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Narrator

we will first study confidence intervals
for the high-dimensional linear model

for that we need bounds for the ¢;-estimation error
of the Lasso




The Lasso

Y € R” response
X = (Xl, .., Xp) € R™P co-variables
Linear model:
Y = XB° + oge, € ~ N, (0,1)
Lasso fl—normEf:l 161

A
fosrgin IV - X6B/m 42 doy 5l

tuning parameter



Notation
oSc{l,...,p} s:=|S]
o [|Bslli =2 s 155

o [|8=slli = > j¢s 18]

* *\ <€ 8
* 0|«¢S
B=|*]| Bs:=0]«¢S
* x| €S
* 0/ «¢5S

Definition
The compatibility constant is

F(L,S) = min{s||XBs—XB_sl3/n: ||Bs|h = 1, |6-slls < L}

oL >1isa “stretching factor”



Notation
oSc{l,...,p} s:=|S]
o [|Bslli =2 s 155

o [|8=slli = > j¢s 18]
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* 0
* 0 *

Definition
The compatibility constant is

$(L,S) = min{s||XBs—XB_s3/n: ||Bs|h =1, |6-slls < L}

oL >1isa “stretching factor”



Example: S := {1}

P(L (1)) = min{uxl CXaBalBn: (Bl < L}

Wald lecture 3 (Friday):

Discussion of bounds for ¢(L, S)



Strong sparsity:

p

Zl{ﬁ}) # 0} is “small”

Jj=1

Weak sparsity:
Forsome 0 < r <1,

p
Z |67]" is “small”
j=1




/1-estimation error of the Lasso

Lemma (See Tuesday's lecture)
Let ~ "noise level”

1
- o = /2log(2p/a) and X > A\g
- L= 3x 2
X—Xo
-So =4 |5JQ\/<70 > LA+ o)}
and
S = |50|7 50 = {_j 510 # 0},

P
s, = Zmﬂr/a{), 0<r<1,
j=1

With probability at least 1 — «

18— B0 | < (A4 X0) 7S | 5




Asymptopia
1—r

A+ X) s, =0 "’ﬂ) S

n

So modulo compatibility

1—r
sr:o<1/$) = ||B—50||1:0JP>(1)~

Special case: strong sparsity (r = 0)
Modulo compatibility

0= \/iom) = 15 fulh = ox(0).



Narrator

recall Lasso

B—argmm{ny XBI3/n+2 Ao ||m|1}
~—

tuning parameter

the tuning parameter of the Lasso depends on (an estimate) of
the unknown variance o3

~ square-root Lasso

for the construction of confidence intervals
we will perform many Lasso's

the square-root Lasso can do this
using only one tuning parameter



The square-root Lasso

v/ Lasso

A

fmang i { 1Y~ X/ v+ Aol

[ Belloni et al. 2011]



¢1-error of the v/ Lasso

Lemma
- Let Mg = o/ 2logp/e)
T
n—1 instead of n
- Assume
<
- Take

<A <|oo/[I8%

ai=p(

4
=>4 5,2/”

ao/|5%1

Then with probability at least 1 —a — &

lel3/n— o3

18 = Bl | < Cx | (A

+ )\O)l_rsr

2

)

[

90
¢2(L75*)




Asymptopia
If118°1 = ol /1ea5)
then also for the v/Lasso, modulo compatibility

1—r
sr:o(1/|ogp) = 18— 8 = op(L).




Narrator

we now consider bounds for ¢.-error of the Lasso
and bounds for the expectation
this reveals the bias

which is then removed



/-bounds for the Lasso

Consider the Lasso!
B=arg i { 1Y — X513 /n + 2000l 1 }.

Notation

o ¥ := XTX/n Gram matrix
o © € RP*P some matrix
00 :=(01,---,0,)

o ||©]l1 := max ||©||1 “¢1-operator norm”

1Similar results for v/Lasso



Lemma
Let

- o= +/2log(2p/c)/n (as before)
- Xi=|[l —O07%| (© is a “surrogate inverse” of ¥.)
Then with probability at least 1 — «

=op(1) under sparsity
(see before)

. /A_H
18 = 8% < (A +Xo)ollOfls + A 18 = A

Asymptopia®

N aetyy 1Bl = OP(\/"’%) loll;

2When ES. = ¥ and © = 20—1
then X is the maximum of ~ p? averages-minus-expectations



The bias of the Lasso

Lemma We have

HE(B—ﬁo) H < AoollOll =X EI - & .
o N—— —_————

bias =op(1) under sparsity
(no Xg) (see later)

T

note the norm is
outside the expectation

Conclusion
The bias of the Lasso is mainly the term | Aoyl|©]|;
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Asymptotic lower
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Partly removing the bias:

Definition
The de-sparsified Lasso is

b:=p3+0TXT(Y —XB)/n.

[Zhang and Zhang, 2014]

Lemma We have

H E(b — 5) H < SEIA — ).



Partly removing the bias:

Definition
The de-sparsified Lasso is

b:=p3+0TXT(Y —XB)/n.

[Zhang and Zhang, 2014]

Lemma We have

|- o)

] <Aool + BB = 8.



Partly removing the bias:

Definition
The de-sparsified Lasso is

b:=p3+0TXT(Y —XB)/n.

[Zhang and Zhang, 2014]

Lemma We have

H E(b — 5) H < SEIA — ).



Asymptopia

A = O(y/log p/n)

R & = HE(E—ﬁo)
E||5 — Boll1 = o(1//log p)

— o(1/).

o0

3This will come back... o &



Asymptopia

A = O(y/log p/n)

R = [ - )| = o1/v)
E[|f = Bollx = o(1/+/log p) >
Recall :
compatibility conditions on X 15 — Boll1 = op(1/+/Tog p)
& = and actually indeed?
(weak) sparsity conditions E||5 — Bolls = o(1/+/Tog p)

e.g. so = o(y/n/ log p)

3This will come back...




De-sparsifying using the node-wise v/Lasso

Letforj=1,...,p
A _argvmln {HX Xyl /\/_‘f')‘ﬁHVHl}

%
& 1:]z’tjz
72 = |1 X — X Ailla/v/n
77 = 72+ Ml Al =l -
] ~D /A ]J
T =7/
X



Let
1/72
5. —%,.1/7112
"&pi/%f
Then
’/—éTi <
~—

entry wise

~ ~2
—A2.p/ 75
~2
1/7'p
21 21
T2 7—p
21
0 p
|
Ty 0



Definition The de-sparsified Lasso using 6is
b:i=3+&TXT(Y — XB)/n.

[Zhang and Zhang, 2014]

Lemma For all j

7i(b; = 57) = N(0,05/n) +

where || Ao < M|18 — 8|1



Asymptopia
Ay = Op(+/log p/n)
. & = bj — 6 ~ (O,
18 — 8%y = op(1/+/Tog p)

Remark
No sparsity conditions on the design X are imposed*

“but they do occur when looking at asymptotic efficiency!



Asymptopia
Ar = Op(+/log p/n) 2
. & = bj — 6 ~ (O, )
18 — B°l1 = op(1/+/log p)

Remark
No sparsity conditions on the design X are imposed*

Recall :
compatibility conditions on X

& = Hé—ﬂoﬂl = op(1/+/log p)

(weak) sparsity conditions

e.g. so = o(v/n/ log p)

“but they do occur when looking at asymptotic efficiency!
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Extensions

e y*-confidence sets for groups [vdG and Stucky, 2015]

e Confidence intervals for the precision matrix
o using the graphical Lasso [Jankovd and vdG, 2015]

O



o Some simulations with graphical Lasso®

chain graph : p
~o. &ap Chain graph ‘SU o 5 56
Avgeov Avglength | Avgeov  Avglength

graphical Lasso 0.934 0247 0972 0215
MLE with specified Sy | 0.963  0.293 - -
Sample covariance | 0439 0428 0897 0.367

star graph _ 5 5 5 g
grap St gaph, =38 Avgeov  Avglength | Avgeov  Avglength

graphical Lasso 0948 038 0951 0.47
MLE with specified S | 0.956 0337 - -
Sample covariance | 0124 0499 0897 0.367

5all simulations shown carried out by Jana Jankova
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Extensions

e y-confidence sets for groups [vdG and Stucky, 2015]

e Confidence intervals for the precision matrix
o using the graphical Lasso [Jankovd and vdG, 2015]
o using the node-wise Lasso [Jankova and vdG, 2016]

e Confidence intervals in GLM's [Jankovd and vdG, 2016]
o LAD
o Huber
o logistic regression



De-sparsified Lasso

®[Jankova and vdG, 2016]



Histograms for coefficients in logistic regression

De-sparsified logistic Lasso Logistic Lasso

b B
o O
/ T

) d
By B Be. B, B: Bs
e o »“
N ) N
\
5250123 Lo lis Ssbhods3 52801323 hrhoiid SsHLloqss

By Bs Bo B B Bs

"[Jankova and vdG, 2016]



Estimated coverage probabilities and lengths

P n avgeov  avglength  avgecov  avglength
100 400 D-S Logistic Lasso 0.816 0.423 0.927 0.402
Maximum likelihood  0.320 0.730 0.891 0.638

Conclusion from simulations:
(for p < n)

the de-sparsified estimator seems to be better than MLE



Narrator

based on the asymptotic results
one constructs (asymptotic) (1 — «)-confidence intervals

the question is now:
does the proposed method gives the shortest intervals?
or
is the variance about the smallest possible?

as we are in high-dimensions, this requires some thought....
as the model changes with n!

let us set up the situation in general terms



Lower bounds and efficiency

o Let X, := (X1,p, - .., Xnn) have distribution P,, n=1,2, ...

Supermodel: /%'
P,ePn:={Ps.n: Bn€ B} ()

=
with B, C RP" convex and open 1€

f

N

e

B
o Let Sg, :={j: Bj.n # 0}, sg, :=|53,|-
o Let m, € N given, m,/n — 0
o Let B,(m,) :={58,€ B,: sz < m,}
g Sparse model: xiif";
P, € Po(m,) :=={Ps,n: Bn€ Ba(m,)} 1

8Possible extension to weakly sparse models



Narrator

let g,(8,) € R be the parameter of interest.

Preview:
we will eventually show a Le Cam type of result.
the main condition will be

ﬁno + Iry_l(ﬁno)gn(ﬁno) € Bn(mn) y Mp = O(\/ n/ |Og p)

here

- &, is the derivative of g,

- T, be the Fisher-information matrix
- B, is a fixed sequence

then the asymptotic variance
of an asymptotically linear estimator
is at least

&n(Bn") L, (Ba")én(Bn°)



Narrator

but

we first consider

- “strong asymptotic unbaisedness”
- in the linear

- and the graphical model.



Let d, be some norm on RP"

Let /nd, — 0.

Let B,(my, dn) == {Bs € Ba(m,) : da(Bn — 5n0) < 6n}
(neighbourhood of the fixed (sequence) /3,°)

Definition
We call T,, = T,(X,) a strongly asymptotically unbiased
estimator at 3,° if

E,(Tn) = &n(Bn) + 0(0n) V Bn € Ba(mn, 6n).
)

parameter of interest



Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other




Lower bounds for the linear model

Let Y, € R" and X, € R"™P" B, := RP".
Supermodel:

P, corresponds to the linear model

Yo = XoBn+ €n, €0 ~N,(0,1), B, € RP
Sparse model:

Bn €{Bn: sp, < mn}

- Let Bn be the Lasso with tuning parameter A := 2}

- Let ©, be the node-wise square root Lasso estimator
with tuning parameter \; = O(+/log p,/n).
- Let 13,, be the de-biased estimator

~

by = Bn+OIXT (Y, — X,53,)/n



Consider estimating g,(5,) := B;.» (say).

Theorem
Suppose that

o m, = o(y/n/log p)
@) @jJ,n - O(l)

© MAXSCL,....pn}: [SI<mn 532( ,S) = 0(1).

Then ij,, is a strongly asymptotically unbiased estimator. 0O



Theorem [Jankova and vdG, 2016]
Suppose that T, is a strongly asymptotically unbiased
estimator at 3,°.

Assume that | 3,° + (:)J-,,, € B,(m,)|.
)

the jth column of ©,

Then .
©jjin

n

varg o( Tp) >

(1—o(1)).

Corollary
Under the above condition I:' with

o m, = o/ Iog ),
© ej:jvn = O(]‘)’
o maXSC{l ..... pn}: |S|<mp ¢;2( 75) = O(l)

the de-sparsified estimator lA)j,,, has asymptotically
the smallest variance
among all strongly asymptotically unbiased estimators.



An example of a model for the design:
The rows of X, are i.i.d. copies of X? ~ N, (0,%2)
The largest eigenvalue of X2 is bounded
The smallest eigenvalue of ¥° is bounded away from zero.

Let ©° be the inverse of ¥°.
Theorem

Assume

o for some m!, = o(+/n/ log n):

By € By(m) as wel as ©F, € B,(my,).
)

th column of the population

J
.. . 0
precision matrix ©p

Then with high probability all the conditions of the previous
corollary are met.
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Lower bounds for the graphical model

Supermodel:
The rows of X, are i.i.d. copies of X0 ~ N, (0,Z9)
The largest eigenvalue of Y2 is bounded
The smallest eigenvalue of ¥° is bounded away from zero.

Let ©° be the inverse of X2
Let the maximal degree of a matrix ©, > 0 in RP"*P be

So, ‘= mEx|{J 7é k - ej,k,n 7A 0}‘

Sparse model:  B,(m,) :={©,>0: so, < m,}.



Let g.(©,) := O« for some fixed (sequences) j and k.

Theorem [Jankova and vdG, 2016]
Suppose that T, is a strongly unbiased estimator at @5{ kon-
Assume that

o + {ej{neg; N eg,,,ey;} € By(m,)

Then
o

0 0
J,k,n + e ek,k,n

Jusn
n

(1—o(1)).

vargo(T,) >



Under the additional condition
mp = O(\/E/ |Og pn)

the de-sparsified node-wise estimator of ©° is strongly
asymptotically unbiased

and hence asymptotically efficient among such.



Narrator

well...

the asymptotics for var(T,) is something else than the
asymptotic variance

let us now look at Le Cam’s 3" Lemma
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Le Cam theory

We assume X, ..., X, , are independent in X
Notation
For functions f; : X — Euclidean space (i =1,...,n):

Ps,.nf =g, fi(Xin)/n.
Definition We call T, asymptotically linear at /3,

T gn Bn — Zgzn ‘|‘ OP (%)7

where
]Egno gn(Xi,n) :2 0,i=1,...,n
v, =Pgo, ln=0(1)
Remark
ly=(lypn,...,Lnn)is called the influence function
v2 is called the asymptotic variance



Let p; g, n» be the density of X; , under Py, ,
w.r.t. some dominating measure i, (i =1,...,n).

Definition
We say that the score condition is met at 3,° if for

__ Ologpig,.n

Sin-
Ln 8/8,1 Bn:ﬁn07

i=1,...

Y

it holds that
oEg0 8in(Xin) =0,i=1,...,n
0 Tn(Ba") == Py, s.08) = O(1)
o maxi<i<n [[Sinllee = O(1)

and

o

1, .
E Z si,n(Xi,n)SZ—n(Xi,n) + In(ﬂno)
i=1

log ps
= Opﬁnoyﬂ n



Remark
Sn = (S1,n, - - - ,Sn,n) is called the score function
Z(B,°) € RP*Pn is called the Fisher information matrix



Theorem Suppose

o asymptotic linearity at 3,° € Bn(m,)
o the score condition at 3,°

¢ Lindeberg conditions

o m - o(v/n/logp) if s, #0
! o(nt/3) if §,=0

Let B, := B," + h, € Bn(m,) where ||h,|l» = O(1).
Then

vin{ﬁ(n — &n(Bn)) — (hI Ps0.nSnln — by gn(5n°>) }

. J/
-~

asymptotic bias

is asymptotically N'(0,1) under Pg, ,.



Corollary

No asymptotic bias VY B." + hp/+/n € B,(m,)
=

(thﬁno,nsngn - hrz_g”(ﬂno)) =0 \V/ ﬂno + hn/\/ﬁ € Bn(mn)
=

hy &n(5’)

asymptotic variance v, > max
"7 he BaOtho/vmEBA(ma) AT T(B0°) B

(1—0(1))

Hence, if

Bn = ﬁno + In_l(ﬁno)gn(ﬂno) S Bn(mn)

we have

Vr? > gn(ﬁno)z;l(ﬁno)gn(ﬁno)(l —o(1)).
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Some conclusions

de-sparsifying for obtaining
confidence sets in high dimensions
works theoretically when

so = o(y/n/ log p)

(or weak versions thereof)

it works in simulations for p not too large
may beat MLE for p < n

asymptotic efficiency may require sparseness of the inverse
Fisher information






