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Introduction



Finite Dimension

f (x , y) := 1 + x2 − y2 f (0, 0) = 1 ∇f (0, 0) = 0

∇2f (0, 0) =

(
2 0

0 −2

)

R2 = E2 ⊕ E−2 =⇒ Morse Index = 1



(0,0) x

y

z

E−2

E2

z = f(x, y) = 1 + x2 − y2

∇f(0,0) = 0

f(0,0) = 1

R2 = E2 ⊕E−2
Morse Index (0,0) = 1

Figure 1: Non-zero Morse Index Critical Point



How to characterize variationally the critical point
(0, 0) ?

{(x , y) ; f (x , y) ≤ 0} has 2 connected components :

Ω± := {(x , y) ; f (x , y) ≤ 0 ± y ≥ 0}

The notion of admissible families

A :=
{
γ ∈ C 0([−1, 1],R2) ; γ(±1) ∈ Ω±

}

For any homeomorphism Ψ of R2 s. t.

Ψ(x , y) = (x , y) for f (x , y) ≤ 0

we have
Ψ(A) = A



f ≤ 0

f ≤ 0

+1

−1

Ω+

Ω−

x

y

E−2

E2

γ ∈ A

γ(−1)

Figure 2: The admissible Family



How to characterize variationally the critical point
(0, 0) ?

{(x , y) ; f (x , y) ≤ 0} has 2 connected components :

Ω± := {(x , y) ; f (x , y) ≤ 0 ± y ≥ 0}
The notion of admissible families

A :=
{
γ ∈ C 0([−1, 1],R2) ; γ(±1) ∈ Ω±

}

For any homeomorphism Ψ of R2 s. t.

Ψ(x , y) = (x , y) for f (x , y) ≤ 0

we have
Ψ(A) = A

Observe

γ ∈ A ⇐⇒ [γ] generates H1(R2,Ω+ ∪ Ω−,Z) = Z

Homological family of dimension 1.



The width and the pull tight minmax operation.

Width = inf
γ∈A

max
s∈[0,1]

f (γ(s)) = 1 (each γ ∈ A intersects y = 0)

The gradient field

X (x , y) := − max{f (x , y), 0} ∇f

the gradient flow




∂Φt

∂t
(x , y) = X (Φt(x , y))

Φ0(x , y) = (x , y)

Φt(A) = A

The pull tight operation :

γ −→ Φt ◦ γ



f ≤ 0

f ≤ 0

Ω+

Ω−

x

y

γ

Φt ○ γ

Figure 3: The pull Tight operation



The realization of the Width by a critical point.
Assume

∃ ε > 0, δ > 0 s.t.

1− ε ≤ f (x , y) ≤ 1 + ε =⇒ |∇f |(x , y) > δ

Then

∃T > 0 s. t. ΦT (f
−1(−∞, 1 + ϵ)) ⊂ f −1((−∞, 1− ϵ))

contradiction. Hence

∀ ε ∀ δ > 0 ∃ (x , y) ∈ f −1((1−ε, 1+ε)) and |∇f |(x , y) < δ

and
|∇f |−1([0, 1]) is compact.



z

x

y

γ

Φt ○ γ

Figure 4: Pull tight going nowhere!



higher dimension : the admissible family

In Rn+m

f (x1 · · · xm, y1 · · · yn) = 1 +
m∑

i=1

x2i −
n∑

j=1

y2j

Let Ω := f −1((−∞, 0]). Long exact sequence of homology

· · · Hn(Ω)

=

Hn(Sn−1)=0

i∗→ Hn(Rm+n)

=

0

j∗→ Hn(Rm+n,Ω)
∂→ Hn−1(Ω)

=

Hn−1(Sn−1)=Z

→ 0 · · ·

The Admissible Family

A :=
{
γ ∈ C 0(X ,Rn+m) ; X poly. chain γ(X ) ̸= 0 in Hn(Rm+n,Ω)

}



x

y1

y2

γ(x)

f ≤ 0

f ≤ 0

f > 0

f(x, y1, y2) = 1 + x2 − y21 − y22

Figure 5: Admissible Family in higher dimension



The Width

Poincaré duality =⇒

∀ γ ∈ A γ ∩ {y = 0} ≠ ∅

Hence
Width = min

γ∈A
max
t∈X

f (γ(t)) ≥ 1



The Width

Poincaré duality =⇒

∀ γ ∈ A γ ∩ {y = 0} ≠ ∅

In fact
Width = min

γ∈A
max
t∈X

f (γ(t)) = 1

The width is achieved by a critical point of Morse index = n



Examples of Minmax Problems in ∞ dimensions



Example 1 : The Origin of Minmax,

The Search of Closed Geodesics

Birkhoff Curve Shortening Process



The Equation of Geodesics
Nn closed sub-manifold of Rm. u : S1 → Nn

L(u) :=

ˆ
S1

∣∣∣∣
du

dθ

∣∣∣∣ dθ .

Consider us and w := ∂su|s=0

d

ds

ˆ
S1

∣∣∣∣
∂us
∂θ

∣∣∣∣ dθ

∣∣∣∣
s=0

=

ˆ
S1

∂s∂θu · ∂θu
|∂θu|

dθ =

ˆ
S1

∂θw · ∂θu
|∂θu|

dθ

In normal parametrization (i.e. |∂θu| ≡ Cte), it gives

∀ w ∈ TuN
n

ˆ
S1

∂θw · ∂θu dθ = 0 ⇐⇒ PT
u

(
∂2θ2u

)
= 0

⇐⇒ ∇∂θu = 0 ⇐⇒ − ∂2θ2u + ∂θ(P
T
u )∂θu = 0

⇐⇒ u is a critical point of E (u) :=

ˆ
S1

∣∣∣∣
du

dθ

∣∣∣∣
2

dθ



The Search of Closed Geodesics : π1(N
n) ̸= 0 .

Theorem [Hadamard 1898, Poincaré 1905, Cartan 1927]
Assume π1(N

n) ̸= 0 and let α ∈ π1(N
n) with α ̸= 0 then α is

realized by a closed geodesic. □



Nn

u(S1)

Figure 6: The search of closed geodesics: π1(Nn) /= 0



Proof.
One minimizes

E (u) :=

ˆ
S1

∣∣∣∣
∂u

∂θ

∣∣∣∣
2

dθ

Observe
L2(u) ≤ 2π E (u)

with equality iff |∂θu| ≡Cte. Recall

W 1,2(S1) ↪→ C 0,1/2(S1)

It comes from

|u(θ)− u(θ′)| ≤
ˆ θ′

θ

∣∣∣∣
∂u

∂θ

∣∣∣∣ dθ ≤ |θ − θ′|1/2 E (u)1/2

Arzelà Ascoli =⇒

uk
′ → u∞ strongly in C 0



Proof being continued.

Observe

∃ ρ > 0 s.t. ∀ z ∈ Nn BNn

δ (z) is convex.

Connect uk
′
(θ) and u∞(θ) with the constant speed parametrized

(between 0 and 1) unique geodesic in BNn

δ (u∞(θ))

Thus there exists us ∈ C 0
(
[0, 1],W 1,2(S1,Nn)

)
s.t.

u0 = uk
′

and u1 = u∞

This realizes an homotopy between uk
′
and u∞. Hence [u∞] = α.



End of the proof

The Euler Lagrange Equation is

∀ w ∈ Tu∞Nn

ˆ
S1

∂θw · ∂θu∞ dθ = 0 ⇐⇒ PT
u∞
(
∂2θ2u

∞) = 0

In particular ∂θu
∞ · ∂2θ2u

∞ ≡ 0.

Thus |∂θu∞| ≡Cte and u∞ is a geodesic.

Moreover
L2(u∞) = 2π E (u∞)

Thus u∞ minimizes the length in the class α



The case π1(N
2) = 0.

step 1

step 2

step 3Vanishing minimizing
sequence of loops

Figure 7: The case π1(N2) = 0

The minimization procedure vanishes...



The Notion of Sweep-out.
Birkhoff 1917.

A sweep-out is a map u : [0, 1]× S1 → N2 s.t.

i)
u ∈ C 0

(
[0, 1],W 1,2(S1,N2)

)

ii)
u(0, ·) and u(1, ·) are constant maps.

iii)
u∗
(
[0, 1]× S1

)
generates H2(N

2,Z) = Z





N2[0,1] × S1

u

u∗([0,1] × S1) /= 0 in H2(N2,Z)

Figure 8: Birkhoff 1917: sweepout of N2 = (S2, g)





The Width
Birkhoff 1917.

A sweep-out is a map u : [0, 1]× S1 → N2 s.t.

i)
u ∈ C 0

(
[0, 1],W 1,2(S1,N2)

)

ii)
u(0, ·) and u(1, ·) are constant maps.

iii)
u∗
(
[0, 1]× S1

)
generates H2(N

2,Z) = Z

Let
A := { sweep-outs }

Define the width

W := inf
u∈A

max
t∈[0,1]

E (u(t, ·))



Non Triviality of the Width

Lemma
W > 0

□

Proof of the lemma Assume W = 0.
Let uk be a minimizing sequence :

lim
k→0

max
t∈[0,1]

E (uk(t, ·)) = 0

Use again
W 1,2(S1) ↪→ C 0,1/2(S1)

Hence
lim

k→+∞
diam(uk(t, S

1)) = 0



End of the Proof

For k large enough

∀t ∈ [0, 1] uk(t,S
1) ⊂ BNn

δ (pk(t)) convex

where

pk(t) := πNn

( 
uk(t, θ) dθ

)
∈ C 0([0, 1],Nn)

where πNn normal projection onto Nn. Using shortest geodesic
connections

homotop uk(t, ·) to the constant map pk(t)

Observe
pk([0, 1]) is contractible.

Hence [uk([0, 1]× S1)] = 0 in H2(N
2). □



Main Question

Does there exists u∞ such that

W = E (u∞) = (2π)−1 L2(u∞)

and

u∞ is a geodesic in constant speed parametrization

that is
PT
u∞(∂2θ2u

∞) = 0 ?



Example 2 :

The Search of Minimal Spheres





D2 ⊂ R2

R3

Γ Jordan Curve in R3

Figure 9 a: The Plateau Problem



?

D2 ⊂ R2

R3

u

Minimal ℓ Area

Γ Jordan Curve in R3

Figure 9 b: The Plateau Problem



The Resolution of the Plateau Problem
Douglas, Rado ≃ 1930 : Instead of considering

A(u) :=

ˆ
D2

|∂x1u ∧ ∂x2u| dx2

One takes

E (u) :=
1

2

ˆ
D2

|∇u|2 dx2 .

One has

A(u) ≤ E (u) with = iff u is conformal :

{
|∂x1u|2 = |∂x2u|2

∂x1u · ∂x2u = 0

Uniformization Theorem gives

∀u ∈ Imm(D2,R3) ∃Ψ ∈ Diff(D2) Area(u ◦Ψ) = E (u ◦Ψ)

Conclusion : Minimizing E should be the same as minimizing A.
E has better coercivity properties.



1st and 2nd Fundamental Forms of u ∈ C 2
imm(D

2,R3)

gu(X ,Y ) := u∗gR3(X ,Y ) = ⟨u∗X , u∗Y ⟩ First fundamental form

n⃗u D2 −→ S2 unit normal : Gauss Map .

Second fundamental form

I⃗u(X ,Y ) = ⟨dn⃗u · X ,Y ⟩ n⃗u = (PX )t

(
κ1 0

0 κ2

)
PY n⃗u

P ∈ SO(2). Principal curvatures κ1, κ2 Euler 1750.



Recherches sur la Courbure des Surfaces - Euler
1760



Minimal Immersed Discs

d

dt
Area(u + t w)

∣∣∣∣
t=0

= − 2

ˆ
D2

H⃗u·w dvolgu J.-B. Meusnier 1752

where

H⃗u =
κ1 + κ2

2
n⃗ =

1

2

∆u

|∂x1u ∧ ∂x2u|
if u is conformal

u(D2) is a minimal disc. : H⃗u = 0 ⇐⇒ ∆u = 0 .

Critical points to E satisfy

∆u = 0 i.e. u is harmonic

If u is harmonic and u is conformal then

H⃗u = 0

Minimizing the Dirichlet energy under the Boundary Condition
{
u ∈ W 1,2(D2,R3) ; u : ∂D2 → Γ monotone continuous

}

solves the Plateau Problem : gives a minimal disc of minimal area.



The Hadamard-Poincaré-Cartan 2-D Problem

Let Nn closed in Rm with π2(N
n) ̸= 0.

A(u) :=

ˆ
S2

|du ∧ du|gS2 dvolgS2

Question : Let α ∈ π2(N
n, x0), α ̸= 0. Does there exist

u : S2 −→ Nn

realizing α and minimizing the area ?



The Use of the Dirichlet Energy

and E (u) :=
1

2

ˆ
S2

|du|2gS2 dvolgS2 .

One has

A(u) ≤ E (u) with = iff u is conformal : u∗gNn = fu(x) gS2

Uniformization Theorem gives

∀u ∈ Imm(S2,Nn) ∃Ψ ∈ Diff(S2) Area(u ◦Ψ) = E (u ◦Ψ)

Critical points to E satisfy

PT (u)(∆S2u) = 0 i.e. u is harmonic into Nn

If u is harmonic and u is conformal then u is minimal.



Preserving the Homotopy Class at the Limit for
Minimizing sequences ?

Problem : E is critical in 2 Dim. W 1,2 ↛ C 0

The homotopy class isn’t preserved under controlled Energy
assumption. Even for minimizers.

uk(x) := π−1 ◦ k x ◦ π ⇀ u∞ ≡ Cte weakly in W 1,2

where π S2 → C is a stereographic projection.

uk is area minimizing among maps v s.t. degS2(v) = 1

but
degS2(u∞) = 0



Sacks-Uhlenbeck’s relaxation of the Dirichlet Energy

Step 1 : Minimize

Eσ(u) :=

ˆ
S2

(1+|du|2S2)
(1+σ) dvolS2 s.t. [u] = α ∈ π2(N

n, x0)\{0}

Sobolev Embedding

W 1,2+2σ(S2) ↪→ C 0,σ/(1+σ)(S2) ↪→ C 0(S2) compact Arzela Ascoli

Conclusion :For any α ∈ π2(N
n, x0) there exists uσ minimizing Eσ

and realizing α

It solves
PT

[
d∗
S2

(
(1 + |du|2)σ du

)]
= 0 .

Main question : Can one pass to the limit in the equation ?
and get PT (u)(∆S2u) = 0 ?



Sacks-Uhlenbeck’s relaxation of the Dirichlet Energy
Step 2 :

Lemma. Uniform ϵ−regularity ∃ ϵN > 0 s.t. ∀ 0 ≤ σ ≤ 1ˆ
Br (x)

(1 + |duσ|2S2)
(1+σ) dvolS2 < ϵN =⇒ |∇uσ|(x) ≤ C r−1

Conclusion : There exists uσk
and a1 · · · aN ∈ S2 s.t.

uσk
−→ u0 in C l

loc(S
2 \ {a1 · · · aN},Nn)

We have

PT (∆S2u0) = 0 in D′(S2) and u0 conformal

Moreover u0 ∈ C∞(S2) (Point removability).

Problem : [u0] = α ? Not necessary : Nn = S2 , π2(S
2) = Z,

u(x) ≃hom x

ub0 (x) = (1− |b|2) x − b

|x − b|2
− b b ∈ B3 make b → ∂B3

bubble formation !



Existence of Minimal Spheres. π2(N
n) ̸= 0.

Concentration compactness :
Uniform ϵ−regularity =⇒ uσ W 1,2−bubble tree converges towards

u1 · · · uQ S2 : −→ Nn

the uj are conformal and harmonic hence u(S2) are minimal S2 and

α ∈ π1(N
n)[u1]⊕ · · · ⊕ π1(N

n)[uQ ]

where π1(N
n)[uj ] is action of π1(N

n) on the homotopy class of [uj ]

u1(S2)

u2(S2)

u3(S2)

Figure 10: Bubble Tree of Harmonic Spheres in Nn



The case π2(N) = 0.

Example : N3 ≃ S3.

Sweep outs of N3.

A :=





u ∈ C 0([0, 1],C 1(S2,N3)) s. t.

E (u(0, ·)) = 0 & E (u(1, ·)) = 0

u∗([0, 1]× S2) generates H3(N
3,Z)





Let

W := inf
u∈ Sweep outs

max
t∈[0,1]

1

2

ˆ
S2

|du|2S2 dvolS2

Lemma A ≠ ∅ and
W > 0 .

The space A moreover is admissible.



Positivity of the Width : Proof of the Lemma

Theorem [R. 1993, Freire 1995, Lin, Longzhi 2013]

∃ εN > 0 s.t. if E (u0) :=
1

2

ˆ
S2

|du0|2S2 dvolS2 < εN

then exists a unique energy decreasing solution to the Harmonic
Map Heat Flow





∂tu −∆S2u = dPT (u) ·S2 du

u(0, ·) = u0

Moreover
lim

T→+∞
u(T , ·) −→ u∞ ∈ N3

and u∞ is a continuous function of u0



Admissibility of the Family

A is admissible :

∀Φt ∈ C 0
(
[0, 1],Homeo(C 1(S2,N3))

)

s.t.
Φ0 ≡ id on C 1(S2,N3)

and
Φt ≡ id on E−1({0})

there holds
Φ1(A) = A



Example 3 :

Harmonic Mappings of Higher Genus Surfaces

Into Spheres



A Minmax Problem on Riemann Surface Mappings

Let (Σ, g) be a closed oriented Riemannian Surface. Let

A :=





u ∈ C 0
L2(B

n+1,W 1,2(Σ, Sn)) s. t.

∀ b ∈ ∂Bn+1 L2 − lima→b u(a, ·) = u(b, ·) ≡ b





Let

W := inf
u∈A

max
a∈Bn+1

1

2

ˆ
Σ
|du(a, ·)|2g dvolg

Lemma A ≠ ∅ and
W > 0 .

The space A moreover is admissible.



Proof of A ≠ ∅

For a ∈ Bn+1 introduce

∀z ∈ ∂Bn+1 Φa(z) := (1− |a|2) z − a

|z − a|2
− a

We have

Φa is conformal from ∂Bn+1 into itself

and ∀b ∈ ∂Bn+1

Φa → −b ∈ C 0
loc(∂B

n+1 \ {b}) as a → b

Let u(0, ·) be an immersion of (Σ, g) into ∂Bn+1

u(a, ·) := Φ−a ◦ u(0, ·) ∈ A .



Proof of W > 0

∀u ∈ A Fu : a ∈ Bn+1 −→ −
ˆ
Σ
u(a, ·) dvolg .

We have

Fu ∈ C 0(Bn+1,Bn+1) and ∀ b ∈ ∂Bn+1 F (b) = b

Hence
∃ a0 ∈ Bn+1 F (a0) = 0

This givesˆ
Σ
|du(a0, ·)|2g dvolg ≥ λ1(Σ, g)

ˆ
Σ
|u(a0, ·)|2g dvolg = λ1(Σ, g) |(Σ, g)| .

Let g̃ := e2µ g there holdsˆ
Σ
|du(a0, ·)|2g dvolg =

ˆ
Σ
|du(a0, ·)|2g̃ dvolg̃

Hence

2W ≥ sup
µ
λ1(Σ, g̃) |(Σ, g̃)| = Λ1(Σ, [g ]) Conformal Spectrum



Example 4 :

Harmonic Maps between Spheres



A Minmax Problem on Maps between Spheres

Let n > 2, n ≥ p s.t. πn(S
p) ̸= 0

A :=





u ∈ C 0(Bn+1,W 1,2(Sn,Sp)) s. t.

∀ b ∈ ∂Bn+1 lima→b u(a, ·) = u(b, ·) ≡ v(b)

[v ] ̸= 0 in πn(S
p)





Let

W := inf
u∈A

max
a∈Bn+1

1

2

ˆ
Σ
|du(a, ·)|2g dvolg

Lemma A ≠ ∅ and
W > 0 .

The space A moreover is admissible.



Proof of A ≠ ∅

Let v ∈ C 1(Sn, Sp) s.t. [v ] ̸= 0 in πn(S
p). Let

u(a, ·) := v ◦ Φ−a

where

Φa(z) := (1− |a|2) z − a

|z − a|2
− a

Since n > 2 u ∈ C 0(Bn+1,W 1,2(Sn,Sp)). Recall ∀b ∈ ∂Bn+1

Φa → −b ∈ C 0
loc(∂B

n+1 \ {b}) as a → b

Hence
u ∈ A .



Proof of W > 0

Let u ∈ A. Recall Poincaré inequality

ˆ
Sn

|u(a, ·)− u(a, ·)|2 dvolSn ≤ C

ˆ
Sn

|du(a, ·)|2Sn dvolSn

Hence

dist(u(a, ·),Sp)2 ≤ C

ˆ
Sn

|du(a, ·)|2Sn dvolSn

If

max
a∈Bn+1 C

ˆ
Sn

|du(a, ·)|2Sn dvolSn <
1

4

then |u(a, ·)| > 1/2. Then

a ∈ Bn+1 −→ −
ˆ
Sn

u(a, ·) dvolSn/

∣∣∣∣−
ˆ
Sn

u(a, ·) dvolSn

∣∣∣∣

is a continuous extension in C 0(Bn+1, Sp) of v . Since [v ] ̸= 0 in
πn(S

p) we get a contradiction.



The case p = n. πn(S
n) = Z

As before there exists a0 ∈ Bn+1 such thatˆ
Sn

u(a0, ·) dvolSn = 0

and, since λ1(S
n) = nˆ

Sn

|du(a0, ·)|2Sn dvolSn ≥ n

ˆ
Sn

|u(a0, ·)|2 dvolSn = n |Sn|

Thus
W ≥ n |Sn|

Observe that |dISn |2 = n moreover, due to the conformal
invariance of Φ−a, using Hölder

W ≤ sup
a∈Bn+1

ˆ
Sn

|dΦ−a|2 dvolSn ≤ |Sn|
n−2
n

[
sup
a

ˆ
Sn

|dΦ−a|n dvolSn

] 2
n

= |Sn|
n−2
n

[ˆ
Sn

|dISn |n dvolSn

] 2
n

= |Sn| n



The case n = 3 and p = 2. π3(S
2) = Z.

If W is realised we expect to obtain an Index 4 harmonic map.

Theorem [R., JDG 2023] If u is a smooth non constant harmonic
map with Morse index ≤ 4 then u is an harmonic morphism : there
exists an isometry S of O(R4) and an holom. diffeo. φ of CP1 s. t.

u = φ ◦ h ◦ S

where h is the Hopf Fibration.



The Stereographic Projection of the Hopf Fibration

π ◦ h : (z ,w) ∈ S3 ⊂ C2 −→ (2 z w , |z |2 − |w |2) ∈ S2 ⊂ R3



A Conjecture

W =
1

2

ˆ
S3

|dh|2S3 dvolS3 = 8π2 ?

If we can prove that the Width is achieved by a smooth harmonic
map of index ≤ 4 then the conjecture is proved.



A ”Mapping Version” of the Willmore Conjecture

Conjecture [R., 1995] The Hopf Fibration h minimizes the 3-energy

E3(u) :=

ˆ
S3

|du|3 dvolS3

among smooth maps from S3 into S2 non homotopic to a
constant.

Let u ∈ C 1(S3,S2) s.t. [u] ̸= 0 in π3(S
2) and u(a, ·) := u ◦ Φ−a

2W ≤ sup
a

ˆ
S3

|du(a, ·)|2 dvolS3≤[ 2π2 ]
1
3

[
sup
a

ˆ
S3

|du(a, ·)|3 dvolS3

] 2
3

= [ 2π2 ]1/3 [E3(u(a, ·)) ]
2
3 = [ 2π2 ]

1
3 [E3(u) ]

2
3

with ≤ being an equality for u = h.



Example 5 :

Sphere Eversions

and the 16π Conjecture



Euler’s Elastica
A curve γ in R2 is called an Euler Elastica if it is an equilibrium of
the elastic energy

E(Γ) :=
∫
Γ κ

2 dl

Figure : A model for Elastic Energy of Rods



Germain-Poisson’s Derivation of the Surface
Elastica.

August 1814



Willmore Inequality.
Theorem [Willmore 1965] For any immersion u of a closed oriented
surface u : S → R3 ˆ

S
|Hu|2 dvolu ≥ 4π

with equality if and only if S = S2 and u(S) is a unique covering
of a round sphere.

∫
S H

2 dvolS > 4π

∫
S H

2 dvolS = 4π



Everting The Sphere ?

Figure : Sphere Eversion



How Much Does It Cost to Evert S2 in R3 ?
Introduce

A :=





u ∈ C 0([0, 1], Imm(S2,R3))

u(0, x) = x , u(1, x) = −x





and

W := inf
Φ∈A

max
t∈[0,1]

ˆ
S2

|Hu(t,·)|2 dvolu(t,·)

Lemma A ≠ ∅ and
W > 4π .

The space A moreover is admissible.

Remark : ∀ u ∈ A

t −→ u(t, S2)/Diff (S2)

is a non zero element in π1(Imm(S2,R3)/Diff (S2)).



Proof of the Lemma : 1) A ≠ ∅

Theorem [Smale 1958] π0(Imm(S2,R3)) = {1} i.e. two arbitrary
C 2 immersions of S2 into R3 are regular homotopic.



Proof of the Lemma : 2) W > 4π
Theorem [De Lellis, Müller 2005] There exists ε0 > 0 s.t. ∀ε < ε0
ˆ
S2

|Hu|2 dvolu < 4π + ε and Area(u) =

ˆ
S2

|du × du| = 4π

Then ∃ψ ∈ Diff(S2) and v0 ∈ R3 s.t.

∥u ◦ ψ − (Id + v0)∥W 2,2(S2) ≤ C
√
ε

This implies in particular
∣∣∣∣
∣∣∣∣
ˆ
S2

u∗ωS2

∣∣∣∣− 4π

∣∣∣∣ =
∣∣∣∣
ˆ
S2

(u ◦ ψ)∗ωS2 − 4π

∣∣∣∣ ≤ C
√
ε

Renormalise the eversion s.t. Area(Φ(t, ·)) = 4π.

ˆ
S2

u(t, ·)∗ωS2 ∈ C 0([0, 1])

ˆ
S2

u(0, ·)∗ωS2 = 4π = −
ˆ
S2

u(1, ·)∗ωS2

=⇒ W > 4π



The 16π Conjecture
Theorem [Bryant 1984, R. 2015, Martino 2023]

W ∈ 4πN∗ \ {1}

Theorem [Li, Yau 1982] Let u be an immersion of a closed oriented

surface Σ. There holdsˆ
S2

|Hu|2 dvolu ≥ 4π max
p∈R3

Card
{
u−1({p})

}

Theorem [Banchoff, Max 1981] Every sphere eversion has a

quadruple point.

Corollary
W = 4πN N ∈ {4, 5, 6 · · · }

Conjecture [Kusner 1982]

N = 4 i.e. W = 16π



The Expected Lowest Energy Saddle of the Eversion

http://www.gang.umass.edu/gallery/willmore/


