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L. Introduction. Since the goal of this Ppaper is to present an exposition of a
fairly general method of attack on a certain class of problems in analysis, it is
perhaps in order to begin with a discussion of the domain of applicability of the
concepts and techniques we are going to describe, and to illustrate them in some
simple cases,

In a typical problem in analysis, both linear and nonlinear, we are given a space
X and a set of “equations” defined on X and are asked to describe the set § of
solutions of these equations.

There are really two quite separate types of description, depending on whether
one is interested in the properties of the elements of S on the one hand or in
describing the nature of the set § on the other,

Typical of the first type of description is classical “complex variable theory.”
Here we may take for X the set of say C' complex valued functions defined in some
open set in the complex plane and for § the set of solutions of the Cauchy-Riemann
equations. The emphasis is placed on determining the properties that elements of
§ have as distinguished from the general clement of X (e.g the open mapping
property, the maximum modulus property, complex analyticity etc.).
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Banach Manifolds

Definition A CP Banach Manifold M for p € NU {co} is a
Hausdorff topological space together with a covering by open sets
(Ui)ie1, a family of Banach vector spaces (E;)ic; and a family of
continuous mappings (p;)ic; from U; into E; such that

i) foreveryicl
oi Ui — ¢i(U)) is an homeomorphism
i) for every pair of indices i # j in |
piowit T @iUinU) CE — ¢i(UinU) CE

is a CP diffeomorphism

O
Example : Let Ip > k

M = WhP(Zk N") = {u e W'P(ZK R™) ; u(x) € N" ae. x € zk}

Observe : W12(D2 N™) does not fulfil the conditions.



Paracompact Banach Manifolds

Definition A topological Hausdorff space is called paracompact if
every open covering admits a locally finite* open refinement. O

Theorem [Stone 1948] Every metric space is paracompact. [

Definition A topological space is called normal if any pair of
disjoint closed sets have disjoint open neighborhoods. O

Proposition Every Hausdorff paracompact space is normal. O

Proof : https://topospaces.subwiki.org/wiki/

Warning | M Banach Paracompact Manifold, (¢, U) a chart s.t.
¢ U— o(U)=(E,||-]]) homeomorphism

then ¢~ 1(B,(x)) might not be closed in M.

Yjocally finite means that any point posses a neighborhood which intersects
only finitely many open sets of the sub-covering




Partition of Unity on Paracompact Banach
Manifolds
Proposition Let (O4)aca be an arbitrary covering of a C*

paracompact Banach manifold M. Then there exists a locally

lipschitz partition of unity subordinated to (Oy)aca , i.€. there
exists (po)aca Where ¢, is locally lipschitz in M and such that

Supp(pa) C Oq

i)
$a >0
i)
Z oo =1
a€A

where the sum is locally finite.



Banach Space Bundles

Definition A Banach manifold V is called CP— Banach Space
Bundle over another Banach manifold M if there exists a Banach
Space E, a submersion w from V into M, a covering (U;);c; of M
and a family of homeomorphism from 7~1U; into U; x E such that
the following diagram commutes

where o is the canonical projection from U; x E onto U;. The
restriction of T; on each fiber Vy := w~Y({x}) for x € U; realizes a
continuous isomorphism onto E. Moreover the map

xeUinl; — o7 i L(E,E)

is CP. O



Finsler Structures on Banach Bundles.

Definition Let M be a normal Banach manifold and let V be a
Banach Space Bundle over M. A Finsler structure onV is a
continuous function

N1 :vV — R

such that for any x € M
Il = I - llz=2(gxyy  is @ norm on Vx

and the norms are locally uniformly comparable using any
trivialization. O

Definition Let M be a normal CP Banach manifold. T M
equipped with a Finsler structure is called a Finsler Manifold. [



A Finsler Structure on Sobolev Immersions.

Let Y2 be a closed oriented 2—dim manifold and N" be a closed
sub-manifold of R™. Let g > 2

M = Wit (£2,N")
= {® € W2I(Z2 N") ; rank (ddy) =2 Vx e ¥?}
The tangent space to M at a point ¢ is
ToM = {w e W>I(Z* R™); w(x) € Top)N" Vx € £}
We equip Te M with the following norm

1/q
/2
Iv]le = UX (IV2VZ, + Vv, + V] dvolg, |+ Vg, lle(x)

Proposition || -||¢ define a C?>—Finsler struct. on M. g



The Palais Distance.

Theorem [Palais 1970] Let (M, || - ||) be a Finsler Manifold.
Define on M x M

dw

— dt
dt

d(p,q) = inf /01

wep q

w(t)
where
Qpq = {we CH([0,1, M) ; w(0)=p w(l)=q}

Then d defines a distance on M
and (M, d) defines the same topology as the one of the Banach
Manifold.

d is called Palais distance of the Finsler manifold (M, || - ||).

Corollary Let (M, || - ||) be a Finsler Manifold then M is
paracompact.



Completeness of the Palais Distance.

Proposition Let g > 2 and let M be the normal’® Banach
manifold

W2 (22, N") == {& € W29(£2 N") ; rank(dd,) =2 Vx € ¥?}
The Finsler Manifold given by

212 2 219/2 Ha
Ivlle == Vz [IV2vgy + IVvlgy + IVIP]™ dvolg, | +I11VV]g [l(x)

is complete for the Palais distance.

2Recall that every metric space is normal.



Pseudo-gradients
Definition Let M be a C? Finsler Manifold and E be a C!
function on M.
Denote

M i={uveM ; DE,#0}

A pseudo-gradient is a Lipschitz continuous section
X : M* — TM* such that

i)
Vue M*  [IX(u)llu <2 | DEy|u
i)
Vue M* |DE|[; < (X(u), DEu) 7, ppe 75 -

Proposition Every C! function on a Finsler Manifold admits a
pseudo-gradient. O

“Proof” Use that Finsler Manifolds are Paracompact and “glue
together” local pseudo-gradients constructed by local trivializations
with an ad-hoc partition of unity.



Figure 4: Pull tight going nowhere!



The Palais-Smale condition : (PS)

Definition Let E be a C function on a Finsler manifold (M, | - ||)
and 8 € E(M). One says that E fulfills the Palais-Smale
condition at the level 8 if for any sequence u, satisfying

E(up) — B and |DE, ||y, — 0
then there exists a subsequence u, and us, € M such that
dp(uy, Us) — 0
and hence E(u~) = 8 and DE, = 0. O
Example Let M be W12(S1, N™) for the Finsler structure given by
Vwe WIR(SLR™ weu=0 [wlly = [wllwras

Then the Dirichlet Energy satisfies the Palais Smale condition for
every level set. O



Admissible families

Definition A family of closed subsets A C P(M) of a Banach
manifold M is called admissible family if for every
homeomorphism V of M isotopic to the identity we have

VAc A V(A eA

g

Example M = w29

mm

(S2,R3). Let c € m(Imm(S2,R3)) =Zp, x Z

A= {cb € C°([0,1], Wi (S%R?)) ; ®(0,-) = &(1,) and [¢] = C}

mm

is admissible
. for example a sphere eversion is non zero in

m1(Imm(S52,R3)/Diff(5?)) = Z



Palais Min-Max Principle

Theorem[Palais 1970] Let (M, || - ||) be a C*'—Finsler manifold.
Assume M is complete for dp and let E € C1(M).
Let A admissible. Let

= inf E
R

Assume (PS)s for the level set /.
Then there exists u € M s.t.



Proof By contradiction. (PS); =
36>0,3e>0 f—ec<E(u)<pf+e = |DEu>?9
Let u € M* and ¢

B0~ X(00u) E@e() in 0.ty

po(u) =
where supp(n) C [8—¢c0,8+¢]and n=1on [8—¢c0/2,5+¢c0/2)].
(¢, (1), b (1)) < 2[t2 — 01/ [E($1, (1)) — Ede(w))]"/?

If t¥ ., < +oo then Completeness of (M, d) =

lim ¢:(u) € M* Impossible ! =VteR, VAeAg(A)e A

t—t max

Take A € A s.t. maxyea E(u) < B+¢0/2. Apply ¢¢...cont. | O



Birkhoff Existence Result Revisited.

M = W12(S1 N? ~ S2) defines a complete Finsler manifold.
Eis (PS) on M.

A = { sweep-out}

Palais Theorem =

W = inf E(u(t,-
S Iy EE ) =0

is achieved by a closed geodesic.

This gives a new proof of Birkhoff existence result.



Homotopy type of the Loop Space in arbitrary
Manifolds.

M = WE2(St, Mm) = {u € WI2(SLRQ) ; u(0) e M™, Vo € 51}

M = homot CO(Sla Mm)-
Let Q,(M™) the path space based at p.

Exact sequence of Serre fibration
- n(Qp(M™)) — wa(COST, M™)) =5 p(M™) — -1 (2p(M™)) -
It “splits” : evy o, = idy where 1,.(q) = q. Hence
Ta(CO(ST, M™)) = mn(Qp(M™)) ® ma(M™)
Eckmann-Hilton duality 7,(2,(M™)) = mp4+1(M™) . Hence

Ta(M) = 11 (M) & mp(M™)



Birkhoff Sweep-outs revisited.

M™ simply connected.
Let k €{2,--- ,m} s.t.

m(M™)#0  but m(M™)=0 forle{l---k—1}

Thus 7Tk_1(./\/l) = Wk(Mm) 75 0.

Example : For M™ = S2 we have
m(WH2(51,52)) = m(S%) = Z

It is generated by Birkhoff Sweep-Out.



Existence of closed Geodesics in arbitrary Manifolds.

Let
A= {u € CoUS L, M) ; [u] #0 in wk,l(./\/l)}

It is clearly admissible.
Introduce the width

W, := inf E .
= inf, max E(us, "))

We have
Wi, >0

Indeed there exists § > 0 such that

sénﬁ)_(l E(u(s,”))<é = [u]l=0 (usem_1(M™)=0)

The Dirichlet Energy is Palais Smale in W12(S1, M™). Hence

Theorem [Fet-Lyusternik 1951]. Every closed manifold posses a
non trivial closed geodesic.



More closed Geodesics in arbitrary Manifolds ?

Definition A geodesic is called prime if it is not a multiple covering
of another one.

Question Does there exists infinitely many prime geodesics in a
given closed manifold ?

This is still open for (5", g) when n > 3.

Question Which are the manifolds for which we know the
existence of infinitely many prime geodesics 7



Gromov Dimension and non-linear Spectrum
Let

M = {u e WSt Mm) ;. VE@) < )\}

Define Gromov dimension for any A > 0
dm(M?*) :=suplk e N; H(M; M Z) =0 VI <k}
and Gromov Spectrum
Ak 1= sup {)\ eR, ; dm(M?) < k}

Exercise : This formal definition permits to recover the linear
spectrum of the laplacian for

M= {ue WH?(M™ R) ; lull2mmy = 1}



A quasi Weyl Law for the Gromov Spectrum

Theorem [Gromov 1978] Assume m1(M™) is finite then
)\k ~ k

O
Morse theory implies that - for a generic metric - at each generator
of Hx(M;R) corresponds a geodesic. Combining the two gives

Card {geodesics of length < A} > Z dim(Hk(M; R))
k<[CA]

Which implies

> dim(He(M;R))

k<ICA]

Card {prime geodesics of length < A} > By



Gromoll Meyer Theorem

Ballman and Ziller improved Gromov lower bound
Theorem [Ballman, Ziller 1982] If 71(M™) =0 and (M, g)
generic we have

Card {prime geodesics of length < A} > max dim(Hx(M; R))

This permits to deduce in the case of simply connected and generic

Mm

Theorem [Gromoll, Meyer 1969] Assume 71(M™) is finite and
limsup dim(Hk(M;R)) = 400 (%)

k——+o00

then (M™, g) has infinitely many prime geodesic



An application of Gromoll Meyer Theorem

The computation of the minimal model of M™ (an algebraic
procedure introduced by Quillen and Sullivan to compute
mk(M™) ® R) implies the following

Theorem [Vigué-Poirrier, Sullivan 1976] If 7:(M™) = 0 and
H*(M,R) is not generated by a single element then

limsup dim(Hk(M;R)) = 400 (%)

k—+o00

holds and M™ has infinitely many prime geodesic.

This does not apply to M™ := (5™, g). However

Theorem [Franks 1992, Bangert 1993] Let g be an arbitrary metric
on 52 then (52, g) has infinitely many prime geodesic.



