An Energy Gap Phenomenon for Willmore Spheres.
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Abstract : In this work we prove the existence of a threshold strictly larger than 4w below which any
Willmore sphere in R™ has to be the image by a translation and an homothetie of the standard sphere
S2. This result was already proved in [KS1] using a different approach.
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I Introduction

Let ® be an immersion of the sphere S? into R™. Denote by 77, the orthonormal projections of vectors
in R™ onto the m — 2-plane given by 7iz. With these notations the second fundamental form

-

VX,Y € T,% I(X,Y) = m7 d?®(X,Y)

I The mean curvature vector of the immersion at p is given by

B R .
H = §trg(11) =3 [H(sl,sl) +1(e2,e2)|

where (g1, 2) is an orthonormal basis of T,% for the metric 95

In the present paper we are mainly interested with the Lagrangian given by the L? norm of the second
fundamental form :

E(®) ::/ |]T|§ dvol,
b
An elementary computation gives
E(®) ::/ il dvolg:/ |ditgz|? dvol,
b b

This energy E can be hence seen as being the Dirichlet Energy of the Gauss map 7ig with respect to the
induced metric gg. The Gauss Bonnet theorem implies that

E(®) ;:/ L2 dvol, = 4 / |H|? dvol, — 47 () (1.1)
by by
where x(X) is the Fuler characteristic of the surface X. The energy

W (®) ;:/Z|H|2 dvol,
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n order to define d25(X, Y') one has to extend locally the vector X or Y by a vector-field but it is not difficult to check
that w7 d2®(X,Y) is independent of this extension.



is the so called Willmore energy.

It is well known that the standard unit 2-sphere $? C R® C R™ is, modulo the action of homotheties
and translations, the unique minimizer of W among all possible immersions of closed 2-dimensionnal
manifolds . Our main result in this paper, theorem 1.1 below, reinforces this uniqueness statement by
showing roughly that the standard sphere is ”isolated” in it’s range of energy.

Theorem 1.1 Let m > 3. There exists 0, > 0 such that zfq; is a Willmore immersion from S? into R™
satisfying

-

W(®) < 41+ 0
then a translation of 5(52) is homothetic to the standard sphere S? in R™ and we have
W(®) = 4x
O

Remark 1.1 It is conjectured that 0., = 47 is the optimal constant for which theorem 1.1 holds. This
conjecture was proved already by R. Bryant for m = 3 in [Bry] and by Montiel for m =4 in [Mon]. O

Remark 1.2 Another type of gap phenomenon, for branched Willmore spheres this time, but similar to
this one is one of the main step in proving energy quantization results in [BR]. (]

IT Proof of theorem 1.1.

Let ®, be a sequence of Willmore immersions from S? into R™ satisfying

lim W (®,) = 4
Jm W (k) = dm

By possibly composing ® with a diffeomorphism of S? we can assume that &, is conformal. From the
normalization Lemma A.4 of [Ri3] together with lemma III.1 in the same paper (see also [Ril] section
VI1.8) we deduce the existence of a sequence of Mobius transformations Zj, and a lipschitz diffeomorphism
fr of §2 such that, modulo extraction of a subsequence f;c =, 0dy 0 fr weakly converges to a possibly
branched weak lipschitz conformal immersion? 500 of S? in the following way.

limsup H?(Eg 0 By, 0 f(5%)) < +00  ,  Egpo®yo0 fi(S?) C Br(0) (I1.2)
k—+o0

for some R > 0 independent of k, and there exists at most finitely many points {a;---ax} in S? such
that
€ i=Ero®pofr =&  weakly in W22 N (W22 (S?\ {a1, --an}) (I1.3)

loc loc

where the convergences are taken w.r.t. gg2, the standard metric on S2, moreover

VK compact subset of ¥\ {a1---ay} limsup | log |d5€|952 | Lo (k) < 400 (I1.4)
k—-+oo

Because of (I1.3) and (I1.4) we have for any 6 > 0

V- |2 . dvol < liminf/ Vit- 2 dvol
/32\Ui36(11i) | EOO|952 9% = pitoo S2\U; Bs (a:) | Ek|952 9s2

2See the notion of weak lipschitz immersions with L? bounded second fundamental form in [Ril], [Ri3], [BR]...




Simon’s monotonicity formula (see [Sim]) implies that

- 1 . 1
4r < |HEDO|2 dvolg,, < hm |Viig | dvoly, — 2/ K¢ dvolg,, (IL.5)
52 52\U; Bs (a:) 52
hence
8 < lim |Viiz 2 dvoly_, (IL.6)
§—0 J52\U, By (a1) IE 9s
By assumption we have
kgrfoo |Vng |g , dvoly_, = 8w (IL.7)
Thus combining (I1.5) and (II.7) gives that
. Exfm . Vitg [5 ., dvoly_, = /S ] Vit |5, dvoly, =8 (IL.8)

Since ﬁ{k is weakly converging towards ﬁg , (I1.8) implies that the convergence is in fact strong and

therefore no bubbling can occur : there is no pint a;. Observe that since the limiting immersion 500
satisfies W(€.) = 4m, by a classical result (see for instance [Ril]) we have that £(S?) C Bg(0) is
homothetic to the standard S? C R3 C R™.

Now, since f;C is Willmore and since the L? norm of dﬁg nowhere concentrates we can apply the
epsilon regularity for Willmore immersions (theorem I.5 in [Ri2]) in order to deduce that the convergence
of §k towards foo holds in C!'(S?) norm for any I € N. Hence after maybe application of a translation
and a dilation §k(S2) can be parametrized as a graph over S? : there exists a sequence of maps g from
52 into R™~2 and a sequence of function & such that if $k ( which is not necessarily conformal) denotes
the map from S2 into R™ given by ¢ (z) := (1 + &%) + gr ()

i)
$(S?) = &u(S?)
i)

vieN  limflefois2) +llgkllorsz) =0

Modulo again a small translation + dilation we can moreover assume that (5;6(5‘2) and S? intersect each
other at the north pole, North, in a tangent way which reads

ex(North) =0 , gg(North) =0 , dex(North)=0 and dgir(North) =0

We apply now the inversion with respect to the north pole Iy () := (z— North)/|z— North|? and Iy (S?)
is equal to the 2-plane P given by z; = 0 for j = 3-- - m and the image of q;k (5?) has become now a graph
over the plane P of the form (y1,y2, fk(y1,¥y2)). Assume we have made a translation in order for the
north pole to coincide with the origin (0, 0, 0) prior to apply the inversion and the sphere to which qgk (S?)
converges is the one given by 2; = 0 for i > 4 and 22 + z2 + (23 + 1)2 = 1. Since ¢ (5?) is tangent to the
2-plane z; = 0 for i > 3 and since the curvature of ¢y, (.8?) is uniformly bounded, the intersection of o (S?)
with some fixed neighborhood of 0 in R™ is locally given by a graph of the form (1,2, ax(z1,22)) and
llax — 1+ V1 —172]|ct — 0 as k — +oc for any [ € N - where we denote 72 = 2% + 3. Since Vax(0,0) =0
and since all derivatives of aj, are bounded in a given, small enough neighborhood of 0 the C'** function



given by hy 1= ay/r is converging in C! norm towards hoo (71, 22) := (1 — 1 —12)/r = O(r). We shall
now give the explicit norm of fi at co in terms of a;. We have

X1 x2 Qg
T2+ai’r2+ai’rz+ai

I(x1, 22, ap (21, 22)) = ( (xl’@))

This then gives
ag Zq

fe(y1,y2) = m(xhxz) where Yi= 13 +a2

The change of variable matrix is given by

1 r®z x®Vh}
Voy = (00,Yj)i=12= 5 (Id—2 - . IL9
vim O = gy (102750 - R (1L9)
We have det(Id — 2 ® x/r?) = —1 and since the coefficients of this matrix are bounded it is uniformly

invertible. Since hy, is converging in C! norm towards heo (21, 72) := (1 — /1 —72)/r = O(r) there exists
a p > 0 independent of k such that for any 0 < r < p

2
Py ::Id—2$®;$—x®th

r 1+ hi
is uniformly invertible that is
lim sup ||P,;1||LW(B§(O)) < +4oo . (I1.10)
— 400
We deduce from it
[(Vay)H(y) < C Jy[7> (IL.11)

Using the fact that |V, P| < C r~! we deduce, using VIP];1 = Plgl VP P,;l that there exists C > 0
independent of k such that for 0 <r < p

V.Pol <Crt . (I1.12)
We have
-1 ag 2 2 -1 ag
Vyf=(Vay)™ Vs <m) =(r"+ay) P Vo <m)
_ ar Vazar ap v Vgr
=P ' |Vyar —2 -2
- { tTTe e r2+ai}

Since r~?|ax| + r~'|Vzar| < C on B,(0) independently of k one deduces from the previous identity
together with (I1.10) that there exists a radius R > 0 such that

Yy e R*\ Br(0) , VkeN |Vyfil(y) <C |y~ . (I1.13)

Differentiating once more with respect to y gives

_ _ Vzag ap v Vgr
9 _ ) 1 IP 1 i _ 2ak T _9 x
Vyli = (Vay) [V k| Ve r? +aj r2 +ai
_ _ Veak ap r Vgr
VI ! P, ! vx vx - 2ak -2
+(Vay) { k { h r2 4+ a3 r? +a?

Using again r=2 |ag| + 7~ |Vzar| + |VZar| < C, (I1.11), (I1.10) and (I1.12) we obtain

Vy e R*\ Bg(0) , VkeN |Vifilly) <Clyl™* . (I1.14)



Since ¢ (S2) converges as a graph over S2 in C! norm to S? and since away from the origin, in the
ball B%(0) (which contains ¢y (S?) for k large enough) the inversion with respect to the origin is a
diffeomorphim with uniformly bounded differential, we have for any radius R > 0

VieN ]1131(1) ||fk||Cl(BR(O)) =0 . (I1.15)

From (II.14) and (II.15) we deduce in particular that
Vr>1 lim / Vo fel” dyidy, =0 . (IL.16)
k—0 Jr2

The mean curvature vector for this graph at the point (y1,y2, fx(y1,¥2)), that we denote Hy, (y1,y2) is
given by the sum of (2.13) and (2.14) divided by 2 in [BK]. Hence there exists a smooth function G from
(R? ® R™~2) x (R* ® R™~2) such that

(det(gx))/* Hy(y1,92) = G(V fi, V2 f1)

where det(gy) is the determinant of the matrix gx ij = 6ij + O, fx - Oz, fr.. Moreover é(p, q) satisfies

. 55
and 04,,G(0,q) = 2

)= q11 + q22
2

Ve R*@R™ 2 G(0,q 5

We deduce in particular that, for any ¢ € R* ® R™~2 and for any (4,5) € {1,2}2, the linear 1-form on
R™~2 given by (G - d,,,G)(0, ¢) identifies to the following vector of R™~2

5 ol q11 + g2
(G- 85, G)(0,q) = 0ij ——F—— (IL17)
For any fixed p € R2 @ R™2 we have moreover that G(p, ¢) is a linear form in ¢ which implies
VpeR?2@R™ 2 G(p,0)=0 . (I1.18)

The Willmore energy of the graph is moreover equal to

/ |G(V fr, V2 1)) day dao
]R2

Hence any graph realizing a critical point to this Willmore energy satisfies the following Euler Lagrange
system

2 2
> a2, (G0, V2 1) = D00 (G 0, G) (Vi V2f)) =0 . (IL19)
i,j=1 =1
Taking
Vi, j=1,2 YpeR?@R™ 2 and VgeR*@R™?
Fij(p,q) = (G - 84,,G)(p.q) — (G - 84,,G)(0, q)
and

Vi=1,2 YpeR?®@R™ 2 and VgeR*@R™?

Li(p.q) = (G- 9,,G)(p,q

)
Observe that with our notations, for any p and ¢, (é -Op, é) (p,q) is a linear form on R™~2 which identifies
canonically to a vector in R™~2,



The Euler Lagrange system (I1.19) becomes then

2 2
A f=— Z 82,0, (Fii (Ve V2 1)) + Zaxl (Li(V i, V2 1)) (11.20)

i,j=1 =1

where the Fj; and L; are smooth functions such that, for any choice of p and ¢ included in the unit balls
of respectively R? ® R™~2 and R* ® R™~2, one has, for any choice of indices,

[Fij(p, )l < Aij Ipllgl  and  [Li(p,q)| < By |g)* (11.21)

where (A;;) and (B;) are families of positive constants independent of p and ¢ in these unit balls.

Let 2 < r < 4o00. Using the pointwise controls on the Fj; and the L; given by (IL.21), classical
L" estimates in elliptic theory (see for instance [GT] chapter 9) gives the existence of a constant C,
independent of k such that

r/q
/ |Afr|" dyr dy2 < C, / IV fil™ V2 frl” dyy dys + C, (/ V2 £ dyy dy2> , (11.22)
R2 R2 R2

where ¢~ — 271 = 7=1. Classical interpolation inequality (see for instance [GT] chapter 7) gives

1/2q 1/4 1/2r
< / V2 20 dyldy2> §< / V2 o dyldyz) ( / V2l dyldyz) L (1123)
R2 R2 R2

Finally classical results on Calderon Zygmund operators (see for instance [GT] chapter 9) give

/ IV2fi|" dyy dys < O, / IAfr|" dyr dy2 . (I1.24)
R2 R2

Combining (11.22), (I1.23) and (I1.24) gives

/ V2 fe|” dyr dy2 < Cr [|IV frllo + V2 fell5] / V2 fi|” dyr dyo (11.25)
R2 R2

From (IL.13), (IL15) and (IL16) we have
i VAl + 92l = 0 (11.26)
Thus for k large enough, (I1.25) implies that
Vf=0 on R%.
Sine V f.(y) tends to zero as |y| tends to infinity (see I1.13) we obtain that
V=0 on R2.

Thus for k large enough fi is a constant which means that (5;6(5‘2) is a sphere homothetic to S? and we
have in particular W (Phiy) = W (&) = 4m. Theorem 1.1 is proved. O
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