |h|, for |h] < 6 and 6 small enough
we deduce

sup
la] <p
1Bl <p

<

L3 (Br(0))

Id

B(@Z‘g@(m-l—h—y) e(zo —y Zaa (o —y) h )

DO | ™
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Combining the previous we obtain
Ve>0 , 39>0 , s t. V]h|<d

Pro+h — Paxo — Z O, P h!

i=1

< e |h|
Np

This implies that x € R" — ¢(x — y) = ¢, (y) is differentiable everywhere as a map
from R™ into (S'(R™), N,) moreover the differential is given by

reR"— Z@migo(x —y) dz;
=1

which is,by iterating the argument above, continuous. Hence x € R" — p(z — y) =
v:(y) is in CY(R™, (S§'(R"),N,)). By applying the argument above to each of the
maps ¢ € R" — 0,,¢(x — y) we obtain that x € R" — ¢(z —y) = ¢.(y) is in
C*(R™, (S8'(R™), N,)) and claim 1 follows by a straightforward induction.

Applying lemma 1.38 to z € R" — ¢(x —y) = ¢,(y) and T" we obtain (1.29)
and (1.30).

In order to prove (1.31), because of (1.29) and (1.30) it suffices to prove that for
any 7 € &'(R™), any ¢ € S(R") and any S € N" there holds
(1.35) 27 (T (), (2 = D] poo ey < F00 -
We write
2 (T(y), plx —y)) = (T( v) [ [ = vi +00)) -
i=1

By developing the expression []", (z; — y; + y;)” we obtain the existence of coeffi-
cients cg,7 € R such that

n n

n
H(‘rz — Y + yz)'Bl = Z cgﬁ H("’El _ yi>ai Hijj

i=1 o <[B],1v[<IB] =1 j=1

Observe that for any choice of o and v in N we have that
Hyaz e S(R") and Hy%TEE (R™) .

Hence we deduce (1.35) and (1.31) is proved. The fact that the operation ¢ €
S(R") — T x ¢ € S(R") is continuous is left as an exercise.

Assuming now 7" € £'(R"), and ¢ € C§°(R™) we prove (1.33). Let x € (supp T+
supp ¢)¢. This implies that

VyeR" z—yé€ suppep

— y € —suppp+ (R"\ (suppT + suppyp)) =R" \ suppT

Hence for such an x one has T x ¢(z) = 0 which concludes the proof of proposi-
tion 1.44. O
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Proposition 1.45. Let T € S'(R™) and let ¢ € S(R™).
Then T'x ¢ € §'(R") and Yy € S(R™)

(T, ) = (T, px1),

where

g

Proof of Proposition 1.45. Under the assumptions of the proposition we have
that Txp € C*(R™). Using the duality extension, and assuming first ¢ € C§°(R"),
we have

)= |

zeR™

T s p(e)(x) da™ = / (T(y), lx — y)(e)) da

z€R™

Using the fact that ¢ € C§°(R"), claim 1 in the proof of proposition 1.44 implies
that for any ¢ € {1---n}

+o00o
r — / olx —y) Y(x) dx;
is C* from R" into (S'(R"),N,) for any p € N. Applying lemma 1.38 we then
deduce that

0
8xi

(T [ " o — ) ) = ~(T(0). ol — )0(2)

i

0
N 0xi

[ et - v dn

i

Hence there exists ¢; € R such that

(1. [ °° ola = g)ite) i) = | °° (). 0 — y)ole) ) dos +cr .

Making z; tend to 400 and using again the fact that ¢» € C§°(R™) we obtain ¢; = 0.
Using one more time the fact that ¢ € C{°(R"), we can make z; converge to —oo
to obtain

(10 [ eto—weto) an) = [ 00— te) )

—00 [e.9]

Integrating along the n directions and using proposition 1.43 we finally obtain

Trp) = [ @t -peo) @t = (1), [ e i)u)

reR™
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Let p be the order of T, combining the previous identity with (1.28) we obtain
Vi e CP(R")  [(T* ¢, ¥)| < CrNo(@) Npinsa (¥) -

Hence T * ¢ defines a finite order element in D'(R™) and thanks to the density
property (1.16), it extends as an element in §’(R"™) and proposition 1.45 is proved.
O

Corollary 1.46. Let T € S'(R"™). Then there ezists a sequence T; € C*(R™), such
that T; — T in S'(R™).

For proving the corollary we shall make use of the following lemma

Lemma 1.47. Let x € C5°(B1(0),Ry), such that [, x(x) dz" = 1 and for any
e > 0 we denote .
Xe = o X <_> .
€ £
Then for any ¢ € S(R™) there holds
prxe — ¢ in SR"),

that is
VpeN lir%/\/;?(gp*xg—go):()
e—

Proof of Lemma 1.46. Let p € N, § > 0 and R > 0 to be fixed later. We bound

| S|UP 12705 (9% Xe = )| oo @iy S B Nopw1 (0% xe) + Nypa(9))
al<p
1Bl <p

Observe that
107 (0% xe)| (z) = (070 * xe| (2) < 1070 oo .2y [IXeN1R) -
For this reason there holds for ¢ small enough
N1l xxe) < 2Npi(e) -
Hence we have
B aa -1
sup  |[2705 (0% Xe = ©)|[ oo <3R! Nppa(o) -
Bl <p

We choose R > 0 such that 3 R~ N,11(p) < /2. Since 0% is continuous on R" it
is uniformly continuous on Bg.(0) and we deduce for any v € N”

lim (|07 % Xe = 07l Loe (5509

= lim / (07 0(x —y) — 07p(x)] xe(y) dy"
e yER™ Le°(BRr(0))
< lim sup ||0gp(z —y) — a?@(x)HL;o(BE(O)) Xe(y) dy" = 0.

£20 Jyern zeBR(0)
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Hence we can choose g such that

J
su 2P0% (o % x. — < -
(137) Ve<e ol gp H v <SD X ¢)|‘L°°(BR(O)) -2
1Bl <p
Combining (1.36) and (1.37) we obtain
Ve<eo Ny(p*xxe—p) <0 .

This concludes the proof of Lemma 1.47 O

Proof of Corollary 1.46. Let x € C§° (Bl(O),R+), such that [y, x = 1. Let
1. We introduce

moreover &; ;=1 .
1 z
i(z) = — — .
Xi(2) X (5)

From proposition 1.44 and proposition 1.45 we have respectively
T *x; € C*™.
and for any ¢ € S(R")
(T'xxi,0) = (T, Xix ) — (T, )

This concludes the proof of Corollary 1.46. O

This last proposition therefore shows that the convolution of a distribution with
a Schwartz function is a “natural” operation in the following sense: We can prove
properties of distributions by starting from smooth functions and then moving to
the limit. Furthermore, one can see that with the distributions one has not defined
a much too large object of generalized functions.

Next we consider translations. Let ¢ € C§°(R") and let @ € R". Then the
translation 7, is defined as follows 7,p(x) := ¢(x — a). The same procedure is
followed for tempered distributions.

Notation 1.48.
VT € S'(R") : (1.1, ) := (T, T_atp).

Proposition 1.49. VT € S'(R") VYV € S(R") Va € R" there holds

To(T % @) = (1,1) x o =T * T,00.
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Proof of Proposition 1.49:
Ta(T* p(x)) =uxp(z—a) =(T(y), p(z—a—y))
=(T(y), v(z—(y+a)))
= (T(y), Tap(z—y))

= (1T(y), p(x —y))
O

Exercise Let T' € &'(R") and U : C°(R") — C§°(R"™) be the following map:
U:¢ — uxg. Prove that U] o 18 continuous where Cg°(R") is viewed as a
0

sub-vector space of C*°(R") viewed as a Fréchet space.

Exercise Let U € C(C§°(R™), C5°(R™)) be linear and commuting with translations,
that is for any a € R”
Uty = 1,U0p.

Then there is a 7' € £'(R") such that

Up=Tx*p

1.9.3 Convolution of two distributions

Definition-Proposition 1.50. Let T' € £&'(R") and let ¢ € C*(R™). Then we
define
T p(x) = (T(y), p(z —y))e.c -

There holds
i) TxpeC™.
i) 0%(uxp)=u*xd% = (0%u) x p. O

Moreover the map which to ¢ € C®(R") assigns T x ¢ € C*°(R") is continuous as
a map between Fréchet spaces.

Proof of proposition 1.50: .The proof is identical to the proof of proposition 1.44
after having inserted a cut-off function 6 as in proposition 1.32 to extend the duality
from & <+ S to & < C°. The fact that the map

p e C®R") — TxpeC*R")

is continuous as a map between Fréchet spaces is left as an exercise. Il
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Definition-Proposition 1.51. (Convolution between S’ and £’)
Let T € §'(R™) and let S € E'(R™).

Then there ezists R € S'(R™) such that

Vo e SR") (R, p)=(T, Sxyp),

where )
(S, ¢) =(S, ¢)
We denote
R=Tx%S
We now define
(1.38) (ST, @)ss = (S, Tx@)er o -

With these notations there holds
(1.39) T+S=8*T.

We have moreover o7 95
(T'xS) = xS =Tx

If both T and S in E'(R™) holds

supp (T *S) C suppT + supp S ,
and
TxSe&R).
]

Proof of Proposition-Definition 1.51. The fact that R € S'(R") follows from
the fact that for a compactly supported distribution S the map ¢ — S * ¢ is a
continuous map from S(R") into itself see (1.31).

The fact that (1.38) makes sense comes from (1.29) and the continuity of the
map

peSMR") — Txpe C®R"),
as a map between Fréchet spaces .

We now prove (1.39). Introduce x € C5°(R"), suppx C By(0) and [, x =1 as
well as €; — 0. Denote y;(z) = 6%)((6%) From the proof of corollary 1.46 we have

T,:=x;xT — T inS'(R") and S;:=x; xS — S inS(R")
moreover T; € C*(R") and S; € C§°(R") with

supp(S;) C supp(S) + supp(x;) C supp(S) + Bx,(0) .
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There holds first

(T % Sy 0) = /T*s<> (2)dz"

/ndz / (2 — ) Si(y)p(z) dy"

_ / 4z [ / TSz~ )y | 9() = (Six T, ¢,

We claim the following.

Claim 1):
(1.40) (T; % Si, @) = (T}, Six @) — (T, S %) = (T xS, ©) .
In order to establish the claim 1 we first prove
Claim 0): ) )
Sixp — S*peSR).
We have

Sixo(x) = (Si(y), el —y)) = (Siy), ¢(xz —y))
= (S*xi(y), e(x+y))

= (S(y), Xi x ez +y))
Since 9%(S; x ) = S; x %y, it suffices to prove that Vo € S(R") and any 3 € N”
27 ((S(y), Xi * ¢ (z + 1)) = (S(), ¢z +Y))) | (i) — 0,

Let p be the order of S. Since K := supp® C B,(0) is compact, there exists a

constant C's > 0,such that

[(S.0) < Cs D 10%llmmy. Vi € SRT).

la|<p

Hence we have for any x € R"

127 ((S(y), X * o(z + y)) — (S(y), p(xz +y))) |

<Cs Y l2? (% * 05 +y) — O(x + ) Lz,

la|<p

Let 6 > 0 and R > 2p > 0 to be fixed later on. For z € R" \ Bg(0) we bound

127 ((S (), X * (@ +y)) = (SW), 0@ + DD | oo o 50y

< Cs Z HHx (Xi * Opo(x +y) — 05 oz +v)) | Lse (B,( 0))H

& L2 (R\Br(0))
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Observe that for |x| > R > 2 p one has 2|z| > |z 4 y| > |z|/2. One has also

\Xi*@?@(ery)’ < HXiHLl(Rn) Haa@HL“(Bpﬁi(:v)) :

Hence we have for any |a| < p

Cs 3 |12 (e ag0(e + 1) = 950 + 1) ez (3,000 |

la|<p

< Cy R Ny(p)

Lz (R™\Br(0))

We choose R such that C, R~ N,;1(¢) < 6/2. R being now fixed, on Br,,(0) the

convergence of x; x 0;'¢p towards J;'p is uniform. Hence, for i large enough

<6/2

L3 (Br(0))

Cs > HHx (Xi % Oy oz +y) = 0y w(x +9)) llLes,0)

la|<p

Combining the above, claim 0) is proved.

In order to prove the claim 1) we write

(T;, Sixp) — (T, S x ) = (T; = T, S x ) — (T}, S x p — S x p)
=(T; = T,5x ) — (T, x; % (S % — Si %))

Since T; — T in S'(R") we have that (T; — T, S ¢ — 0. Let p be the order of T.
We have

(T Xix (Sxo—Sixe))| <C DY |Ja"xi%x0*(Sx o — Six o) (@) .
la| <p
1Bl <p

Observe one more time that

i 0% (Sx 0 = S ) (@) < Xillpramy 075 %0 = Si% @) )

Hence
Yol 07 (S x e = Six @) (@) < CN(SHp— Sixep)

la| <p
1Bl <p

Using claim 0) we obtain that NV, (S*p— S;x¢) — 0 and the above we deduce claim
1). Hence we have proved (1.39).

The last assertions of the proposition follow from (1.38), (1.30) and (1.33) and
the details are left as an exercise.
U

Remark 1.52. Attention! associativity does not hold in general.
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Example: Consider in S(R). There holds
(1*56)*}[170 =0 s

indeed
(1% 65, 0) = (dg, L+ ) = —(do, (1 x)") = (1% ¢)'(0) = 0.
On the other hand, there holds

(56 *Hl,O = (50 *50 = 50 S SI(R)

and thus
Lx(6g* Hig) =1%x8p = 1.

(0p is the neutral element of the convolution). We have shown

(1 *(56) *Hl,() 7& 1% ((56 *HLQ).

Theorem 1.53. Assume T,U,V € S'(R™) and that two of the 3 have compact
support, then there holds

Tx(UxV)=TU)xV .
Exercise. Prove theorem 1.53.

Remark 1.54. So far we have seen the following cases in which the convolution is
defined between a distribution and a function or another distribution:

e TS pes§S |,
e Tl peC> |
e TcS, Se& .

The question now arises as to whether there are other cases in which a convoolu-
tion is defined between two distributions.

In fact, one can define the convolution between T € 8" and S € §’, provided
VR>0 3J0(R)>0,
so that
(z € suppT, y € supp S, |v +y| < R) = (x| <I(R), |y| < (R))

One says that T and S have convolutive supports.
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1.10 The use of convolutions to solve linear partial differ-
ential equations with constant coefficients

1.10.1 General Principles

Definition 1.55. A convolution equation is an equation of the form Axu = f,
where A € () and [ € E'(Q) are given and u € D'(Q) is unknown. O

Ezample 1: (Partial Differential Equations) Let A = Z\cqu Co0%g, Co € R
or C

Axu = Z C,0%0o * u, where 0%5y € & and u € D’

e <p
=Y Cabox0"u= Y Cod"u.
jol<p jl<p

Hence
Axu=f  — > Cudu=f.

|| <p

Example 2: A discrete differential equations of the form u(x 4+ h) + u(z — h) —
2u(x) = f can be rewritten as follows:

(5h+5_h—2(50)*u:f.

Definition 1.56. Let A € £'(R™). A solution G € §'(R") of the equation AxG = dy
is called the fundamental solution / Green’s function / kernel of the convolution
equation. O

Theorem 1.57. Let A € E'(R") and let f € E'(R"). In addition, let G be a
fundamental solution of the equation associated to A, i.e. AxG = dy.

a) Then u:= Gx* f is a solution to the equation A*u = f.

b) Ifu is a solution of Axu = f and u € E'(R™), then w = G x [ and this is the
only solution, if there is one.

Proof of the theorem 1.57:
Proof of a): Let u=Gx f. Then Axu=Ax(G* f). Since A, f € E'(R™), the
associativity holds thanks to theorem 1.53, so

Axu=(AxG)xf=do*xf=Ff.

proof of b): Now let u € £'(R™) be a solution of Axu = f. We have u = §y*u =
(A x G) * u, and because of the associativity, which holds because of A,u € &'(R"),
one obtains

u=(GxA)xu=G*(Axu)=G*f.
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1.10.2 Solving Au=f for fe€&'(R")

(Model example for elliptic equations)

We introduce the following function

1
— log |z n =2,
2m

(1.41) G(x) = '

0B O)] [a]*=2(n — 2)

,n > 2, r e R".

Introduce the characteristic functions f the unit ball 15, (o) and the complement of

G =1p,0) G+ 1ppGeLl +L°R") = GeSR"),

and
G € C*(R™"\{0}) .

We have the following lemma.

Lemma 1.58. The tempered distribution defined by (1.41) satisfies

n 2
AG = (9G_50

—— =
— ox;
Proof of lemma 1.58 A direct calculation of the derivatives gives
AG =0 in D'(R™"\{0}).
That means that
supp AG C {0}
Proposition 1.39 then yields the existence of ¢ € N, so that holds
AG =) Cad
loe|<q

and
Co €R forall |of<gq.

Let ¢ € C3°(R™), suppy C Bgr(0). Observe that E € L'(Bg(0)). Thus we can
write

(AG, ) = (AG, gp):/ GA@z/ G Ap dz™ = lim G Ay dz"
n Bg(0) ¢=0 JBr(0)\B:(0)

Observe that

B
/ G Ay d:zc”:—/ a2 dlaBE(o)—/ VGV da" .
Br(0)\B-(0) aB.0) Or Br(0)\B-(0)

45



Since

C _
||G||L°°(QBE(O)) S 5n_2 fOI' n > 2 and ||G||L°°(635(0)) S C logg 1 fOI‘ n=2.

This implies

0
/ G _(,0 dlaBE(O) < CSOHGHLoo(aBE(O))|GB€(0)| = 05(1) —0.
oB.(0) Or

Moreover we have (for n > 2), since AG = 0 away from 0

oG
—/ VGV dx":—/ —godlaBs(o)jL/ OAG dx"
Br(0)\B-(0) oB.(0) Or Br(0)\B-(0)

+/ n—2
= - — 9,
oB.(0) 10B7[(n — 2)|z["1

A similar computation holds for n = 2.

Finally we have obtained the following result

1
<AG; 90> = lim TAanl 11 ? dlyp.(0) = 90(0) = <507 90> .
== Jop. (o) 10BY ] [z v
This concludes the proof of Lemma 1.58. O

Combining Lemma 1.58 with the previous subsection we shall derive the following
result.

Theorem 1.59. Let

1
oy log |x| n=2,
Glr) = 1

OB (O)] |22 (n —2)

and let f € E'(R™). Then u = G * f is a solution to Au = f, u € S'(R"),
u € C®°(R"\supp f) and u converges uniformly toward 0 at infinity. O

n> 2,

Proof of Theorem 1.59. Because of the previous subsection, the equation Au = f
in §'(R™) can be rewritten as A xu = f, where

A=Y
=1

From theorem 1.57 u := G « f is a solution to this equation and u € S'(R").

We prove now the last part of the theorem, that is first u € C*°(R™\supp f) and
then the uniform convergence of u towards 0 at infinity.

Let 6 > 0 and let # € C§°(R™) with # = 1 on B}(0) and 6 = 0 on R™\BZ(0).
Denote T
Os(x) = 0 (5) .
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Now we decompose G as follows:
G=Gi+Gs

where 8 = 0;G and G5 = (1 — 05)G. Observe that G € L'(R") and G €
L>(R™) N C*(R™). By linearity of the convolution u can be written as follows

u=Gxf=Grxf+G«f.
Further we have
supp GS  f C supp f + By5(0) C (supp f)as := {x € R™; dist(z, supp f) < 26} .
Now let ¢ € C§°(R™\(supp f)a2s), then the following holds
(u, @) = (G x [) +(Gox f, 9) = (G3+ [, ¢) .

From proposition 1.50 we have G5 f € C* V¥ > 0. We deduce u € C*(R™\supp f).
Now we write

Gy * f(z) = (f(y), Ga(z — y))erc=

and

(1.42) (f(y), G3(x =y < C Y 105G (x = )| oo supp 1)+

la|<p

where p = ord(f). Let 2 < R < oo, such that supp f C B%(0). There holds

Vy € Br(0) , |z|>2R
1 C
Wal) _ — [¢] < 1 — 0
’ay Gz(w y)| ¢ ay |x _ y|n72 = (\:c| _ R)nf2+|a\

uniformly when |z| — 4+o00. Combining this fact with the bound (1.42) we obtain
the uniform convergence of u toward 0 at infinity. This concludes the proof of
theorem 1.59. O O

1.10.3 The resolution of Ou = f in &'(R*)

(Model for hyperbolic equations).

In R*, the differential operator

0?2 0?2 > 0% s
DUZﬁU—AU:ﬁU_;a_x?:fa (ZL’,t) :(.Il,ZL'Q,Ig,t) €eR

is called “wave operator”. We introduce the light cone

t =/ a3 +ad+ak=|z|.
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We denote by T' the integration along the light cone with respect to the volume form
of the induced euclidian metric from R*, that is

<T7 §0> = / SDdUOllightcone = \/5 QO(.ZUl, X2, X3, |$|)dl‘1dl’2dl’3 .
lightcone R3

Denote p = /27 + 23 + 22 + 12 and observe that p = v/2|x| along the light cone.
Let ¢ € S'(R*). We compute

T
<_7 §0> ::/ _dUOllzghtcone
p lzghtcone P

— \/_/ $1,[L’2, xrs, |ZE|) dﬂfldfﬁgdl'g
—/ —(x1, T9, X3, |x|) dr1dTods
rs ||

We

T 1 1
‘<;, <p>‘ < HgoHoo/ —dry dxy drs + Z | ngoo/ |x|4dx1 dxo dxs
B (0)

3(0) ‘ | 18]<3

r2dr
— dnflple / tar 3 [P0l /

181<3

+oo er

< C Ns(p)

This implies that T'/p defines an element of S'(R?).

Proposition 1.60. S :=T/p is a solution in S'(R*) of OS = 47 dy.

Proof of Proposition 1.60: Let ¢ € S(R*), and for r > 0 and t € R write

P(r,t) = 47:7,2 /BBT(O)sO(y,t) do(y) = ﬁ/gzw(ry,t) do(y).

In polar coordinates we have that

2 1
= p — Ry — ;arSO - T—QASZSD-

Thus we can compute, writing the integral in polar coordinates,

<S DS0> _ /OO/ af@(ﬂy; /r) - 83¢(Ty, ’r') — %argp(ry’ /,n) _ T%As%O(T’y, r)
SQ

r

do(y) rdr.

Notice that, by the divergence theorem and the fact that S? is closed,

/ Ag2do(y) = 0.
S2
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Hence we get

t 90 ry,r 83%0(7”y, 7") - 28,"%0(7"2% T)

(S,0¢) = / / . - do(y) r*dr
) L

t SO ry,r 8390(7".% ’f‘) - 267‘(10(Ty7 T) dO‘(y) dr

= / r@f@(’r’, r) — r@Qgp(r r) — 20,@(r,r)dr.

0

Now observe that <-(r@,(r, 7)) = B,(r,7) + 1@y (r,7) + 78,,(r,r) and &L (rp,(r, 7)) =
@, (r,7)+1rD, (1, r)—l—rgow(r r). Integrating by parts and observing that both o, (r,7)
and 79, (r,r) vanish at 0 and at co, we get

(@S, ¢) = (5,0¢) = / 0. ) + 0,(r.r) — 20,5(r,r) dr
= /000 —0p(r,r) — 0.p(r,r)dr = — /000 (;17‘ (@(r,r)) dr
=500 = 1= [ ¢(0-5,0)doly) = 9(0.0) = Goo 2.

This concludes the proof of Proposition 1.60. O

Theorem 1.61. Let f € E'(RY). Then

T
u:= —x f
Admp <~
N~ 65’(R4
€S/(R4)

is a solution of Du = f. Moreover
suppug C {(z,t) € RY; 3 (20,t0) € supp f such that |x — x| = |t — to|}.

(Light cone centred at (xg,tg)). Moreover u is the unique solution to Ou = f null
in the past : whose support is included in a half space of the form {(z,t); t > to}.

Proof of theorem 1.61: The equation LJu = f can be rewritten in the form

3
Axu=f, where A=076 — Z@iﬁo € &'RY) .

i=1

Since A, f € £'(R*), using theorem 1.53, we have

=0 (55;9)
=A A L 0
RO
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This shows that u solves Ju = f. We have moreover

T
supp u C supp m + supp f,

this means that for any (z,t) in suppu there existts

T
s) € — and o) € :
(y,s) € supp Tnp and  (zo,ty) € supp f

such that

(x7t> = (y78> + (x07t0) :
This implies that (x,t) — (2o, ty) € light cone with origin 0. In other words |z — x| =
|t — to|, which means that (z,t) € light cone with origin (¢, o).

Assume there exists another solution u, supported in {(z,t); ¢t > ¢} for some ¢;.
Denote w := u — u, then we have

suppw C {(z,t); t > t;

and

T
w =0y *xw = (—*D&))*w.
47 p

Let now © € C3°(R?) with © = 1 on B;(0) and © = 0 on B,(0)°. Denote 0;(z) =
O(z/i), i € N. Then we have ©; =1 on B;(0) and ©; = 0 on By;(0)°. This gives

(@ii*méo)* w

47‘(‘p N~~~
N~~~ & €S’
657’_1
(1) = @i—*(DCS()*UO
4T p

T
=0,—xUw=0.
AT p

Moreover there holds

DG)T>:D(T):% in D/(Bi(0) ,

“drp drp
and
O(e ! 0 in D'(By,(0)°)
— | = in . ;
4 p 2
Thus finally
T
dmp
where supp h; C Bs,(0)\B;(0)N light cone with origin 0.
Let now ¢ € C5°(R?) with supp ¢ C B#(0). Since

T T 5
(2) ((@z‘m * Obo) xw, ) = (D@z‘%, W * )
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and
suppw C {(z,t), t < —tg} .

This implies
suppw * p C {(z,t),t < —t; + R} .

Thus
(hiy 0 * p)ercoo =0

for ¢ large enugh. Combining the above we have for ¢ large enough
r . §
0 = <D@i—, w*gp> = (0o + hi, W )
AT p

(1),(2)
= <50, W * g0>
= (do, (w(~y), p(x —y)))

= (w, ) .

Hence we have proved that w = v — @ = 0 in D'(R*). This holds as well in &'(R?)
since C3°(R™) is dense in S(R™). This concludes the proof of theorem 1.61. O

We have covered two model cases both for linear elliptic and hyperbolic equa-
tions, however, at this stage, the following questions still remain open:

i) How does one find the fundamental solution?

ii)  What if f is no longer in &'(R™)?
How to define G * f (resp. E x f) for general f?

iii) What regularity properties does f x G (resp. E * f) have with respect to the
regularity of f?

iv)  What about partial differential equations in bounded domains?
1.11 Convolutions and Fourier Transforms

Theorem 1.62. Assume either u € £'(R™) and v € S'(R") or u € L'(R") and
v € LYR™). then we have

—— n/2 o A

uxv=(2m)"° uv .

Proof of theorem 1.62. We consider first v € L'(R") and v € L*(R").

T ()= n " [ e [ e gy o
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Since e~ u(z — y) v(y) € L*(R™ x R") we can apply the theorem of Fubini to
deduce

T Q) =0 [ o) [ et -y dy dor
= (2m)™"/2 /n v(y) /n eIy () d2" dy”

:(27'[')_”/2/ e_iy'gv(y)dy"/ e = u(z) d2"

= (2m)"? 0 (¢)a(¢) -

Consider now u, v € £, then from proposition 1.51 we know that uxv € £ and
suppu v C suppu + suppv. Applying now theorem 1.37 we have

a0 () = (2m) ™2 (uxv(x), e ) = (21) 7% (u(y), s *e " (y)) .
We have moreover, since v € G(R") and ¢ € S(R"),

(0xe™™, ) = (e, vrp)

= / et / v(z —y)e(y) dy” dz”
Rn n

Consider now more generally v € S§’(R").
Claim : There is a sequence v; € £ such that v; — v in S'(R").

Proof of the claim: Let ¢ € C§°(R™) such that ¥ = 1 on B;(0). We denote
vj =1 (x/j) v. Then

s (o(3) )= (10 )9
r-sor=[(o () o-)

and then
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Hence v; — v in S'(R™) and obviously v; € £(R"). This concludes the proof of the
claim.

Consider now u € &'(R") and v € §'(R") as well as v; € £'(R") a sequence which

converges towards v in §'(R™). We have already established that @ x v; = (27)™/2 @ 1)

and we know from theorem 1.37 that ¢ € G(R"). Since 0; — v in §" we have using
proposition 1.24

axv; = (2m)"* 0 v, — (2m)"* 4 b inS".
Using proposition 1.51, we have
Ve e SR (U* v, 0) = (uxv;, @) = (v; % u, @) = (vj, W% P) = (v, U *P)
This concludes the proof of theorem 1.62. O

1.12 The use of the Fourier transform for solving Cauchy-
Problems in S§'(R")

This subsection is devoted to the solvability question of partial differential equations
with initial conditions.

First of all, we shall be considering the following natural question : Is there any
sufficient condition on
Ae&'(R").
that guaranties the existence of exactly one u € §’'(R"™) satisfying Axu = f for any
given f € S'(R")?
The following theorem is giving an answer to this question assuming A is sup-
ported at the origin.

Theorem 1.63. Let A € E'(R™) of the form

A= Z g 0% 8,

laf<m

so that the Fourier transform of A, A = 2|a|<m b, x%, satisfies the following condi-
tion -

(1.43) A)#£0 forall§ e R" .

If A satisfies (1.43) then* for any arbitrary f € S'(R") there exists exactly one
u € S'(R™), such that Axu = f.

4If A satisfies the slightly different condition, m = 2p
YEERM\{0} Y bagt2clg™,
|a]=m

for some ¢ > 0, one says that A is strongly elliptic. This last condition is very important in
many applications from geometry and physics. From a strictly analysis perspective it is a condition
related to interior regularisation effect and non-degeneracy and uniqueness for prescribed boundary
problems.

93



Proof of theorem 1.63: We consider the Fourier transform applied to the equality
Axu = f. We have thanks to proposition 1.51 f € S'(R™). We have moreover thanks

to theorem 1.62 Axu= (27)2 A-4i. Since A € E'(R™) we deduce from theorem 1.37
A € Oy (R™), which itself implies thanks to proposition 1.25 A -4 € S'(R™).

Hence the equation
Axu=f

is equivalent to (27)"/?2 A-d= f and it posses a unique solution given formally by
(1.44) = (2m) "M==
Because of (1.19) A is a polynomial that never vanishes and consequently its inverse

is a slowly increasing function : A~! € G(R"). Hence % € §'(R") and (1.44) makes
sense. The formula implies uniqueness. O

Example 1.64. The Bessel operator. Let A = — Adg + dp.

A€) = 2m) 2 (1 + 1)
Thanks to the previous theorem, for any f € S'(R") the unique solution of

—Au+u=f inSR"

Y |
u:=F <‘€’2+1>

Example 1.65. A degenerate case : the Poisson equation.

is given by

Let f € &'(R™). We aim at solving again the Poisson equation with right-hand-
side equal to f but with the mean of the Fourier transform this time. We look for
u € §'(R™) such that

(1.45) Au=f,
that can be rewritten as
Adg*u(=dg*x Au=Au) = f, fe&'R").

We restrict to the case n > 3. After application of the Fourier Transform we obtain

—lgfPa=f
. Since f € &(R"), f is C* and hence
f "
T € Lo (R")
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Let x € C3°(R™) such that x =1 on B}(0). Then we have

~ ~ ~

i = O - (- e ) oE) e Sm)

Hence

is a solution to the Poisson equation (1.45). Let v be another solution in S’'(R™).
Then u — v solves the Laplace equation

Alu—v)=0,

and then, thanks to theorem 1.41, u —v is an harmonic polynomial. Hence the space
of solution to (1.45) in S'(R™) is given by

u=JF < / ) + P(x) where P is an harmonic polynomial .

5E

We now compare this expression with theorem 1.59, we must have

(1.46) G*f:(Zw)”f"< f) :

SR
Since G € §'(R") and f € &'(R"), we have thanks to theorem 1.62
2m)"2 G f = — # :

Since this holds for any f € &£(R"), one deduces (for f = dy) from the explicit
expression of the Green Function G given by theorem 1.59 the following Lemma

Lemma 1.66. For any n > 2

(1.47) F <L) —2n) 2 (-2

[ €12

Exercise 1.67. Compute in R? the Fourier transform F(log |z|).

Example 1.68. The Heat Equation:

Let f € S'(R™). We are looking for a solution u € C*(R* ,S’) from the following

problem
ou — Au =0

u(0,z) = f(x) .
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where the rigorous way the initial condition u(0,z) = f(x) has to be understood has
to be specified. We proceed first to some computations. One considers the Fourier
transform in z and, assuming that u € &'

@+ [E)a=0, a(0,6) = f(©).
It follows immediately R
a(t,€) = e T f(g).
We now rewrite this identity as follows:

a(t, &) = H(t,€) - f(£),

where A .
H(t,€) = eI,

That means
u=(2rn)"*H * f.

We now calculate H(t,z). Recall from exercise 1.3 for any a € R*.

— 1 _le?

efalw‘2 = € 4da |
(2a)

|3

1
We apply this identity for a = o and it follows
elelP/at — Fr (ef\x|2/4t> = (242 ﬁ(e—m%)

1 n/2
= H(t,z) = <§) e~ lel/aL,

The formal computations above are leading (exercise) to the following result.

Lemma 1.69. For any f € S'(R") there ezists u € C}%

lOC(Rj—7 S(Rn) SOZUing
Ou—Au=0 inR, xR",
moreover

(1.48) limu(t,) = f weakly in S'(R™)

t—0

i other words

Ve SR lim [ u(t,z) p(x) dz" =< f, ¢ >s'.s

t—0 R™

The solution is unique and there holds

1 n/2
Vi>0  u(tz) = (ﬂ) el f
m

Example 1.70. The Wave Equation
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For any choice of f,g € £ we are looking for a solution u in a sense which has
to be precised of

Ou=0%u—Au=0,
(1.49) u(0,2) = f(z)

Ou(0,x) = g(x),

We perform formal computations first. The Fourier transform of the equation (1.49)

is giving

(97 +€%)a =0,
a(0,€) = f(£),
(0, €) = §(¢)

This leads to the following solution
a(t, &) = C(&) sin(t[¢]) + C"(8) cos(t[E]).
With
it(t, §) = C(&) €] cos(t [§]) — C"(&) [¢] sin(t [€])

It follows now

C(&) ¢l = a(¢)

and )
C'(&) = f(&).
This gives
(*) il €) = §(¢) Si”,ff )4 fe) cos(tlel)
We have
vier  SRCED o peopn) c g(RY) and  cos(tg]) € LFR™) C SR

€]

After these formal computations we can now develop an argument. Since f and g
are both assumed to be in £'(R"), thanks to theorem 1.37 f € G(R") and g € G(R")
and thanks to proposition 1.25

i )
VieR  §(¢) Sm|< €||€D eS(R") and  f()cos(t|é]) € S'(R")
Thanks now to proposition 1.51 and theorem 1.62 there holds

sin(t |€])
€l

+
— (2m) " g« ("‘“é"g' ) 7)1 F (cos(t€]))

VieR 7 (g@ 76) cos(t |5|>)




Let ¢ € S(R") and let u(t,x) := F (g(g) Sm|(§||£| + f(€) cos(t |§|)> We have

Op(u(t, z), p(x)) — (Au(t, z), o(x))

= O (i(t,§), F()(§)) + ([€* alt, €), F(#)(€))

_ o <g(§) SICED | 7e) cos |§|>,7f<so><§>>

[3
2 A sin(t [§]) 2 7 -
+(lerate) D 4 1g () cose ), F)))
We claim (exercise) that
sl :
(u(t, =) 90(93)>—< () € + (&) cos(t [€]), F( )(§)> € C*(R)
and that

- <|s|2g< ) Smfg'g“ FleP fe >cos<t|§|>,?<so><s>>

Hence we have proved
Vo e SR")  Fp(ult,x),p(x)) — (Au(t,z), p(z)) = 0

Exercise 1.71. Prove that

(w(0,2), p(x)) = (f(x), p(x))  and  Oi{ult, x), p(2))],—y = {9(2), p(2)) .

Exercise 1.72. Prove that forn =3 andt # 0

i 1
Yy € S(R?) <(27r)—3/2 F (%ﬁ) ,¢> - /8 o P18 d0olano
|t

and

Vo € S(R®)  ((2m) ™32 F (cos(t]€])),¢) = a <471Tt/83 ) )w(x) dvolaBtKO))
|t

We claim that the solution u is unique in the class of solutions which are com-
pactly supported for every t € R.

By linearity, it suffices to prove that any solution u in this Class for f =0 and
g = 0 is identically equal to zero. Let x € C§°(R") such that fRn ) dz™ =1 and
for ay € € (0,1) we denote x.(x) := e " x(z/e). We have seen

Xe — o in §'(R") .
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Denote u. := u x x.. We have that u.(t,-) € C5°(R") for every t € R. We have
ue(z,t) =< u(t,y), x.(r —y) ><s.s>. Hence for any € R" there holds by assump-
tion

81522 <U,(t, y)> Xe($ - y)> = <Ayu(t> y)v X€(:B - y)> = <U(t, y)v AyXE(ZL' - y))

= <U(t, y)? AmXc('r - y)> = Aft<u(t7 y)? XG(‘/E - y)>

Hence u(t,-) is a classical solution to the wave equation and in particular it is C?
in x and t. Since we are assuming f = 0 and g = 0 we have for any € > 0

veeR"  lim{u(t,y), xe(z —y)) =0 and lim 0y (u(t, y), xe(x —)) = 0.

Introduce

1
E(ue) := 3 A yatu€|2 + |Vmue|2 dx™

which is finite since uc(t,-) € C§°(R™). Since uc(t,-) is a classical solution to the
wave equation and in particular it is C? in  and ¢t we have

OE (ul) = / (0 ue) (0] ue) + > (0s Oy, 1) (O, uc) da™

:/ (Orue) (07 ue — Awe) dz™ =0

Hence FE' is constant for all time. Since E(u.(0,-)) =0 and u.(0,:) = 0 we have
Ve>0 V(t,x) e RxR" ue(t,z) =0 .

This implies that u is identically equal zero which concludes the proof of the unique-
ness.

To summarise we have proved the following result

Theorem 1.73. Let f € &'(R™) and g € E'(R"). Then there exists a map t € R —
u(t,z) € S'(R™) such that

Vo e SR")  (u(t,z),¢(x)) € C*(R) ,
and for any p € S(R™) there holds
(1.50) O (ult, ), p(x)) — (Ault, x),¢(z)) = 0
together with
(1.51) (u(0,2),0(x)) = (f(x), o(x)) and  J{u(t,x), o(x)),—g = (9(z), o(2)) .
Ifn =23,

u(t,z) = R(t,z) % f + O R(t,x) * g

is a solution of (1.50)-(1.51) where for all ¢ € S(R™)

(R(t,x),p) = ][ p() dvolyp o) -
dByt|(0)

Moreover u(t,z) is unique among the solutions which are compactly supported for
every t € R.
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2 Hilbert-Sobolev Spaces

2.1 Definition and Fundamental Properties

Definition 2.1. (Hilbert-Sobolev Spaces of integer order). Let m € N and let u €
S'(R™). Then, u is in the Sobolev space H™(R™) if for all o« = (aq, ..., ) € N”
with || = >, la;| < m, we have *u € L*(R™) and we denote

1/2

= | 32 [ jorul? aa®

laj<m

Remark 2.2. Let u € H™(R"), i.e., for all a, |a| < m, we have 0% € L?. This
implies

€4 = C F(0*u) € L*(R") ,
that is

&P af* < oo Vo with |a| <m.
RTL

This, in turn, implies

[ eiepmiape @ < oo,
that is
(L+|EH)™?a € L2
Conversely, let u € S'(R™), so that (1+|£|*)™? 4 € L2. Then, it follows that for all
a with |a| < m, €24 € L2, from which it follows again that for all o with |af < m,

0%u e L.

From these considerations, the following proposition follows:
Proposition 2.3. u € H™(R") <= (1 + |£]?)™/? 4 € L*(R").

Definition 2.4. Let s € R. H*(R™) is the space of tempered distributions u € S'(R™)
for which
(1+¢P7)** @ e L*(R™) .
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Note that (1 + [£))*? € G(R") and @ € S'(R™). From this, it follows that
(1 + |€7)*%a € S'(R™).

e o= (1 + [€19)Y2 | e

|

Remark 2.5. For s € N, the definitions 2.1 and 2.4 agree, and from the remark
on Definition 2.1, it is also clear that the two norms

e = |1+ 1€ e

[l

and
1/2

[l

s = Z /Rn 0% u|* da"

la|<m

are equivalent.

Proposition 2.6. The mapping

(.,.)s: H*(R") x H*(R") — C
(u, v) — Rn(l +1€P) a0

is an inner product on H*(R™). Furthermore, (H*(R™),(.,.)s) is complete, that is,
(H*(R™), (.,.)s) is a Hilbert space.

Proof of Proposition 2.6.

[asieprai= [ i aa s g s
By the Holder inequality, it immediately follows

|(u, 0)s| < [ul

Hs U| HS.

It is also true that (u,u)s = |Jul|%.. From this, it follows that (u,u), is zero if and
only if u = 0, and positive otherwise. This shows that (.,.)s is positive definite.
Furthermore, from the definition of (.,.), it is immediately clear that the following
holds:

(u, \0)s = A (u,v)s

and

(Au,v)s = AMu,v)s.

Thus, it is shown that (.,.)s is an inner product.
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Now, let us turn to the question of completeness.

Let L denote the following mapping
L:H* — L*
e (L4 [§%)7 .
L is obviously linear and bijective. Furthermore, let L’ be the following mapping
L:L*— H*
v FH((1+ |£]3) /2 v).

Now, it follows that L=! = L’ and L is moreover an isometry between H* and L2.
Since (L2, ||.||2) is complete (— cf. Analysis 4), it follows that (H?, ||.||zs) is a Hilbert
space, where ||| gs is the norm induced by (., .)s.

Proposition 2.7. The subspace of smooth compactly supported functions is dense
in H*(R™) for any s € R :

C (R7) = H*(R") .

Proof of Proposition 2.7.
—HS

We first prove that S(R*) = H*(R").

Proof of Claim 1: We first show that S(R") is dense in L*(R"). We know from
(1.6) that S(R™) embeds (continuously) into L' . Because of the continuity of N it
also embeds continuously into L>. Hence, using (1.6), for any p € [1, +oo] and any
¢ € S(R™) there holds

o lp(2) P dz"™ < Cp Ny (0) N§ ()

which implies the continuity of the embedding of S(R") into LP(R") for any p €
[1,+00]. Furthermore, we have S(R") D C§°(R™) and we moreover claim that
2

C’_SOL = L?. Indeed, for any u € L*(R") we have on one hand

li 1 —uf® da" =
i Rn| Br(o) u—ul” dz" =0

where 1p,() is the characteristic function of Br(0). On the other hand, Let x €
C3°(Bi1(0)) such that [, x(z) dz™ = 1, then for any R > 0 we have

[(2m)"2 x(e &) — 1] a(§)]* de™

|XE*UR_UR’2 dz" = ‘
R™ Rn

where x.(z) := e "x(x/¢). Observe that since [, x(z) da" =1
X(0) = (2m)7"2,
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Hence we have
[(2m)"2 Y (e€) — 1] a(€) — 0 almost everywhere,
and obviously
[2m)2 x(e€) — 1] a(€)]* < 1+ 27)2 || Xloo] 1] almost everywhere.

Hence dominated convergence implies that for any R

lim IXe xup — ug|® dz™ =0 .
e—0 R™

A diagonal argument gives a sequence ez — 0 such that
Xep *Ur — u  strongly in L*(R™) as R — 400 .

From (1.32) we have x., x ug € C5°(R™). Thus we have proved that

®)"

C(R") " = L*(R™) .

Now consider L™! : L? |s— S. For u € S, 4 € S(R"), and since (1 + [£]?)™%/2 €
G(R™), we have also (1 + [£]?)~*/? 4 € S(R™).

From the proof of Proposition 2.6, it is also known that L~! is a bijective isometry.
Since S(R") is dense in L*(R"), it follows that L~'(S(R™))= S(R") is dense in
H*(R™), that is,

S®Y" = H*(R") .

We aim at proving something more refined that is Cgo(]R”)Hs = H*(R"). We
first claim that S(R") embeds continuously in H*(R") for any s € R. This comes
from the fact that each of the maps

o — ¢ — (L+[EP)Pe — FHA+IEP)0)

is continuous from S(R™) into itself (proposition 1.9 and proposition 1.24) and the
embedding ' ((1+[£[*)*¥2$ ) € S(R") into L*(R") is continuous. Hence we have
proved that for any s € R, 3 ps,, € N, 3 Cs,, > 0, such that Vo € S(R")

(2.52) el

Hs S Cs,n 'A/;Js,n (90) .

Now let u € H® and € > 0. There exists a ¢ € S such that |[|[u — @[z < g/2.
Further, let € C§°(R") such that § = 1 on B;(0). Denote p;(x) := 0(x/j) .
Clearly ¢; € C§° moreover one verifies (exercise)

Nolpj—@) — 0.

Jj—o0

Choose jg such that

£
Np(pjo — @) < T
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which implies because of (2.52)

ljo — @llms <e/2.

Thus, we have
[u = sl < llu— @l + llejo — ellas <e.

This shows that C§°(R™) is dense in (H*,(.,.),) and this concludes the proof of
proposition 2.7. O

We are now proving the following theorem.

Theorem 2.8. Let s € R, then
(H*(R"))" = H*(R") .

Proof of Theorem 2.8.
Claim 1:

[(u, )| < @) ulla—llellas Vo es

Proof of Claim 1:

FF@(x) = 2m) 2 F | e p(y) dy”

Rn

= @2n)"PF | eV p(—y) dy"
R7l

= (2m)™" / e / e VEo(—y)dy" d”

= (—2m)™" / e / et p(z) " dg”

From this it follows that

(u, @) = (u, FF @)
= <JT"U, F@)S’,S

= (1 + €)™ F(u), 1+ [EP)* F (@))s,s:

We have
(1+ 622 e GR") and F(p) € S(R") .

Hence

(L+ €% F () € SR™) C LAR")

64



Moreover since u € H*(R")
(1+ |€[*)*/* F(u) € L*(R") .

Thus, (u, ¢) can be rewritten as follows:

(b= [ @ IEP) P a1+ €Y G

< Nl l1@llms = llulla-+[l@lla,

where the last inequality holds due to the Cauchy-Schwarz inequality.
Then the mapping

U:§—=C
P = (U, P)s's
is a linear, continuous mapping from S(R™), a dense subset of H*(R"), into C. This

implies that U can be uniquely extended to a linear continuous mapping defined on
the entire space H*(R").

Now let L € (H*(R™))* be given. The goal is to find a v € H*(R"™) such that
(u, ) = L(-).

We consider the following mapping:

M:L?>—C

[ L(FH 1+ €)72))) = Liw) |

where

wi= F (4 [ 2)

Observe that M is well defined since F realizes an isometry from L?(R") into itself
and therefore, for any f € L?(R") there exists u € L*(R") such that f = @ and
then w € H*(R™) by definition. Take f € S(R™). Since (1 + [£[>)*/2w = f € L2, it
follows that w € H*(R™) and we have

1fllz2 = [lw]

Since f € S(R™), it also follows that w € S(R™). Furthermore, we have

e = Clfllez

Hs -

(M ()] = [L(w)] < Cllw|

which means

M € (L*(R™)* .

65



Since L?(R™) = (L?(R"))*, there exists g € L? such that

= [ i) (o IRy de”

= (F(A+ )2 9(6)), FHA+IEP) 2 FE))ss -

Note that
L+ €D FF((L+ 112 g()) = (L + €~ (1 + €172 9(€))”
= g(§) € L?

— F((1+[¢*)*?g(¢)) € H*(R") .
It now follows that
(1) L(w) = M(f) = (F((1+ [£)*29(¢), w)s's = (u, w)ss ,

where

u=F((L+[*)"2g(6)), ue H*(R").
This holds for any f in S(R") and

wim F( P )
Let w € S, so there exists an f € S(R") C L*(R") such that
L+~ f = F(w) .

Hence
w e = (1+[*)? F(w)

is a bijection from S(R") to S(R™) and (1) holds for all w € S(R™). It follows that
L(w) = (u, w) YweS.

From what has already been proven, namely the fact that (u, -)s s can be uniquely
extended to a linear, continuous mapping from H*® to C, it follows that

L() = (u, s o

This concludes the proof of theorem 2.8 . O
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2.2 Comparison of H® with other spaces

Lemma 2.9. For all s > 0 and (§,n) € R" x R", the following holds:

(1) (L+[€7)" <4 [T+ € —nl)* + 1+ nl*)]
For all s € R and (&,m) € R™ x R", the following holds:
(2) (L4 €% < 28 (1 + [n*)* (L+ I — )"

Proof of Lemma 2.9. Let s > 0. For all a,b € Ry, the following inequality
holds:

(3) (a+b)" < 2%(a® +b%)
Furthermore, we have

(L+]EP) < (1 + 26 —n)* +2[n/?)

<21+ =P +1+n?)

For a := 1+ [£ —n|? and b := 1 + |n|?, inequality (3) immediately gives the desired
inequality (1).
Observe now

2) <= Q+EP A+ ) <281+ g =)

Thus, it is enough to prove the case s > 0 (one may swap & and 7 if necessary). By
homogeneity, it suffices to prove the case s = 1. (The case s = 0 is trivial.)

So let s = 1. As already seen, we have

(L+1€%) <24 2€ = > +2|n)?
<24 2[ —n]*+2n]* + 2n*|€ — 0l

=2(1 4 |€ = n) (1 + n]*).

This concludes the proof of Lemma 2.9. O

Theorem 2.10. Let s > 4§ + k, where k € N. Then H*(R") embeds continuously
into C*(R™) : there exists a constant C > 0 such that

ullcrmny < Cs ||l s @ny -

Furthermore, for all w € H*(R™) and for |a| < k we have |0%u|(x) — 0 uniformly
as |x| — oo.

Finally, for s > 3, then H*(R") is an algebra and there holds

(2.53) Vuo € H¥RY) ||

HS(R") S Cs Hu’ HS(R”‘) HU| HS(Rn) :
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Proof of Theorem 2.10. Let £ € N and s > % + k. Then for |a| < k, with
s’ = s — k, we write

faﬁ _ fa (1 + ‘5’2)5’/2 ,&(1 + ’6‘2>7s’/2 :
Observe that since s’ = s — k > n/2 we have
(1+ )~ e LAR")

By assumptions
(L+[EP)?ae LR,

Hence for |a] <k, |a| + ¢’ < s and then
ey Paer?,

Using Cauchy Schwartz inequality we have then
(2.54)

0%l ey < NIE allzagrny < €%+ €22l p2amy (L +1E%) 2|2y

< G [lul

Hs(R™)
This shows that u € C*(R™) and, moreover, using theorem 1.1 we have that 9%u is
continuous and converges uniformly to zero at infinity.

Now let s > % and u,v € H*(R"). We claim that uv € H*. Applying theo-

rem 1.62 is giving

<1+mm”%m:41+mFW%%w%”/ a(n) (¢ — ) dn,

n

Now we can estimate further using (1) from Lemma V.2.1:

(1 + ) au(E)] < C . [ () (L+ [nl)*/2 | 0 (€ — )| di”

v [ Jalloe—m 1+ =Py [

From the first part of the proof we have that |4| and |6 are both in L'(R"). Hence,
using Young inequality® : L! x L? — L? we have that

1L+ 1€17)* 2 @)l r2@ny < Clla(€) L+ [E7)*2 gm0l o1y

< C il ey 10(€) (1 + [€7)72 ) z2geny

and (2.53) follows from (2.54) for a = 0. This concludes the proof of theorem 2.10.
O

We introduce the spaces of Holder functions C**(Q) where Q is an arbitrary
open subset of R™. Precisely :

5See Analysis 3 & 4 and next section.
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Definition 2.11. Let Q is an arbitrary open subset of R". Let 0 < a < 1 and

k € N. We denote by C**(Q) the subspace of functions in C*(Q) such that

B _ A
Wit lPU@ =]
Ty |x - y|a

and we denote

[0%u(x) — 07u(y)]
lullro @) = llullor@) + sup sup
Cche () Cr(Q) Bl=k 2oty |z — y|o

Exercise 2.12. Prove that for any k € N and o € (0,1] the quantity || - [|cr.o )

defines a norm and that C**(Q) is a Banach space.

Exercise 2.13. Let €2 be an open bounded subset of R™. Prove that for any k € N

a, € (0,1] with 5 < « the canonical embedding
Ch Q) — CPP(Q)

18 compact.

Theorem 2.14. Let s = g + k+ «, where k € N and o € (0,1). Then it holds that

H?*(R™) embeds continuously into C**(R™).

Proof of Theorem 2.14: First, let us take k =0:5s = g +a,a € (0,1) and as-

sume that v € H*(R"). Then we write

u(z +h) —u(®) =< pin — gyt >= (F(6prn — 0z), F(u))

_ ( / n eTEG(E) - (0 — 1) dgn) (2m)™"

Hence

fulw+h) = (@) < C [ |1+ )72 a1+ )2l 1)

|
Rn

Using the Cauchy-Schwarz inequality we get:

|u(z — h) — u(r)] < Cllullgs [/Rn(l +IER) e — 1‘21 1/2

1/2
_l’_

<Cllulle | | [ (Il — 1P
1< 13y

[h
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We first bound

[ a1
l€l<

<c,, / (1+ €2) /22 € 2 h 2" die]
13

£2—20 } 1/h|

< n —n—2« 2h2 n—ld =Csp h2
e I S T

[h]

< Cl, |n|? .
0

Then we bound

[ gyl del < cinp
l€1>
Combining the three previous estimates is giving

[u(z +h) —u(z)| < Con ul

hle.

HS

Thus, the claim follows for £ = 0. For k& # 0, we have

n n
=—-+k > —+k.
S 2+ +« 2+

Let u € H*(R™), then by Theorem 2.10 u € C*.

To show the claim v € C*®, we perform the above calculations for the derivatives
with |a| < k. This concludes the proof of theorem 2.14. O

One can ask why are @« = 0 and o = 1 excluded? For example, if we perform the
above calculation for a = 1, we get

1
|u(z + h) —u(z)] < C|h|(log W)lﬂ# u e C™

For a = 0 and k = 0 the following result gives a clear answer.

Theorem 2.15. There exists a function u € H"*(R") such that u ¢ L>(R").
Proof of Theorem 2.15. Consider

N (e o
U = T o1 1 1€

It holds that

el = / AR + JE2)? den
.

_ (1+ |22 .
a C/R (14 log(1+ |€]?)? 1E" 7 d|¢] < oo
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Thus, v € H"?.
We claim that v ¢ L>®(R"). Observe first & ¢ L'(R™). Hence, since a(£) > 0,

el (&) dem — o .

/ e—0

(2.55)
Fle Py u(z) da" .

We have
/ kel den
R® R™

r
4e

|3

Exercise 1.3 gives
F (e—sm?) _
(2¢)

Elk n n/2 —|y)? n
da" =2 e T dy
Rn

1
dx" = / — e Ae
n (2e)2

Observe that

J.

Assuming u € L*>(R"), we bound
[ 7 uta) dot < ulo [ Fe ) don =2 .
This is contradicting (2.55). Hence u ¢ L*°(R"™) and this concludes the proof of

F <6—6\4|2>
el dy"™ .

n

O

theorem 2.15.
Proposition 2.16. If s > o, then H*(R") C H°(R").

Proof of Proposition 2.16.
Jul%e = / (1+ JE2)° [a(e)[? den

/ (1+ 1RO de™ < [fulle.
(]

< sup (1+[¢[*)7*
EER™

Proposition 2.17. For all ¢ € S(R™) , for any u € H*(R") then pu € H*(R").
2

Proof of Proposition 2.17.
/ P& —n) aln)dn"| (2m)7"
]Rn

(L+ 1€ leu@©F = 1+ g%

Using equation (2) from Lemma 2.9 we get
LI 1Pu @] < Cc | 16 =mI L+ | —al)* a(m)] U+ ") dn”
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we have on one hand since u € H*(R")
a(n)| (1+nl*)? € L*
and on the other hand
P(6) (1+[¢)* € S(R™) € L'(R™)
Using again Young inequality L'« L? < L? we obtain

L2187 (€)1 2ny < Cs [[alm)] L+ n1)*2]] Lo oy

P(€) (1+ 1€V | gy -

This concludes the proof of proposition 2.16. O

2.3 Solving Cauchy Problems for Elliptic Partial Differen-
tial Equations in Hilbert-Sobolev Spaces

From now on, let

feS R or feS8(C),

uwe SR or S(C),
Let m € N* and consider C, € C for any |a| < m and assume
3 ap lagl=m , Cas #0.

We are now studying linear operators of the form

Lu = Z Co0%u = f,

la<m

Definition 2.18. The operator L is called elliptic if

Y C&=0 == (=0
|a|=m
Example: L=A=07 +---+ 02 , thatis, ¢; =1, 1 < i < n. Obviously

n

Y g=0s¢=0,

i=1
so L = A is elliptic.
On the countrary L = 9? — A is not elliptic.
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2.3.1 Cauchy Problems in R"

For f € §'(R") we consider the equation

i

g3
I

—Au+u=f — (J€> + 1)

Theorem 2.19. Vs € R The map

Hs+2<Rn) — Hs(Rn)
u— —Au-+u

18 a continuous isomorphism, and there holds

Proof of Theorem 2.19. Let u € H*2, then we have

| i jape) der < .

Furthermore, using

F(=Au+u)(€) = (€ + 1) a(¢)

we have

[ Ierl-tusw P g = [ g2 apee) det < oo

n

It follows that

||| grs+2 = || — Au + ul| g -

Now suppose that f € H*. Then u := F1[(1 + |¢[2)~ £(£)] is in H**2(R) and
it solves —Au 4+ u = f. This shows the surjectivity of the above map.It is clearly
also injective and continuous. This concludes the proof of Theorem 2.19. O

2.3.2 Cauchy-Problem in R’ (Half-space)

We introduce the following notations

RY :={(z1,...,2,) € R", x, >0}

r=(x1,...,7,) = (2, z,) ,

where

= (r1,.. ., 1) .
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Then we define
HY(RY) = HY(R)/..,
where
u~ v <= supp(u —v) C R

and

[l sy == f o]l s ey -

For f € H*(R"}) we aim at solving a problem of the form
—Au+u=f in R} ie.
(2.56)
Vo e S(R") and Supp(p) C R} / [—Ap+ ¢l udz"=0.
prescribing u(z’,0) = g(z’) where g is a fixed given tempered Distribution on R*~! =
OR’}. Two main questions come then naturally to the reader

i) What is the subspace of &'(R"™!) in which we can arbitrary choose g so that
there exists exactly one solution u € H5"?(RR") to this problem ?

ii) what does it means “prescribing” u(2’,0) = g(2’) on R"~* = 9R" ?

Giving satisfying answers to these two questions is the main goal of this subsection.

Theorem 2.20. Let s > % Then the linear mapping
T:S8(R") — S(R™™) (trace)

(2, x,) — p(a',0)

can be extended to a surjective, linear, continuous map T : H*(R™) — HS_%(R”_l),

that 1is, there exists a constant C,, depending only on s and n such that, for all
© € H*(R"™), we have

(2.57) 1Tl

HS—I/Q(R'nfl) S CS,TL H(p| Hs(Rn)

Remark 2.21. [t is important to insist on the fact that the assumption s > 1/2
is mecessary : arbitrary L? functions on R™ have no trace in the sense that T(py)
might not necessarily converge in 8'(R"™1) for a sequence or € S(R™) coonverging
strongly in L*(R™). Constructing counter-ezamples is left as an exercise.

Remark 2.22. Observe that the drop of exponent s — s — 1/2 is concomitant to
the drop of dimension n — n — 1 in a consistent way as illustrated by the following
diagram

H*(R") = H"/?*(R") — C**(R"), «ac(0,1)
LT 1T
Hn/271/2+a(]Rn71) N Co,a(Rnfl).
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Proof of Theorem 2.20.
Claim 1: There exists a constant C' > 0 such that for all ¢ € S(R™) we have

1Tl

Hs—1/2(Rn—1) < Clle| Hs(R™)-

Proof of Claim 1: Let ¢ € S(R™). Then we have

o 0) = n 2 [ e g e ag,

_ (271.)771/2 /Rnl eiz’-&’ |:/]R;¢(£/’€n) dfn:| d(f/)nfl

—Cr)y e [ e 0 de)

where (%)
P(E0) = )2 [ 9(€.6) e
R

= 2n) 2 [ (1 P )+ €P) " dey
R
Thus, using the Cauchy-Schwarz inequality, we obtain

12ys—1/2
a+lepeipe o < BHEDE o gppipeapas,

()
o CRaERRIS

we bound

2\—s _ 1 .
/R(1+|'f‘ ) dfn—4(1+|§,|2+|§n|2)s d§, (< oo,since s > 1/2)

:/( Vit oo

r (14 [€2)*(1+A%)°
=Cy(1+ g2 with C) = /(1 + AN d,

R

where in the second-to-last step, the following variable transformation was used:

fn _ (1 + |£/‘2>1/2>\
d&, = (1 + |€')V2d.
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Integration of (x) with respect to &’ finally yields

(x % %) I+ 1€ 2B, )Pl < Cllel

2
Hs(Rn)-

From (%) it is further clear that Te = 3. Thus (% * x) is proving the claim.

Since S(R™) is dense in H*(R™) we have proved (2.57). It remains to prove for
the surjectivity of T'.

We are now proving the following claim.
Claim 2: There exists C > 0 such that for all ¢ € H*~/2(R"!), it holds
1 pe H*R") s.t. T(p)=g

and moreover

] HeRrn) < C g Hs=1/2(Rn-1) -

Proof of Claim 2:First we consider the case ¢ € S(R"™!). From the proof of
Claim 1, we know that the Fourier transform with respect to the first n —1 variables
of ¢ is exactly @¢. Thus, we seek p € S(R™) such that

§(€) = (2m) 12 /R 5(€.6,) dé,.

We now define

1 _ _len?

@(&) = Cy W e P g(gy

where € will be chosen later. We leave as an exercise the proof that ¢ and hence
¢ are in S(R™). Then we have

_ _lenl?
e 1+l¢'1?

[ e©is =ciae) [ qrerremm
= 01 4(€') o

Now choose C; such that C; - Cy = (27)'/? and from the first part of the proof
that

Typ=g.
Observe that

_2%
32 / T el | dgey

[ aieprigpa <iop | (e

Rn—l
—2)2

<|Cf? /R (P g [ é ﬂjwdA] de)

and we obtain

ol Hs(Rr) < C gl Hs—1/2(Rn—1) -
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Let now g € H*'/2(R"1), since S(R"!) is dense in H*~'/2(R"!) we choose g; €
S(R™ 1) such that
g — g in H5~Y2(R"Y) .

We consider the sequence ¢, € S(R") given by

1 1&nl?

(ENGELE e WP g (¢,

ex(§) =04

Because of the previous estimates, ¢y, is a Cauchy sequence in H*(R™) and converges
to a limit ¢ € H*(R™) by the continuity of the operator 7" we just constructed we
have

Typ=g.

Hence T is surjective and this concludes the proof of Claim 2 as well as the proof of
theorem 2.20. O

Proposition 2.23. Let s > % and let p € H°(R™) such that suppp C R’ Then it
holds
Te=0.

From this proposition one deduces immediately the following corollary.

Corollary 2.24. Ifu~pgsv, then Tu = Tv. Consequently the trace is well-defined
on

1
H*(RY)  for 5> 3

Proof of Proposition 2.23. Let A > 0, and denote
Thp(x) = (2’ xn — h) .
First we claim

Claim 1: T — @ in H?.
Proof of Claim 1 We have

1m0 — ol = / (L[ () (= 1) de

where

(1+1€1%)* [@(6) (eifnh —1) |2 — 0 everywhere

and since ¢ € H*(R")

(1+ (€ [@(6) (5" — 1) [F <4 (1 +[¢[)* |@(6))* € L' R™)

claim 1 follows by calling upon the dominated convergence theorem, .

7



Further, let x € C§° with supp y C B1(0) and [ x(z) dz™ = 1. As in previous
subsections, we denote
1 T
Xe(x) == —x (—) .

en €
We claim

Claim 2:
Vu € H*(R") Xe xu —  in H*(R")

Proof of Claim 2 We have on one hand

e =l = [ (1 I6P) 16606 = 1P [a(e) de”

On the other hand
)65(&) = )A((gg) :
Since x € C§°(B1(0)), x € S(R™). Moreover, since [ ydz" =1, x(0) = 1. Hence
VEER"  (1+[€]*)°[X=(6) — 1] [al*(§) — 0
We have moreover
(L+1€1%) IX=(6) = 1P [al(€) < (1 + [E7)° [Nl + ] al*(§) € L'(R™) .
Dominated convergence again is implying claim 2.

For h > 0 the support of ¢_j is included in {§, > h}. Hence for 0 < e < h we
have Supp(xe *x ¢_p) C {&, > h —¢e}. Since x. x p_, € C°(R") we have then

(2.58) VOo<e<h T(xe*p_pn) =0
Because of claim 1 and claim 2 we have
VheR xexp_p — ¢p in H(R") and ¢, — ¢ in H*(R").

Hence using a diagonal argument we can find ¢, — 0 such that 0 < ¢, < h and such
that
Xe, * p—r, —> ¢ in H*(R") ash —0.

From (2.58) moreover we have T'(x., * ¢—n) = 0. Using the continuity of 7" estab-
lished in the first part of the proof of the proposition we can pass to the limit in this
last identity in order to obtain T'(¢) = 0. this concludes the proof of proposition 2.23
O

Theorem 2.25. Let s +2 > 5. The mapping

L:H*(R}) — HP2 (R x H* (RY)

u = (Tu, —Au + u)

is a continuous isomorphism, meaning there exists a constant C' > 0 such that

el sro+2 @y < C [Tl = Al |

H5+% (Rn—1
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Remark 2.26. This theorem states that the problem

—Au+u=feH* (R}
(2.59)
Tu = g€ Hs+3/2 (Rnfl)

has a unique solution u € H*"? (R™) for s +2 > 1/2.

Proof of Theorem 2.25. We first consider the following problem. Let g €
S(R™ 1) we are looking for a solution w of the following problem

—Aw+w=0 on R’}
(2.60)
Tw=g on ORY .

In the following, we shall denote by w the Fourier transform of w with respect to
the first n — 1 variables a’.

Assume there exists a solution to the problem (2.60), applying formally® the
Fourier transform with respect to the first n — 1 variables and restricting to the
hyperplane {z,, = 0}, since everything is smooth we obtain that w(¢',x,) is a
classical solution to the following problem

2
0x2
W(¢,0)=§(€)  on IR" .

Explicit computations give

o+ (J€P+1)w=0  onR:

(261) '[[J(gl,l‘n) _ e—iCn \V/ ‘E"Q—‘rlg(gl) )
We consider” ¢ € S(R) such that ¢(t) ;= e™%, ¢t > 0 and we introduce the function

w({', z,) given by
(€)= (w0 VIEE 1) 3(€).

For every & € R"! the map z, — w(£',x,) is obviously in S(R) and we can take

5We have no information of such a solution that would permit to justify the use of Fourier with
respect to the n — 1 first variables.
"Such a function ¢ can be constructed as follows:

Y(t) = e’ Xk Lgs o

where 1, _» is the characteristic function of the set of reals larger than —2 and x is a function in
C§°((—1,1)) such that [, x(t) dt = 1.
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its Fourier transform. We denote

(&, 8n) = (2m) 712 /e‘“"“w(f’,xn)dxn
R
_ 1/2 /w /)2 + ) —#nTn o

1
_ 1/2 |§/‘2+ dz
€ [ v Ve

e T fn 1
A (w»ﬁ? . 1) NS

and thus

1 ap n25+2 oy
[ avigpyrope a - / DT ey

(1 + |€/ S+2 2 d
sos/ N /|1/) ) dz

C |£n‘2 S+2
+C
/]R"l r €7 +1

< G 1172wy llgll7

Hs+3/2

2

dgr

VISP +1

(&I d&, d(€)"

JEET

[ R OR ey [ ()R s

Hence we have proven the existence of a constant Cs > 0 depending only on s such
that
—1
IF7 ()]

Observe that since we are still working under the assumption ¢ € S(R"™1), ¢ €
S(R™). Going backwards in the argument we observe that w := F~1(p) solves
(2.60) and there holds

Hs+2(Rn) S Cs ||g||Hs+3/2(Rn71) .

(2.62) [|w

mr2@n) < Csn 9] Hs+3/2(Rn—1) -

Using one more time the density of S(R"™!) in H**3/2(R"~!) and the continuity
of the trace operation from H**2(R") into H**3/2(R"~!) given by theorem 2.20 we
deduce that (2.60) admits a solution w satisfying (2.62) for any g € H**3/2(R"1).

Consider now f € H*(R") and g € H*"3/2(R"!) arbitrary. From (2.19) there
exists a unique wy € H**(R") solving

—Aws+wp = f in S'(R")  and  |Jwy||gsre@ny < Con || f]

Hs(R™)
From theorem 2.20 there exists a constant C ,, depending only on s and n such that

[Twy]

Hs+3/2(Rn—1) < Csn ”waHs+2 (Rn) <C s,n Hf| Hs(R™)
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From the first part of the proof we have the existence of w’ € H*t?(R"™) solving

—Auw' +w' =0
(2.63)

Tw =g —Twy on ORY} |
moreover
(2.64)

|w'[| sr2@ny < Com lg = Twyll gsssrzmn-1y < Csm 19l gersrz@n-ry + Cop I1f sy -

By linearity w := w’ + wy solves

—Aw+w=Ff in R’}

(2.65)
Tw=g on ORY .|
moreover
(266) ||w| H5+2(Rn) S 05771 ||g||Hs+3/2(Rn71) ‘I— C;’n ||f||Hs(Rn) .

By linearity, the uniqueness of the solution to (2.60) will follow if we can prove that
any solution w € H*"(R") of

—-Aw+w=0 in R’}
(2.67)
Tw=0 on ORY .,

is zero. Let w be a solution in H**?(R"}) of (2.67). We introduce
w(z',x,) for z, >0
W =
—w(a', —z,) for x, <0
We claim that w is a solution of
(2.68) —Aw+w=0 in S'(R") .

Let ¢ € S(R™). Introduce a smooth even “cut-off” function on R (x(t) = x(—t))
that we assume to be supported in [—1,+1] and such that x is equal to 1 on
[—1/2,1/2]. For any 0 < € < 1 we introduce x.(t) := x(t/e). We write

[ Faerdidn = [ [-aprd o) i des | At (1 xlm) b do”

n

Observe first that

/ [_ASO + 90] Xe W dx"

< xlloo | = A + @llz2@ny 0]l 22(120 <)
Since w € L*(R™)
HUO)||L2(|$n|§€) =2 HwHLZ(ngngs) — 0 ase — 0.
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Hence

n

(2.69) / [—Ap + ¢|w dx" = o.(1) +/ [—Ap + ] (1 —x:)w da™ .
Now we write

[ Faeraa-xyi = [ FAGI-x) -l do”
(2.70) ¢
— VLP'VXng)d:L'n—/ 0 Ax:w dx"

R?’L n

First we observe that

/n[—A(so (1= X)) + ¢ (1= xo)]w da”

— [ A - )+ o - ) ul) da”

+

- [ A - ) o - ) uls, o) "

Using the fact that for any ¢ € S(R™) —A,(¥)(2, —x,) = —A,(Y(2, —z,)), from
(2.56), we deduce that

~ [ A O =X+ (= xI@) wla, o) do”
= /]R” [—A(p(2!, —z,) (1 — x(2, —2,))) + (&', —2) (1 — x (2, —2,))](2) w(z) dz™ =0 .

Hence finally, using that w solves —Aw 4 w = 0 on R’} we obtain

em) [ A )+ - i) " =0,

We have moreover

1 [¢/2 t
Vi Vi do — 1 / N () dt / T (' —)) Do d(a’)™"
— Tn=t

R™ € €

_|_1/ Y (E) dt/ Ti(w(a',t)) O, d(x/)n_1
€ e/2 € Tp=t

where for any ¢t € R, we denote Ti(w(2',t)) := T(7(0,—yw) the trace on x,, =t of w.
Using the continuity of the trace together with the fact that

T, W — W in H*"(R")

the continuity of 7 from H**2(R") into H*+3/2(R"!) together with the continuity
of the embedding H*+3/2(R"~!) < L2(R""!) we have

(272) tim |7, (w(a’, 1)) 2 g1y = 0
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Hence we deduce

1 —&/2 t
_/ X/ (_> dt/ T*t<w(x/7 _t)) 8wng0 d('r/)nil
13 —e £ Tn=1

<o:(1) IXllo sup  [[0p, (2, 1)l L2

te[—e,—e/2]

and we bound

/ n\n— ]‘ n\n— n /
[ et P ™ = [ s ) Dl B

o1 (14 [2/]")?
S On Nn+1(90)2

Hence we deduce

(2.73) Ve Vx.w dz" = o(1) .

Rn

Now we write, using the fact that x"(t) = x"(—t) = x"(|t])

1
/ O Ax. W dz" = = (2, x,) X" <

Rn

€
1 / / " ’.Qﬁn’ I n
= 5 [90($ axn) - QO(LL' ) _xn)] X ’lU(iL’ ,ZL‘n) dx
g Ri 19
2 ! / " ’xn’ ! nn—1
=— dx, |Za| Op, (2, b, (27) X" | — | w(a’, z) d(2)
€% Jlan|<e Rn—1 €

where t, (2') € [~xn,x,]). We then bound using (2.72)

/ Y Ax.w dx"

< 2[X"Mloe sup [10n, (", ta, ()| L2nry sup [ Te(w(a’, 1)) L2

|zn|<e [t|<e

< 0:(1) 102, 0(2" )l 35, (- | L2n) -

We write

N0 (2, 2u))ll s, (et 2 (gn 1) = /R 0@ )2 ey A"

S/ &7—12 11+ [21") Oz 0 (2, @) Loy < Cn Nu(0)?
Rn—1 (1 + |'CC |n)

Combining the two previous bounds we finally obtain
(2.74) / © Axe w dz" = o.(1)

Combining (2.69), (2.70), (2.71), (2.73) and (2.74) we obtain the claim (2.68).
Hence w = 0 and the solution to (2.63) in H**?(R") is unique. This concludes the
proof of the theorem 2.25. O
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3 Fundamental Properties of L? spaces

3.1 Holder, Minkowski and Young inequalities

For any open set 2 C R"™ we refer to Analysis 3 for the definition LP(€2). We recall
the Holder inequality.

Theorem 3.1. Let 1 < p < 400 and ) an open set of R". We introduce p' € [1, 0]
given bif

1 1

p p
Let f € LP(Q) and g € LP(Q). Then fg € L*(Q) and
(3.75) / £ ol(@) da™ < || lowqen 19l ey -

where

1/p / 1/p
1 llvcey = [ [irer dx”] and gl = { [ st dx"]

Proof of theorem 3.1 The cases p = 1, 00 are straightforward. Hence we restrict
to the case 1 < p < +00. The concavity of the logarithmic function gives for any x
such that |f(z)] > 0 and |g(x)| > 0

1 1 / 1 1 /
—1ogfxp+—/logga:p§10g[—fxp+—/gxp]
; |f ()] p l9(z)| pl()l pl()l
This implies
1 1 /
f gl(z) < . |f ()" + v g ()"

Obviously this last inequality extends to the case |f(x)| = 0 or |g(x)] = 0 and we

deduce . )
/ Fal(x) dan < 2 / @ "+ / g(x)P' da?

Applying this inequality to the pair (tf, g) instead of (f, g) is giving

/Q\fg!(w) _—tp1/|f )P da™ + = t1/yg )P da?

Choosing t = ||f||Lp ||g||p /p is giving (3.75) and this concludes the proof of
theorem 3.1. O

A corollary of this theorem is the Littlewood inequality whose proof is left as an
exercise.

8We are adopting in the statement of theorem 3.1 the notation convention

ui =0
o0
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Corollary 3.2. Let Q2 be an open subset of R™. Let py € [1,4+00]| and p; € [1, +00].

Let t € (0,1) and denote p; € [1,+00] given by
11—t ¢
P Do b1

Then for any f € LP(Q) N LP(QY), f € LP(Q2) and there holds

(1-t

(3.76) £ |z < F NS tty 1 lomn o) -

We are now proving the following theorem which is a classical result from Func-
tional Analysis 1.

Theorem 3.3. Let 1 < p < +oo and §2 an open set of R". Then LP(QQ) is a vector
space and || - ||r(o) defines a norm, moreover (LP(Q2), | - ||zr(q)) is a Banach space.

Proof of theorem 3.3. It is clear that || - ||,1(q) and [ - [[z~(q) define norms. We
now prove that LP(§2) is a vector space and ||- || z»() defines a norm for 1 < p < 4o0.
Let f and g in LP(Q2). We first claim that f + g € LP(£2). We have for any = € 2

[f () + g(2)P <27 (max{[f(z)], [g(x)[})" < 2° (|f ()" + |g(=)[") -

integrating this inequality on 2 is giving the integrability of |f(z) + g(x)[? on Q.
We now prove that || - ||z defines a norm. We have using Hélder inequality

/If(ﬂf)+g($)lp dz™ =/ £ (@) + g(@)"~" | f(2) + g(@)| d2”
Q Q

S/ﬂlf(m)ﬂLg(x)lp_llf(fv)! dflf’“r/ﬂlf(l’)+g(ﬂf)l”_1 lg()] dz"

—1 -1
<N+ gl I vy + 1S + gl Nl
This implies
1f + gllze@) < [1fllee) + 9]0
from which we deduce that || - || z»() defines a norm.

We now prove that (L®(€2), | - || z=(q)) is complete. Let f, be a Cauchy sequence
in L*™. For every k € N there is a integer Ny such that

(3.77) Vm,nz N |fo = fmllee@) <

| =

Denote, for any n,m > N,

Fe(m,n) = {a: €Q st ful@) — ful@) > %}

It is clear from (3.77) that Ex(m,n) has Lebesgue measure zero. Let

Ey := U Ex(m,n) .

m,n> Ny
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A countable union of measure zero set has measure zero. Hence E} has measure
zero as well. Finally we denote

E::UEk.

keN

For the same reason has above E has also Lebesgue measure zero. For any x € Q\ E
there holds

(3.78) Vm,n>Ne  |fu(@) = fn(z)] <

wIH

hence f,(z) is a Cauchy sequence. We denote by f(x) its limit. The fact that f(z)
is measurable is left as an exercise. Passing to the limit in (3.78), we have for any

(3.79) VeeQ\E  [f(z) = falr)] <

?rlr—ﬂ

Since this holds for any x € 2\ E and since F has zero measure, we deduce that
for such a n

1
esssup|f(2)] 3 @ € Q} < o + [ fall (o) < +o0..

hence f is in L*(Q2) and thanks to (3.79), fn — fin L*(Q2). This implies that
(L>(Q), || - ||z=(@)) is a Banach space.

We consider now the case 1 < p < +00. Let (f,)nen be a Cauchy sequence in
LP(Q2). It suffices to prove that there exists a subsequence which converges to an
element in LP(§2). We first extract a subsequence (f,, )ren such that

TEEN o ful <27
Introduce

k
Z oy (@) = foy ()] -

Using the triangular inequality there holds
k
VEEN gl <) 27 <
5=0

The sequence g ()? is increasing hence, using the Beppo Levi monotone convergence
theorem, we deduce that g” converges in L'(Q) to a limit g and we have

Vo €} gr(r) < g(x) and  [|g]|zr) < +o00 .

Observe that

Vi <1 | fu,(2) = far (2)] < gi1(z) — gi(z) < g(z) — gi(z)
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Since ¢¥ converges strongly in L'(Q) towards g” then gi(x) converges almost every-
where towards g(z) and we deduce that, for almost every x € Q f,, () is converging
to a limit that we denote f(x). Moreover there holds

VkeN [f(z) = fu (2)]" < ¢"(z) .

By dominated convergence we deduce that f,, converges strongly to f in LP(€2).
Hence we have proved that for any 1 < p < +o0 the spaces (LP(2), || - ||r()) are
complete and this concludes the proof of theorem 3.3. O

We have introduced the convolution between an arbitrary element in §’'(R™) and
an arbitrary element in &'(R™). We are going to extend this operation between an
element in L'(R") and an element in LP(R™) for any 1 < p < +oo. This is the
famous Young inequality (see a proof in [1] theorem 4.15).

Theorem 3.4. Let 1 < p < +oo. For any f € LY(R™) and g € LP(R™), for almost
every x € R™ the functiony € R — f(z—y) g(y) is integrable on R™. We denote

(f *9)(x) := A=) g(y) dy™ .
Moreover f % g € LP(R™) and

1f > glle@ny < ([ fllzre) 19llee)
The Young inequality can be extended as follows.

Theorem 3.5. Let 1 < p < 400 and 1 < ¢ < +oo. For any [ € LP(R") and
g € LYR™) then f g is in L"(R™) where

1 1 1

S=4 T 1>0

r p q

and there holds
1f > gllr@ny < 1 flee@) 9llLacen)

The proofs of the Young inequalities theorem 3.4 and theorem 3.5 are given in
the series. We shall be proving a generalization of these ineqalities in the framework

of Lorentz spaces in chapter 6 using the notions of decreasing rearrangements (see
theorem 6.43).

3.2 Reflexivity and Duals of LP—Spaces
3.2.1 The uniform convexity and reflexivity of LP(Q2) for 1 < p < +o0

We recall the definition of a uniform convex normed space

Definition 3.6. A Banach space (E, || - ||) is said to be uniformly convez if

Vo,y € BY(0) Ve>0 36>0 st lz—y|>ec = HmTngl_é
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We recall the notion of reflexive spaces.

Definition 3.7. Let E be a Banach space and let J be the canonical injection of E
into (E*)* given by

VeeFE , VYIleFE” (Je(@),l) (g g = (L, 2)p- 5 .
E is called reflexive if J is surjective, that is
(B*) = Jn(E) .
An important property of reflexive Banach spaces is the following

Proposition 3.8. Let (E, | - ||g) be a reflexive Banach space then (E*,|| - |
also reflexive

B+) 1S

Proof of Proposition 3.8. We denote again Jg the canonical isomorphism from
definition 3.7 from E into (E*)*. Let ¢ € ((E*)*)* the map

r€E — (o Jp(@)) (@B
is obviously continuous and linear on E. Hence there exists [ € E* such that
VeeE Voe((£)) (o Jo(@)) ey @y = (Lr)p e = (Je(@), )@ p
Since Jg is surjective we then have proved
\V/O' [ (E*)* <§070->((E*)*)*,(E*)* = <O', l>(E*)*,E* .

This shows that Jg« is also surjective and then E* is reflexive. This concludes the
proof of proposition 3.8. O

We shall also make use of another proposition (see [1] proposition 3.20 for a
proof).

Proposition 3.9. Any closed linear subspace of a reflexive Banach space is also
reflezive.

We recall a classical theorem, called “Milman-Pettis Theorem” and seen in Func-
tional Analysis 1 (see also [1] for a proof).

Theorem 3.10. Fvery uniformly convex Banach space E s reflexive.

We are now going to prove the uniform convexity of LP(Q2) for any 1 < p < 400
where 2 is an arbitrary open set of R". First we prove it for 2 < p < 400 : this will
be the consequence of the so called Clarkson’s first inequality.

Lemma 3.11. Let 2 < p < 400 then

p p

f—g
|

Vf,g€ LP(Q) H%

1
<5 (11 + 910y

LP(Q) LP(Q)
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Proof of Lemma 3.11. Observe that for any ¢ > 1 there holds
Vz,y >0  274+y? < (z+y)*
Let a,b € R and choose x := ‘“T*b‘z, Y= ‘“T’bf and ¢ := p/2. This gives

p p

a—>b
2

a+b
2

a+b
2

J— + < 2 ,

2 2

2+ a—>b
2

/2
-y errge

where in the last inequality we have used the convexity of t — t*/2 on R,. Replacing
a by f(z) and b by g(z), integrating with respect to z is giving the desired inequality
and the lemma 3.11 is proved. O

From the Clarkson’s first inequality we deduce the uniform convexity of L?(€2) for
2 < p < +o00. Now we prove that the reflexivity extends to LP(Q2) for 1 < p < +o0.

Theorem 3.12. Let Q2 be an open set of R™ and 1 < p < 400, then (LP(Q), ||| Lr(0))
is reflexive.

Proof of theorem 3.12. The reflexivity of L”(2) for 2 < p < 400 is a consequence
of the uniform convexity property implied by lemma 3.11 thanks to theorem 3.10.

For any p € (1,400) we denote p' := p/(p — 1). Let J be the map which to
f € LP(Q) assigns the following linear map from L¥ (Q) into C given by

Vgelr(Q)  J(f)g) = / f(@) g(x) da™

Thanks to Holder inequality we deduce that J(f) defines a continuous linear map
and therefore J(f) € (L¥'(2))*. Again, thanks to Holder inequality we have that

ISz - =, b J()9) < [[fllzee)

19l () <1

Introduce the map g(z) which is equal to zero when f(z) = 0 and

g(@) = [F @) f(@) /1 e

otherwize. One has

ol =1 and I = | [ |f<x>|pdm"r/p.

Hence
[T o @)y = 1 f e

which implies that J realizes an isometry from LP(Q) into (L (2))* and consequently
in particular J(LP(Q)) is closed in (L (2))*.

Consider now 1 < p < 2. Since L¥ () is reflexive it follows from proposition 3.8
that (L¥(Q))* is also reflexive. Using this time proposition 3.9 we deduce that
J(LP(Q)) is reflexive and since J is an isometry we deduce that LP(€) is reflexive
and this concludes the proof of the theorem 3.12. O
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3.2.2 The Dual of L?(Q) for 1 <p < 40

We identify now the dual of LP(f2) for any 1 < p < 4+00. This is the subject of the
following “Riesz representation type” theorem.

Theorem 3.13. Let 1 < p < +oo and letl € (LP(Q))*. Then there exists g € L (Q)
such that

vielr( @)  {f)= | flx)g(x)dz",
R
moreover
9/l o @y = Nl ey~ -
Proof of Theorem 3.13 We consider again the operator J from L () into
(LP(Q))* given by

VfeLr(Q),Vge LM (Q) (J(9), [)wr@))= o) = - f(z) g(z) dz™ .

We have using the same argument as in the proof of theorem 3.12

17(9) oy == sup f(@) g(x) dz™ = ||g]| 1 o -
I fllep ()<l JR™

We claim that J is surjective in (LP(Q))*. J realizes an isometry. Let J(L?(Q)),
this is a closed subspace of (LP(2))*. We claim that F' = J(L”(Q)) is dense in
(LP(22))*. In order to prove this claim we shall be using the following lemma from
Functional Analysis 1, which is a direct consequence of Hahn Banach theorem, and
whose proof can be found in [1] (corollary 1.8)

Lemma 3.14. Let F be a closed linear subspace of a Banach space (E, || - ||g) such
that E2 # F'. Then there exists | € E* such that I # 0 and

Proof of theorem 3.13 continued Using the previous lemma, assuming J(L? (Q2)) #
(LP(92))* there exists ¢ € ((LP(€2))*)* such that ¢ # 0 and

VgeL” () (o, J(9)=0
Since LP(€2) is reflexive, there exists f € LP(£2) such that
Vie (LP(Q)" (o Drr@ys @@y = (L arw) @) -

We have in particular

Vge M)  0={pJ(g) = / /(@) g(a) da |

We choose ¢ such that g(z) = 0 whenever f(z) = 0 and g(z) := |f(z)[P72 f(x)
otherwize. From the previous identity we obtain f = 0 and hence ¢ = 0 which is a
contradiction. This concludes the proof of the Riesz theorem 3.13. O

We now consider the cases p = 1 and p = 400. First we have the following Riesz
representation theorem which says (L'(Q))* = L>(Q).
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Theorem 3.15. Let Q be an open set in R™ and let | € (L*(2))* then there exists
a unique function g € L>®(2) such that

(3.80) VEe L' Q) (I, Ao = /Q f(z) g(z) da™ .

Moreover
9l o) = 21 @)

Proof of theorem 3.15. First we establish the uniqueness of g. It suffices to show
that

(3.81) VfeLYQ) / f(x)g(x)da" =0 = g¢g=0.

Q
We denote Q := 2N By (0) and we consider the functions f,(x) := 0 if g(z) =0
and fi(z) = % 1, (z) whenever g(z) # 0, where 1g, (x) is the characteristic

function of €. The hypothesis is then implying
VkeN / ()| da™ = 0
QﬁB2)C (0)

from which we deduce that g(z) = 0 and we have proved (3.81).

Let [ € (L'(2))*. We establish the existence of g such that (3.80) holds. Let
6 € L?(Q2) such that 6 := 275" on Q, \ Q;_; for k > 1. We consider the map

T : he LQ(Q) — C s. t. T(h) = <l70h>(L1(Q))*,L1(Q) .

Thanks to theorem 3.13 there exists v € L*(2) such that

It is then natural to introduce g(z) := v(x)/6(z). We are going to prove that g is a
solution to our problem. Observe that, since 6 is bounded from below by a positive
number on each of the ., g € L?(Q4) for any k € N. Hence we have for any k € N

Vh e I2(Q 1.1 h oy = <z 01 @>
€L s Maroyr@ = (0150 6) o

(3.82)
/Qv(x) 1p,.(0) 7, dz" = /Qk g(x) h(zx) dx"

We claim that g € L*°(2) and that we have

(3.83) gllze (@) < Il 21y -
Let K > 0 and introduce

wi ={x € Q; |g(z)]| > K} .
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In order to establish the claim it suffices to prove that wg has zero measure. We
choose for any x at which g(z) # 0, h :== 1, g(z)/|g(z)| and h(z) = 0 otherwize,
where we denote by 1,,. the characteristic function of wg. Observe that h € L>(),
hence, obviously, 15, o) h € L'(2) and from (3.82) we obtain

K 1Q Nwi| é/ |h(@)| da™ < ([l (@) 118,00 Pl = Il @)

QpNwg

Hence for K > ||l||(z1(q))+ the measure of |, Nwk| is zero for any k£ € N and this
implies the claim (3 83)

Let f € L'(Q). We denote by Ti(f)(x) := f(z) W if |f(x)| # 0 and

Ti(f)(x) =01if f(x) =0. By dominated convergence we have that
1s,.0) Tk(f) — f strongly in L'(€2) .

We have from 3.82
(L,1s,0) Th(f)) @)1 @) = /Qg(x) 1p,,) Tk(f)(x) dx"

Passing to the limit in both sides of the equality we obtain

(3.84) (L )@y i@ = / g(z) f(x) dz" .
Q
It remains to prove that

(3.85) lgllzoo @) = el

From (3.84) there holds

vV fel(Q) [0 DY@y < lgllee@ 1@

hence [|{||(z1(0))* < ||g|z~(q). Combining this inequality with (3.83) we obtain (3.85)
and this concludes the proof of theorem 3.15. O

We have seen in serie 1 using Hahn Banach that there exists [ € (L>°(Q))*\ L*(9).
Hence we have the following result.

Proposition 3.16. Let Q2 be an open set of R"™ then L*(Q) is not reflexive.

3.3 Separability of L?(2) for 1 < p < +00 and approximabil-
ity properties.

We recall the classical notion from Topology.

Definition 3.17. We say that a metric space E is separable if there exists a subset
D C E that is countable and dense.

We then have the following theorem
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Theorem 3.18. Let € be an open subset in R™ and let 1 < p < +o00. Then L*(Q)
18 separable.

Regarding L>°(2) the answer is negative.
Theorem 3.19. Let Q) be an open subset in R™. Then L*°(Q) is not separable.

The theorem 3.18 and theorem 3.19 are proved in the series.

Regarding the approximability property of any element in LP(R™) by elements
in C3°(R™) we have already seen in chapter 2 using the Fourier Transform that

—)L2

CRM) = LX(R") .

see the proof of proposition 2.7. We are extending this result to any 1 < p < +o0.
Precisely we have

Theorem 3.20. Let §2 be an open set of R™ and let 1 < p < 400. Then C3°(Q2) is
dense in LP(€2).

Remark 3.21. The theorem 3.20 obuviously does not extend to the case p = +o0
since the limits for the uniform convergence of smooth functions are continuous and
CY%(Q) is strictly included in L>=(£2).

In order to prove the theorem 3.20 we shall need the following lemma.

Lemma 3.22. Let x € C§°(By(0)) such that [,, x(x) de" = 1. For any ¢ > 0 we
denote x.(-) == " x(e7!). Let 1 < p < +o0o then

(3.86) vV feLP(R") fxxe — [ strongly in LP(R™) .

Proof of lemma 3.22. First of all we claim that any function f € LP(R") can be
strongly approximated in LP(R™) by continuous and compactly supported functions.
The result for p = 1 has been proved in analysis 3 [2]. We are proving the claim
now for 1 < p < +00. We denote

max{|f ()], k}
/()]

where 1p , (o) is denoting the characteristic function of the ball By (0). From the
dominated convergence theorem we have

fe(x) =0 if f(x) =0 and fi(z):=1p, () [(z)

if f(x) #£0.

fe(x) — f(x) strongly in LP(2) .
Let € > 0. There exists k. € N such that

(3.87) Vk >k If = frllor@ny <

DN ™

Since fj, is supported in a bounded set Bax. (0) and since || fi. || oo@ny < ko we have
fr. € LYR™) for any ¢ € [1,400]. Hence, using the claim proved for p = 1, for any
§ > 0 there exists g5 € C?(2) such that

1fke = gsllre) <0
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By replacing g5 by

95(x) := 15, 0) 9a(7) maxﬁgié(g1‘7 o

if gs(z) # 0
and gs(z) = 0 if gs(x) = 0. We have for any x

|fre (@) = 95(2)| = 1B, 0) (fre(2) = 95(2))| = [fr.(x) = 1, 0) 95(7)]

Using that the map from 7 from C into By (0) given by 7 (y) = v if |y| < k and
mk(y) = ky/|y| for |y| > k is a Lipschitz contraction (i.e ||V,m(y)||cc < 1) we have
for any x

i (@) = 95(2)| = [fr. (%) = L, 0) T(95(2))| = |fe. () — gs(x)| -
Hence we have

| fr. = Gsllreny <6, Gs € COR™)  and  ||gs||poorny < K
Hence we have
(3:88)  Ifr. = Golloen) < fn. = Folliigmy i = sl oy < 67 (20)H7

We then choose § such that §'/? (2k.)'~/? = ¢/2. Combining (3.87) and (3.88) is
giving finally the existence of gs € CJ(R") such that

|f = Gsllrmny < € .

This implies the claim that any function f € LP(R™) can be strongly approximated
in LP(R™) by continuous and compactly supported functions.

Let g € CJ(R™), g is uniformly continuous and then for any ¢ > 0 there exists
g9 > 0 such that for any 0 < ¢ < g

1
Ve R fuxole) o) < 5 [ Ilelote )~ @) v <
B:(0

This implies that
Vg e CH(R") lim [[xec * g = gl oo @n) = 0

Since g has compact support and since Supp(x. * g) C Supp(g) + B:(0), we deduce

(3.89) VgeCiR") VI<g<+doo  limxexg—glLawy =0

Let f € LP(R") and let 6 > 0. From the first part of the proof, there exists
gs € CY(R™) such that
1f = gsllrny <6,
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Hence we have for any € > 0, using Young inequality

If = xe* fllze@ny < (f = g5) = Xe * (f — 98)llze@n) + |IXe * 95 — 5|l Lo

< [T+ lIxllzr@my] 1 = gsllze@ny + lIxe * 95 — gsllLo@ny -

Because of (3.89), for € small enough we deduce

I1f = xe* flloreey < 2+ [Ix]lpr@n)] 0
This implies (3.86) and lemma 3.22 is proved. 0

Proof of theorem 3.20. From the proof of lemma 3.22, for any 6 > 0 there exists
gs € C3(R™) such that

1f = gsllLemny < 0/2 .
For any € > 0 we write
1f = Xe * gsllr @y <11 = gsllr@ny + [Ixe * 95 — g5/l o @ny
The map g5 € CJ(R™) being fixed, from (3.89), for € small enough we have

g — Xe * g5l Lorny < 6/2 .

Combining the three previous inequalities we have found g := x. x g5 € C{°(R")
such that

1f = gllr@ny < 6.
This holds for any 6 > 0 hence this concludes the proof of theorem 3.20. O

3.4 Riesz-Thorin interpolation theorem and the Fourier Trans-
form of an L? function for 1 <p < 2.

The interpolations of operators is an important method in Functional Analysis. We

shall now prove a first result in the theory for linear operators and show how this

can be applied to prove new inequalities. This result is known as Riesz Thorin
Interpolation Theorem or Riesz Convexity Theorem.

Theorem 3.23. Let 1 < p; < 400 and1 < g; < 400 fori = 0,1 with max{qo, ¢ } >
1. Let Q be an open set of R™ and T be a bounded linear operator from LP°(Q)) +
LP(Q) into L®(Q) 4+ L (Q2) such that
T : LP(Q) — LY%(Q) continuously.

Let t € (0,1) and denote
11—t t 11—t t

= + — and — =
b Do b1 a4t 4o il

with the usual convention 1/0o = 0. Then

T : LP(Q) — L%*(Q) continuously

and there holds

1—t
T oe ey e ey < T ooty 2o gy N W 0y 2on s
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Remark 3.24. Observe that LP*(S2) is in the domain of definition of T since for
1 <py <p <p1 <+oo we have that LP*(Q2) C LP(Q) + LP (). Indeed we write
for A >0 to be fized later

f(@) = f(2) Ljp@an + F(2) 1jp@)>a

and we have respectively

/Q|f(x)1f(z)|<)\|pl da" < NP [2|f($)1|f(x)l<x|pt dz"

hence
1F (@) Lipayeallor @) < AP0 £(2) 1) payenlliiaiy

and

vwwea;M@M>XHsAummﬂMMWdﬂ<+m

which gives

Pt—PQ
Pt

pi—pQ o .
{zeQ; [flx)] > A} n <A~ [/Q £ (@) Ls@)>al” da

moreover

PO

/ F@) L@l de® < U [F(2) 1@y >al™ d:v"] T res |f@)] > A
@ Q

< [ 1f@) byl do”
Q

Thus
1F (@) Lipaysallro ) < AP0 £(2) 1)yl

Hence we have for any X > 0
1 (2) Lip@ysallro@) + 11 (2) Lp@i<all o @)

< ALPU || £() [T, A+ AP £ ()|,

We then choose (= || f()| tr () and we deduce

1£(2) 1@y sallzeo@) + 1f(2) Lp@y<allm @) < 2|1 ()| ee o)

Then we have proved that for any f € LP*(Q)) there exists g € L*°(Q2) and h € LP*(Q)
such that f = g+ h and

lgllzeo @) + [12ll Lo @) < C Il fllze
Hence LP* () embeds continuously into the Banach space® LP°()) + LP1(Q) given by
LPo(Q) + LM () == {f € L,,() ; (g, h) € LP(Q) x L"(Q) s. t. f=g+h}

and
11| 2o @401 () == inf {||glleo) + [[Bll o) 3 F=9+h} .

9Recall from Functional Analysis 1 that the sum of two Banach spaces which both embed
continuously in an Hausdorff topological space - here that would be the Fréchet space LlOC(Q) - is
again a Banach space.
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Proof of theorem 3.23 The goal is to show that for any f € LP*(Q) and g € L% (1),
where 1/¢q; =1 — 1/¢ there holds
(3.90)
n 1-
[ (@) o) da™ < WTUSSafhymn I s iy W Tl -

Observe that we can assume that p; < +00. Indeed, if p; = +o00 then py = p; = 00
then we have that 7" is mapping continuously L>(€2) to L®(Q) N L7 (Q) that is

1Tz @) < T oo () 200 02

VfeL>x)
1Tz @) < WM ooy 201 0

We have by Littlewood inequality (corollary 3.2)

I < TN gy 1Ty

1t
< TNy 0ty T Wi yoson @y [1F 20

and the theorem is proved in this particular case.

Observe that we can moreover assume 1 < ¢;. Indeed, if ¢, = 1 for instance, this
imposes gy = q; = 1 which is excluded by the hypothesis .

The proof for general p; < 400 and 1 < ¢ < +oo is based on a “complex
interpolation” strategy. It is convenient to introduce «; := 1/p; and f; := 1/¢g; and

VzeC alz) = (1—2)ap+2zap  and  B(z) = (1 —2)B + 2/

Let f and g be two step functions on §2 of the form

m T
f:I Zak 1Ek and g = Zbl 1Fl
k=1 =1

where a;, b € C and E, and F; are measurable subsets of 2. We first aim at proving
(3.90) for these kinds of functions. Without loss of generality we fix || f||zre (o) = 1.
We introduce 6, and ¢; such that

ar = lag| €% and b = |b] e’ .

We define .
for= 3 Jago@e® it 1
k=1

and )
g, = Z |bl|(176(2))/(176(t)) el o 1p .
=1

We introduce

m

Fz) = / T(f.) g da” = 3 |ag|5/e) [py|(1=0ED/A=50) o,
Q

k=1 =1
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where
Yy = e Ot /T(]‘Ek) 1p dx™ .
Q

The function F' is holomorphic. We write z = x + iy and we restrict to the strip
S:={z=z+1yeC; 0<x<1}. We have for any k € {1---m}

| [V — | g0/ (g [2ler—e0)/al) |, 1iv(er—ao)/a(t)

Hence
“ak’a(Z)/a(t)| — |ak‘w(al—ao)/(taoﬂl—t)al)

Since = € [0, 1] we have
| *®7* 0| o5y < +00

and similarly for any [ =1---r

|||bl|(1—ﬂ(z))/(1—6(t))||LOO(S) < 400 .

Thus we deduce
||F||Loo(5) < 400 .

We shall make use of the following lemma

Lemma 3.25. Let F' be and holomorphic uniformly bounded function on S = {z =
r4+iyeC; 0<xz<1}. Let My >0 and M; > 0 such that

1 F(iy) || ey < Mo and IF (1 + i)l ooy < M

then
Vee(0,1]  ||F(x+iy)lliee < Mg~ MY

Proof of Lemma 3.25. The proof is more or less a direct application of the
Mazimum Principle. We replace F' by the function

~ F(z)
My~ My
The new function F is again holomorphic, bounded and we have by assumption

1| egos) < 1

Let

Since F' is bounded, we have

Y x2—1

[Fe(2)] S | Fllgm(s) e 7 €77

Hence ~
| F(z + 1Y) || Lee 0,1y — O uniformly as y — +o0 .
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Applying the Maximum Principle (see the Complex Analysis course in 3rd semester)
on sufficiently large rectangles we obtain

Ve Fillies) <1

Passing to the limit & — +oo we deduce ||F| re(s) < 1 and the lemma is proved. O

Proof of theorem 3.23 continued. Using the previous lemma we have

11—z T
vees PO | [ Ta ar|] | [ 100 a0t
yeR |JQ yeR |JQ

We have
= Z || 2/ 0k 7 and Z |by| LB/ A=BW) i q
k=1

Hence in particular almost everywhere

|fiy|p0 - |f|pt and |giy|q6 = |g|q2 .

Thus

Vsl = 1F150  and gl q) = gl

Using the fact that 7' is continuous from LP°(2) into L%(Q2) we have

JRar

i/
< T Moo @y 1WA NN,

< W Mooy s socey Misllzoogen il

Similarly we have

T 11y €0 Uiy Wil sl
< IT Pt/pl qt/ql
< T on @)szor @y 1 oy Mol oy

Hence we have

/QT(f)g dz"

= ‘/QT(ft)gt dx™

< Tty oy I W zonyoson @y 11l oeisy Nl o g

Since step functions are dense in L% () we deduce

(3.91) 1Tz < NN Gty 20y NTWm s y 1 lamecen

Hence the result is proved if f is a step function.
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Let f be an arbitrary function in LP*(€)) and, since we are considering the case
p; < +00, there exists f; step functions such that

kgz{loo |f = fellzre) =0 .

Because of remark 3.24, LP*(€)) embeds continuously into L0 (2)+ LP*(£2) and there-
fore there exists gy € LP°(2) and hy € LP*(Q2) such that

gkllzro) + IhkllLrm@) — 0 and = fi=gi+ I .
Using the hypothesis on 7" we have that
T(fx) —T(f) — 0 in L%®(Q)+ L1 (Q) .
Hence in particular
T(fe) — T(f) almost everywhere .

Using (3.91) for fi we have

1-t)
tim sup |[T(fi)l| e e) < I 2y 20y T Mzor @)y 11 120

k—+o0

Since 1 < ¢; < +00, we have

IT(fi)|* — |T(f)|* almost everywhere  and thUP/Q!T(fk)Pt(x) dz" < 400

k—+o0

Using Fatou Lemma we conclude that T'(f) € L%(Q2) and there holds

1—t)
ITCH Nz < NN Gty 20y NTWEmyos gy 15 e

This concludes the proof of the theorem 3.23

We present now two applications of the Riesz-Thorin interpolation theorem.
First we recall that the Fourier transform realizes an isometry from L? into itself
moreover we have proved (1.1)

Vi€ LMRY)  flim@n < 2m) 72 | fllrny

Combining these two facts with the Riesz-Thorin interpolation theorem we obtain
the famous Hausdorff Young inequality

Theorem 3.26. Let p € [1,2] and denote by t € [0, 1] the number such that

t t 2
=1t +-=1—~ i =
” 1=t +3 5 e P=g5—,

then F realizes a continuous mapping from LP(R™) into LP (R™) and there holds

VfELPRY) |l < 2m)
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The second application of the theorem is a proof of theorem 3.5.

Proof of theorem 3.5. From theorem 3.4 we know that for any g € LP(R") and
p € [1,+00] the convolution wit g is a continuous linear operator from L'(R") into
LP(R™) and there holds

VIEL'R™Y)  lg* flles < llgllzogn 1)
moreover, the convolution with ¢ is obviously mapping L” (R") into L>(R") and
there holds

VieLl”[R")  llg* fllze@) < lgllr@ [l @y -
Hence, using Riesz Thorin theorem, we deduce that for any ¢ € [0, 1] and p; € [1,p/]
given by

1 1 t
—::(1—t)+t(1——) =1—--
Dt p p

there holds

YV f € LP*(R")

g * fllzae@ny < llgllze@ny |fl|zeen
where

1 1—-t 1 1

-+ —-1
qt p P Dt

Since p is arbitrary in [1,4+o0] and p; € [1,p'] is also arbitrary this concludes proof
of theorem 3.5.

O
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4 Riesz Potentials and Sobolev Embeddings

4.1 The Marcinkiewicz Interpolation Theorem

Definition 4.1. Let 1 < p,q < oo and let T' be a mapping from LP(R™) to the space
of measurable functions. For 1 < q < oo, we say that the mapping T is of strong

type (p,q) — or simply of type (p,q) — if
NTfllee <Cfllzr,

where the constant C' is independent of f € LP(R™). For the case of ¢ < 0o, we say
that T is of weak type (p,q) if

o e R 17> a) <0 (Sl

where the constant C' is independent of f and o > 0. For q = 0o, we say that T s
of weak type (p,00) if T is of type (p,00).

Remark 4.1. Observe that for ¢ < oo, and for any measurable function g we have
trivialy

(4.92) sup o [{z : |g(z)| > a}] < [lgll%.

a<+00

Applying this inequality to g = T f we obtain the fact that T' being of type (p,q) is
also of weak type (p,q). Let Q be an open subset of R™. The space of measurable
functions g on §2 satisfying

1/q
|9lg00 == | sup o {z € Q : [g(z)| > a}
a<+0o0o

is called the weak L? Marcinkiewicz space and denoted LT (). L9>°(Q) is strictly
larger than L4(QY). Indeed, for any xo € Q, |z — 20| is in L9°(Q) and not in
Li(Q). It is a quasi-Banach space (see the next chapter) and for 1 < q it defines
a Banach space in the sense that the quasi-norm |- |, is equivalent to a norm
for which the space L9>°(8) is complete. For q > 1 functions in L9>°(R") define
tempered distributions (see chapter 6). These spaces are important in PDE and
potential theory, harmonic analysis... because it contains the important family of
Riesz operator |x|"~# in an optimal way : |z|"# € LM/=H(R™) but |z|"F ¢
L/ (n=B)(R™),

We are now proving a new interpolation theorem for which we are considering
applications in the following subsections and chapters.

Theorem 4.2 (Marcinkiewicz Interpolation Theorem- The LP case). Let 1 < r <
oo and suppose that T is a subadditive operator from L' + L"(R™) to the space of
measurable functions, i.e., for all f,g € L'+ L"(R"), the following pointwise estimate
holds:

(4.93) fora. e. x € R" IT(f+g)|(z) <|Tf|l(x)+ |Tg|(x).
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Moreover, assume that T is of weak type (1,1) and also of weak type (r,r). Then,
for 1 < p <r, we have that T is of type (p,p) meaning that

1T flle < Cfllze,
for all f € LP(R™).
Proof of theorem 4.2.

To simplify the presentation we restrict to the case r < +00. As in the proof of
theorem 5.5, for an arbitrary parameter o > 0, we introduce the following function

/() it [f(z)] >«

0 it [f@)<a

and we denote fo(z) := f(z) — fi(x) in such a way that |fy(z)| < «. The sub-
additivity of T" gives then |T'f(z)| < |T fi(x)| + |T f2(x)| and from this we deduce
that

fl(l') =

{z; [Tf(2)] > a} C{a; [TH(x)] > a/2} U{; |Tfa(x)] > a/2}
Hence, using (5.3) and (5.4), we bound dp¢(a) = |[{z ; |Tf(x)| > a}| as follows
drs(a) < drg(a/2) +dry(a/2)

20, 2mCr
(4.94) < — Al + ==l f2Z-
204 2" C”"/
< — dy + f(y)|" dy
- Ea\()| v RH\EQ\(N
where E, denotes as usual the set {z ; [f(x)| > a},
|Tf|L1
Ci = sup v
(e
and 7]
C, =su 2L :
[

and where we have also applied inequality (4.92).
Expressing now the LP norm of T'f by the mean of lemma 5.2 and combining it
with (4.94) we get, using Fubini in the third line,

+oo
/]Tf ]pdzv——/ o Vdri(a) da

“+o00
SpCl/ aﬂda/|<>|dy+pc;r/ ap‘l‘fda/ I dy
0 . 0 R\ B

—+00

@)l
—PG W) dy/ a2 da+pCl | |f(y)l" dy/ a?™ 1" da
R™ 0 R

W)l
C cr
§2Tp( e )/ FW)P dy
p—1 p—r n

which proves the theorem. O There is a stronger version of this theorem
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Theorem 4.3 (Marcinkiewicz Interpolation Theorem- The LP — L7 case ). Let
1 <p <q <400 fori=0,1 withpy < p1 and qo # q1 Let T is a sub additive
operator from LP° + LP*(R™) to the space of measurable functions, i.e., for all f, g €
L' + L"(R™), the following pointwise estimate holds:

(4.95) fora. e. v € R" IT(f+g)|(z) < |Tf|l(x)+ |Tg|(x) .

Moreover, assume that T is of weak type (po,qo) and also of weak type (p1,q1). Let
t € (0,1) and denote

1 1—1¢ t 1 1—1¢ t
— = +— and — =
DPe Po P qt qo q1

Then T is of strong type (pt, q:), that is

1T f Lo wny < Ol fl|Loe ey 5
for all f € LP*(R™) and C > 0 is independent of t.

See a proof in Appendix B of [4].

4.2 The Hardy-Littlewood-Sobolev Theorem for fractional
integration and the L? theory for the fractional Lapla-
cians (—A)*/?

In this part we are interested with the operator

L : feS®RY Hm%*fES'(R")

where o € (0,n). Observe that —— € L*(R") + L*(R"). Indeed

|x|n—a

1 1 1

— = — 1p,0) + 77— lrn\Bi(0
|x|n « |x|n «@ 1(0) |CL’|” a \B1(0)

Thanks to Young inequality (remember that S(R") — L'(R™) N L*=(R") continu-
ously) we have that for any f € S(R")

1

’x|n—a

*f

< Cop | fllrnze@n)
LINL>(Rn)

The purpose of the following theorem is to show that I, extends to a continuous op-
erator on some LP(R™) spaces into to some L?(R™). Precisely we have the following.

Theorem 4.4. Let 0 < o < n and let 1 < p < n/a. Denote

(4.96)

=
SR

1
q
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Assume first p > 1 then, I, extends as a continuous operator from LP(R™) into
Li(R™), that is, there exists Cp o, > 0 such that

V[ e IP(R") m%*f

< Cpam 1fl oy -
La(Rn)

Moreover, for any f € LY(R™) the map I,(f) € LY(R™) + L>(R") satisfies

1
=

=sup A {z € R"; [L(f(x))] > A < Con [ fllpomny -

La>°(Rn) A>0

*f

where C,,, > 0 is independent of f.
Remark 4.5. Recall from Serie j that
1 . n F g —a
f( )@):2“ : L)

’m‘nfa

Hence there exists Yo, > 0 such that

Vfe SR f(fa(f))(f):zf( *f)@):%,n e f

Recall that R
VieSRY)  F(=ANHE = f.

This justify the notation (common in the literature)

[a = Yan (_A)ia/Q .
The fractional laplacian (—A)“/2 plays a central role in several areas of mathematics
going from stochastic processes to the geometric analysis of “free boundaries”...etc.

Proof of theorem 4.4. We first aim at proving that for any 1 < p < n/a the
operator I, is of weak type (p,q) where ¢ is given by (4.96). Let x> 0 to be fixed
later. We proceed to the decomposition

1 1
|l.|nfa - |x‘nfa 1Bu(0) + ‘x|n7a 1Rn\Bu(0) '
We denote respectively
1 1 1
Ki(x) : 1,00 , Ko(®):=———1gmp, and K=K +K,=

- |:L‘|n—oz |x|n—o¢ |x|n—a '

Let f € LP(R™) such that || f||zr®n) = 1. Since K7 € L'(R"), Ky « f € LP(R™) and
since Ko, € LY(R™) for any ¢ > n/(n—a) (ie. ¢! <1—2), since z% = 1—% <1l-2
we have that K., € L” (R") and K % f € L®(R"). Thus

VfelP(RY)  KxfeL'(R")+LORY) — S'(R").
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We have obviously for any A > 0
{r eR"; |[Kx f(z)| >2\} C{z e R"; |Ky* f(z)| > M}U{x e R" ; |K % f(z)] > \}
and consequently

{z e R"; |K* f(z)| > 2} < {z € R ; [Ky«+ f(2)] > A}
(4.97)
+H{z €R™; |Koo* f(x)| > A} .

Using Young inequality we have first

V|@€R"NKMf@H>AH§/1 Ky f(o)|P da”

[Kuxf (z)[>A
< B+ fl ey < K@y 1 120y

and we compute
||K1||L1(R") — / |x|—n+a dx™ = Croa :U’a
lz|<p

Hence finally we obtain

o € R ; [Ky % f(2)] > A < & i N | f1[ gy = oo iP5AT

n,

For the contribution issued from K., x f we proceed as follows

||K00*f||L°°(R”) < “KOOHLP’(RW) ||f||LP(1R") = HKOOHLP’(RH) .

We compute

/

p
||KooHLp’(]Rn) = {/R ’x‘(—n—&-a)P d:l?n:| = Cnap Iu—n/q

For \ fixed we choose ¢4, /9 = X so that

a\ P
\mew;maﬂn>m<Aﬂmmwmmp(i)

n,o

agq

A5\

Hence by linearity we have finally proved

(4.98) VIESR"Y)  [K*flrummy < Cnap 1fllio@n -

Thus is weak (p, q) for every p € [1,n/a). Let 1 < p < n/a. We choose py = 1 and
p < p1 < n/a. We have that T is of weak type (1,n/(n — «)) and that T is of weak

type (p1,q1) where



Let ¢t such that

t
_:1_t_|__
y41
We have
1 1—1¢ t 1—1t t o ]l «
-=n—-a)—+—=n-a)—+ ——t—=-——.
q n 1 n D1 n p n

Using Marcinkiewicz Interpolation theorem 4.3. This concludes the proof of theo-
rem 4.4. O

4.3 Sobolev Inequalities

An application of the Hardy-Littlewood-Sobolev Theorem for fractional integration
is the following Sobolev inequality.

Theorem 4.6. Let 1 < p <n and let 1 < p* < 400 given by

i)

*
D=
|
S|

then there exists Cy,,, > 0 such that
VIeS®RY) I fllwer @y < Con [V F]o@n -

This inequality is an example of a vast family of inequalities called Sobolev
inequalities on bounded or unbounded domains (see [1]).

Proof of theorem 4.6. Let GG be the fundamental solution to the laplacian in R
given by theorem 1.59. We have

VFESMR)  f=b0xf=AGKf==> 0,,Gx0yf.

j=1

Hence
(4.99) Ve eR"  [f(2)] <D [0:,G|* 0, fl(x)
j=1

Observe from the explicit expression of G given by theorem 1.59 we obtain the
existence of C,, > 0 such that

(4.100) VicR'  |VG|(@) < o

— |x|nfl :

Combining (4.99), (4.100) and Hardy-Littlewood-Sobolev Theorem for fractional
integration we obtain theorem 4.6. O
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5 The Hardy-Littlewood Maximal Function

5.1 Definition

The Lebesgue measure on R” will be denoted by u. By measurable function or
measurable set in this book we implicitly mean measurable function with respect
to p or measurable set with respect to p unless we precise the underlying measure.
Integration along a variable x in R™ with respect to the Lebesgue measure on R”
will be simply denoted by dx.

If F' is a measurable set, we denote by yg it’s characteristic function.

Definition 5.1. For a measurable function f : R"™ — R, we define its associated
distribution function by

de(a) = p({z e R" : |f(z)| > a}),
with o« > 0.
With these notations we establish the following lemma.

Lemma 5.2. For a measurable function f and 0 < p < oo, we have

(5.1) 1l = p / o1y (0) da.

Proof of lemma 5.2. From elementary calculus, we get

(@) %
|f(x)P =p /0 o’ da=p /0 PN (- ac|f @)} A

By integration over R™ and Fubini’s theorem, it then follows
11 =5 [t ([ Xeorpnr o) da=p [~ 0 ata)da.
0 R7 0

For every x in R"™ and every r > 0 we denote by B, (z) the euclidian ball of center
x and radius 7.

O

Definition 5.3. For a locally integrable function f € L} (R"), we define its associ-

loc
ated Hardy-Littlewood maximal function at the point x by

1
52)  Mi@ = [ )y R0 o)

We now prove the following elementary proposition.

Proposition 5.4. Let f be a locally integrable function, then M f is measurable
function into [0, +oc]. Moreover, if f € L*(R™) then M f(x) is finite almost every-
where.
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Proof of Proposition 5.4. For any measurable function in L;,,

that the map

one easily check

1
mm—+&ﬂwzmgﬁﬁémyumw

is continuous. It implies in one hand that, for a fixed r, A, f(z) is measurable and it
also implies, in the other hand, that taking the supremum at a point z among the
real radii, » € R, coincide with the supremum among rational radii, » € Q. Since the
supremum function of countably many measurable functions is measurable ( 1.1.2
in [?]), we deduce that M f(x) is measurable. The second part of the statement
in proposition 5.4 is a direct consequence of Lebesgue-Besicovitch differentiation
theorem (1.7.1 in [?]). It also follows from Theorem 5.5 below. O

From the Lebesgue-Besicovitch differentiation theorem (1.7.1 in [?]) we deduce
the pointwise estimate |f(z)| < |M f(z)| which holds almost everywhere for any
locally integrable function. Therefore, for every p € [1, 4+00], and for every function
fin LP(R™), we obtain the identity

1 flzr@ny < [IM flzon)
The following important result gives the reverse estimate when p > 1 and ”almost”

but not quite the reverse estimate when p = 1.

5.2 Hardy-Littlewood Maximal Function Theorem

Theorem 5.5 (Hardy-Littlewood Maximal Function Theorem). Let 1 < p < oo
and f € LP(R™). Then, we have

5n 1/p
(5.3 17l <2 (22 1

Moreover, for f € L*(R™) and o > 0, we have

n

(5.4 ple = Mf() > a}) < 2| fll

Remark 5.1. The last identity (5.4) is saying that the mazimal function of an L
function is in the space L*—weak (denoted also L} (R™)). This space is given by the
subset of measurable functions on R"satisfying

(5.5) | fley, = sup {a p({z € R" : [f(2)] > a})}

L' —weak functions do not define a-priori distributions. A typical example of a func-
tion in Ly, is |x|™™ in R™. |- |11 defines a quasi-norm on Ly, - the triangle inequality
is satisfied modulo a constant, which is 2 in the present case - and L. is complete
for this quasi-norm which makes LY to be a quasi-Banach space by definition. How-
ever it is very important to remember that L cannot be made to be a Banach space
with a norm equivalent to the quasi norm given by | - |p. If it would be the case
Calderon-Zygmund theory, and this book in particular, would dramatically shrink to
almost nothing ! We discuss this fact later in this chapter when we come to the
Singular Integral Operators.
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The proof of the Hardy-Littlewood Maximal Function Theorem that we are
giving uses the following famous covering lemma.

Lemma 5.6 (Vitali’'s Covering Lemma). Let E be measurable subset of R" and let
F = {Bj}jes be a family of euclidian balls with uniformly bounded diameter i.e.,
sup; diam(B;) = R < oo, such that E C Uj B;. Then, there exists an at most
countable subfamily {Bj, }ren of disjoint balls satisfying

(5.6) WE) <5" Y u(B,).

Proof of lemma 5.6. For any ¢« € N we denote
F;={B; e F; 27""'R < diam B; < 27'R}
We shall now extract our sub-covering step by step in F; by induction on 1.

e Denote by Gy a maximal disjoint collection of balls in Fj.

e Assuming Gy, --- , G have been selected, we choose Gri1 to be a maximal
collection of balls in F,; such that each ball in this collection is disjoint from
the balls in UF_,G;.

We claim now that G = U2,G; is a suitable solution to the lemma.

It is by construction a sub-family of & made of disjoint balls. Let B; be in F.
There exists 7 € N such that B; € F;. If B; would intersect none of the balls in G;
it would contradict the fact that G; has been chosen to be maximal. Hence, for any
B; € F; there exist B € G; such that BN B; # (). Since the ratio between the two
diameters of respectively B and B, is contained in (271, 2), the concentric ball B to
B having a radius 5 times larger than the one of B contains necessarily B;. This
proves that £ C U B€g§ and this finishes the proof of the lemma. O

Proof of theorem 5.5. We first consider the case p = 1 and prove (5.4). Let
E,={xeR"; Mf(z)> a}

By definition, for any x € E,, there exists an euclidian ball B, of center x such that

(5.7) / £l dy > au(B,)

x

Since f is assumed to be in L!, the size of the balls B, is controlled as follows :
w(B:) < a7 f]lz:. Hence the family {B,}.cp, realizes a covering of E, by balls
of uniformly bounded radii. We are then in the position to apply Vitali’s covering
lemma 5.6. Let (By)rex be an at most countable sub-family to {B,} given by this
lemma 5.6. (By) are disjoint balls satisfying

> By > —M(E )

= &n
keK
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Combining this last inequality and (5.7) gives

Il = [ 1f)]dy>a Y n(B) = foulE)

Uker Br keK oo
This is proves the desired inequality (5.4).
We establish now (5.3) for 1 < p < +o0o (the case p = +00 being straightfor-

ward). Define
/() if [f(z)] = /2
filz) == ,
0 it |f(x)| <a/2.

This definition implies the following inequalities |f(x)| < |fi(z)| + /2 and also
M f(x)] <|M fi(x)| + /2 which hold for almost every z € R™ . Hence we have

(5.8) E,={zeR"; Mf(x)>a} C{zxeR"; Mfi(z) > a/2}

Observe that, for any a > 0, f; € L*(R"™). Indeed
2\""!
Ay (2) [ 1o ay <o
R™ « R™
Thus we can apply identity (5.4) to f; and this gives, using (5.8),
W(Es) <p({z eR"; Mfi(z) > a/2}) < 22| fill

<% S rwmas [T dy

Next, we deduce from Lemma 5.2 that

(5.9)

IMfE, = p / o (B da

o0 2. n
v [ a( =/ |f<x>|da:)da
0 o {z:]f(z)|>a/2}

o 9. 5n
= p / o 1 (_Oé— / X{x|f(z)\2a/2}‘f(aj)‘ dgj) do .
0 o

Using Fubini’s theorem it follows

20/ @) o1
IMFE, < 2-5p | |f(@)] / ' da) da
Rn 0

_ 20p - -
— Rn\f(xﬂ? ()P~ tde

o
NG

since p > 1 by assumption. Thus we arrive at the desired result

5np 1/p
a7 <2 (Z2) il

O
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Remark 5.7. The best constant in the previous theorem, both in (5.3) and in (5.4),
is far from being known. For 1 < p < oo, a remarkable result by Stein is that
the optimal constant stays bounded as n goes to infinity. Whether this holds or not
for the optimal constant in (5.4) is still an open problem. However, one can easily
replace 5™ with 2". Indeed, observe that the constant 5 in Vitali’s covering theorem
can be replaced with 3 + 3¢ for every € > 0 (just using (1 + €) in place of 2 when
comparing the radii of the balls). Moreover, here we are interested in a disjoint
family of balls whose dilations cover just the set of centers of the original family:
this allows to replace 5™ with (2 + 2€)™ for every e.

5.3 The limiting case p = 1.

It is important to emphasize that inequality (5.3) does not extend to the limiting
case p = 1 : the maximal operator M is not bounded from L'(R") into L'(R™).
Assume f is a non zero integrable function on R™ then M f is not integrable on R™.
Indeed, for a non zero f there exists an euclidian ball B,(0) such that

/ @) dy=n#0
B(0)

Let = be an arbitrary point in R™\ B,.(0). For such a point « one has B,.(0) C Byjy((7),
hence, it follows that

Mf(z) = iﬁ%m / )l
1
- 11(Baja) (2)) /Bzm(x) 7wl dy
1 cy
2 B @) /BT@ )y =

showing that the integrability of M f fails at infinity.

Even worth, the integrability of the function f does not ensure the local integra-
bility of M f. We illustrate this fact by the following example: For n = 1 consider
the positive function

1
)= ——
f( ) t(log t)gx(ovl) )
which is integrable on [0,1/2].For t € (0,1/2), let B:(t) = (0,2t) and we have
121
Mf(t) =

— ——dt
2t J, t(logt)?

1 1" 1
2t \ logt

This directly gives that M f is not integrable over the interval [0, 1/2].
If we assume ”slightly” more than the integrability of f one can reach the local
integrability of M f. Denote by L' log L'(R") the following Orlicz space

o 2t(log2t)

o long(R”)z{feLl(R") [ fw 1og(e+;‘{;<ﬁ;’) dy<+oo}
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This space is of particular interest for applications due to the fact in particular
that the L!log L' control of a non-negative integrable function f can be interpreted
as an "entropy control” of the probability f - assuming it has been normalized in
such a way that fRn f =1 -. Back to real-variable function space theory per se,
we shall probably see in the next chapter that L'log L' coincide with the non-
homogeneous Hardy space for non-negative functions which makes also L'log L!
particularly interesting.

Observe that a norm can be assigned to this subspace of integrable functions by
taking the Luxembourg norm :

HfHLl log Lt ‘= ||fHL1 + inf {t >0 ; / |f(y>| 10g+ |f(y>| dy}

no ot t

Theorem 5.8. Let f be a measurable function in L* log L*(R™), then M f € L}, .(R")
and for any measurable subset A of finite Lebesque measure the following inequality
holds

1/ (y)]
5100 [ dr<c, [ 1o o (e ua ) ay

where C,, > 0 only depends on n.

Proof of theorem 5.8. From lemma 5.2 we express the L! norm of M f as follows

[ sy ay< [ iz e A MSfl@) > a}) da
A 0

Denote p# the restriction of the Lebesgue measure to A and use again the notation
E, ={z € R" |Mf|(z) > a}. Let § > 0 to be chosen later on. We write

JAIMf|() dy <[5 A (Ea) do+ [ pA(E.) da
(5.11)
<6 p(A) +2 [;15° i o) do
Applying inequality (5.9) to (5.11) gives
Sl MFI(y) dy <6 u(A) +2-5" [5°9 [ ey @) dy
<0 p(A) +2-5" [ [ f(y)] log™ 2L ay

where log™ - = max{0,log-}. Choosing 0 = [.. |f(y)| dy/2p(A) gives inequality
(5.10) and theorem 5.8 is proved. O

A converse of theorem 5.8 will be given in the next subsection - see theorem 7.4
- once we will have at our disposal the Calderén-Zygmund decomposition.
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6 Quasi-normed vector spaces

6.1 Definition and examples

In the following, K will denote either R or C (since the theory below works equally
well for real or complex coefficients).

Definition 6.1. A topological vector space over K is a K-vector space V' with a
topology T such that

o the sum, i.e. +:V xV — V, is continuous,
e the multiplication by scalar, i.e. - : K xV — V' is continuous,

e the topology T is Hausdorff.

Example 6.2. A normed vector space (V|| ||) is a topological vector space with the
topology induced by the canonical distance, namely d(z,y) = ||z — y||.

Definition 6.3. Let V' be a K-vector space. A quasi-norm on V is a function
|-|:V —[0,00) such that

e |z| =0 if and only if t =0,

e for all A\ € K and all x € V we have |\x| = |A||z],

e there exists a constant C' > 1 such that, for all x,y € V', we have
[z +y| < O] + [y)).

The couple (V.| |) is called a quasi-normed vector space.

Remark 6.4. For C' = 1 this is exactly the definition of a norm. In general, we
use the notation | - | in place of || - || to recall that we are in presence of a quasi-
norm. Notice that the last property in the definition, which replaces the usual triangle
inequality, does not allow to say that the function d(z,y) = |x —y| is a distance any
longer! Nonetheless, we will see that a quasi-norm induces a canonical topology and
that this topology is always metrizable (by means of a highly nontrivial construction
of a true distance function d).

Example 6.5. Given f : R" — K measurable, let |f|p1. = sup,-oapu{|f] > a}
and let LV°(R™) be the set of all functions f such that |f| 1. < oo. Notice that,
by Chebyshev-Markov inequality, L*(R™) C LY*(R") and |f|pie < |||z Also,
| - |pre @5 @ quasi-norm (with C = 2): given two functions F,g : R" — K, for any
a > 0 we have

udlf +91>ad) < u({171> 5}) +n({lsl > 5}) <20l +2lgler

(since {|f +g] > a} C{|f] > §}U{lg] > §}). Hence, |f 4 glp100 < 2[f|1100 +
2|g|pr. The second requirement in the definition is satisfied since, for A # 0,

au({|Af| > a}) = |/\||°‘7‘,u({|f| > ﬁ}), while the first one is trivial.

In terms of this quasi-norm, Hardy—Littlewood mazimal inequality (for p = 1)
says that | f|pree <5 f||z:-
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6.2 The topology of quasi-normed vector spaces

Theorem 6.6. A quasi-normed vector space (V.| |) has a unique vector space topol-
oqy such that

B,(0) ={zx eV |z|<a}, a>0
15 a local basis of neighborhoods of 0.

The above requirement should be compared with the situation of a normed vector
space, where B,(0) is the standard ball of radius o and center 0. Notice that the
theorem is not asserting that B, (0) is an open set in this canonical topology (which
could be false in general)!

Proof of Theorem 6.6 If such a topology 7 exists, then the sets
By(y) ={z eV |ly—z|<a}, a>0

form a local basis of neighborhoods of y for any y € V' this is because the translation
by y, namely the map x — x + y, is continuous and has continuous inverse x —»
x — y (with respect to 7), hence it is a homeomorphism and carries a local basis of
neighborhoods of 0 into a local basis at y. So the open sets of 7 must be the sets

(6.12) U C V such that Vy € U 3a > 0 s.t. B,(y) C U.

This shows that, if 7 exists, it is necessarily unique. To show existence, let us declare
that the open sets are the ones satisfying (6.12). They define a topology, since the
axioms for a topology are clearly satisfied. Let us check that the sets B,(0) form a
local basis at 0: since every open set contains one such set by definition, it suffices
to check that B,(0) includes an open set U containing 0. Let

U:={ze€V:35>0s.t. Bs(x) C B,(0).

Clearly, 0 € U and U C B,(0). In order to show that U satisfies 6.12, given z € U
let § > 0 such that Bs(z) C B,(0). We claim that B,(z) C U, with ¢ := 5% (which
will conclude the proof that U is open in 7).

Indeed, if y € B,(x) then B,(y) C Bs(xz) C Ba(x), since

|z —z| <C(lz—y|+ |y —x|]) <2Co=¢§ forall z€ B,(y).

This shows that y € U (by definition of U), i.e. that B,(xz) C U, which is what
we wanted. In order to show that 7 is Hausdorff, given x # y it suffices to observe
that B, (z) N Ba(y) = 0, where a := ‘QCQ;yl > 0: indeed, we just proved that B,(z)
and B,(y) are neighborhoods of x and y respectively (being 7 clearly translation
invariant).

Finally, we have to check that the operations are continuous. If x + y = z and
U is an open neighborhood of z, then there exists a > 0 such that Byco(2) C U.
Hence, given 2’ € B,(z) and y' € B,(y), we have

7' +y =2 = [ =)+ ( —y)| < Cla’ — 2|+ Cly —y| < 2Cq,

so that the sum maps B, () X B, (y) to a subset of U. Since B, (x) and B, (y) contain
open neighborhoods of x and y respectively, this shows that the sum is continuous.
The continuity of the multiplication by scalar is similar and is left to the reader. O

115



6.3 The metrizability of quasi-normed vector spaces

The metrizability of quasi-normed vector spaces was proved independently by Tosio
Aoki and Stefan Rolewicz between 1941 and 1957.

Theorem 6.7. (Aoki-Rolewicz)

The canonical topology of a quasi-normed vector space (V)| |) is metrizable. In fact,
it is induced by a translation-invariant distance d(z,y) := Az —y), for a suitable

)|
function A 1 'V — [0,00) satisfying A(z) = A(—z), A(z +w) < A(2) + A(w) and
vanishing only at 0.

Remark 6.8. In general, one cannot hope to have a distance induced by a norm
(meaning that A is a norm, i.e. it also satisfies A(ax) = |a| A(z) for a € K): in
this case (V, 1) would be a locally convex topological vector space, but we will see in
Remark 6.17 that this fails for LY (R").

We will deduce Aoki—Rolewicz theorem from the following lemma.
Lemma 6.9. Let 0 < p < 1 be defined by 2'/? .= 2C. Given x1,...,x, € V we have
ol S Al )

Proof of Lemma 6.9. This proof illustrate the utility of decomposing dyadically a
range of values. This idea will turn out to be fruitful also later in the course. Define
H :V —[0,00) by the following formula:

0 ifx=20
H(z) := {Qj/p if 20-1/p ~ 2| < 2i/p.
Notice that |z| < H(x) < 2'/?|z|. We show, by induction on n, that
(6.13) w1 4+ @] < 2YP(H (0)P + -+ + H(2,)") 7.

By the observation just made, (6.13) clearly implies the statement. Also, (6.13)
holds for the base case n = 1. We now show that it holds for a generic n, assuming
it holds for n — 1. By symmetry, we can assume that

71| 2 |2o| = - 2 [l
which implies that H(x;) > H(x9) > --+ > H(x,). We distinguish two cases.

i) There exists an index 1 < iy < n such that H(x;) = H(zs.1): let 270/ be
the common value of H at z;, and x;,1 and notice that, since

iy + Tigg1| < O[] + |2igs1]) < 2C - 20077 = 200t D/p,
we have H(z;, 4+ zi,41) < 200TD/P This gives
H (23 4 @ig41)? < 27 = H(a;,)? + H(25911)"

and so, grouping xy + -+ + &, = X1 + - + Tig—1 + (Tig + Tigy1) + Tigr2 + - - -
and using induction,

loy + - x| < 21/p(H(x1)p
< 21/p(H(x1)p

s H (i + @) 4 Hwa))

_|_
oo H(wyy)P A+ H(wig1)P + -+ H(x,)P) VP,
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ii) We have a strictly decreasing sequence H(xy) > H(xg) > --- > H(x,): in
this case we must have H(z;) < 2-0"V/PH(z;) for all i. Also, iterating the
approximate triangle inequality we obtain

|21+ -+ 2| S C(zg| + |22+ - + 24])
< max{2C|x;|,2C|xs + - - - + x|
< max{2C|z1[, (20)* |2a] , (2C)? |3 + - + |
- < max(2C) |z

A

< max 2P H (1)
< 21/pH(:c1)
and (6.13) trivially follows. 0
Proof of Theorem 6.7. For all z € V' we define

A(z) = infz |z; [P, x= Z:L‘Z-, n>1,
i=1 i=1

meaning that the infimum is taken over all possible representations of x as a finite
sum of elements of V. Since a possible choice is n = 1 and z; = x, we trivially have
A(x) < |z|P. Moreover, the previous lemma gives

|zlP =[xy + -+ 2P < A(|2 P+ -+ |za]P)

for all such possible representations, so A(z) > ;|z[P. In particular, this implies that
A vanishes only at 0. From the definition it is clear that A(—z) = A(z).

Also, A(xz+y) < A(z)+A(y): givene > 0,ifx =1+ +x, andy = yi+- - -+y,
are chosen so that )", [P < A(z) + e and 377, |y;|P < A(y) + ¢, then (being
THY=>,%+>;Y;)

AMa+y) < ol + >yl < Alx) + Aly) + 2e.
i=1 j=1

Hence, defining d : V x V — [0,00) by d(z,y) := A(x — y) gives a distance on V.
This induces the same topology as the quasi-metric since

Brl/l’(‘r) C {y ev: d(‘rhy) < T} C B(4T)1/p(l‘)
for all z € V and all r > 0. O
Remark 6.10. The space LP(FE), with 0 < p < 1, is a quasi-normed vector space,

with quasi-norm
» 1/p
o= ([ 1),
E

which yields a constant 2'/P~! in the approximate triangle inequality. The construc-
tion Aoki-Rolewicz metric is reminiscent of the distance

d(f.g) = /E =g

on LP(E) (for 0 < p < 1), which induces the same topology as the quasi-norm but
is built in a nonlinear way.
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6.4 Lorentz spaces

We will now see important concrete examples of quasi-normed vector spaces, namely
Lorentz spaces, which refine the classical Lebesgue spaces in terms of control over
the integrability of a function. Standard estimates such as Sobolev’s embedding or
Young’s inequality can be slightly (but crucially for some applications) improved
using these more refined spaces.

6.5 The space LP*°

Definition 6.11. Let E C R" be a set of positive measure. Given 1 < p < oo and
a measurable function f: E — K, we let

| flopoo = Sglg ap({|f] > a})l/P

and we define LP>°(E) to be the set of all functions [ : E — K with |f|p= < 0.
We also let | f|poc.e := || f|lLo, S0 that L>*®(E) = L*(FE). The space LP> is called
weak LP (however, it is totally unrelated to the weak topology on the LP space!).

Remark 6.12. Notice that this specializes to Example 6.5 when p = 1. Again, we
have LP(E) C ||fllzr). For p < oo, this inclusion is strict in general: take e.g.
E = R" and f(z) := |z|7™?, which lies in LP>°(R") \ LP(R") (the inclusion is
actually always strict for subsets of R, as can be seen taking |z — To| TP with xg a
density point for E).

Remark 6.13. Using the inequality (o + B)V/? < o/? 4+ BYP and arguing as in
Ezample 6.5, we see that LP*°(E) is a quasi-normed vector space, with C' = 2.

Definition 6.14. A quasi-normed vector space is called quasi-Banach if every | |-
Cauchy sequence converges to a (necessarily unique) limit in the canonical topology,
or equivalently converges with respect to the quasi-norm.

Remark 6.15. Notice that a sequence is Cauchy with respect to the quasi-norm if
and only if it is Cauchy with respect to the Aoki-Rolewicz distance. The same holds
for convergence.

Proposition 6.16. The space LP"*°(E) is a quasi-Banach space.
Proof. Omitted. O

Remark 6.17. The space LY (R™) is not locally convex, meaning that it does not
possess a local basis of neighborhoods of O made of open convex sets. This rules
out the possibility of finding a norm equivalent to its quasi-norm, which is the main
difficulty in Calderon—Zygmund theory for singular convolution kernels (so that, as
we will see, not all kernels in LV (R™) but only those with enough cancellation and
reqularity give rise to the important L' — LY bound). Let us see this failure of
convezity when n =1, for simplicity.
For all integers m > 2 and 1 < k < m let

Jmx(x) = L |x—£|_1.

"~ logm m
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Observe that fp i € LY°(R), with |fn k|1 < 52, so that fr e — 0 in LY(R)

— logm?’
as m — oo (uniformly in the index k). On the other hand, the arithmetic mean of
fmis -y frm 1s pointwise bounded from below on (0,1):
- . o 1 <1
F, = A @ F et (@) S o>e>o,
m logm =

since if %0 <z < % then the left-hand side is at least

1 <m+ +erm+ n m )
ko 1 1

mlogm m — ko

(the first part being not present if kg = 0). So |Fy|p1 > ¢, implying that F,,, cannot
converge to 0. This however should hold if LY*(R) were locally convez!

6.6 Decreasing rearrangement

In order to define all the Lorentz spaces LP? we have to introduce the notion of
decreasing rearrangement.

Definition 6.18. Given f : E — K measurable, we define its decreasing rearrange-
ment f, : [0, +o0] — [0, +o0] as

(6.14) fe(t) :==inf{0 < XA <400 pu({|f] > A}) <t}
with the convention that 0 - 0o =00 -0 =0 (as it is customary in measure theory).

Remark 6.19. The infimum in (6.14) is actually always a minimum: if \y > Ay >
. are values such that u({|f| > \i}) <t and A := lim;_,o0 A;, then we still have
p({f] > Asc}) <t (since the last set is the increasing union of the sets {|f| > \i}).

Hence, p({|f| > f.(1)}) <.

Remark 6.20. Define ds(N) := p({|f| > A}) (as a function from [0, +o00] to itself),
which is called distribution function, or tail distribution in probability theory. It
is clear that dy and f, are decreasing and dy is right-continuous. Also f. is right-
continuous: given 0 < ty < 400, setting X := limt%tg f«(t) we have

PS> XD = lim p({If] > (O < lim t = t,

where the first equality holds since we have a decreasing union of sets with finite
measure. Hence, f.(t) < X. Since the converse inequality also holds (being f.
decreasing), the claim follows. One can show that dy and f. are “pseudo-inverses”
of each other:

e as already said, dyo f.(t) <t and, assuming 0 < t, f.(t) < +oo, equality holds
if and only if f.(t') > f.(t) for allt' < t;

o similarly with f. and dy interchanged.
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Proposition 6.21. The functions f and f., although defined on different domains,
have the same distribution function (meaning that dy = dy, ) and the same decreasing
rearrangement (meaning that f. = (fi)«)-

Proof. Fix 0 < XA < 400 and notice that, given 0 <t < 400,

plfl>A)) <t e A= f.0) & {fi > A S 0,8) & u({f. > A}) <t.

The penultimate equivalence follows from the fact that f, is decreasing, while the
last one follows from the right-continuity of f. (so that one cannot have {f, > A} =
[0,¢]). Both statements now follow from this chain of equivalences (observe that
fi(+00) = (f+)+(+00) = 0). O

Corollary 6.22. For any measurable f : E — K, we have |f|ipoc = |fi|1poo for all
1 <p<oo. Also, we have ||f||Lr = || f«||Lr since

11, = / AL ds(A) dA = / PNy (N dA = £

0
for 1 <p<oo and ||f| g = inf{X: df(A) =0} = || fi Lo

The following two lemmas are very useful in practice, for instance when approx-
imating a function by mollification or by simple functions.

Lemma 6.23. If|fi| = |fs| pointwise a.e., or more generally if | foo| < liminfy_, | fx|
a.e., then dy <liminfy ,dy, and (foo)s < Uminfy oo (fi)s-

Proof. Let N C E be anegligible subset such that | f,,| < liminfy_, . | fx| everywhere
on E\N. Given 0 < A\ < 400, if & € N has |fo(z)| > A then | fi(x)| > A eventually,
S0

X{lfwl>ANN < HMANEX g7 oA -

Integrating and applying Fatou’s lemma gives the first claim. Now let 0 <t < 400
and

A= (fr)«(1), A = liminf \.
k—ro0

Passing to a subsequence, we can assume that A = limy_, ):k Notice that the
hypothesis still holds (in both versions). Again, if |fo(z)] > A (and = ¢ N) then
| fr(x)| > A\ eventually, so as before we obtain

n({Ifool > A}) < liminf u({| fi] > Me}) <

by Remark 6.19. By definition of decreasing rearrangement, it follows that (fo)«(t) <

Lemma 6.24. If |fi| T |fs| pointwise a.e. (meaning that |fx| is the increasing
limit of | fx|), then dy, 1 ds. and (fi)« T (foo)s everywhere.
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Proof. Let N C E be a negligible subset such that |fi| T |fs| everywhere on E'\ N.
For every 0 < A < +o0, since {|fo| > A} N E is the increasing union of the sets
{Ifa]l > A} N E, we get

Ao = p{l el > A} = lim ({1l > A}) = Jim dy, (V).

Given 0 < t < +o0, we set A, = (fi)«(t) (for k € NU {oo}) and A = limy_,o0 A
This limit exists and is at most A\, as

A< << A
We also have

n({|fol > A}) = Jim p({[ /] > A}
= lim p({{fil > Ae})
< liminf p({[fs] > M}) <,

S0 Moo = (foo)«(t) < X. We conclude that Aog = A, ie. (fi)s(t) T (foo)«(t). O

6.7 The Lorentz spaces L1

Definition 6.25. Given 1 < p < oo and 1 < q < 0o, we set

,di

e i= | r (00 5

and we call LP1(E) the set of all measurable functions f : E — K with | f|re < 00.
We also set | f|re.a := ||fllz~ (so that L>*(E) = L>(E)).

Remark 6.26. As we will see, even if f, is hit by the exponent q, the first exponent
p s the dominant one.

Proposition 6.27. The quantity | - |pra i a quasi-norm.

Proof. Tt suffices to show that (f + ¢).(t) < fu(£) +g+(%). Actually, if 0 < 5,5t <
+00 and s+ &' < t, it always holds that (f + ¢).(t) < fu(s) + g«(s'), since

p{lf + 9l > fuls) + 9:()}) < n({If1 > fu(s)}) + nl{lgl > g.(s)}) < s+ 5" < 1.
O

Remark 6.28. It follows that LP(E) is a quasi-normed vector space for all ex-
ponents 1 < p < oo and 1 < g < oco. Again, one can show that it is always a
quasi-normed vector space. For p > 1, as opposed to the case of LY, we will see
that the quasi-norm admits an equivalent norm, giving thus rise to a genuine Banach
space.
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Remark 6.29. The Lorentz quasi-norm | |r».a measures the integrability of the func-
tion, rather than the reqularity. In the language of probability, it depends only on
the law of f, since it is defined in terms of f. (which in turn depends only on dy).
Rearranging the places where the values are attained, thus possibly making the func-
tion very irreqular, does not alter the LP9-quasinorm. One can define it in the same
way on general measure spaces. What we just observed can be made precise as fol-
lows: if h : E — E' is a measure-preserving map between two measure spaces, then
\f o hlrea = |f|ira for any f: E' — K (since df = dyop, and thus f. = (f o h).).

The definition of the L”9-quasinorm when g < oo suggests the following equiva-
lent definition when ¢ = oo

Proposition 6.30. For 1 <p < 0o we have |f|rr.e = SUPg<ic o P f.(t).

Proof. (<): given A > 0 with ds(\) > 0, set t := df(\) — € (where € > 0 is arbitrary
and will tend to 0). Letting X' := f.(¢), being df(\') <t = d;(\) — € we must have
A > \. Hence,

Mdr(\) — )P < NtVP = £,(0)tP < sup  tYP£.(1)

0<t<+o0

and the inequality follows letting € | 0 and then taking the supremum over \.
(>): analogous. O

Similarly, the LP9-quasinorm can be expressed in terms of the distribution func-
tion.

Proposition 6.31. For all1 <p <oo and1 < g < oo we have

[e.e] 1/
o =p/1( [ X007 a0
0

Proof. We start with the trivial observation that one has f.(t) > A if and only if
ds(A) > t, thanks to Remark 6.19. This, together with Fubini, gives

00 fx(t)
1 = / e/t / A AN dt
0 0

q / /PNt d)
(£ A): fa t)>>\}

ds (A
= // tq/” AL dt d

=p / dp(N) VPN N, O

0

Proposition 6.32. If |fi| — |fs| pointwise a.e., or more generally if |fo| <
liminfy o | fx| a.e., then

|foo |Lp7q S hm lIlf ’fk |Lp,q .
k—o0
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If fr = foo and [fi| T | fs|, then
’fk - foo‘Lm — O,

provided that fo € LP9(E) and 1 < p,q < co. In particular, simple functions are
dense in LP1(E) if 1 <p,q < 0o

Proof. The first part follows immediately from Lemma 6.23 and Fatou. The second
part follows from the pointwise convergence (fx). — (foo)« given by Lemma 6.24,
together with the dominated convergence theorem. O

Proposition 6.33. We have
(1) LPP(E) = LP(E),
(2) LM(E) € LP(E) if g <,
(B

(3) LPY(E) C L"“(E) if u(E) < oo and p >t (regardless of ¢ and u).

Proof. (1) From the definition of the LPP-quasinorm and Corollary 6.22 we have
[f1zre = Ifllze = IF11Zs

(2) We assume p < oo without loss of generality. We first deal with the case
r = oo: since f, is decreasing, we deduce

P f (1) = (% /Ot Sq/plf*(t)qu>1/q < (% /Ot Sq/pflf*(s)qu) Y (%)qum,q

for all 0 < ¢t < +o0. Taking the supremum over ¢, we deduce that |f|pr.~ is
estimated by |f|r« and the inclusion follows. If r < oo, notice that

[flerr = (/0 s f(s)" ds>1/r

< (/ s1P £, (s5)1 d3>1/r sup s/ g ()=
0

S 0<s<+00
= f5al Fl 2
< C(p, g )| F1al £

/T T

by the previous case. Dividing both sides by |f | Lpr and raising to the power o

the claim follows.
(3) From the definition of f, it follows that f,(s) =0 for all s > u(E). In view
of (2), it suffices to deal with the case u =1, ¢ = co. If p < 0o we have

w(E) ds u(E) ds
mmz/‘szﬁ—s(/ Sy s (s).
0 S 0 0<s<u(E)
1

Since ; — % > 0, the first integral is a finite constant, while the supremum equals
| f|zree by Proposition 6.30. If p = oo, it suffices to bound f.(s) by |/ f||ze right

after the first equality. O]
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Remark 6.34. The inclusion LP1(E) C LP"(E) is always strict: assuming 0 € E
is a density point without loss of generality, it is easy to check that

o x| € LP(E)\ U, e LM(E),
o |z| /P log(lz|~1)~xB, . () € LPU(E) if and only if ag > 1, for all a > 0.
We now turn to the promised fact that L7 is normable for p > 1.

Theorem 6.35 (normability of LP?). For all 1 < p < oo the LP9-quasinorm has an
equivalent norm, for all 1 < q < oo.

Lemma 6.36. Define f.. : (0,4+00) — [0, +o0] by

= %/0 f«(s)ds

This modification of the decreasing rearrangement satisfies

(6.15) fuult) = & sup / fl: F C B, u(F) < t).

Proof. The statement holds if f is a nonnegative simple function, namely f =
Zi]\il Aixa; with Ay > Ao > ... and A; N A; = (: indeed, it is easy to check
that both sides of (6.15) equal

. Z Nipt(A) + (A1)

where k is such that S°F | u(A;) <t < S8 u(A) (k= Nift > 3N u(A;)) and
0 =1t— Zle 1(A;). In general, we approximate |f| pointwize from below with
nonnegative simple functions f;. By Lemma 6.24 and the monotone convergence
theorem, both sides of (6.15) converge from below to the desired quantities. ]

Corollary 6.37. We have (f 4+ ¢)ux < fix + Gus-

Proof. This immediately follows from the inequality [, |f +g| < [ |f]+ [z ]9] and
the last lemma. O

Lemma 6.38 (Hardy’s inequality). Given 1 < p < oo, 1 < g < o0 and f :
(0, 400) — [0, +0o0], it holds

(/Ooo (é /Ox f(t) dt)de>1/P Sp,</0°° ) di[))l/p

and more generally

</OOO xq/pl(é /Om f(t) dt)qu>1/q < p’(/ooo 2P f () d;z:) Va
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Proof. We argue by duality. In order to show the first inequality, let ¢ > 0 with
llgll,» = 1. We get

/Ooo (i /Ozf(t) dt)g(a:) d:c:/ooo (/Olf(sx) dt)g(x) dz
= [([ stsmratora) as

1
< [ 1) uslaly ds
1
= [ 5 ds
0

=Pl flle-

The proof of the second inequality is identical, working rather with the measure
space X := ((0,00), 277~ dr) and using the duality (L(X))* = L (X), observing
that we still have || f(s*)||zacx)y = s~V fll 2a(x)- O

Proof of Theorem 6.35. We assume without loss of generality that 1 < p < oo. We
let

e ([ ety

for 1 < g < oo and || f|zee = SUPgeieu t/P fox(t), i.e. we are merely replacing f,
with f,. in the definitions. From Corollary 6.37 it follows that this is a norm (when
q < oo we also use Minkowski’s inequality for L9(X), where X is the same measure
space as in the previous proof). Finally, since f, is decreasing, we have f,, > f. and
thus || f||zea > |f|rra. Conversely, by Hardy’s inequality applied to fi,

1 fllzea < P flrea.

This shows that the norm || ||zr. is equivalent to the quasi-norm | |ze.a. O

Remark 6.39. By Fatou’s lemma, the conclusions of Lemmas 6.24 and 6.23 are
still true with f.. in place of f.. Hence, Proposition 6.32 still holds with | |rp.a
replaced with || || e

The dual spaces of Lorentz spaces are the expected ones, for p > 1.
Theorem 6.40 (Dual spaces). For 1 < p < oo and 1 < ¢ < oo we have
(LP9(E))" = L (B),
where duality is represented by integration.

Proof. Omitted. O
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6.8 Functional inequalities for Lorentz spaces

Theorem 6.41 (Holder’s inequality). Assume that f € LPY9(E) and g € LP>%2(E)
with

1<p17p27p<oo7 1§Q1a¢]2;‘1§007
1 1 1 1 1 1
- = —+ — Z .
pP1 D2 p q1 q2 q
Then fg € LPYUE), with ||fg|rra <
P1, P2, 41, G2)-

CN fllzerar ||g]| rzae (where C' depends on

Proof. Thanks to Proposition 6.33, we can replace ¢; and ¢, with possibly higher

exponents and assume, without loss of generality, that qil + q% =1 Given 0 <

L
t1,ts < 400, notice that

p{If1> ft)}) <t p(flgl > g.(t2)}) < 1o,
so that, since | fg| > f.(t1)g.(ta) implies either [f| > f.(t1) or |g| > gu(ta), we infer
n({[fgl > fo(t1)ge(ta)}) < b1+t
and thus
(f9)«(t1 +12) < fi(tr)g«(t2).

This, together with the classical Holder’s inequality for Lebesgue spaces with expo-
nents £ and £ (on the measure space (0, +00)), gives

[fglena = [[£7P79(£g)u ()] 2o

< e, (). (5) e

= C”||t1/p1—1/q1f*(t) tl/PQ-l/ng*(t)”Lq

< O L (1) o (177272 g (1) 0

= Ol|f|LP1,Q1 |g|Lp2,q2. B

Remark 6.42. Of course, Hélder’s inequality works also if (p1,q1) = (00, 00) (or
similarly if (p2, q2) = (00,00) ), since in this case it reduces to the inequality

1fgllra <A fllz=liglzra < Cllfllzoeeelgll oz

Theorem 6.43 (Young’s inequality). Assume that f € LPY7(R"™) and g € LP>%2(R")
with

1<p1,p2,p<00, 1SQ1>Q2;QSOO7

Then the convolution [ * g is a.e. defined (meaning that the integral defining f * g
exists a.e.) and fx g € LPYR™), with ||fg||rea < C| fllorva|lg|lrze: (where C
depends on pi,p2, q1, q2)-
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Remark 6.44. In some cases, this improves the classical Young’s inequality for
Lebesque spaces: for instance, it gives L3/ L3> C L3 rather than just L3> L?/? C
L3,

The proof, due to O’Neil, is now given.
Lemma 6.45. If f,g > 0 are measurable functions on R" and f < axg,, then
(1) (f % g)wr < app(E) G,

(2) [I(f % g)uelloe < vps(Eo)gun (11(En)).-
Proof. Given 0 <t < 400 and F' C R" with u(F) < t, then by (6.15)

t‘l/Ff*g < at‘l/F/Eog(w—y)dydw
[Eo t /Fyg(x) dx dy

Oz/E gui(t) dy

as(Fo)gon(),

so that taking the supremum over F' and using (6.15) the first claim follows. Simi-
larly, notice that

at™ 1// x—y dydx—oztl// y) dy dx
Ey EO

< at " u(F) p(Eo) gus (11(Eyp))
SOZ,U/(EO)Q**( <E0>>7

as u(x — Ey) = p(Fp). This gives the second claim. O

IN

Lemma 6.46. For f,g > 0 and 0 <t < +o00, we have

(f * )us(t) < tfu(t)gun(t / fiGe-

Proof. We can assume that f is simple and finite, so we can write

N
f = Z QX E;
=1

with a; > 0and R = Ey D E; 2 --- D Ex 2 Enyi := (. Possibly adding
artificially a set with measure ¢, we can assume that t = p(FE;,) (with 1 <ig < N).
Using the previous lemma we have

i0—1

(6.16) (f * )l Z (i) gur (e (E;)) + Z it (E;) G (t

i=ig
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Observe that f, equals S7_, a; on the set [u(Eji1, u(E;)). The first sum in (6.16)
equals

io—1 io—1 N M(E) N min{gio—1} (k)
Yo esEX [ e [
i=1 j=i Ejt1) i= Ej1)

and the contribution for j < ¢ is precisely

o=l (B I o=l ru(E;) e
wE N(Elo

i+1) =1 w(Ejp1)
On the other hand, the contribution for 5 > i is

N mln{j 0—1}

w(E;j) A
/ 0g. = 3 (B e (0(Ey) — p(Eyin)gon (0 Eyir))

j 10 (Ejt1) J=t0 i=1

i0—1 i9—1

o Z Oéz’,u(Eio)g**(,u(Ez’O)) = Z Oéi/L(EiO)g**(t)

where ((En11)gs(En+1) has to be replaced with 0. Finally, notice that

i0—1
izl: Q&i,u(Eio)g** + % OZZPJ g** = (\/Eio f*>g** (t) = tf** (t)g**<t)
by (6.15). .

Proof of Young’s inequality. We assume ¢ < co. The case ¢ = oo (where ¢; = ¢2 =
00) is far easier and left to the reader. It is clear that

[P f () gt 2o = ([P0 fr(2) 117272, (1) | 1o
<P f () |z (187727 g (8] oo
= [[fllzovar llg Loz

(assummg without loss of generality that 1 -+ L

- = %) Moreover, changing variables

== s= ; and using Hardy’s 1nequahty,

(/OOO tq/P—1</oo f(5)gs(s) ds)th> 1/q
— (/Ooouq/P 1<u/0 r 2 f(r ) gu(r _l)dT)qdu>1/q

o / 1/
< C’(/ ud/? _lu_qu*(u_l)qg*(u_l)qdu) !
0

— C'( /OOO tq+q/p71f* (t)7g. (1) dt) 1

— CHtl/prl/ql Fu(t) tl/”Z’l/ng*(t)||Lq,
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which can be estimated by |f|pri.01|g|pr2.e2 as before. The inequality follows from
the fact that

1 gllzea < 127 fr(£)gin () +t1/p1/q/ fegell e
t

by the previous lemma. O
Let us now see an important consequence when n > 2.

Corollary 6.47 (improved Sobolev’s embedding). We have the continuous embed-

ding WHP(R™) C LP*P(R™) for all 1 < p < d, where ]% = zla -1

Sketch of proof. By mollification and cut-off, it suffices to show that ||f||;sr <
C|| fllwi» whenever f € C°(R") (since, by Lemma 6.23 and Fatou’s lemma, the
LP9-quasinorm is lower semicontinuous under pointwise convergence a.e.). We have

f=GxAf.

where G is Green’s function for the Laplacian. Recall that, up to a multiplicative
constant, G equals log|z| if n = 2 and |z|>™ if n > 3. In all cases, commuting a
derivative with the convolution, we get

" 0G Of
f_z;ﬁa:i*&vi

1=

(this is legitimate since G € W,29(R") for any ¢ < -"-) and, observing that g—g

oc n—1
Zq

equals = up to a multiplicative constant, we get \g—g] e LV(=1):(R"). The claim
follows from Young’s inequality for Lorentz spaces. [

Remark 6.48. The improved Sobolev’s embedding also holds for p = 1, although
this is not immediately clear from this proof. Instead, it can be shown using the
coarea formula and the isoperimetric inequality. Assuming without loss of generality
f € C* nonnegative,

\ﬂum=ﬂ*ﬂmuﬁf>kbmﬁﬂ
C g = A d\
< A WS = A)

—c [1vs.

where the first equality is Proposition 6.51, the inequality is the isoperimetric in-
equality for the set {f > A} (which is a smooth bounded domain for a.e. X\; notice
that 1/1* = (n — 1)/n) and the last equality is the coarea formula.

Proposition 6.49. In spite of the fact that W™ (R™) € L>®(R"), a function f €

L .(R™) with weak gradient in the Lorentz space L™'(R™) has a continuous repre-

sentative and satisfies

If = c(F)llze < CV fllpna

for a suitable constant function c(f).
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Proof. The main point is that, if f € C°(R™), the same proof as Corollary 6.47
gives

1l < OV £l pnr-

Instead of Young’s inequality, we just use this version of Holder: L™!. L7/ (n=1).00 C [1
(same proof as Theorem 6.41). This allows to say that

|_/’8xl 8:{:1

for all x. The rest of the work is to reduce to this situation.

Notice first that the convolution with a nonnegative function p. € C°(R"), with
support in B.(0) and [ p. = 1, satisfies
(617) HVf - V(,Oe * f)HLp,q < sup HVf — Vf( + h)HLp,q

|h|<e

=) dp(y) < VG| pnson.00 |V f| L

for all 1 < p < 00, 1 < ¢ < oo: indeed, being f € W' (R™), p * f is smooth and its
gradient equals p, x V f, which can be thought as a pointwise limit of convex com-
binations of functions V f(- + h), with |h| < € (e.g. approximating the convolution
with a finite sum as for a Riemann integral). The claim follows from Remark 6.39
and the fact that || ||zr.e is @ norm invariant under translations in R™.

As a consequence, if 1 < p, ¢ < oo then V(p. * f) — Vf: in fact, g(- + h) —
as h — 0 when g = xg is a characteristic function (with u(E) < oo) because
W EA(E —h)) = 0 and (Xg — XE—h)s = X[ou(EA(E—R))), SO by Corollary 6.32 this
holds also for a generic g € LP9(R") and the claim follows from (6.17). So there
exist smooth functions f such that fr, — f in L}, .(R") and Vf, — Vf in L™ (R").

For any R > 1, the embedding W™!(R™) C L*(R") and Poincaré’s inequality
give

I fe = cirllon(Bor) < CRVZIV fillin(Bom) < CRVPIV ficll ot By
(with ¢ g := fBQR fr) and thus, as the proof of Proposition 6.33(3) shows, we get
Jr = crrllLnrBor) < CRIV frlln

Finally, choosing a smooth cut-off function ¢ with ¢ = 1 on Bg, ¢r = 0 outside
BQR and |V¢R| S %,

2
IV (ér(fr — cx,r)) |l Ln1 < ﬁ”fk — ¢k rllna (o) + IV fellzns < OV fellpna
and thus, by the initial part of the proof,
Ife = cr,rlloBr) < [|Or(fr — cer)llze < ClV fillpnr.

The constants cg g are obviously equibounded (in k, R), since this inequality gives
in particular

|+ fo— corl < CIV frllprr
By
Hence, letting R — oo along a suitable sequence depending on k, we get || fi —

k|l < C|V fel|lpna (with supy x| < o0). Letting & — oo, again along a subse-
quence, we get the statement. [
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6.9 Dyadic characterization of some Lorentz spaces and an-
other proof of Lorentz—Sobolev embedding

In this part we show that, when ¢ < p, the LP%-norm of a function f can be measured

in terms of a dyadic decomposition of f according to its values.

In the sequel, ¢ : R — R is a smooth function supported in the annulus By(0) \
Bi/2(0) and such that

(6.18) D p2t)=1,  forallteR\{0}.

JEL
In order to construct ¢, take for instance any ¢ € C°(By) such that ¢» =1 on By,
and set () := ¥(t) — ¥(2t). For any t € R\ {0}, it holds

N

St = lim 3 (27 =62 0 0) = lim (W2 - w(2¥) = 1

the sum is well defined and the first equality holds, since at most two terms in the
sum are nonzero: if 28 <t < 281 then ¢(277t) = 0 for j # k, k + 1 since ¢(277) is
supported in the annulus Byj+1 \ Byj-1.

Given f:R"™ — R, we split it according to its values: we set

fi = Fe71f1),

so that the piece f; vanishes at x if |f|(x) is not in the range (2771, 271). Notice
that, thanks to (6.18),
F=>_1

JEL
where the sum is actually finite at each point (since at most two terms are nonzero).

This decomposition should not be confused with the Littlewood—Paley decomposition,
encountered later in the course, which involves the phase space rather than the values

of f!

Lemma 6.50. For 1 < p < oo and 1 < q < p we have

1/q
T fllna < (DNAIE) " < Cllfllene

JET
for some C' depending on p,q.
Proof. Since f; < 27t1x 5251, we have
DAl <29 2% u({|f] > 21
JEL JET

=8 Y p({If] > 2
JEZ
2j+1

<8QZ/ MU f] > ADYPdX
Y / XUa({1f] > A}) dA
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Conversely, using the subadditivity of ¢ +— t9/? (true as q < p),

2J+1
D, AT Ay <2 S ) > 2
2 JEZ
) /
=213 o (o u((2 < | < 2 p) "
JEZ k>3
<2 Y N 29p({2F < |f] < 2T
JEZ k=j
<27y 2% ({2 < |f| < 2P,
kEZ

For a given € E with f(x) # 0, if k € Z is such that 2¢ < |f(x)| < 2*! then
2¢ < |f(@)] = fe(@) + frsa(2)], s0

({2 < |f] < 21} < / fit fonf <20 / 20! / Foal?

Hence, raising to the power %,
p

203 "2t p({2F < [f| < 25T <40y /|fk|p /|fk+1\ <2~4qZ|\ka%p-

keZ keZ keZ
The claim now follows from Proposition 6.31. O

We now present an alternative proof of the Lorentz—Sobolev embedding W17 (R") C
LP"P(R") forn >2and 1 < p < n.

Given f € C°(R™), we apply the classical Sobolev embedding to the pieces f;
to get

1 < C YIS < CYNVIE

JEZ JEZ
Since Vf; = (277 f)Vf + 277 f/ (277 f)V f is bounded by |V f|x -1 |fj<2i+1} up
to constants (being |27/ f| < 2 on the support of ¢'(277 f)), we finally get
S5l < ¢S [ 1V sanem < [ 1950,
JEZL JEZ

(as it is customary, in the above estimates the value of C' can change from line to
line). The conclusion follows as in the previous proof.
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7 The Calderén-Zygmund decomposition

7.1 Calderon-Zygmund convolution operators

The Calderén-Zygmund decomposition of an integrable function is the key ingredient
for proving the continuity of the sub-linear Maximal Operator M in L” spaces and
the continuity of Calderén-Zygmund Operators in LP Spaces as well. The later being
the starting point to the analysis of elliptic PDE in L” and more generally in non
Hilbertian Sobolev or Besov Spaces.

We adopt the following denomination : A cube of size 6 > 0 in R” is a closed
set of the form C' = [[,[a;,a; + 0] where (a;) is an arbitrary sequence of n real
numbers.

Theorem 7.1 (Calderén-Zygmund Decomposition). Let f € L*(R") with f > 0
and let o« > 0. Then there exists an at most countable family of cubes (Ck)rex
having disjoint interiors such that

(i) The average of f on all cubes is bounded from below and above by

(7.1) a<@/€kf(x)dx§2"a.
(ii) On the complement Q° of the union Q = J,c;c Ck, we have
(7.2) flz) <« a.e. .
(i1i) There exists a constant C' = C(n) depending only on the dimension n such
that
(7.3 w(@ < S

Remark 7.1. An alternative way to look at the result is the following. The Calderdon-
Zygmund Decomposition of threshold o > 0 is a non-linear decomposition of any
function f € L of the form f = g+ b where g and b are two functions respectively
in L' N L=(R") and in L*(R™) satisfying

i) 3 (Ck)rex a family of disjoint cubes of R™ such that

b= b withb,=0inR"\Cy

keK

it)  For all k € K hold the two following conditions

1
/ be(y) dy =0 and
Ck

b(y)| dy < 2"
O Ck| k()]

iii) g satisfies the following pointwise inequalities

lg(@)|=[f(x)| <a forae &R\ UperCy
lg(7)] < 2"« for a.e. © € UpegCl
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i) The L? norm of g is controlled as follows
l9ll72@ny < 27" @ || fllzr(n)

v)  The Lebesgue measure of the so called "bad set” Q) = UreCy satisfies

QI

(€)=Y (G <

keK

1f 2t ey

The link between our construction in the proof of theorem 7.1 (applied to |f|) and
the decomposition f = g+ b satisfying i) - - - v) is made by taking

b= (1= [ 10 ) e

and i)...v) follow from simple estimates. It is worth remembering that Calderdn-
Zygmund decomposition is not unique.

Example 7.2. Consider the function f = xjo.], the characteristic function of the
segment [0,1] in R. A Calderén-Zygmund decomposition of f with threshold 271
1S5 given by g = 2_1')([07221 and the set Q2 is made of a unique cube : [0,2Y]. b =0
outside [0,2'] and b = xp1] — 2_")([07221 has indeed average 0 on the unique cube of
the decomposition.

Proof of theorem 7.1.

We divide R" into a mesh of equal cubes chosen large enough such that their
volume is larger or equal than || f]|z,/«. Thus, for every cube Cj in this mesh, we
have

1
(7.4) o) /Cof(:v)dxga.

Every cube C° from the initial mesh is decomposed into 2" equal disjoint cubes
with half of the side-length. For the resulting cubes, there are now two possibilities:
Either (7.4) still holds or (7.4) is violated. Cubes of the first case are called the
good cubes, the set of good cubes is denoted by C{, and the set of non good cubes,
the bad cubes, is denoted by CP. In a next step, we decompose all cubes in C{ into
equal disjoint cubes with half side-length and leave the cubes in C? unchanged. The
resulting cubes for which an estimate of the form (7.4) still holds are denoted by C§ -
they are called good cubes as well - and the remaining ones by C5. Then, we proceed as
before dividing the cubes in C§ and leaving the cubes in C unchanged. — Repeating
this procedure for each cube in the initial mesh, we can define Q = J, ., Cr as
the union of all cubes which violate in some step of the decomposition process an
estimate of the form (7.4). (These are precisely those cubes with an upper index b
for bad.)

Note that for a cube C? in C? obtained in the i-th step, we have

1
(75) m o (SU) dr > «.
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Since 2"u(C?) = u(CY ), where CY | is any cube in C? |, we then deduce

1 n
o< —— z)dr < —— z)dr < 2"«
W) /c;f” S O Joo TS

This shows (i) of the theorem.
In order to show (ii), we note that by Lebesgue’s differentiation theorem, almost
everywhere the following holds

1

f(x):}iij}(l)m/cmf(y)d%

where C, 4 denotes a cube containing € R" with diameter d. By construction of
the decomposition, there exists for every x € )¢ a diameter d, > 0 such that all
cubes C, 4 with diameter d < d satisfy an estimate of the form (7.4). This implies
directly that f(z) < a for a.e. z € Q°.

The last part (iii) of the theorem can be established as follows:

n(@) =) < < [ e < 2l

keK

7.2 An application of Calderén-Zygmund decomposition

The following theorem gives a statement which is close to a converse to theorem 5.8.
The proof of this theorem we give is an interesting application of the Calderén-
Zygmund decomposition.

Theorem 7.3. Let f be an integrable function on R™ supported on an euclidian ball
B. Then M f € LY(B) if and only if f € L'1og L'(B).

The proof of theorem 7.3 is using the following lemma.

Lemma 7.4. Let f be a locally integrable function on R™. Let B be an open euclidian
ball of R™ such that M f € L*(B) then f € (L'log L')1.(B) .

Proof of lemma 7.4. Let w be an open subset strictly included in B -ie. w C B.
Denote by f, the restriction of f to w. It is clear that the inequality M f(x) >
M f,,(z) holds for almost every = € R™. Hence, for every 5 > 0 the following holds

(7.6) p{z; Mf(z)>pB}) = p{e; Mf,(x) > B})
In order to show that f,, € L'log L*(R™), we use the following “reverse” inequal-

ity to (5.9) for the Hardy-Littlewood maximal function : there exists a constant ¢
depending only on n such that

1
77 Q: Mf, > — w d
(1) plr€Q: Mfu(r) > ca)) > 5 /{mewwwa}'f (2)| de
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where 0 = U Cy, is the union of bad cubes for a Calderén-Zygmund decomposition
of mesh « applied to f, on R™ and given by the previous theorem 7.1.

Proof of inequality (7.7). For any o > 0 theorem 7.1 gives, for the function f,,
a family of cubes (Cy)rex of disjoint interiors such that (see (7.1))

2"y _M(Ck Jo, fo(@)]dz > a  and
(7.8)
Ve e R"\ Q |fu(z)| <«

Thus, if x € Cy, it follows that M f,(x) > ca, where the constant ¢ > 0 is an
adjustment which permits to pass from cubes to balls in the definition of the maximal
function. As a direct consequence, we have that

W{r €9 MA@) > ca)) 2 Y () D o /|f )| da
k=1

Since |f,(2)| < «, for z € R™\ €, the desired inequality (7.7) is established.
Let 0 > 0 such that for every cube C

(7.9) w(C)y<é and CNw#b = CNR"\B=10

0 has been chosen in such a way that, for any a > ay = fw f/9, the bad set Q is
included in B - this lower bound on « ensures indeed the fact that the mesh of the
starting cubes in the associated Calderén-Zygmund decomposition is less than ¢ .
Hence we deduce using (7.6), for any o > «, that

1
plla € B Mf(@) > capzgi [ F(a)| da
@ Jzew ; |f(x)|>a}
Using the previous estimate we compute

(5.1) &
M5l = [ Mi@ds = [ tte B Mf@) > a))da

xQ

(7.7) o/
> c/ (n—/ |f (m)|dm) do
2" Jipews|f@)]>a)
max{ao./f(@)]} |
= /|f / —da dx
= c/|f(m)|log+ﬂdx.
w Qo

This proves the lemma. O

Proof of theorem 7.3.

One direction in the equivalence has been established in theorem 5.8. It suf-
fices then to establish that M f € L'(B) and f supported in B imply that f €
L'log L'(B).
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Let’s take to simplify the presentation B to be the unit ball of center the origin
B := B(0). First we show the following statement

(7.10) f=0inR™"\ By(0) and Mf e L*(Bi(0)) = Mf e L'(By(0))

Once we will have proved this implication, using the previous lemma, we will deduce
that f € L'log L*(B) and this will finish the proof of theorem 7.3.

Proof of (7.10). Let 2 be a point in By(0) \ B;(0). Since every point in
B1(0) is closer to x/|x|? than to z, for |z| > 1, one obtains that Bgr(x) N By(0) C
Br(z/|z|) N B1(0). We then deduce

[ owwlas [l
Bp(z) Br(z/|z|?)
which implies that M f(z) < M f(z/|x|?) for |z| > 1. Thus

/ M f(z) dx§22”/ Mf(y) dy
B2(0)\B1(0)

B1(0)\B1,2(0)

This last inequality implies (7.10) and theorem 7.3 is then proved. O

7.3 Singular Integral Operators over L?

Singular integral operators are special cases of Calderén-Zygmund type operators.
They are the "historical” ones : the first one introduced by Calderén and Zygmund
in the 50’s-60’s corresponding to the principal values of singular integrals. They
are the key notion giving access to the LP theory (and more generally to the non
hilbertian theory) of elliptic operators. Roughly speaking a typical question relevant
to the theory of Singular Integral Operators is the following : if the L? norm of the
laplacian of a function is in LP? is it true or not that every second derivatives of this
function are in LP 7

This question is answered easily in the case p = 2 by the mean of Fourier trans-
form but requires a more sophisticated analysis for being considered for p # 2. Of
course the interest and the use of Singular Integral Operators goes much far beyond
the resolution to this question and we will see applications of them all along this
book.

A singular integral operator is formally a linear mapping of the form 7" : f —
K x f where K is the kernel which misses to be in L' or even L; . from ”very little”.
If K would be in L' then the continuity of T from LP into itself would be a simple
consequence of Young’s inequality on convolutions. Usually the pointwise expression
of the Kernel K is only in L!'—weak :

Sup o p({z s [K(z)| > a}) < +oo
a>

A typical example of such a convolution operator is the one which to f = Awu assigns
the second derivative of u along the 7 and j directions : 0,,0,,u (modulo harmonic
functions of course). This operator is given formally for i # j by

0.0.,u=C, | (v @ —93) 4y gy

|£L’ _ y|n+2
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It is a convolution type operator T of kernel K(z) = C, z;z;/|z|"™. K is in
L' —weak but it is not a priori a distribution and this makes the use of the convolu-
tion operation and the definition of T" problematic or singular. Calderén-Zygmund
operators of the first generation share the same difficulty. The reason why the
Calderéon-Zygmund Kernels K can be made to be a distribution is a cancellation
property. In the previous example the cancellation property happens to be (recall
that we look at the casei # j)

Xy
Sy =0
/ e

Because of this later fact, for a smooth given compactly supported function f, it is
not difficult to show that

0 |z — y|nt?

exists for every z. This singular integral is the convolution between f and the
distribution called Principal Value of K denoted PV (K).

One of the spectacular result of Calderén-Zygmund theory says the following :
the limit (7.11) PV (K) * f(x) exists almost everywhere whenever f is in LP(R™) for
p € [1,+00] and is also in LP(R™) if f is in LP(R™) for p € (1, 400).

Another example of Singular Integral Operator is the Hilbert Transform on R -
which corresponds in Fourier space by multiplying f(£) by the sign of £ - that is :
f— fx % . This singular integral has to be understood as being the limit of the
following process

(7.12) lim — fe=y9) 4

at least when f is smooth and compactly supported, since 27! is odd, one easily

check that this limit exists everywhere. It is equal to the convolution between f and
the Principal Value of =%, PV (1/x). Here again Calderén-Zygmund theory will
tell us that the limit (7.12) PV (27!) x f exists almost everywhere whenever f is in
LP(R™) for p € [1,400] and is also in LP(R") if f is in LP(R™ for p € (1, +00).

In a way which is reminiscent to the LP—theory of the maximal operator in
the previous sections, the Hilbert transform and more generally Calderén-Zygmund
operator won’t map L' functions into L! functions but to L! —weak functions only. In
analogy with the previous section again, Calderén-Zygmund operator will however
send L'log L' functions into L'. The parallel with the results obtained for the
maximal operator in the previous section has some limit since, as we will see, L*>
functions won’t be map by Calderén-Zygmund operators to L> functions but to
Np<too L, .(R™) functions only.

Here again the Calderén-Zygmund decomposition will be the key instrument in
the proofs. This use of Calderén-Zygmund decomposition is also known under the
name of the real variable method of Calderén and Zygmund.

Let us finish the introduction to this very important section by making the
following amusing remark. If the L!'—weak would have been a Banach space for a
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norm || ||, equivalent to the quasi-norm L. - (5.5) -, then the L? theory of Calderén-
Zygmund operator would be trivially true without any assumption on the Kernel K
except that it is in L'—weak and that T : f — K % f sends L? into L?. Indeed,
for any finite set of k points aq, - - - ,a, in R™ and any family of k reals \; - - - \x one
would have using the triangular inequality

k
<K I
. i=1

and we would directly deduce that T sends L' into L} . The Marcinkiewicz interpo-
lation theorem 4.2 would then imply that 7" is continuous from LP into LP for any
p € (1,2] and the continuity for p € [2,+00) would be obtained by a simple duality
argument.

We shall see three different formulations of the continuity of a Singular Integral
Operator in L? spaces, each of these formulations are based on different assumptions
on the Kernel K.

k

i=1

7.3.1 A “primitive” formulation

In this subsection we prove the following ” primitive” formulation of the L”—continuity
of Calderén-Zygmund convolution operator. The sense we give to the adjective
"primitive” here should not be interpreted as something pejorative about this for-
mulation, which has the clear pedagogical advantage to bring us progressively to
more elaborated ones in the next subsections. In this formulation the difficulties
caused by the singular nature of the convolution does not appear since the kernel
K is 7artificially” assumed to be in L2

Theorem 7.5. Let K € L?(R") and assume the following:

(i) The Fourier transform K of K 1s bounded in L™

(7.13) K| < +00

(1) The function K satisfies the so-called Hormander condition : there ezists 0 <
B < 400 such that

(7.14) / K(r—y)— K(@)|de < B, Vy#0
2[ly[I< |zl

Moreover, let T be the well-defined convolution operator on L*(R™) N LP(R™), with
1 < p < o0, given pointwise by

(7.15) Tf(x)=Kxf(x)= | K(x—-y)fly)dy

R

Then, there exists a constant C, = C'(n, p, | K|, B) — independent of the L*-norm
of K — such that

(7.16) ITflle < G ll e
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Moreover there exists a constant Cy = C(n, || K||o0, B) — independent of the L*-norm
of K — such that for any f € L'(R")

(7.17) supa u({x € R [K o f(2)] > a}) < Cu ||/

Remark 7.2. a) Note that T is a densely defined linear operator on LP(R™). More
precisely, the operator is well-defined on the dense linear subset L'(R™) N LP(R™) of
LP(R™) and from (7.16) we can deduce that T can be extended to all of LP(R™) by
this.

b) In the previous theorem, the kernel K is assumed to be in L*(R™). This
happens to be "artificial” in the following sense : it permits to make the convolution
operator T well defined on L'(R™) N LP(R™), for 1 < p < oo indeed by Young’s
inequality we have

1T fll> < [[K |22l £l 2o
However the final crucial estimate leading to the continuity of T' from LP into LP is
independent of the L* norm of K.

c) Observe that the Hormander condition (7.14) holds, for instance, whenever
K s locally Lipschitz on R™\ {0} and there exists C > 0 such that

vz e RN\ {0} |VEK|(x) < —°

- |JZ|”+1

This comes from the following estimate : Let y # 0 and denote v = y/|y|, then the
following holds

Jo <o | K (2 = ) = K(2)| da

VI OK (1 4 1) dt) dx

_f2||y||§Hx|| 0 ov

(7.18)
vl
< Jo" dt foyy<pon IVE (@ + to) da
lyl —
< 1yl jygpe [VENZ) dz < Cagg = Ca
where we have proceeded to the change of variable z = x + tv.

Proof of theorem 7.5 The proof is divided in the following three steps: First,
we show that the convolution operator T' is of strong type (2,2). In a second
step, we establish that T is of weak type (1,1) - i.e. inequality (7.17), which is
the most difficult part of the proof. Finally we obtain the inequality (7.16) from
Marcinkiewicz’s interpolation theorem and a duality argument. .

First step: Let f € L*R™) N L*(R"), then for the Fourier transform Tf of
Tf e L*(R"), we have

/\ — ~ o~ (113)
ITfllee = 1 * fllee = 1K flle < 1K oo 1/ 22
Since Hf\fHLz = ||T'f||z2 by Plancherel’s theorem, we then obtain

(7.19) 1Tl < 1K lloo [ 1] 22 -
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This shows that 7" is of type (2,2), which also implies that 7" is of weak type (2, 2)
as we mentioned in remark 4.1, precisely

2
(7.20) Vo> 0 alfr: [TF)| > o)) < ke e,

Second step: Let f € L'Y(R™) and o > 0. We apply the Calderén-Zygmund
Decomposition 7.1 of threshold « to f. The resulting family of disjoint ”bad cubes”
will be denoted by {Cj}rex and we write Q = | J,-, Cy for their union.

Now, we define

f(x) for x € Q°
(7.21) (z) = 1
g N f(y)dy for z € C}.

Following remark 7.1 C-Z Decomposition permits to write f as sum of a ”good” and
a "bad” function, namely f = g+0b - "good” and "bad” stand for the fact that there
is a better control, namely L*, on g than on b - where

(7.22) b=> b ,

keK

with
o) = (1) = o [ 0 ) v

From the linearity of the convolution operator T and the triangular inequality we
have for all x € R”

(7.23) Tf(z)] < |Tg(x)| + [Tb(z)]
Hence we deduce

p({z : [Tf(@)]>a}) < p({z: |Tyg(x)] > a/2})
(7.24) tu{a ¢ |Th(z)| > a/2))

In order to get an estimate for the first term on the right-hand side of (7.24),
we first use the fact that g is an element of L?(R")- see remark 7.1 iv) - with the
following control

gl Z2@ny < 2% o 1 fllzageny
As a consequence, we can apply (7.20) to g € L*(R") in order to get the following
estimate for the first term on the right-hand side of (7.24):

4 K12

gl

IKII2

p({z o |Tyg(z)| > a/2}) <
(7.25) < 2 1K [FalrEe

Next, we estimate the second term on the right hand-side of (7.24). — For this
purpose, we expand each cube C}, in the Calderén-Zygmund decomposition by the
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factor 2y/n leaving its center ¢ fixed. The new bigger cubes are denoted by Ch
and its union by Q = Ukex Cr- Tt is easy to see that Q C Q, Q° c Q¢ and

1(Q) < (2¢/n)" u(). Moreover, for = ¢ Cy, we have
(7.26) |l —ckll > 2|ly — cll, for all y € Cy

Now, let ¢, denote the center of the cube Cy. Then, we can write

=) Th(x) = Y | K(@—ybly)dy

kK kek Y Ck

= Z/C(K(m—y)—K(x—Ck))bk(y)dya

keK

being a direct consequence of the fact that for all C

[t = [ (s -5 [ rteraz) a0

- condition ii) in remark 7.1 -. This then leads to

[C|Tb(x)|dx < Z/ ( Ck]K(x—y) —K(:c—ck)} \bk(y)|dy> du
([ == e I ) s

- Z/c( ‘Kx— )_K(x_ck)’d«'f) bk (y) | dy .

Setting & = x — ¢k, ¥ = y — ¢, and using (7.26), the integral in parenthesis ca be
bounded this way

]
5— 5

~|K(x—y)—K(x—ck)‘dxg/ |K(f—gj)—K(f)’di
Cx

2[lgl <zl

The assumption (7.14) of the theorem hence implies that

(7.27) / | Th(x: |dac<BZ/ b (y)| dy < C|| ]| 2

keK

At this stage, we are ready to give the following estimate for the second term in
(7.24):

Pl € B TH@) > 0Y) < ulfe €O £ [TH@)] > a/2)) + p(O)
< 20l + vy uie)

2C C C
< Sl Wl < e
(7.28)
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Where C only depends on n, ||K||« and B. Combining (7.25) with (7.28), we end
up with the existence of a constant C; > 0 such that

(7.20) plfe 1T > ad) < Sl

showing (7.17) and hence that the convolution operator T is of weak type (1,1).

Third step: Note that we have already shown the inequality (7.16) in the case of
p = 2in (7.19). — Putting » = 2 in Marcinkiewicz Interpolation Theorem 4.2 and
using the fact that T is of weak type (1, 1), respectively (2,2), by (7.20), respectively
(7.29), we conclude that

(7.30) 1T flle < Clfllzr,

for 1 < p < 2 and where C only depends on n, p, ||[K||. and B the constant in the
Hormander condition.

For the case 2 < p < oo, we will use a duality argument. — Consider the dual
space LP (R") of LP(R™) with 1/p+1/p' = 1. We easily see that 1 < ¢ < 2. Consider
now f € L'(R") N LP(R™). Since L? is itself the dual space to L and since L' N L¥'
is dense in L?, the LP-norm of T'f is given by the following expression:

(7.31) 17flis= s | [ Tr@ygle)da

geL'nL?’
<1

lgll, p

We calculate

[ rt@go)do

/n ( e K(z—y)f(y) dy) g(z) dx

/ . ( K@ —y)g() dw) ) dy‘ ,

where Fubini’s theorem was applied because of K € L*(R") and the assumptions
on g and f. For the first integral, we conclude from (7.30) that it is an element of
LP (R™). Using Hélder’s inequality, we end up with

[ rrwaa] < [ ([ kG- iga) )] a

sup
geL'nL?
lgll <1
(7.30)
< Cliglp 1 flle < C N fllLe -
This establishes the theorem. O

7.3.2 A singular integral type formulation

In the present formulation of the LP continuity for convolution type Calderén-
Zygmund Operator we will skip the too strong assumption that the kernel K is
in L? and will assume only a L!'—weak type pointwise control of K + a cancellation
property together, still with the Hormander condition. We will be then facing the
heart of the matter : how can we deal with the singular integral K x f when f is
only assumed to be in LP 7
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Theorem 7.6. Let K : R® — R be a measurable function such that there exists
A, B > 0 for which the following holds

A

(7.32a) |K(x)] < T Va#0
(7.32b) / |K(z—y) — K(z)|de < B, Vao#0
2llylI<li=
(7.32¢) / K(z)dx=0 |, fora. e.r>0
dB.(0)
Fore >0 and f € LP(R™) with 1 < p < 00, we set
(7.33) i@ = [ K dy
yl[=e

Then, for any 1 < p < 400 there exists a positive constant C' such that for any
e >0 and any f € LP(R"),

(7.34) ITeflle < ClAN L,

where the constant C' = C(p,n, A, B) is independent of € and f. Moreover, there
exists Tf € LP(R™) such that

(7.35) T.f —Tf in LP (e —0)

For any f € L*(R") there erists a measurable function T f in L'—weak such that

(7.36) T.f — Tf in L.
and there ezists a constant positive C(n, A, B) independent of f and € such that
(7.37) swpa p({z R |Tf(w)] > a}) < Cn, A, B) £l

a>

Remark 7.3. The singular integral defined in (7.33) is, for a fixed €, absolutely
convergent. To see this, note that due to (7.32a) we have that K € LP (R™\ B,),
where 1 < p’ is the Hélder conjugate exponent of p. From Young’s inequality, it then

follows that [T flleo < [|fllze | K| o

A substantial part of the proof of theorem 7.6 will be to derive from the as-
sumptions (7.32a), (7.32b) and (7.32¢) an L* bound for the Fourier transform of
K.(y) := K(y) Xr~\B.(0) independent of €. This estimate will permit us to invoke
theorem 7.5 at some point in our proof. Precisely the following lemma holds.

Lemma 7.7. Let K : R" — R be a measurable function such that

(7.38a) |K(z)| < ||;|1|” ) for x #0
(7.38b) / |K(z—y)— K(z)|de < B for y#0
2llyll<ll=ll
/ K(z)dz =0 fora. e r>0
9Br(0)
(7.38¢)
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Moreover, for every e > 0, we define

o ko= {0 e

Then, there exists a constant C' = C(n, A, B), independent of €, such that
(7.40) 1K)l < C.

Before to prove this L> bound we would like to show first how the hypothesis

relative to the cancellation property (7.32c) is essential. How cancellation property
can lead to decisive improvements in the estimates will be a leitmotiv in this book -
see in particular the chapter on Hardy spaces and the integrability by compensation
phenomenon.
Example 7.8. Consider the function on R given by K(t) = ﬁ It is not difficult to
check that K satisfies hypothesis (7.38a) and (7.38b) but the cancellation assump-
tion (7.88c) is wiolated. we now prove that for this function K the conclusion of
lemma 7.7 fails. We have

Ke(8) = limyo f6<|t|<r et % = lim, 9 fa<lt\<r cos(2mt &) % ;

= 2sgn(§) f;‘zo s 2ms g

s Y

where we have used the parity and the imparity respectively of cos(2mt§)/|t| and

sin(2nt &) /|t]. Now, since foﬂ cos s/s ds = +o00 we deduce that K.(§) goes to +00
as € goes to zero for mon zero £.

Observe that a change of sign for K that would ensure the cancellation property
(7.38¢) - by taking 1/t instead of 1/|t| - would lead to the integral f0+oo sin s/s,

which converges, instead of the previous integral f0+oo cos s/s which diverges. This
illustrate the importance of the cancellation assumption (7.38¢)

Proof of lemma 7.7.

For any 0 < € < R Denote K. g := K(x) XBr0)\B.(0)- For a fixed £ such that
e < [£]7! < R, we write

Roale) = / PR I
e<lx|<

= / ™8 K (x) da —I—/ 2 K (2) dw
e<lz|<[¢l~t €= <lz|<R
=L +1

We bound I; first. Using the cancellation assumption (7.38c), we have

Il = / (627”3;‘£ — 1) K(ZE) dx
e<|z|<|g] 7!
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Hence we deduce the following bound, using this time assumption (7.38a)

L] < 2m[¢] 2] | K (2)| de < C A

e<lz|<[¢I7t

In order to bound I, we introduce z = £/2|¢|%. Observe that the choice of z has been
made in such a way that exp(27iz - ) = —1, hence a change of variable x — x + z
will generate a minus sign in front of the integral and formally we would have

1

/ e2ries K(z)dx = 5/ e2ries K(z) - K(x — z)dx

which would put us in position to make use of the Hormander condition (7.38b).
The only difficulty is to keep track of the domains of integrations that we precise
NOW.

21, = / ™8 K (1) dw —/ e?m 8 K (x — 2) dx
|~ <|z|<R |- <|z—2|<R

We write

™t Kz — 2) dx:/ < dx
€] <lz—2|<R €]~ <|z|<R
_/ -~~dx—/ O
|lz—2|<|€] 71 <|| |z| <R<|z—2|

—l—/ ~~dg:+/ e dx
lz|<]gl 7t <]z—z]| |z—z|<R<|x]

The following elementary inclusions are longer to state than to prove...
{z; |z =2 <[] <lal} C{as fo—2[ <|E7" <o — 2|+ ]2}

{z;|e|]<R<|z—z}C{x; |z—2|—|2| <R<|z—2z|}
{o; x| <€ <o -z} C{z; |o—2]—|z] < |§]7" <]z — 2|}
{z;|lr—z|<R<|z|]}C{zx; |[x—z|<R<|x—2z|+ |2}

Using these inclusions and the fact that |z| = 1/2]¢|, we can bound I in the following
way

ol g/ K (2) — K(z — 2)| da
gl <|z|<R

+/ |K(x)|d:c+/ |K(x)| dx
et <al< S lg R—3|¢|71<|z|<R+3 ¢~

Since |z| = £]£|7! we can invoke the Hormander condition (7.38b) and bound the
first integral in the right-hand-side of (7.41) by B. For the second integral we use
(7.38a) and bound it by a constant C,, A and the third integral is treated in the
same way using the fact that [£|™! < R which implies that the quotient of R+ % €171
by R — %\5]‘1 is bounded by 3. Hence I, is bounded by B + 4C,, A. So we have

(7.41)
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proved that ][?E\R(ﬁ)] is uniformly bounded by a constant depending only on n, A
and B, which is the desired result. O

Proof of theorem 7.6.

Combining lemma 7.7 and theorem 7.5 we obtain (7.34) and (7.37) where T'f is
replaced by 7. f. It remains to show the L? convergence (7.35), the L. convergence
(7.36) and inequality (7.37) for T'f itself.

We consider first a smooth function f € C{°(R™) and using the cancellation
property (7.32c¢) we write

T.f(z) — /lgnyf(x—y)f((y)dw / f(x — K (y) dy

e<|lyll<1

= [ S [ () - @)Ky,
(7.42) -

Because of the regularity of f, using assumption (7.32a), we have the following
bound which holds for every z in R™ and y # 0

A
Iyl

Hence, inserting the bound (7.43) in (7.42) we can define for every x the limit

(743)  [(flz =) = F@) K@) < IV flls Iyl 1K ()] e IV £l

(7.44) Tf(e) =l Tf(x) = | flr—y)K(y)dy

R”

Observe that at this stage T'f is a distribution obtained by the convolution between
a smooth compactly supported function and the principal value of K, p.v. K, which
is an order 1 distribution. However using (7.43) again we have

Vi €R"  |Tf(z) - Tf(z)] < / =) = @ K] dy

SGullVillo Ae

(7.45)

Thus 7. f converges uniformly to T'f and hence in L} (R") for any p > 1. Let R > 1
such that f =0 in R™\ Bg(0). For |z| > 4R
K)lf(z—y) = fz)] = K(y) f(z —y)

is supported in Bg(z) and one has |K(y) f(x — y)| < 2"||f||ccA/|z|". Hence the
bound (7.45) can be completed by a behavior at infinity as follows :

VeeR"  |Tf(x) - Tof(z)| < / Flo— )| 1K) dy
(7.46) =(0) .
<Cp A ||fll

[

This later inequality implies that 7.f — T'f in LP(R™) for any p > 1 and that
T.f — T f|L1 converges to zero.
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Let us take now f € LP(R™) for p > 1. Since C3°(R™) is dense in LP(R"), using
inequalities (7.16) and (7.17) for K. * g - where ¢ is a difference between f and
a finer and finer approximation of it in C§° for the L” norm - a classical diagonal
argument implies that, for p > 1, T, f converges strongly in L? and that, for p = 1,
T. is Cauchy for the quasi-norm L!. This concludes the proof of theorem 7.6. O

Remark 7.4. The exact cancellation assumption (7.38c) can be relazed in the state-
ment of theorem 7.6 by requiring only the existence of a constant C' > 0 such that
forany 0 <r < R < +o0

(7.47)

/ K(x) dz| <C
Br(0)\Br(0)

Under this weakened assumption however the convergence of T.f to T'f does not
necessarily hold in LP or even almost everywhere but in the distributional sense only
(see a counterexample in [?]). The nature of this convergence nevertheless is not
a main point in the theory the most important one being given by the inequalities
(7.34) and (7.37) which still hold under the weakest assumption (7.47).

7.3.3 The LP theory for Calderdon-Zygmund convolution operators: the
case of homogeneous kernels

It is interesting to look at the case of homogeneous kernels which correspond to
operators of special geometric interest - such as Hilbert Transform for instance. The
following result is obtained as a corollary of theorem 7.6 and has the advantage
to provide a "translation”, in the special case of homogeneous Kernels, of general
assumptions on K that imply (7.32a), (7.32b) and (7.32¢). Precisely we consider
kernels K of the form

EE

(7.48) K(z)

)

where € is an homogeneous function of degree 0, i.e., Q(dz) = Q(z), for § > 0. In
other words, the function €2 is radially constant and therefore completely determined

by its values on the sphere S"~!. Note also that K is homogeneous of degree —n,
ie, K(ox) =0 "K(x).

Proposition 7.9. Let K : R® — R be a measurable function given by K(z) =
Q(z)/||x||™ where Q is an homogeneous function of degree O satisfying

j)
(7.49) /Snl Qx)do(z) =0

ii) If we set
w(d) = sup [Q(z) - Qy)| .

lz—yll<o
z,yesSn—1
the following integral is finite:
1
4]
(7.50) / Mdé < 00.
o 0
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Then K satisfies the conditions (7.32a)-(7.32¢c) and theorem 7.6 can be applied to
K.

Remark 7.5. Observe that the so called Dini condition i) implies that € is con-
tinuous on S"'. Moreover observe that if Q) is assumed to be Hélder continuous,
C%(S™1), for some exponent 1 > o > 0 then the Dini condition ii) is automatically
satisfied.

Proof of proposition 7.9.

The conditions (7.32a), respectively (7.32c), follow directly from (7.50), respec-
tively (7.49) and integration in polar coordinates. In order to establish (7.32b), we
first observe that

Qz —y) — Q=)
/ [K(x—y) = K(z)[do < ‘ Iz =yl =
2llylI<l=ll 2llyli<ll=ll
1 1
N / Oz _ dx .
N =y ™ Tl
2llyl<ll=|l

(7.51)
Since 2 is bounded due to (7.50) and as a consequence of the mean value theorem

Cllyll

I e

1 1

le =yl™ [zl

we conclude by integration in polar coordinates that the second integral on the
right-hand side of (7.51) is finite. Note also that

e =y = )] = ‘Q(ui:@y)u)‘g(ﬁ)'
-

[ =yl =l

by definition of the function w. Moreover, if 2||y|| < ||z||, then 1/||z —y||" < C/||z||™
and also

r—y x
lz =yl [l
Inserting these estimates in the first integral on the right-hand side of (7.51), we
obtain

[yl
Qz—y) — Q w Oy
26—y =2, g ( lnn>d$
Iz =yl ]
2[lylI<[l=l 2[lylI<[ll
oo W Cu
< C’/ Mdr
2[ly|l r

Changing coordinates § = C||y||/r and using (7.50), we deduce that the last integral
is finite showing that (7.32b) holds and proposition 7.9 is proved. O
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7.3.4 A multiplier type formulation

It is useful to explicit sufficient conditions on K only that implies the strong type
(p,p) (for 1 < p < 4+00) and the weak type (1,1) properties of the corresponding
convolution operator 7'. Such results are called multiplier theorems- m(§) := K (&) is
the multiplier associated to T'. We shall give more and more sophisticated multiplier
theorem in this book that will play a crucial role in characterizing real-variable
function spaces using the Fourier transform. Multiplier theorems are moreover the
basic tools in the analysis of pseudo-differential operators. Here is maybe the most
elementary one that we will deduce from the previous sections.

Theorem 7.10. Let m be a C™ function on R™ satisfying :

VieN 3C, >0 st VEER"
(7.52)
Vim|(&) < G [¢]7!

Let p € [1,+00). Define Ty, on LP N L? by
VfePNLXRY)  VEER"  T.f(€)=m(é) f(©)
Then for p € (1,400) there exists Cp ., > 0 such that for any f € LP N L?

(7.53) [T fllr < Com [ s
and there exists Cy , > 0 such that for any f € L' N L?

(7.54) supa p({z € R"; [T f(z)| > a}) < Crm [ f]]2

a>0

Hence T, extends continuously as a linear operator of strong type (p,p) - 1 < p <
+00 - and weak type (1,1).

Remark 7.6. [t is important to compare at this stage already, before to proceed to
the proof of theorem 7.10 itself, the difference between the assumption (7.52) and
the assumptions we made on K in the previous subsections. Take for instance the
condition |VK|(z) < C/|x|"* that implies the Hormander condition (7.14) - as it
is established in remark 7.2 ¢) - would hold if, for instance, we would assume V" 'm
to be in L'. Observe that this later condition is just “at the border” to be implied,
but is not implied, by our assumption (7.52). As it will be seen later in the book,
assumption (7.52) is however very relevant to the theory.

Proof of theorem 7.10. Theorem 7.10 will a direct consequence of theorem 7.5
once we will have proved that assumption (7.52) implies the Hérmander condition
(7.14) for K := m - Observe that (7.52) contains (7.13) already.

In order to establish the Hormander condition we cannot afford to be as little
cautious as we were in establishing the bound (7.18). We shall use a more refined
argument based on dyadic decomposition in the Fourier variable £ - the phase space.
This techniques is making use of the Littlewood-Paley decomposition presented in
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chapter ?7. Precisely let ¢» € C3°(B2(0)) be a smooth non negative function with
compact support in the ball By(0) such that ¢ equals identically 1 on B;(0) and let
o(&) = (&) —(2). Tt follows from this definition that ¢ € C§°(R™\ {0}) and that

1= Z Pp(27F¢) on R"
keZ

For k € Z we denote
my(€) = ¢(&) m(27¢)
Observe that with this notation

m(&) =Y my(2°¢)

keZ
Denoting Ky(x) := my(z), we have :
(7.55) K(z) :=m(&) =Y 27" K (2 %)
keZ

Using now the assumption (7.52) on m and the definition of my, it is not difficult
to see that

(7.56) VieN 3C>0 st VkeZ  ||[Vimlrem < G

Moreover, since the m;, are supported in the fixed compact set By(0) \ Bi/2(0), we
deduce that every H® norm of my is bounded independently of k.
Take s > n/2, we then have the existence of C, independent of k such that

2
2.<C

/ (1+ |2P)2 K(2)P do = |l

Hence, using Cauchy-Schwarz, we deduce the following bound

/||>| ‘|Kk(x)| dx

790 - Vx|>y| W d“””r [/n(l +leP) AR do

<
— (1+ |y|)—n/2+s/4

1

N

where C' is possibly a new constant but again independent of k.
Similarly as before, ¢ my(£) is a function supported in the fixed compact set
B5(0) \ Bi/2(0) and, hence, (7.56) implies that

(758) VieN 3C >0 st VkelZ IV (& mi(€) || poorny < C

Hence for the same reasons as above we obtain a uniform bound, independent of &,
for VK. Precisely there exists C' > 0 such that for every k € Z

(7.59) \VKi(z)| de < C < +00

Rn
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Let now y € R"™ and denote v = y/|y|, we have

|Ki(z —y) — Ki(z)|dz =
(7.60) e /
Sll [ IVE(z) dz < Oyl

Wl OK,,

d
ov v

(x +tv)dt

Consider again y € R™ \ {0} and let ky be the largest integer less than log, |y|:
ko = [log, ly|]. Using (7.57), we obtain

/ Z g nk [Kk(Q_k(x +y) — Kk(Z_kx)] dx
1Z1>2[yl | <ko
C
,;ko I2[>2 ]y ,sz 1+ 27F]y|)e
where & = —n/2 + s/4 > 0. Hence, we have in one hand
/ Z 9-nk [Kk(Q_k(JJ +y) — Kk(2_kl')}‘ <C Z ga(k—ko)
(7.61) |21>2ly] | k<o k<ko
C
<
12

In the other hand, using (7.60), we have

/|r|>2y| Z

27" [K (27" (2 +y) — Ki(27")] ‘

k>ko
(7.62) < Z/ w2z +27Fy) — Ki(2)| dz
k>ko ¥ 121>27 k|y|
<CY 27kl <20 ) 2t <ac
k>ko k=>ko

Combining (??), (7.61) and (7.62) gives
(7.63) / |K(z+y) — K(x)] de < B < 400
|z[>2]y]

where B is independent of y € R™ \ {0}. This is the Hormander condition (7.14)
and theorem 7.10 is proved. O

7.3.5 Applications: The L? theory of the Riesz Transform and the Laplace
and Bessel Operators

In this subsection we apply to the Riesz Transform and the Laplace Operator the
L? continuity of the convolution type Calderén-Zygmund operators that we proved
above.
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For j =1,...,n, we now consider the kernels K;(z) = Q;(z)/||x||™ with

x,
(7.64) Qj(z) = ¢, —%,
’ ]l
where "
L)
n m(n+1)/2

Observe first that Q; = ¢,z; is smooth on S"~! and moreover, since €, is an odd
function the cancellation property

. Qj(x)do(x) =0

also holds. Hence proposition 7.9 can be applied to the kernels K;. For any 1 < p <
00, any j = 1---n and any f € LP(R™) the following limit exists (in L” or L} when
p=1)

(7.65) Ry f(z) = lm R f(x) .

where

Ryof(z) = / @ DK ) dy

Y
= ¢ flx—y)i——gdy.
/s<||y Iyl

Definition 7.11. Riesz Transform For any function f € LP(R"), 1 < p < +o0,
the R™ valued measurable map given almost everywhere by

15 called the Riesz transform of f.
Theorem 7.6 implies the following proposition

Proposition 7.12. For any 1 < p < +o0o and any f € LP(R")

(7.66) [Bfllr < Cop | fllze
Moreover, for any f € L'(R")
(7.67) sup p{z e R"; [Rf(z)] > a}) < Gy || fllr

We now derive the multiplier m(&) = (my(§),--- ,m,(§)) corresponding to the
Riesz transform. Precisely we establish the following result.

Proposition 7.13. The following holds

(7.68) R1(6) = ST = mile) 1o
i.e. the multiplier corresponding to R; is
my(e) =ik



Remark 7.7. Observe that the multipliers m;(§) of the components R; of the Riesz
transform R satisfy the main assumption (7.52) of theorem 7.10. Hence combin-
ing the previous proposition together with the theorem 7.10 provides a new proof of
proposition 7.12.

Proof of proposition 7.13. For a C§° function f we have that

a —n+1
K;xf= cnPV<| ’n+1) f=- n—l@ Sl f
Hence
(7.69) m;(€) = 2im—"— & [af T

In order to identify m; it remains to compute the Fourier transform of |z|~"*!.
Denoting do™ ! the canonical volume form on the n — 1 sphere, one has for & # 0:

—_—
e—m0|z]?

27 () = lim =——(¢)

6—0 ‘I|" 1

+oo
:/ / 6—71'6/)2 6271'1'/)(-{ da"_l(C) dp
0 Sn—1

Denote Sg_l :={¢ e 8" ¢-¢>0}. Using this notation, the previous identity
becomes

+00
—n+1 —7r6p 2wipC-& n—1
2 / /S eI don1(C) dp

“+oo
+/ / e—7r6p 627rzp§~§ dO'n_l(C) dp
Sn—l\snfl

+00
—7r5p 27rzp(§ —27rzp<§ n—1
-/ /S £ ] do"(C) dp

[ g [ e gy
S;*l R

where a := (- £/|€|. Using the fact that the Fourier transform of e=™%* is equal at
the point 7 to 6 /2 e~ " (T/\/S)Q, we obtain
lgl o)

(7.70 e = [ oz e () amg

We interpret @ = z; as being the first coordinate of a positive orthonormal basis
containing the unit vector £/|¢| as first vector. We have

dO'n_l = Z(—l)z_l Zi le Tt de‘_l N dzi—l—l te dZn

=1
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We decompose do™ ! is the following way : do" ! = dz; Ado™ 2 + 2z, dzy - - - dz,
1 (ldey? V1 ()2
/ — e (\/5) do" 1 (0) :/ do"? —e ( \/51) dz
n—1 Sn—2 0 \/S

o (lElz)?
+/ e (\/51) dzg -+ - dzy,
Sn—l

1€] 21
. —T . . .
Since , as § goes to zero, j—% e < Vv > is converging to zero uniformly on any

compact subset of Sg_l \ {¢/[¢|}, we obtain that

el
1 HI%

w2 [ e B g s e [T e o)

where |S"~2| denotes the volume of the n—2 unit sphere which is equal to 2 7" ~1/2 /T ((n—

1)/2) - T is the Euler Gamma Function. Recall that

+o0 1
/ e dt = =
0 2

Hence, combining (7.69) and (7.72) we obtain that

ntl ntl
m(€) =2 —— " &G _ 7 £_J_Z§_]

D=1~ o) e~ e
where we have used that ['(z + 1) = 2I'(2). We have proved proposition 7.13. O

Let f € C2(R™) and note that the Fourier transform of its second order partial
derivatives are given by

00,1 (€) = (16)(i&) J(€) = —&&; F(€).

In particular, we have for the Fourier transform of the Laplace operator A\f (&) =
—|I€]1* £(€). This enables us to write the following:

GOTE) = 6k fle) = ﬁ%’ﬁ% NG
759 “?ﬁ AN ™ (RU(R (A (E).
Thus, we get
(7.73) 9,0, = Ri(R;(Af)) .

From (7.66), it then follows for 1 < p < 400 that

10:0; flle = || Rs(R;(AN))]]
< Cop IRi(AN e < C2LIIASlLo

Using the density of C5°(R™) in the Sobolev space W2P(R"), we have proved the
following result.
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Proposition 7.14. Let 1 < p < 4+00. There exists a positive constant C, > 0 such
that, for any function f in the Sobolev Space W*P(R™) the following identity holds

IV fll oy < Cp 1 Afll oy
where V2f denotes the Hessian matriz of f.

The previous result can be improved when the operator A is made inhomoge-
neous and more coercive by adding —id to it. Precisely, the following result which
says that the inverse of the Bessel Operator, given by (A —id)™!, is continuous from
LP(R™) into W2P(R") is a direct application of theorem 7.10.

Proposition 7.15. Let 1 < p < 400. Let f be an LP function on R™. Then there
exists a unique tempered Distribution u in S'(R™) such that (A —id)u = f moreover
u belongs to the Sobolev Space W*P(R™) and the following inequality holds

ullw2r < Cp || fl|r@n)

Proof of Proposition 7.15. A tempered Distribution f being given and ]?being
its Fourier transform, —(1+]£|*)™ f(€) is the Fourier transform of the only tempered
Distribution solution to

Au—u=f in §'(R")

It is straightforward to check that the multipliers —(1+[|?)~!, —i&; (1+¢]*) ! and
& & (1 + [€]?)~ satisfy the assumption (7.52) of theorem 7.10 and hence proposi-
tion 7.15 follows. O

7.3.6 The cases p=1 and p=+0o0

As for the sub-linear maximal operator, Calderén-Zygmund convolution operators
are usually not bounded from L' into L!. The following proposition illustrates this
fact.

Proposition 7.16. Let R be the Riesz Transform and let f € L*(R™) such that
f >0 o0nR" and f # 0 then the measurable function Rf is not in L*(R™).

~

Proof of proposition 7.16. Since f is in L}*(R"), f is a continuous function
and moreover f(0) = [, f(z) dz > 0.
m;(€) = &;/|€| is discontinuous at the origin and hence, since f is continuous at

the origin and since f(0) # 0, m;(§) f(€) is also discontinuous at the origin.

Assuming Rf € L'(R"™) this implies that Rf is continuous too on R™ and in
particular at 0, which contradicts the previous assertion. O

Lemma 7.17. There exists f € L*(R?) such that, for any u € S'(R?) satisfying
(7.74) Au= [ in S'(R?),
then V2 ¢ L} .(R?).

Loc
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Proof of Lemma 7.17. We choose

1D2

f(x): 1

" |a)? Log’|z]|’

/2(33)

where 1 Df/Q(x) is the characteristic function of the disc of radius 1/2 and centered

at the origin. One easily verifies that f € L'(R?). We are now looking for an axially
symmetric solution of (7.74) in &’(R?). That is, we look for u(z) = v(|z|) and we
use the conventional notation r = |z|. V' should then satisfy

V _ 1oz

V4 — =0 0 R
r r2Log%/2 +

or, in other words,
4 vy = M1/

dr rLog®r
For this to be satisfied, it suffices
1 1
| Toar—T Logr for r € (O, 5}
V(r) =
! f > 1
ror> -
r Log 12 © 2
This holds in particular if
1
+ LOg [W} for r € (0, 5]
Vir) =
L
1+ ng; — Log Log 2 for r > %

Observe that u(z) := v(|z|) € §'(R?). By construction, we have
Au(x) = f(z) in S'(R*\{0}).

Let x(x) be a cut-off function in C2°B;(0)) with x = 1 on By/2(0). Denote x.(z) =
x(%). For any ¢ € S(R?) one has

/@[Au — f(2)] dx+/xggo[Au— f(z)] dx.
Since f € L'(R?)
(7.75) lim / Xep f(z) dz = 0.
We write

/ Xeplw) Au(z) dr = - / Ve Vupla) dr
(7.76) . .

+/ Xe Vu - Vo(z)dx.
R2
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Oberseve that for x| < 1

: 0 1 0
Vu =V B = g T o
Since . y 5
2 Jy — 9 / T _ T
/5(0) [Vl dz i o T(Logr—12  Loge™ !’
we have

lim |Vul*dr = 0.

e—0 B.

Hence this last fact implies

3
lim |Vul? dx} = 0.
e—0 )

[ e TuVete)ds| < i (9l Il |
R2 e—0

B-(0

Moreover we have also

1
lim ‘/ VXE-Vucp' < lim {/ \Vu|2dac] = 0.
e—0 n e—0 BE(O)

Hence we have proved
Au=f in S'(R?).

A classical computation gives for |z| < 3

i vy 0*u Pu 1 N 1
by r2 Ox;, Ox;  Or? r2Logr~t  r2(Logr)?’

Hence

2 2
rix;  Ou

d p— X

Z r?  Ox; 0x; reT

and we cannot have that A%u € LL _(R?).

loc

t,j=1

This being established, if we make a slightly stronger integrability assumption
on the function f such as f € L! log L'(R™), then, in the similar way to the case of

the maximal sub-linear operator, T'f is in L},..

Theorem 7.18. Let T be a convolution operator satisfying the assumptions of either
theorem 7.5, theorem 7.6, theorem 7.10 or proposition 7.9. Let f be a measurable
function in L' log LY(R™), then Tf € L} (R™) and for any measurable subset A of

loc
finite Lebesque measure the following inequality holds

(1)
wm [l arscr [ 1og (et F0) gy

where Cp > 0 only depends on T.
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Proof of theorem 7.18. We use the notations from the proof of theorem 7.5. For
any positive number a we proceed to the Calderén-Zygmund decomposition of f :
f = ga + bs. -we add the subscript « in order to insists on the fact that the result
of the decomposition depends on a. Let > 0 to be fixed later and write

)
/A Tf|(@) de = / w({z e A; |TH()] > a)) da
(7.78) 0

“+oo
+ [ e e s [14@)] > a)) da
5
We use the decomposition f = g, + b, in order to deduce :
p{z  |Tf(@)| > a}) <p({z: [Tgalz)| > a/2})

+u({z o |Tha(2)| > o/2})

We recall that, given f € L} (R"), its Hardy-Littlewood maximal function is

(7.79)

M (x) = sup ]{3 Wy

r>0

We have, using the embedding L*(R") — L**(R")

+o0 400 dov
: o 2
(7.80) /5 u({x € A: |Tgo(x)| > 5}) da < cn/(; 19allz2rn) =

We decompose

ul(@de = [ gaP@ydo+ [ (e da,
R™ R\ Qq Qo

where (), is the “bad set” away from which g, = f. Recall moreover that

sup |gal(z) < 2"«

€N
and
|f(2)] < a in R™\Q,.
Combining these facts with (7.80) give:

+o00 400 do

/5 ,u({:v € A:|Tga(x)] < %}) da < Cn/5 — /|f§a |f|?(z) do

(7.81) i
2n
+ /5 2 ? ,U(Qa) do.

Using Fubini, we have in one hand

T da +oo dov
/ FP)de= | !f|2(a:)d:c/ da

2 2
5 a” Jifl<a max{6,|f|(z)} &

T /()
= Jen max{0,1f](@)}
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In the other hand, we recall that the bad set €2, is the union of disjoint cubes (Cy)ren
and on each of these cubes the average of |f| is larger than «. Hence we have

=Y wlC)<a™t Y [ |fl()da

keN keN v Ck

—at [ flw)ds
Qa
We write then

Q) <! / fl(x) da =a™ / fl(x) da
Qa Qan{z;| fl(z)>F}

vt [ f1(a) da
Qan{m;| fl(2)<F}

Q, _
< ) 4 4 /M Fl(x) da.

Thus we just proved

Q
(7.83) M0 <ot [ ifl@yas
2 11>
Combining (7.81), (7.82) and (7.83), we finally obtain
(7.84)
[ e({rearawis g+ [ 9 [ el
i ulyx T ga(x 3 a<C, It i o x) dx

<Ga[I + [ 11160) Lo + (2]

Now we bound the contribution of the action of 7" on the bad part. We have seen
in the proof of the primitive formulation of L” theorem for convolution Calderén-
Zygmund kernels that the following inequality holds

/ CThl <@ [ Ifi@)da
R\ Qe

where Qa = UkeN 5k and ék are the cubes obtained from the C} by dilating by the
factor 24/n leaving the cube centers fixed.

For any g > 0, we bound

n{z € A |Tho|(x) = B}) < 1) + pl{r € R"Qu; [T ba(2)| > 5}

< vy u(@a) + &

5 R™\Qq

n % xT)ax
< vy )+ [ i)

T by |(x) dz
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We apply this inequality to 8 = 5 and we integrate between ¢ and +oo. We obtain

—+00

/;Oou({x € A: |Th,|(x) > %}) da < Cn/a 1(Qy) da

too do
vo [ 2 [ e
We decompose again

dr + * d
L was [ NLCEE / s
<Con@)+ 1 [ (fl@)ds
If1>3

Hence we have proved

—+00

/6+Oou<{x € A:|Tga(z)| > %}) da < c / 1(2y) dov

+o00
T / da /
f|>*

Using (7.83) again, we then have

I 2| (=)
7.85 / L :L‘EA:Tbang <ec fl(x) Log + dx,
@85 [ u({reas iz = )) <e [ il os+ (25
where ¢ depends on 7. Combining (7.84) and (7.85) together with (7.85), we obtain

2l

/A 7 11e) < 6u(4)+ [ 1)) Log[e+

The inequality (??) follows by taking d = 2 || f||£1/4(a). This concludes the proof of
theorem 7.18. O
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8 The LP—Theorem for Littlewood Paley decom-
positions

8.1 Bernstein and Nikolsky inequalities

Theorem 8.1. (Bernstein inequality)

Let p € [1,400]. There exists a constant Cy,, > 1 such that, for any k € N* and
any f € LP(R™) satisfying

supp f C Byt (0)\Bai1(0),
then Vf € LP(R"™) and we have

(8.1) Cort 1 fllo@ey <27 [V flle@ny < Crp 1f [l Lr@n)-

Proof of Theorem 8.1. Let y be a cut of function in C°(R™) such that

X=0 in B:i(0)U (R™\B4(0))
x=1 in Bl(O)\B%(O).

By assumption we have

-~

f(&) = x(27¢) f(¢) in S'(R").
Using Proposition 7?7, we deduce
fla) = (2m)7% x(2°2) 2"  f(2).
This implies for any j = 1,...,n (using Proposition ?7)
Op, f = (2m)72 280D 9, X (2%2) x f in S'(R™).

Since x € C*(R"), 9;, x € S(R™) and then in particular d,, ¥ € L'(R"). Using
Young inequality, we deduce that

IV fllze@ny < Cn 28 VX 1oy || £ 1| 2o @@y -

This implies the second inequality in (8.1).

We shall now present the proof of the first inequality in (8.1) in the particular
case where p € (1, +00).

For the limiting cases respectively p = 1 and p = 400, we shall need a multiplier
theorem that takes into account the support of the Fourier transform and that we
shall prove in Chapter 7 only. Recall from Chapter 1 that for any j € {1,...,n}

—

O, [ =i [.
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Multiplying the identity by i{; and summing out j gives'®

NERIDY % 9, f=7F in S([R").
j=1

Denote

X(27%¢)
€]?

2k ¢

|27k¢)2

m]~7k(€) = i2k

§j

=ix(27¢)
We have mj ) = m;(27%¢) where

min) =i XU € cx(me)

Hence, it is straightforward to prove that

C
Ve eN" 3C, >0 s.t. sup [0'm;(&)] < |§—|ﬁ|.
J

We can use the multiplyer Theorem 7.10 to deduce

2 fllr@e) < Con IV Il

This is the first inequality in (8.1) and this concludes the proof of Theorem 8.1 in
the case p € (1,+00). The general case is postponed to Chapter 7.

While the second inequality in (8.1) looks a bit like a “reverse Poincaré inequal-
ity”, the following theorem could be interpreted as some sort of “reverse Holder
inequality”.

Theorem 8.2. There exists C,, > 0 such that for any 1 < p < q < +o00, for any
k € N and any f € LP(R™) satisfying

supp f C By (0),

then f € LYR™) and the following inequality holds

n

(8.2) £l zageny < C (2527 ||l 1o (rny.-

Proof of Theorem 8.2. Let fi(z) := 28 f(2*x). We have then

-~

&) = f(27%¢)

which gives Suppﬁ C B1(0).

10We are using here the fact that fis supported away from the origin.
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Let x now be a function in C'2°(R") such that
X =1 on B(0)
X =0 on R"\By(0).

Because of the choice of x we have

~

Jr(€) = x(€) Ful©).
Using Proposition 7?7, we deduce
fo=(2m)7% X fir .
Since we only consider the case p < g and since p > 1, we have

1 1
O<-——-<1.

p q

Hence there exists r € (1,00) such that

Since x € S(R™), we have in particular Y € L'(R") and Young inequality gives then
[ fill Lomy < (2) 7> IX[| Loy [l el oy -
Holder inequality gives

Xl 2y < IR r Gy 11X 2o gy

where § =1 — 2. Choose ¢, = max{||¥||z1, [|X||z=} and we have proved

[ fellza@ny < Cn | fill o @n)-

(8.2) follows by substituting fx(z) = 27"Ff(27*z). This concludes the proof of
Theorem 8.2. O

8.2 Littlewood Paley projections

In the proof of Theorem 7.10 we introduced a partition of unity over the phase space
with each function ¢ = p(27%¢) being supported in the dyadic annuli Byr+1(0)\ Bax-1(0).
We shall consider the same partition of unity of the phase space but truncated at 0.
Precisely, let ¢ € C2°(R™) such that

{ Y(E)=1 in B(0)
P(€) =0 in R™\By(0),

and denote p(§) 1= ¥ (§) — ¥ (2£). We have clearly
supp ¢ C BQ(O)\B%(O).
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For k > 0 we take i (€) 1= ¢(27%¢) while for k = 0 we take ¢o(&) = (). This

gives
N

> en(©) =v(2Ne).

k=0
This implies that

Z@k(ﬁ) = lim Zgok(é) =1in R".

N—+o0
keN

Definition 8.3. Let f € S(R") and k € N. We define the k-th Littlewood-Paley
projection of f associated to the partition of unity (pr)ren to be fr := F pnf).

Because of Bernstein theorem 8.1, we have in particular, by iterating (8.1):

Vpell,oo] VEeN VgeN lst ||a£fk-”Lp(Rn) ~ oka | fiell Lo my-
f=q

We have for k£ > 0 (using Proposition ?7?)
(8.3) fro=2" ¢ (2%2) « f (27) 2.

Hence we deduce that for any p € [1, o0]

w3

(8.4) sup || fillze@ny) < Chp || fll e @ny.-
keN

By the triangular inequality we also have trivially

(8.5) £l eeny <D el ony.

keN

The goal of the present chapter is to prove that for any p € (1, +00)

ey ~ | (S 15E)’
keN

To that aim we have to present briefly the LP-spaces for families.

Lp(R)

8.3 The spaces LP(R",/,)

We recall the classical notation for any sequence (ay)ren and any g € [1, 00)

1
lawller = (D lael?)*

keN

and

lag|le := sup |ax]| .
keN
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It is a well-known fact that RY or CN equipped with lack of these norms is complete
and then define a Banach space.
We now define

1
q

LR, 1) = {(fhren st fi € PR (S0 1/17)" (@) < +oo

keN

1
for almost every x € R" and H (Z |fk|q> ! < +oo}.
keN

Lp(RM)

We have the following proposition:
Proposition 8.4. For any p € [1,00] and q € [1,00] the space LP(R™, (9) defines a
Banach space. Moreover for p € (1,00) and q € (1,00)

(LP(R", 09))" = LY (R", (7).

Proof of Proposition 8.4. We first prove that LP(R", ¢?) is complete. Let (f,g)keN
be a Cauchy sequence in LP(R™, ¢?). Then for each k € N (f,j)jeN is a Cauchy
sequence in LP(R™). Since LP(R™) defines a Banach space, there exists ( fg°)ken such
that

Vk e N f,g — f2° strongly in LP(R™).

This implies in particular that for any N € N
N N N 1
<Z |f,g|q> T (Z |fk°°|q> " strongly in LP(R™).
k=0 k=0

Let Fy(z) := (Zszo |f,;’°|q)% Because of the previous strong convergence we have

N 1
||FN||LP(]Rn) < lim up H<Z|fﬁ|q)q
k=0

S
J—+0o0

LP(R™)
< Timsup [|(f)]]1 gm0y < +o0c.
Jj—+oo

(Fn)nen is a monotone sequence of LP functions whose LP norm is uniformly bounded.
By using Beppo Levi monotone convergence theorem, we deduce that Fl strongly
1
converges in L” to a limit which is obvioulsly equal to (3> _,_[fe°|?)e. It implies
that (f°)keny € LP(R™, £7). It remains to prove
(frers — (fi*)xen strongly in LP(R™, £9).

Let € > 0 and let respectively jo € N and Ny € N such that

. : 7 €
0w (-, <5
3 o0\ 7 £
i) (k§0 i |q> @y 3
NG €
i) <k§0 ‘f’z0|q> LP(R™) < 3"
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We then deduce that

1
SN g 2e
sup ( E |fi q) ! < —.
izio 1N ¢ Lerr) 3
Hence we have )
limsupH( J _ ‘X’q)q <e.
e (1= 1)

k>N

Since for each k € N f] — f° strongly in LP(R"), we have

No 1
lim H( L= fE)” — 0.
Jim ; = FE1)" s
Hence for j large enough, we have
+o0 . 1
(1= s=1m) | <2
k=0

which implies the convergence of (f)ren towards (f2°)ren in LP(R™, (7).

We prove now the second part of Proposition 8.4. Let p and ¢ in (1, +o0]. Let T' €
(LP(R™, £))'. Let ko € N and denote L} (R", () the subspace of (fi)r € LP(R", (7)
such that f, =0 for k # ko = 0. L (R",£) is obviously isomorphic to LP(R") and,
using Riesz representation theorem, we define the existence of gz, € L (R") such
that

Tngo(Rn,eq) ((fk)) = an fko ((E) Gk (LE) dr.

Let
Léko(Rn,fq) = {(fk)keN c Lp(Rn,gq) such that fk =0 for k > k’o}
By linearity we have
Tio s (1)) = > fi(®) gi(x) dz.
st k<ko /R

Let
Oy, : LP(R™ 07) —> L’;ko(R”,Eq)

(fi)ken —  (fr)r<ko-

It is not difficult to prove that for any (fx)ken

lim Iy, ((fe)ken) = (fr)ren in LP(R™,€7).

ko—4o0

Hence, by continuity of T, we deduce that

V(fe)ken € LP(R™09) T ((fi)ren) = Y _ /Rn fi(2) g () dx.

keN
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It remains to prove that (gi)reny € L¥ (R", £9).
Let ko € N and denote f}° € L2, (R™ £7), the element defined by

Ik

ko .__ ’gk|2_q,
Vk <ky f°:= ™ | 1_%.

(% lowlr)

k=0
We have that Vk < kg
|gk’q/_1 2 n
7710) < 2 =l ¥ € PR

Because of the continuity of T" we have in one hand

RS

7 (( :o))’ < Or () o @n ey = CT[/

R"

(kzli; |gk|q,> pﬁ} :

In the other hand, a direct computation gives

’
p_
7

ko
1((7) = [ (3 ll(@)” do.
R™ k=0
Since p > 1, we have proved

ko
/. (3 lod@) " do < .

The constant in the right-hand side of the inequality is independent of ky. Hence
(gx) € LP (R™,¢9) and this concludes the proof of Proposition 8.4. O

8.4 The LP-theorem for Littlewood-Paley decompositions

The goal of the present subsection is to give a proof of the following theorem which
is the main achievement of the course.

Theorem 8.5. Let (¢r)ren be a dyadic partition of unity of the phase space and let
p € (1,00), there exists 1 < C such that for any f € LP(R™):

(8.6) CT I flzeeny < 1(fi)nenllzr@n,e) < Cl fllLs,

where (fi)ren is the Littlewood-Paley decomposition of f relative to the partition of
unity (Or)ren- O

Proof of Theorem 8.5. For any f € S(R"), we denote Vo € R"

S = (X 1hk@)

keN
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By Minkowski inequality, we deduce that S is a sub-additive map.
We first prove that S is strong (2, 2). Indeed, using Plancherel theorem, we have

S () de =) |fk

R keN

keN

Since supp @i C Bair+1(0)\ Bar-1, each £ € R™ is contained in the support of at most
3 different ¢y. Hence we have the bound

(8.8) VEER" Y o) < 3l

keN

Combining (8.7) and (8.8), we obtain that S is indeed strong (2, 2).
We claim now that S is weak (1, 1). Let Ki(x) := @x(z). In particular for k > 1,
we have Ki(x) = 28 ¢(2%x) and

fe = (2m)72 2k p(2F ) « f.

In order to prove the claim, we shall be using the following lemma which is the
Hormander condition for families:

Lemma 8.6. (Hormander condition for families)

Under the notations above, we have the existence of B > 0 such that

(8.9) Yy € R" / |Kk(x —y) — Ki(x)]|eede < B < +o0.
|z]>2]y]

Proof of Lemma 8.6. Let y # 0 and denote v :=

ik For any x € R", one has

0K},

ov

|yl
Kl — y) — Ki(a)] < /0 (5 — t0) dt.

Using Minkowsk: integral inequality, one has

/|w>2|y| 15k (z = y) = Ky(2)|e da < /|x|>2|y| (& /0y|

lyl
S/ / |V K| (x — tv) dt de.
|z|>2[y| /0

0K, :
e (x—tv)dt’ ) dx
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We interchange the order of integration and we proceed to the change of variable
z = x — tv. This gives

(8.10) / o By = Kl ds <lol | [VEe(z) de
z|>2|y

21>yl

We have for each k € N*

V| (2) = 2" D1V (2¢2).

Since ¢ € C*(R"), we have that ¢ € S(R") and hence, obviously, we have in
particular
Vel(@) < C min{l ]2},

This implies then

[VER|(2) < C min{2"HD; 278 [z 72},

For each z we denote by k. the integer part of

log, 2|7 (Le. ks = [log, |2|71]).

We write
! b ;
(Y IvELE) < (X IVELE) + (X IVELE)
keN kgkz k:kz+1
<o (e pop( Yy 2 %)
k<k. =k, +1
< \/§ C 2kz(n+1) + 2 |Z|—n—2 2—]4)2'
- V2
Using the fact that 2% ~ |—i|, we deduce
e,
(Z‘VK’“F(’Z)) S e
o 2
Inserting this last inequality in (8.10) gives then
, dz
[ K(z —y) — Ki(2)le2 do < C"[y] T
j=/>2ly] 21>l 1]
o0 d
»
< B |yl o)
yl P
< B < 400.
This concludes the proof of Lemma 8.6. O
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Continuation of the proof of Theorem 8.5. Let a > 0, we proceed to a
Calderon-Zygmund decomposition of f for the threshold a. We write f = g, + bo
where g, and b, are respectively the good and bad parts of the decomposition. Using
the subadditivity of S, we have

(8.100) p({a: S(f)(@) > a}) < u({2:9(0) @) > 5 }) +n({2:50)@) > 5 }).

Using the fact that S is strong (2, 2), we deduce
2

= p({r e R S(0a) (@) > %}) <C | lgal'(x) da

< 02" |f|(z) dx
R

(8.11)

We recall the notations from Chapter 4:

The bad part of R" for the decomposition is a union of disjoint cubes with faces
parallel to the canonical hyperplanes: € = |J,.y C¢ and Cy are the dilations of these
cubes by the factor 2/n leaving each center ¢, fixed. This dilation factor is chosen
in such a way that

Ve e R\C, VyeCr |z —cl>2ly—cl

Denote as usual = Uren Cy.

We estimate

[ stz = [ |5 o]

keN

We write b, = sen be where b, = b1., and we use Minkowski inequality to obtain

(8.12) / 15( dx<Z/ Ky # bl 2 () doe
R™\Q n\Q

leN

Using the fact that fC be(y) dy = 0, we write

1K % bl () = \

Using again Minkowski integral inequality and continuing (8.12) and (8.13), we ob-
tain by the mean of Lemma 8.6

/Rn\?2 S(ba)|(z) dz < Z /Rn\ﬁ dx /Ce be(y)| || EKx(z — co — (y — c0) — Ki(z — o) || o dy

leN

<Z 1be(y)| dy / HKk(x—c@—(y—Cg))—

ten Y Ce |z —ce|>2|y—cq|
p(x — C@)”p dx

Ki(r —y) be(y) dy

yeCy

/ [Ki(z —co— (y — ) = Ki(w —co)] be(y) dy

(8.13) &

£2

<BY | Iy |dy<B/|b Wz <28 [ [f)|dy.
]R”l

teN Y Ce
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This implies that

sup B u({z € R"\Q; S(ba)(z) > B}) < 2B | 1 w)ldy.

8>0

Applying this inequality to § := § and recalling that Q< C,at Jon | f (@)] da, we
deduce

on({rer )@ > 2}) <C / () da

Combining this inequality with (8.10b) and (8.11) gives that S is weak (1,1) and
the claim is proved. Using now Marcinkiewicz interpolation theorem 4.2, we deduce
that S is strong (p, p) for p € (1,2].

We claim now that S is strong (p,p) for p € (2,+00). We shall use a duality
argument. Thanks to Proposition 8.4, using Hahn Banach theorem, we have

/ ’S(f)’p(@dfr:H(fk)HLP(Rn,e2): w3 [ A

||(hk)HLp/(Rn7e2)§1 keN

= sup Z Ky * f(x) hy(x) dx

||(hk)HLp/(Rn722)§1 keN Rm

= sup f(z) Z K % hy(z) da.

”(hk)HLp’(Rnyg2)§1 R™ keN

Therefore, in order to prove that S is strong (p, p) for p > 2, it suffices to prove that
the operator S* defined by

S*(hg)ren = Z K % hy,

keN

maps continuously L (R”,¢?) into LP' (R"). Precisely, we are proving the following
lemma:

Lemma 8.7. Under the above notations, for any p’ € (1, 2], there exists C > 0 such
that ¥(hi) € LY (R", (?), we have

(8.14) H Z Kf * thLP/(R") <C H(hk)”Lp’(Rn,e?)
keN

Proof of Lemma 8.7. We use a natural extension of Marcinkiewicz interpolation
theorem 4.2 to the framework of mappings from L* (R”, £?) into L (R") whose proof
is left to the reader in order to infer that the lemma is proved if it holds for p’ = 2
and if there exists C' > 0 such that

(8.15) |S™ (M )ken| Lo @ny < C || (hi) || L1 Rn e2)-

We then first consider the case p’ = 2.
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To justify all steps in the computations below, we can of course restrict to ele-
ments (hy,)keny € L*(R™, €%) such that hy, € S(R™) and hy, = 0 for k large enough. Tt
is not difficult to prove that this class is dense in L*(R™, £?).

We have by using Plancherel theorem:

5°(l? = (2m) " / (S KER) (X KF )

. keN ¢eN
(2m)” ST G (©) of (€) hu(€) hu(€) de.
R™ p reN

Recall that supp () C Bor+1(0)\ Bae-1(0), hence

0P (6 (6) 20 = |k — (] < 3.

This implies that

18 ()| (x) dix = (27) / S Gt ©) o () Tle) () de

|k—£]<4

C (2n)" /7Zm ()2 [l (€) de

keN

R

<TEm) T ol > [ hel(€) de

keN YR”

< C|[(he)l 2@ e2)-

Hence we have proved (8.14) for p’ = 2.
We establish now (8.15). Let

= (Z th|2(56)>%-

keN

We fix a > 0 and we proceed to a Calderén-Zygmund decomposiiton for H. As usual,
we denote by Q = J,cy Cr the union of the bad cubes relative to this decomposition.
For each k € N, we write hy = gi + bx, where

hi(x) for z € R™"\Q
9:(v) = ][ hi(y)dy for x € Cy (¢ € N).
Cy
Since H(z) < a on R™\Q and fC y)dy < 2"« for any ¢, we deduce, using

Minkowski inequality, that

(8.16) 1 (g)[| oo (mm 2y < 2"
For any k € N and ¢ € N, we denote

bre == by 1¢,,
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where 1., denotes the characteristic function of the bad cube Cy. Observe that we
have fixed

Cy

Moreover, using Minkowski inequality, we have also for any ¢ € N

]éé NTORE fﬁ(Z\hk— ][C m) dy
i

(8.18) vieN brlle(y) dy <2 £ [[hxle(y) dy
C@ CZ

ol () dy + '

Cy 02

Using Minkowski integral inequality, we then deduce

Finally, recall that from the fundamental properties of the Calderén-Zygmund de-
composition one has

[helle2(y) dy
(8.19) (@) =D n(Co) < E—o

leN

Using the strong (2, 2) property, we have

u({z R 1 (@)l(2) > S}) < CllglFaer o)

Combining this inequality with (8.16) gives then

an({z R |S(g0l@) > S}) <C | llg)le)dy
(8.20) "
<C Ml (y) dy,

where we used again Minkowski integral inequality. B B
Denote as usual Cy the dilated cubes by the factor 2¢/n and Q = (J,. C¢ with
respect to the center ¢; of C;. We estimate now

/Rn\g‘s*b’“ dx</n Z 3K * bl (@ )

\Q YeN | keN
As usual we write

KF 5 byl ( ‘/C (x—ci— (y— ) busly )dy‘
= ‘/Ce (K7 (z—co— (y— ) — K7 (x — c0)] be(y) dy"
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We then bound using Cauchy-Schwarz inequality

Z ]K s b o| (x / Z ’Kf(%—q—(y—Cg)—KZ(iL'—CgH |bge(x)| dy

kEN € keN
< [ It e (=) = KE @ =l sl dy
.
This gives
[ 15t dr <
R\

> [ Il [ 1K (o= o= (5= ) = Ko = collndy.
Ce lz—cel>2ly—cel

leN

Using Lemma 8.6 (i.e. Héormander property for families), we then deduce

S*(be)|(z) dxe < C / bi.o| e2
AR > [ el

eEN
(8.21) e / Ibelle (y) dy
<2C |kl 2 (y) dy
RTL

Combining (8.19), (8.20) and (8.21) gives

anl{r € R 1S l@) > a}) <C [ Wullaln) dy

which is the weak (1, 1) property for S* (8.15). We then deduce Lemma 8.7. O
End of the proof of Theorem 8.5. We recall the identity

[ - |S(H)IP (@) dx} " sup F(z) S*(he) () d.

H(hk)”Lp/(RanQ)Sl R
Since by Lemma 8.7 S* is continuously mapping L¥ (R", ¢?) into L” (R") for any
'€ (1,2], we deduce then Vp € [2,00) 3C,, > 0 such that

[ 1sr@ds]” < 6 1,

Hence we have proved the second inequality in (8.6). It remains to prove the first
one in order to conclude the proof of the theorem.
We use the following duality argument

[fllze@ny = sup f(z) g(z) dz
91t gy <1 7
/ Z fe() ge(
”gHLP’(Rn) k.leN



Since supp fi, N supp gr = 0 for |k — €] > 4, we deduce

1fllreny = sup / S @) gulx) de

”g”LP,(]R")Sl " |[k—0|<4
< swp 7 / 1ille (@) lgelles () da
IlgHLp’<Rn)§1 Rm

< sup TH()llr@ne) (90| o g g2

||gHLp,<RTL)§1

< O (fi)llen 2y,

where we used
[(gr)l| Lo 2y < C |9l Lo -

This concludes the proof of the Theorem 8.5. O

9 Some important Function Spaces and their Lit-
tlewood Paley characterizations

9.1 Besov and Triebel Lizorkin Spaces

Under Construction

9.2 The Hardy Space H!(R")
9.2.1 Historical origins of the Hardy spaces H”

The Hardy spaces in one variable have their original setting in complex analysis.
They first appeared as spaces of holomorphic functions and were introduced with
the aim of characterizing boundary values of holomorphic functions on the unit
disk D := {]z] < 1}. Namely, let us look at the following problem: what are the
possible functions S! — C arising as boundary values of some holomorphic function
F:D—C?

This question, as just stated, is too vague: due to the lack of compactness of D,
holomorphic functions defined on D could exhibit a wild behaviour as we approach
the boundary (for instance, we can prescribe arbitrary values of F' on any discrete
subset of D). In order to obtain a meaningful notion of boundary value, it is natural
to impose integrability conditions on our functions F.

As a motivation of the forthcoming definitions, let us make a heuristic remark:
if the trace of F on dD = S! is some complex function f € LF(S'), for some
1 < p < oo, then F' (which is holomorphic and thus harmonic) is given by the
Poisson integral of f. In polar coordinates we have the formula

F(re®) = /S P )
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The Poisson kernel is everywhere positive and satisfies |, 51 P.(e")dn =1 for any r,
so (by Young’s inequality on the group S')

||F(7"‘)||Lp(sl) < HfHLp(Sl)

and in particular all the norms in the left-hand side remain bounded as r 1 1.

In 1915 Hardy observed that, for any holomorphic function F' : D — C, the map
r +— ||F(r)||;» is nondecreasing (for an arbitrary 0 < p < oo). These observations
lead us to define the space

H?(D) := {F : D — C holomorphic with 17}%1 [E(r )|l posry < —|—oo} :

When p > 1, using the weak* compactness of LP(S%), it is not difficult to show
that any F' € HP(D) is given by the Poisson integral of a complex-valued function
f € LP(S') satisfying f(k:) = 0 for all £ < 0. Conversely, given any such f, its
Poisson integral lies in H?(ID). Moreover, one can show that

F(r:) — fin L*(S') and hﬁl F(re?) = f(e”) for a.e. 0,

so that f deserves to be regarded as the set of boundary values of ' (we mention
that for a.e. 6 one has even a nontangential convergence of F' to f(e%)). This settles
the problem for 1 < p < oco. Let us also remark that the condition f(k) = 0 (for
all £ < 0) amounts to saying that I(f), up to constants, equals the Hilbert-Riesz
transform of —%(f). When 1 < p < oo the Hilbert-Riesz transform maps LP(S')
into itself, so any function in LP(S') arises as the real part of the trace of some
element of H?(ID).

The case of 0 < p < 1 is more difficult. F. Riesz, in a paper published in 1923,
introduced the notation H?(DD) for these spaces of holomorphic function (the letter
H stands of course for Hardy) and proved many interesting properties, such as the
following factorization theorem.

Theorem 9.1. Any F' € H?(D) can be written as F = BG, for suitable holomorphic
functions B,G : D — C such that |B| < 1, G # 0 everywhere and G € H?(D) (B is
the so-called Blaschke product associated to the zeros of F).

This theorem enabled him to prove the existence of a trace f € LP(S!) such that
we have again all the convergence results mentioned before for the case p > 1: the
trick is that, as G # 0 everywhere, one can take a k-th root of G (for an arbitrary
k > Ilj) and, observing that G'/* € H*(D) and B € H>(D), we get back to the
previous case.

Again, when p = 1, it can be shown that the possible traces are precisely the

complex-valued functions f € L'(S') satisfying f(k) = 0 for all £ < 0. As before,
the possible real values of traces of functions form the set

HY(SY) ={feL"(S"):RfeL'(SH}

(here R denotes the Hilbert-Riesz transform). But R does not map L'(S') into
itself any longer, so this set is a proper subspace of L*(S1).
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These results still hold in the upper half-plane R := {z =z + iy : y > 0}, re-
placing S' with R (see [?]), leading to the definition of H!(R).

Later, in 1960, Stein and Weiss introduced the systems of conjugate harmonic
functions in several variables, inspiring the correct definition of Hardy spaces in
higher dimension.

The first characterization avoiding conjugate functions was provided by Burkholder,
Gundy and Silverstein in 1971: they proved that a holomorphic function belongs to
‘HP if and only if the nontangential maximal function of its real part lies in LP. The
importance of this result lies in the fact that it allows to decide the membership of
a function f to H? by looking just at f itself.

In 1972 Fefferman and Stein, in a single pioneering paper, provided new real
characterizations of the Hardy spaces, introducing different useful maximal functions
and showing that the Poisson kernel can be replaced essentially by any other kernel.
In this paper Fefferman and Stein also proved that singular integrals map Hardy
spaces to themselves (and in particular H' to L'), as well as the duality (H')* =
BMO.

The Littlewood Paley characterization of these spaces was first given by Peetre,
while the atomic decomposition was obtained by Coifman (in one dimension) and
Latter (in arbitrary dimension).

9.2.2 Equivalent definitions and basic properties of H'(R")

We now introduce the Hardy space H!(R"), with a strong emphasis on the modern
real-variable point of view outlined in the last part of [?, FS16]

This important space can be characterized in many useful ways: indeed, H'(R"™)
is the space of all functions in L!'(R") satisfying one of the equivalent definitions
provided by Theorem 9.2 ((8) being the closest to the historical one).

Before stating the theorem, let us recall that the Schwartz space S(R") is a
Fréchet space, with the following increasing sequence of (semi)norms:

dlely

oz

Il = sup 1+ 12 3 |5 @), k20,
TER™

lal<k

Theorem 9.2. Fiz any ¢ € S(R") with [ p(x)dx # 0. There exists an N > 0
(independent of p) such that the following are equivalent, for a function f € L'(R"):

1. the vertical maximal function MY f(z) 1= sup,.q |1 * f| (x) lies in L'(R™);

2. the conical maximal function

MG f(x) = sup [ x fl(y)

yE By (CC)
lies in L'(R™);

3. the tangential maximal function

—n—1
M) = s b 100 (1427

yeR™
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8.

9.

lies in L'(R™);
the grand maximal function
GM () := sup {|¢ * f| () | t > 0,4 € S[R"), [[¢] y <1}
lies in L'(R™);
the similar grand mazximal function
GM'f(x) == sup{lp; * f| () | £ > 0,40 € CZ(B1(0)), [ Ve[| poo < 1}
lies in L'(R™);

there exists an atomic decomposition, namely there exist A\, > 0 and oo-atoms
ar (see Definition 9.4) such that

f= Zx\kak in L (R™), Z/\k<+00

the wertical maximal function with the Poisson kernel, 1i.e. Sf, lies in
LY(R™) (notice that P(z) = F~ (e~ = (lJrIcI:IQCW ¢ S(R");

the tempered distributions R;f := F~* <— i (f)) belong to L*(R™);

f belongs to the homogeneous Triebel-Lizorkin space FSQ(R”).

Each of the preceding statements defines also a norm on H!'(R™): (1) defines
the norm ||./\/lZ;f||L1 (and similarly for (2), (3), (4), (5), (7)), (6) induces the norm
inf ), A (the infimum ranging among all the possible decompositions), (8) provides
the norm || f[| . +327_; IR f|| 1 and (9) defines || f|| zo_ (which is a norm on L*(R")N
FP,(R™)).

The proof of this theorem is scattered across the next sections. We will show the
following diagram of implications (with the corresponding bounds on the induced
norms):
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We left out (9) in the diagram, since its equivalence with the other definitions
is slightly involved and invokes the vector-valued space H!(¢?), which will be intro-
duced in Section 9.2.8.

Similarly, as we will see in Section 9.2.4, the proof of (1) =
and uses a particular refinement of the proofs of (2) = (3) = (4).

Let us rely on definition (1) as for now, i.e. let H!'(R") denote the space of
functions f € L'(R") satisfying (1) and let [|f[l,; := |[M5f||,,. A first basic
question is whether C°(R") is included in H!'(R™). Surprisingly, this property
(which holds for most of the common functional spaces) fails for H!(R"), as the
next proposition shows.

= (2) is quite circuitous

Proposition 9.3. If f € H'(R"), then [ f(x)dx = 0.

Proof. Assume by contradiction that m := U f(x) dx| # 0. Choose any z # 0 such
that ¢ := || (z0) # 0. Then we can find R > 0 such that

|t
Br(0)

For any z € R" close to 0 and any large » > 0 we have

m
>0 el [ i@ de< T
R\ Bgr(0)

" e s f1 (20 + 2)) =

| eleotz—rsy >dy\ o
Br(0)

cm
zc/ f(y)dy‘—/ lo(xo + 2 —ry) — @(xo)| | f] (y y)dy — =~
Br(0) Br(0)
>@—HfH max} To+z—1 Y — (x)}—@>@
1 Il b 90 0 y P{To )

provided that | f[|;, maxyep, (o) [¢(®o+ 2 —r7'y) — p(20)] < <, which holds if

|z] < € and r > e ! for some small e. We can assume that ¢ < @ For such
z,r it holds

MEF(r(a +2)) 2 =5 2 [+ )|

But £ := {r(zo+ 2) | |2| < &r > ¢ '} is an open cone minus a bounded set, so

//\/lf;f(x)dxz/EMZf(x)dxz/Emr" dr = 400,

contradicting the fact that f € H!(R"). O

As shown by the next proposition, the mean-zero property is the only requirement
which a function in C°(R") needs to satisfy in order to be in H'(R").

Definition 9.4. For any 1 < p < oo, a p-atom is a function a € LP supported in
some ball B, with zero mean and

1 /
lall» |BI"" < 1.
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We remark that (for 1 < p < co) the last condition can be rewritten as

1/p
BI(fur) <1
B

By Holder’s inequality, any g-atom a is also a p-atom for every 1 < p < ¢ and
llall;. <1. We now show that the H*-norm is bounded, as well.

Remark 9.5. MY f < Mf pointwise, since letting h(z) := max|y > |¢| (z') we
have (noticing that h is radial and that the superlevel sets {h > s} are either open
balls or empty, for all s > 0)

% f] (2) < / E(E ) |f] () dy
- / h(y) 1f] (& — ty) dy

:/Ooo/{h>s}\f|(a;—ty)dyds

<M f() / Tk > s

M f(@) [ hly)dy S M (z),
as [ h(y)dy is finite. The same proof with P in place of f shows that MY%f < Mf.
Proposition 9.6. If a is a p-atom supported in B, then a € H*(R") and
lallyseny S lall, 1B < 1.
The implied constant depends on n, p and .

Proof. Let B = B,(x¢). For x € By,.(xy) we use the last remark to estimate
Ma(x) S Ma(x),
which gives (by Holder’s inequality and Hardy-Littlewood maximal inequality)

/ Ma(z) de < / Ma(z) dz < |By(z0)["" | Mal| ,, < |1BIY" ||al|,, -
Bar(z0)

Bar(x0)

For x ¢ Bs,.(xo) we use instead the mean-zero property:

v % a(z) = / (elx — ) — pile — z0))aly) dy.

By the mean value theorem, |¢;(x — y) — pi(x — x0)| < 7|V (z — 2) for some z
on the segment joining zo to y. So |z — xg| < r, thus

—n—1
Vol -9 =19l (F) s (FF) 0 Sl

since ¢ € S(R™). Hence,

/ Mga(z)dz Sr “aHLl/ @ — ol " du S [BIY |all
Rn\BQT‘(xO) RH\BQT(IO)
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Proposition 9.7. For any f € H(R") we have || f| ;2 S |[fll5-

Proof. We assume (without loss of generality) that [¢(x)dx = 1. Recall that
limy, o || f(- + k) = f]| ;2 = 0 for all functions f € L'(R™). Thus,

oo £~ Fls = [ \ [ o) (@ =)~ st )
g//m W)z —ty) — f(2)) dedy — 0

as t — 0, by the dominated convergence theorem: indeed, the inner integral is
bounded by 2| f|;: |¢] (y) and tends to 0 for all y, by the aforementioned property
of functions in LY(R™). So [|f|l;1 = limyo ||r * [l < HMZ;fHHl. O

Proposition 9.8. The space H'(R") is a Banach space.

Proof. If (f;) is a Cauchy sequence in H'(R"), then we have

HfJ - kaLl S Hf] - fk”Hl — 0 as j,k — o0

by Proposition 9.7, so (f;) is a Cauchy sequence in L'(R"). Hence, f; — f for some
f € LY(R™). For any x € R™ we have

oo S1 () = il f] () < linin MO f(2),
so MY f(z) < liminf; . M{ f;(x) and, by Fatou’s lemma, we deduce

1l = IMES ] < T inf MG ], < +oo.

So f € HYR™). Moreover, since f — f; = limp_oo(fx — f;) in L'(R™), the same
argument shows that

1 = fillp < lim inf 1k = Filla -

But the right-hand side can be made small at will, by taking j large enough (since
(f;) is a Cauchy sequence in H*(R")). This proves that f; — f in H'(R"). O

Proposition 9.9. If (f;);en is a bounded sequence in H'(R™) then, up to extracting
a subsequence, there exists f € H'(R™) such that f; = f in S'(R").

This result is related to the fact that ! (R") is a dual space. Notice that the same
statement is false in L'(R"): for instance, it is easy to see that ¢, — ([ ¢(z) dx)s
weak star. In general, a distributional limit of functions in L'(R") is a finite measure
which can possess a singular part.

Proof. We assume (without loss of generality) that [ ¢(x)dx = 1. Recall that the
dual space of Cy(R™), the space of continuous functions which are infinitesimal at
infinity, is Co(R")* = M(R"), the space of finite (signed) measures. L'(R") is
isometrically embedded into M(R"): a function g € L'(R") can be regarded as the
finite measure g dx.
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By Proposition 9.7, (f;) is bounded in L'(R") as well. Since Cy(R™) is separable,
by Banach-Alaoglu any closed ball in its dual is weakly* sequentially compact, so
there exists a subsequence, which we still denote (f;), and a measure p € M(R")
such that

fidz = pin Co(R™)*.

We claim that p is absolutely continuous with respect to the Lebesgue measure.
Indeed, for any z € R™ and any t > 0 we have

ooe fi@) = [ale =9 S dy > [le =) dut) = o< ula).
Arguing as in the previous proof, we deduce
sup [ * pf (z) < liminf MY f; =: g.
t>0 J—ro0

It is easy to check that ¢;(—) x p — p in Cy(R"), for any p € Co(R™). This
implies, using Fubini’s theorem, that ¢, * dz = . Let now E be a Borel set with
|E| = 0. We can find a decreasing sequence of open sets (V}) such that £ C N,V
and |V;| = 0. By weak* convergence we have

i (B) = 4] (V) < limint [ vl (@) do < | gl)do.
t—0 Vi Vi

But g € LY(R") (by Fatou’s lemma, since liminf;_,., ||M$fj
the limit as kK — oo we deduce

HLI < 400), so taking

il (B) < tim [ g(a)de =0,

k—o0 Vk
Hence the claim is proved, i.e. p = fdx for some f € L'(R"). We deduce that
f € HY(R") as in the previous proof. The convergence f; — f in S'(R") follows
from the fact that S(R") injects continously into Cp(R™). O

9.2.3 H! — H! boundedness of Calderén-Zygmund operators

In this section we will take for granted Theorem 9.2 (with an abuse of notation, we
will denote by ||-||,,1 any of the equivalent norms introduced above) and we will show
why H!(R") is the good replacement of L!(R™) from the point of view of harmonic
analysis.

Namely, its norm has the same behaviour as the L'-norm: for any A > 0,

A3l = 1 15

(to be precise, this identity becomes || f{|,,1 || fAllyn S [ f 5 if we use the norm given
by (9), with an implied constant independent of f and A). Furthermore, Calderén-
Zygmund operators map H!(R") into itself: this property holds also for L?(R") with
1 < p < oo, but it dramatically fails for L'(R").

Let us mention that, as another confirmation of the appropriateness of Hardy
spaces, if one carries over the theory into the general case of HP(R™) spaces then, for
1 < p < o0, they collapse to LP(R™) (for which many important results in harmonic
analysis already hold).
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Theorem 9.10. Let K : R"\ {0} — R be a Calderon-Zygmund kernel, i.e. a
measurable function satisfying (for some finite constants A, B > 0)

o |[K|(x) < Alz|™ for all x € R™\ {0}
o f|x|>2‘y| |K(x —y) — K(z)| de™ < B for all y € R™
. fr<‘x|<RK(x) dz™ =0 for any 0 <r < R < 400.
Let K. := K1gm g, (o). Then, for any f € H'(R™), K. f € L'(R"™) and the limit
K s fi=lim Ko f
exists in L'(R™). We have the estimate
1K 5 Fllps < O, A, B [
Proof. Recall that K. € L? still satisfies the above conditions (with B possibly
replaced by C(n)B) and that ’[A(e < C(n,A,B). Fix any f € HY(R"): by

LOO
the characterization involving the atomic decomposition, we can find A\, > 0 and

oo-atoms ay with f =3, Apay and Y7, Ay S || 5
It suffices to prove the thesis for co-atoms: once this is done, for any € > 0

1Kl < D Al anllpn DM S 1l -
k k

Moreover, (K, * f) is Cauchy in H!(R") as € — 0: indeed, for an arbitrary N,

limsup | K f — Ko+ ]|,

€,/ =0
< lim sup Z e | e * a, — Ko % ag|| ;1 + limsup Z e | EKe % ar, — Ko % ag|| 12
€,e/—0 E<N €,e/ =0 k>N
<O+ limsup Y A (1K agl| o + 1Ko * arll ) S A,
=0 SN k>N

which can be made arbitrarily small by letting N — 4o00. Thus K, * f converges in
L'(R™) and the limit satisfies the same estimate.
Let now a be an oo-atom supported in Br(xg). Recall that

IK. *al|,. < C(n, A, B) |la||. < C(n, A, B)

and that lim, ,q K, * a exists in L?. Using Holder’s inequality we infer that (K, x
)15,z Satisfies

||([<6 * a)leR < O(?’L, A, B)

(zo0) HLI

and converges in L' as € — 0. Moreover, using the mean-zero property of a, for any
x € R™\ Byg(xg) we can write

K xa(r) = /n (Ke(z —y) — K(z — 20)) aly) dy”,
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so that

/ K, + | (z) da” </ [ Ko=) = Koo =)l la(w)] dy” da”
R™\ Bag(z0)

R™\ Bar(z0)

/ / K.(x —y) — Ko(a — w0)| [a(y)| d2" dy"
n JR"\Bar(z0)

<Bla|,: < B.

Adding this to the preceding inequality we deduce that ||K. *al/;, < C(n, A, B).
Finally, (K. * a)1gn 5, () 18 Cauchy in L' as well, since

(Ke * a)lR”\EZR(:co) = (Kﬁ' * a) 1R"\§2R($0)
whenever €, ¢ < R. O

The multiplier version of Calderéon-Zygmund theorem holds as well, with the
following statement.

Theorem 9.11. Assume m € C°(R"\ {0}) satisfies

§eR™\{0}
for any o € N". Then, for any f € H*(R"), the distribution mf € L>(R") lies in
F(LY(R™)) and

|7 )

5 Wl

Proof. Take an atomic decomposition f = > Agay as in the preceding proof and
fix a dyadic partition of unity (¢;)sez in R™ \ {0}. Recall that the kernels Ky :=

F1 (Zévz_ N Wm) € S(R™) satisfy the Hormander condition for some constant B

independent of N and have equibounded Fourier transforms. Thus we can argue as
in the previous proof (without the need of truncating the kernel Ky, since it is a
Schwartz function) and we get

Ky g S 1.
But, by Plancherel’s theorem, Ky * ar — F~'(may) in L*(R") as N — oo, thus
F~Yma,) € L'(R") and H}"_l(mak)HLl <1

(by Fatou’s lemma, since a subsequence Ky, xa; converges a.e. to F~'(may)). Thus

the limit
g = Z Mo F~H(may,)
k

exists in L'(R™) and satisfies ||g]|; S || fllo0, as well as g = Y-, Ae(may,) = mf. O

Actually, in the preceding theorems we can easily upgrade the H' — L! bound-
edness to H! — H!.
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Corollary 9.12. Under the hypotheses of Theorem 9.11, for any f € H'(R") we
have

S g

Proof. By the characterization of H!(R") using Riesz transforms, it suffices to show
that R;F~'(mf) € L'(R™) with an estimate on its L'-norm (for any 1 < j < n).
But

Flmf € HY(RM), (

) =7 (~idm© o)
and the multiplier still satisfies the hypotheses of Theorem 9.11. O

Corollary 9.13. Under the hypotheses of Theorem 9.10, for any f € H'(R") we
have K. = f € H*(R™) and the limit

Kxf:=lmK,xf
e—0
exists in H'(R™), with the estimate
15 fllap < Cn, A, B) (1 £l -

Proof. From Corollary 9.12 we know that, for any 1 < j < n, R;f € H*(R") with
IR f Nl SN fllog2- Moreover,

Y

Rj(Ke*f>=f‘1< SR <§>A<§>) — K. % (R, ),

el
so, by the conclusion of Theorem 9.10, (R;(K. * f)) is Cauchy as ¢ — 0. As a
consequence, (K, * f) is Cauchy in H!(R"™). O

9.2.4 Equivalence of some maximal functions

The goal of this section is to prove the equivalence among the norms defined by (1),
(2), (3) and (4).
Trivially, we have

MLf S GMS

pointwise (with the implied constant depending only on ¢), so H/\/lgf < g/\/lfHL1 <
|GMf]|,: and (4) = (1) hold as well.

We also remark the following pointwise inequalities:

MUf < MSf <2 MLf

—n—1
pointwise (the second inequality follows from the fact that 27+ <1 + @) >1

whenever y € By(z)).
Let us now turn to the first nontrivial inequality, namely the fact that H/\/lfa f H S

M f|| ., which will give (2) = (3).

Lemma 9.14. For any x € R™ we have

(n+1)/n

ML f(w) < (M Mg
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Proof. The key observation is the fact that |¢; * f|(y) < M f(2) whenever z €
By(y) (since z € By(y) is equivalent to y € By(2)). From this it follows that

n/(n+1) 1 M¢E n/(n+1) d
oo S0 ) < [ Mep )
pemiaitniinngd) ‘BH“Z/ x| ‘ (Mc f>n/ n+1)( )dZ,

— |Biy)| Biy iy (@)

which gives
n/(n |y B ZL’| - ¢ p|n/(n+1)
oo FP O (1 ) < a0 ),

Raising both sides to the power + we obtain the thesis. O]

Corollary 9.15. Using the L™t)/"_boundedness of the Hardy-Littlewood mazimal
function, we deduce

(n+1)

IMET . < A At

S ML -

L(n+1)/n

Now we prove that the grand maximal function GM f is controlled pointwise by
ML f, which will trivially give (3) = (4) and [|GMf]|,1 < || MLf]|,,- The choice of
the seminorm ||-||,; will be specified by the proof of the next lemma, which roughly
says that every ¢ € S(R™) is a superposition of dilations of .

Lemma 9.16. Any ¢ € S(R") can be written as a series

Y= % sy
k=0

converging in S(R™), where the functions n*) € S(R™) satisfy

[ b 1 ) dy £ 2740

for a suitable seminorm ||-|| 5 depending only on n (while the implied constant de-
pends also on ).

Proof. Let (pr)ren be a (inhomogeneous) dyadic partition of unity in R™, which can
be obtained by taking py € C°(By), py = 1 in a neighbourhood of B; and letting
pr = po(27%) — po(271).) for k > 0 (so that, for k > 0, pj is supported in the
open annulus Boks1 \ Bok-1).

Since [ ¢(x)dx # 0, we have $(0) # 0. By continuity we can find ky > 0 such
that $(€) # 0 for all £ € Boyi—k,. For k > ko let n®) € S(R™) be defined by




(notice that the right-hand side makes sense on Bak-ky+1 and vanishes near the
boundary of this ball, so it can be smoothly extended by 0 on the complement). Let
k) .= 0 for k < kg. The series

i@@@_k) = i Pro—kol)
k=0

k=ko

converges to YZ in S(R"), so (by the continuity of F~1) we also have

Z ™ % pyon =1
k=0

in S(R™). We can find a seminorm ||-|| y» such that [(14]y|)2™*V |n| (y) dy < |7l s
so that for k > kg

Pk—kz(ﬂ/}
p(27F)

/(1+\y| W) (y) dy <

N//

Using the Leibniz rule it is easy to see that, for a suitable bigger seminorm ||-|| 5.
independent of ¢,

Pr—ko¥ —k(n+2)

P T— S

P ||
(the implied constant, however, will depend on ¢ and kg, i.e. on ¢). We can finally
find ||-|| y such that HJHN < 9l O

Corollary 9.17. For any v € R" we have GM f(x) S ML f(x).

Proof. Fix ¢ € S(R™) such that |||y < 1. Since 1, = > o0 pak * (n®))y,

e * f| (2 <Z‘<P2 ki ¥ k))t*f‘(m)
<3 / oo fl (@ —y) £ [19] (£"'y) dy
k=
<ML f( Z/(H ’y‘) " ] (t1y) dy.

But the last integral is bounded by
2k(n+1)/ <1 + ’y|> 1 ‘n(k ‘ t y) dy _ 2k(n+1)/<1 + ’y|>n+1 ‘n(k)‘ (y) dy 5 ka

for all £ > 0. So we obtain [ * f| (z)
the supremum over ¢ > 0 and over ¢ €

M f(z) and the thesis follows by taking

< Mt
~ Tl
SR?), 9]y < 1. -
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In order to prove the implication (1) = (2), we need some technical preliminaries.
Fix 0 < € < 1 and define the following modified maximal functions:

. t n+1
NMof@)= s e ) (—) ,

O<t<e lyeB(x) l+e+e |y’

—n—1 n+1
v y — | t
ML f(z) = sup o * f| (y <1 + ’—) <—> ,
v ( ) O<t<e l,yeR™ | ! | ( ) t t+€+€|y|

— n+1
GMf(z) == sup{l% * f| (2) (;) 0<t<etheSRY, Yy < 1}.

t+e+e|x|

Clearly Mv; J converges to M f pointwise from below, as ¢ — 0, and most
importantly it always lies in L'(R"): from t + €|y| > et + € |y| > €|z| we infer

tn—i—l

¢ n+1
x — ) < N S
oo 110 (eeer) <o Il s

Sl e (A )T
<e " 214 |z))™ e LYRM).

Lemma 9.18. We still have
|ar

< s

< NC
" HM“"f

j2! o’

the implied constants being independent of € and f.

Proof. The second inequality is proved exactly as we did for the original maximal
functions: again we have, whenever 0 < t < ¢ ! and 2z € By(y),

t

n+1 .
- < MC
t+e+e|y|) _./\/l@f(z)

oo 7100

_n_

17, averaging as z varies in By(y) and then

and, raising this inequality to the power
raising to the power "T“, we get again

ot — /ey (D
MLf(x) < (M| Mo

(z)
for any 2 € R", from which the second inequality follows (using the L"+1)/m-
boundedness of the Hardy-Littlewood maximal function).

Let us turn to the first inequality. Using the decomposition ¢y = >/~ @o—r; *
(n(’“))t we obtain again (for any x € R” and any 0 < ¢ < ¢ 1)

s £1@) 3 [lewse =) £ ) () dy,
k=0

but now we estimate (using 0 < 275t < ¢ 1)

_"“t—i-e—i-e]:c—y])nﬂ

— n+1
fern Ao =) < Mf) (14 2) (20

27kt
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n+1
Inserting this into the preceding inequality and multiplying both sides by (#em)

we arrive at

¢ n+1 N 00
o0 () < M@ Y b
k=0

t+e+e|z

where [}, denotes the following integral:

n+1 —k n+1
27" +et+ejx— . _
I, = / (1 + _|y| > ( | yl) t |77(k)| (t1y) dy.

27kt t+e+e|z

The second factor in the definition of I, is bounded by

n+1 n+1 n+1
t+e+elz|+ely\"" (14 e |yl * < 1+M *
t+e+e|z t+e+e|z| - t ’

where we used the assumption ¢ < 1, while the first factor is again bounded by
n+1
ok(n+1) (1 + %) ' . Thus,

|y‘ 2(n+1)
I, <MD / (”T) " ™ (¢ ) dy

_ok(n+1) /(1 )20+ )] () dy < 27*,

in view of the statement of Lemma 9.16. So we get

t

n+1
- < Mt
t+e+6|x|> ~ S"f(x)

o £l

and taking the supremum over 0 < t < ¢! we obtain the pointwise bound Q//\\//l flz) <
ML f(x), from which we infer the first inequality of the thesis. O

Theorem 9.19. For any 0 < € < 1 we have H./W;f

constant is independent of €).

Ll S ||M$'f||Ll (the implied

Proof. We claim that it suffices to bound the integral | 5 Mv; f(z) dx on the ‘bad’
set

E = {GMf <AMT},

for some large enough . Indeed,

/W;f(a:) de < A1 éj\//lf(:c) de < C\71 //W‘;f(a:) dz,

R\ E R\ E

since by the preceding lemma Héf\/lfH < C H.//\/vlfof
L
on n and ¢). Choosing A := 2C' we get

‘ ) (for some C' depending only
L

.//\/lvfpf(x) dr < %/ﬂ;f(a:) dx.

RM\E
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We can now subtract the finite quantity % fR”\E vao f(z) dx from both sides (this
step is the reason why we needed to introduce these modified maximal functions:
the same integral with M f could a priori be infinite) and obtain

E M;f(x)dxglfﬂgf(x)dx
2 Jrm\E 2 /g

so that

/MC ) da = Rnwﬂ;f@) d:c+[E/\7;f(x) dr < Q[EM;f(x) iz

Fix now r € E and let (y,t) such that 0 <t < ¢!, y € By(z) and
oo 110 () 2 AT
* —_
gpt ) t+€+€|y| 2

We aim at showing that the same inequality holds, with i in place of %, for all ¢ in
a small ball B, (y) (0 < n < 1 will be specified later). Once this is achieved, we will

have
2
1 —
TMaf(@) < ( / M) dy')

2
t+77t " v pe\1/2/0, 1 /
—_— M d

S(( " ) thW(z)( of)7 ) y)

< (”T”) (MME)2)* (),

from which the thesis follows as usual (integrating over F and using the L?-boundedness
of the Hardy-Littlewood maximal function).

n+1
Let g(v') := @i * f(v/) <t+++elyl) . The function ¢ is locally Lipschitz and is
smooth on R™ \ {0}, so for ¥ € B,,(y)

lg(v") —g(y)| <nt  sup  |Vyg|(2).
2€Bi(y)\{0}

We compute

_ t i (n+ 1)ttt 2
Vg(2) =t (V)i  f(2) (m) — e * f(2) Gtetew) T

But, writing z = x + th (with |h| <1+ 171 < 2),

et = [ (T ftwdu= [ (ST 4 b)) o = (oltmhes )

and similarly (V) * f(2) = (Vp(-+h))* f(x). Assuming without loss of generality
€< }l, we also have

t+etelz| >t+e+e(lz] — (1 +n)t) > =(t+e+e€lx])

l\')lr—t
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(as t — (1 +n)t > L). Putting everything together,

- et l e
Vgl (z) <t (|V90*f|($)+|90*f|(z)t+6+€|z|) <t+e+e|z|)

< (Tl 1) f1 (@) + (- + W))ex F(2)]) (;)

t+e+e|z
StIGM (),

thanks to the fact that the quantities sup, <, [[#(- + h)|| y and supj, <o

f)
gen|,
are finite (for i = 1,...,n). Hence,

9(y') — g(y)| < nt - C't'GMf(x) < nCAME f(x)

(for some C” depending only on n and ¢), as € E. Choosing 1 := min (%, 404/\)
we arrive at

o(0") > 9(0) — lotu) — o) > SMEF(x) — TMEf(x) = MG ()

which is what we wanted to obtain. O]

9.2.5 Further remarks

We collect in this section the proofs of some easier parts of Theorem 9.2. By what
we proved in the previous section, given ¢’ € S(R™)(R") with [ ¢'(x)dz # 0, we
have

M| S NIGMFl L S MG Sl

and similarly HM:;fHLl < HM:;/f ‘Ll. So My f and MY, f have comparable L'-
norms. This shows that, in order to prove (5) = (1) and (7) = (1), we are free to
choose ¢ at will (provided it satisfies [ ¢(z)dz # 0).

Proof of (5) = (1). As just remarked, we can assume ¢ € C°(B;) and |Vo|| « <
1. The thesis follows from the trivial pointwise inequality Mg f < GM'f. O

Proof of (7) = (1). First of all, we claim that there exists a continuous function
p: [1,+00) — R such that p is rapidly decreasing at infinity (i.e. sup, t* |p| (t) < +o0
for every k > 0) and

00 +o0
/ p(t)dt =1, / tho(t)dt =0 for k=1,2,...
1 1

(these integrals make sense by the rapid decrease assumption on p).
An explicit example is the following:

p(t) == %% (exp (e*™/4(t — 1)/4)) .
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The rapid decrease at infinity is clear since |p| (t) < £ exp (R (e*™/4(t — 1)1/1)) =
< exp <—\/i§(t — 1)1/4>. Let

g:Q=C\{teRt>1} = C, g(z):=—exp (&4t — 1)),
T

where (2 — 1)%/* means the unique holomorphic function h : @ — C such that
h*(z) = z— 1 and lim_,o+ h(t+€i) = (t —1)"/* for every real t > 1. We remark that
z = /4t — 1)Y4 maps Q into {re | r > 0,0 € (37,37}) and so

e R 3mif4(., 1 1/4 < 1 1/4) « -k .
91 (2) < Wexp( (= = 1)) < —exp \/—Iz S
Let 7 be the loop (in §2) obtained by concatenating the parametrized paths

t+ei (t€[,R]), VR:+ €™ (a€ |ag,2m — ag)),
T 3T

5 5 1)

for arbltrary ¢, R > 0. By Cauchy’s theorem we have [ 2*'g(z)dz = 0 for k =
1,2,... and

R—t—c (te[0,R—1]), 1+e ™ (a€][=,

/z_lg(z) dz = 27ig(0) = 2ei exp (63”/4@“/4) — 9.
v

Taking the imaginary part of both identities, sending € — 0 and then R — oo (and
noticing that the contributions of the two circular arcs are infinitesimal), we get
precisely

2/ thp(t)dt =0 for k=1,2,..., 2/ p(t)dt =2,
1 1

which is the claim.
We now build a Schwartz function out of the Poisson kernel: let

ota) = [ 0P e

This integral converges (as |P;| (z) = t "P(t~'x) < t7"P(0) < P(0)) and defines a
function in L'(R™), since

[l@ar< [~ [ or@ded= [0 <.

Moreover, using Fubini’s theorem, $(§) = [~ p(t)e ¥l dt. 1t is easy to show induc-
tively that, for £ # 0 and any multiindex « # 0,

013(€)
aca

- /100 p(t) -t Qalt, & 1€ e el at
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for a suitable polynomial @,. In particular, @ is smooth on R" \ {0} and all its
derivatives are rapidly decreasing at infinity. Moreover, ¢ is clearly continuous.
Given any a # 0, we write

(9
e Z o + Rk (s)

k<K

and notice that s™® |Rg| (s) is bounded for s € R\ {0} close to the origin, while it
is infinitesimal as |s| — co; thus [Rg| (s) < |s|. This implies

o 75 & - -
9 a?f) _ /1 plt) £ Qult, €, [6] ) (Z % Rt !é\)) o

k<K

Calling d and d' the degrees of @), with respect to its first and last argument,
respectively, we obtain that for every K > d’

/1 (1) -1 Qu(t.€ €17 | Racl (£ 1€ dt < / P (e dp < ]

(whenever 0 < |£] < 1), while
o0 4Nk
[ o rauele Y S a - o
! k<K ’

by the special properties satisfied by 1. This shows that all the derivatives of @
extend continuously up to the origin, hence gﬁ E S (]R”) and we deduce that ¢ €
S(R™), as well. Finally, [5, o(z)dx = [ [z, p(t)Pi(z)dz = [ p(t)dt =1 and

M2 (x) < / ol (MU () dt < MY (x)

for any f € L'(R"™), showing that (7) = (1) for this particular ¢. O
Proof of (6) = (5). Let ¢ € C(B4(0)) with ||V¢[;« < 1. Given an oo-atom

supported in B, (zq), we have

9 % al () < [[9ill o lall oo = 19021 llall oo S llall s

for any € B, (x). Fix now x € R" \ By,.(z9) and notice that i x a(z) = 0 if
t < |v—xo| —r (since in this case ¢;(z — -) and a are supported in the disjoint
balls B;(z) and B, (z¢)). Assume instead that ¢ > |z — x¢| — r: in this case we get
t > lz=z0| SO

e * al (2 /\wt ) — do(x — zo)| |al (v) dy
<7" |v¢t||Loc “aHLl
A —

|I‘ . x0|n+1
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(as Vi (x) = 7" 'Vp(t71z)). Thus,

r

IGM fl] 1 5/ lall oo dx—i—/ 7 dw
Bay(z0) R ‘

"\ By, (z0) [T — To
oo n—1

P dp
ﬂmammwﬁ’wﬂsl

2r

Hence, if f =", Ayay is an atomic decomposition,

D e
! k

IGM flr <

Z )\kg./\/l’ak
k

]

Proof of (6) = (7). The proof of Proposition 9.6 can be repeated verbatim, with ¢
replaced by P, to show that
[IMpallr S 1

~Y

for any oo-atom a. Hence, if f = )", Apay is an atomic decomposition,

D e
i k

MG F Il < 1D MM bpar
k

O

Proof of (6) = (8). It suffices to notice that the proof of Theorem 9.11 used only
the atomic decomposition of f. So, choosing m(§) := —i%, we deduce

IR fll, S inf 37 A

(the infimum ranging over all the possible atomic decompositions). Moreover, for

any decomposition
1Al < D2 M llall < D7 M
k k
Thus, [| £l + 2251 1R fllr S nf 304 A O

9.2.6 Characterization with the Riesz transforms

We now show the implication (8) = (7) among the equivalent definitions of H*(R™).
The proof will implicitly show the corresponding inequality on the norms, namely

IMp Sl S Il + IRl + -+ IRl -

Assume that f and all its Riesz transforms are in L'(R"). So far we have tacitly
allowed any function to be either real or complex valued, but now it is convenient to
assume f real valued (without loss of generality, as R; maps real functions to real
distributions). The functions

wi(z,t) =P« R;f(x) for 1 <j<mn, upii(z,t) =P = f(x)
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form a system of conjugate harmonic functions on H"*' := {(x,t) € R""! : ¢ > 0},
i.e. they satisfy the following system of generalized Cauchy-Riemann equations:
"Z“ u;  du; Oy

= —L = — = f 1<, k< 1,
8% 0 Oxy,  Ox; or any J ne

where x,,1 is an alias for the auxiliary variable ¢. This can be checked using the
formulas

F(Pox [)(€) = (2m) e €I (Q),  F(P o+ Rif)(§) = —(2m) ™ ﬁ eI f ().

Clearly it suffices to prove that
sup [u| (-, t) € L'(R"),

t>0

where u := (uy,...,Up+1). We could bound |u| (z,t) by the Hardy-Littlewood max-
imal function of (f,Rif,...,R.f) at x, but this would be useless (as the Hardy-
Littlewood maximal function satisfies only a weak (1,1) bound). Rather, we aim at
showing that |u|? (z,t) < Mg(x) for some ¢ < 1 and some g € L'/9(R") with

1
g, S A+ IR N+ 4 IR fll

from which the thesis will follow since

1 1
< Mgl S gl -

sup [ul (-, 1)
t>0 Lt

Pick now "T’l < ¢ < 1 (so that in particular ¢ > 0). From Lemma 9.20 below,
we know that (Jul”> 4+ €2)%/2 is subharmonic (for any e > 0). Thus it satisfies the
following version of the maximum principle: for any Q € H"*! and any h € C°(Q)
harmonic in €2, the implication

(Jul? + )72 < hon 80 = (Jul> +)?2 < hon O

holds. Sending € — 0, it is easy to check that |u|? satisfies the same property.
Lemma 9.21 below tells us that this property applies also with the harmonic function
h(zx,t) := P_s*|u|’ (x,d) on the unbounded domain {(z,t) : t > §} C H"™!, for any
o> 0.
Notice that
1

sup [[[ul? (-, 6)II34%, = sup ul, )l < 1l + IR llga + -+ IR Sl -

6>0 >0
Since any closed ball in L'/7 is weakly sequentially compact, we can find a sequence

6, — 0 and a function g € LY9(R") (whose L'9-norm satisfies the same bound)
such that |u|? (-, ;) — g. Since P,_s5, — P, in L1/9" we deduce that

0l (2,2) < Jim (P, * [ul? (-, 60)) (&) = Prx g(x).

Finally, by Remark 9.5, we have P, x ¢ < Mg, which was our goal. It remains to
prove the two lemmas.
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Lemma 9.20. For any q > =1 the function (|u|* + ¢2)¥/? is subharmonic, i.e.
A ((|u|2 +€2)9?) > 0.

Proof. We will use the shorthand notation 0; := %. We compute
J

Oj([ul’ + )% = g(lul’ + &) Dy,

Z (ul+e)? = " q(q—2)(Jul*+€) 72 (w-0,u)*+ )~ q(|ul*+€*) /D7 0uf?

J J

(using Au = 0). The thesis follows immediately if ¢ > 2, so we can assume "~ <
g<2,ie 0<2—-¢qg< "TH It suffices to prove that

n+1 2 2 2
n E (u - Oju)” < |uf Ej |0jul

J

This inequality is a consequence of the generalized Cauchy-Riemann equations: in-
deed, the matrix A := (9;ui(z)) i is symmetric, so (by the spectral theorem) we can
find P € O(n + 1) and a diagonal matrix D such that A = P'DP. The coefficients
on the diagonal of D are the eigenvalues \q, ..., \,41 of A. We remark that

> N =tr(D) = tr(A) = 0.

We pick jy such that |\;)| = max; |);|. By Cauchy-Schwarz we have

2
Z)‘j Snzp‘jﬁu
J

J#jo

(n + 1) ’)‘j0|2 =n ‘)‘j0| +

. ur () .
S0, letting v := P . , we can estimate

”“Du oyul? ”“Z A(“lfx)>
<Zm ul

We finally observe that

2

n+1 n+1
= |Duf* <

Aol [0l

> NP =tr(D'D) = tr(PA'P'PAP") = tr(A'A) = > " [0;ul*.

J J
Lemma 9.21. Fort > ¢ we have |u|? (z,t) < (Pi—_s * |u|? (-,0))(x).
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Proof. Let us first prove that, for every n > 0, there exists an arbitrarily large radius
R > 0 such that |u| < nontheset {(x,t) :t >4, |(z,t)| > R}. From the mean-value
property of harmonic functions, for any (z,t)) in this set we have

juf (z,1) < |ul (y, ) dy ds.

‘Bt/Q(‘r7 t) ‘ By ja(x,t)

If |#| <t thent > \% and we can estimate

Jul (z,t) < ul (y, s)dyds S At™" S AR™

}Bt/2(x7 t)‘ R"x(%,%t)

(where A := sup . [Ju(-, $)||;1 < +00), which becomes small at will taking R large
enough. Otherwise, if |z| > ¢, then |z| > % and any point (y, s) € Bys(z,t) satisfies

lyl > 2L, so

3t/2 3t/2
] (1) S £ / / ] (y, ) dy ds < / / ] (y, s) dy ds.
t/2 ly|>|x]/2 t/2 ly|>R/V8

But the latter quantity can be uniformly estimated by

/ / ] (y, s) dy ds,
8/2 ly|>R/V8

which can be made arbitrarily small taking R large enough, thanks to the dominated
convergence theorem (since the inner integral is bounded by A and tends to 0 as
R — +00).

Now h(z,t) := (P_s * |u|”(+,0))(z) is harmonic on {(x,t) : ¢ > 0} and extends
continuously to the boundary R™ x {d}, where it coincides with |u|?. So we have
proved that

Jul* (z,) < (Pres * [ul* (-, 6)) () + 1

on the boundary of Sg := {(z,t) : t > 0,|(z,t)| < R} for any R large enough. We
deduce that this inequality is also true on Sg itself. Thus, letting R — 400, we
infer that it holds on {(z,t) : ¢ > §}. The thesis follows as we let n — 0. O

9.2.7 Existence of the atomic decomposition

In this section we show that any function f € L'(R™) with GM f € L*(R") admits
an atomic decomposition
=
k=0

with Ay > 0, (ax) a collection of co-atoms and »_, Ay < [[GM f||;., thereby proving
the implication (4) = (6) and the bound on the corresponding norms.
[ -+ work in progress - - - |
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9.2.8 Littlewood-Paley characterization

In this section we are going to prove that H!(R") = FﬂQ(R"), in the sense specified
by Theorem 9.23, denoting by H'(R™) the space of functions satisfying (any of) the
definitions (1) —(8), whose equivalence has been established in the previous sections.

We fix a function ¢ € C(B; \ Bijs) such that > ez ¥(277€) = 1 for any
¢ € R"\ {0}. Recall that such a ¢ can be produced by taking any ¢ € C'°(B3) such
that ¢ = 1 in a neighbourhood of B; and letting 1 := ¢ — ¢(2-).

We let ¢ € S(R™) be any function such that [, pdz" # 0 and suppy C Bs.
For instance we can take ¢ := F~'(¢) for any ¢ as above (using [, pdz" =

(2m)72¢(0) # 0).
Lemma 9.22. For any f € S'(R") and any r € (0,00) we have

suplgr + Pyf|(2) < Clnr)M PV ().

Proof. Recall that, whenever v € §'(R"™) has its Fourier transform supported in By,
we have the inequality

@ =2
e S (1) (),

More generally, if U is supported in B, letting v := u(s™!+) we obtain

u(z — )| o(sz = 2)| _

W sonr =S @y oy S M Il () = (M Jul") ().

sup
If 2 < 2971 (ie. if t > 2%77) we have ¢, * Pjf = 0, since the supports of @, and
1(277-) are disjoint in this case. Assume now that ¢ < 2277: in this case ¥(277+) is
supported in By, so choosing any N > % 4 n and estimating |¢(2)| < (14 [z])~"
we get

o 1B f] (2 = 2) P fl (x — 2) ¢
e P S [ 4 S e e | e

The last integral is a finite constant independent of ¢, while

|Pifl(x ~ 2) Su\;f|( 2) o
(147t [z])/r (1+ 3]z ™~

S (MBI (2).

sup

]

Before stating and proving the next theorem, we introduce the vector-valued
Hardy space H!(R™, ¢?): it is the subspace of

1/2
LY(R", %) := { (fj)jez © L'(R") /(Z|f] ) < +oo
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made of elements (f;) satisfying one of the equivalent definitions (1) — (7) in vec-
torized form. For instance, (1) amounts to ask that

sup [0 * (fi)ll 2 = sup | (o * fj)ll = € L'(R™).
t>0 t>0

Their equivalence comes from the fact that the proofs for the scalar case can be
repeated verbatim for the vectorial case (we exclude definition (8) since its equiv-
alence with the other definitions uses real numbers in an essential way, due to the
appeal to the spectral theorem).

Theorem 9.23. For any f € H'(R") we have

1B szl ey S Il

Conversely, if for some f € S8'(R") we have |[(P;f)jezll 12y < 00, then there exists
a unique polynomial Q such that f — Q € HY(R™); moreover

1f = Rl @ny S NP5 H)jezll iy -

Proof. The first statement follows immediately from the H' — L'(¢?) version of
Theorem 9.10, applied with K; := F~1(n(277-)), with assumptions (1) and (3) re-
placed by the validity of the L? — L?(¢?) bound (which holds as a consequence of
Plancherel’s theorem). This variant of Theorem 9.10 is simply obtained by vector-
izing the same proof (and in this case there is no need of truncating the kernel).
Recall that this ¢2-valued kernel satisfies the Hormander condition

[ =) = Kol da” 51

We now turn to the converse. Pick 1 := ¢(2-) + ¢ + 9 (5) and notice that n =1
near the support of 1. Let

P S'(R") = S'(R"), Pi(g):=F '(n(27-)Fg)
and remark that P;P; = P;. Applying the H'(£?) — L' version of Theorem 9.10
with f:= (P;f)jez and K; := F~*(n(277+)), we can estimate

N ~
> BiPf
j=—N

N N

> Py

j=-N

S

bif
N

j=— I3 I HL(62)

We can similarly estimate the L'-norm of Ry, 32 P;f, using the (2-valued kernel

j:_
Ky i= F4 (=ifgn(279,)). Thus,

N

> Py

j=-N

N

> Pt

j=-N

S

N 1/2
o (55 )
>0 \;T 7y

HL HL(02) Lt
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Using Lemma 9.22 with any 0 < r» < 1, as well as the Hardy-Littlewood maximal
estimate for L'/ "(¢*/7), the last quantity is bounded up to constants by

N 1/2
(Z <M|ij|7“>2/r) =IO, (g S IO, o

j=—N

Lt
P ey
where (%, denotes the truncated space of sequences a = (a_p,...,ay) with the
P
norm ||a||£§7\7 = (Z;Y:_N |aj|p> . The same argument shows that the partial sums

Zj.vzf ~ Pjf form a Cauchy sequence in H'(R") and thus, by Proposition 9.8, con-

verge to some g € H'(R™).
But F (Z?{:_N P]f> — fin D'(R™\ {0}), so the tempered distribution f—7gis
supported in {0}. This means that
Qi=f—g=7"(7-9)

is a polynomial. So f—Q = g € H'(R") and, letting N — oo in the above estimate,
we also have

1f = @l = gl S WO 12y -

9.3 The Space of Bounded Mean Oscillation Functions
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