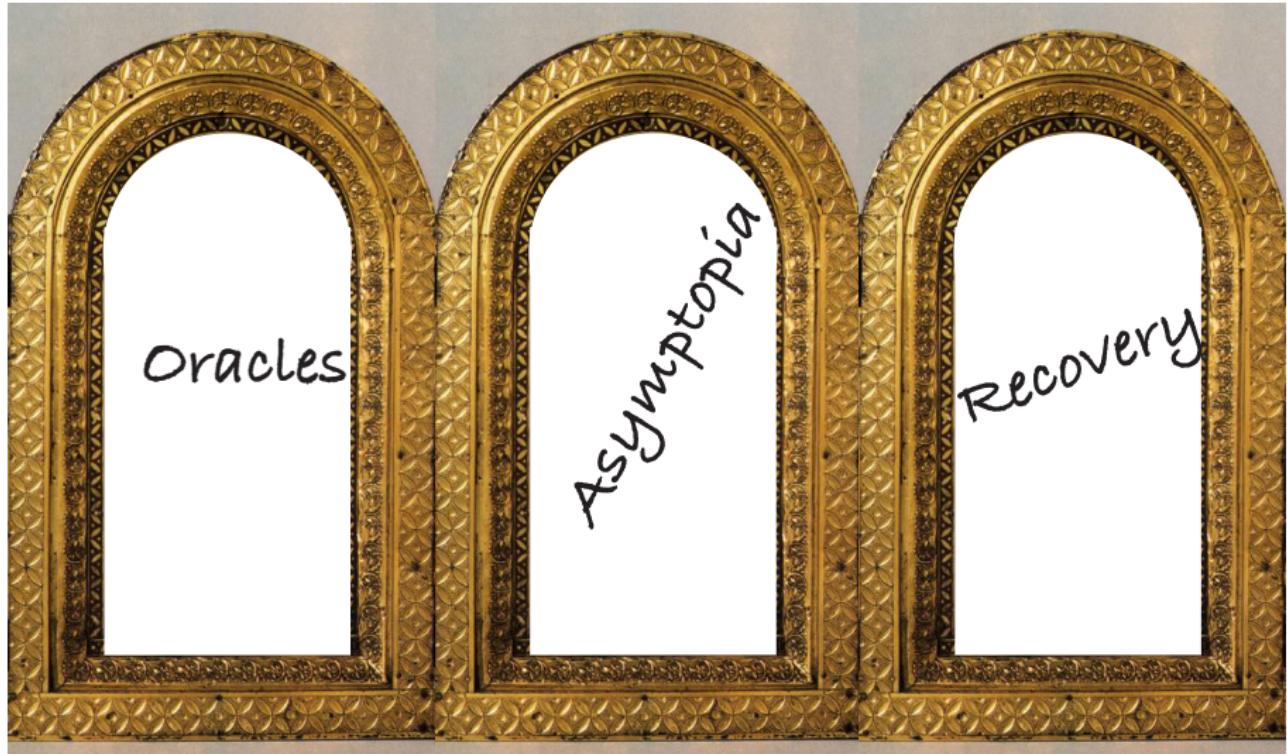


High-dimensional statistics: a triptych

Sara van de Geer



Panel I: Oracle inequalities

Panel II: Asymptotic normality and CRLB's

Panel III : Lower bounds for restricted eigenvalues

Oracles

Panel I: Oracle inequalities

Asymptopia

Panel II: Asymptotic normality and CRLB's

Recovery

Panel III : Lower bounds for restricted eigenvalues

High-dimensional statistics: a triptych

Sara van de Geer

July 13, 2016

Panel II:
Asymptotic normality
and Cramér-Rao lower bounds

Joint work with:

Andreas Elsener, Alan Muro, Jana Janková, Benjamin Stucky

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other

Narrator

we will first study confidence intervals
for the high-dimensional linear model

for that we need bounds for the ℓ_1 -estimation error
of the Lasso

The Lasso

$Y \in \mathbb{R}^n$ response

$X = (X_1, \dots, X_p) \in \mathbb{R}^{n \times p}$ co-variables

$p > n$

Linear model:

$$Y = X\beta^0 + \sigma_0\epsilon, \quad \epsilon \sim \mathcal{N}_n(0, I)$$

Lasso

$$\ell_1\text{-norm} \sum_{j=1}^p |\beta_j|$$

$$\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^p} \left\{ \|Y - X\beta\|_2^2/n + 2 \underbrace{\lambda\sigma_0}_{\text{tuning parameter}} \|\beta\|_1 \right\}$$

Notation

o $S \subset \{1, \dots, p\}$, $s := |S|$

o $\|\beta_S\|_1 = \sum_{j \in S} |\beta_j|$

o $\|\beta_{-S}\|_1 = \sum_{j \notin S} |\beta_j|$

$$\beta = \begin{pmatrix} * \\ \vdots \\ * \\ * \\ * \\ \vdots \\ * \end{pmatrix} \quad \beta_S := \begin{pmatrix} * \\ \vdots \\ 0 \\ 0 \\ * \\ \vdots \\ 0 \end{pmatrix} \begin{array}{l} \leftarrow \in S \\ \vdots \\ \leftarrow \notin S \\ \leftarrow \notin S \\ \leftarrow \in S \\ \vdots \\ \leftarrow \notin S \end{array}$$

Definition

The *compatibility constant* is

$$\hat{\phi}^2(L, S) := \min\{s \|X\beta_S - X\beta_{-S}\|_2^2 / n : \|\beta_S\|_1 = 1, \|\beta_{-S}\|_1 \leq L\}$$

o $L \geq 1$ is a “stretching factor”

Notation

- $S \subset \{1, \dots, p\}$, $s := |S|$

- $\|\beta_S\|_1 = \sum_{j \in S} |\beta_j|$

- $\|\beta_{-S}\|_1 = \sum_{j \notin S} |\beta_j|$

$$\beta = \begin{pmatrix} * \\ \vdots \\ * \\ * \\ * \\ \vdots \\ * \end{pmatrix} \quad \beta_S := \begin{pmatrix} * \\ \vdots \\ 0 \\ 0 \\ * \\ \vdots \\ 0 \end{pmatrix} \quad \beta_{-S} := \begin{pmatrix} 0 \\ \vdots \\ * \\ * \\ 0 \\ \vdots \\ * \end{pmatrix}$$

Definition

The *compatibility constant* is

$$\hat{\phi}^2(L, S) := \min\{s \|X\beta_S - X\beta_{-S}\|_2^2 / n : \|\beta_S\|_1 = 1, \|\beta_{-S}\|_1 \leq L\}$$

- $L \geq 1$ is a “stretching factor”

Example: $S := \{1\}$

$$\hat{\phi}^2(L, \{1\}) = \min \left\{ \|X_1 - X_{-1}\beta_{-1}\|_2^2/n : \|\beta_{-1}\|_1 \leq L \right\}$$

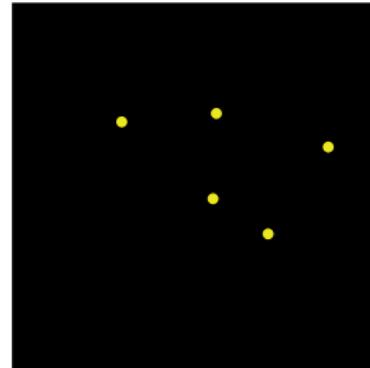
Wald lecture 3 (Friday):

Discussion of bounds for $\hat{\phi}^2(L, S)$

Strong sparsity:

$$\sum_{j=1}^p \mathbb{1}\{\beta_j^0 \neq 0\} \text{ is "small"}$$

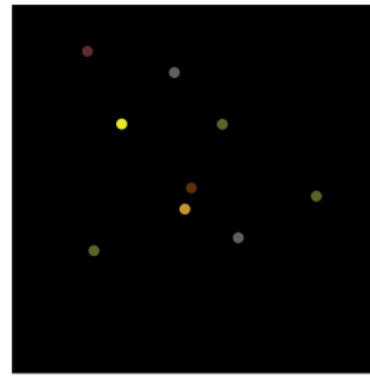
$$(r = 0)$$



Weak sparsity:

For some $0 < r < 1$,

$$\sum_{j=1}^p |\beta_j^0|^r \text{ is "small"}$$



ℓ_1 -estimation error of the Lasso

Lemma (See Tuesday's lecture)

Let \sim "noise level"

- $\lambda_0 := \sqrt{2 \log(2p/\alpha)}$ and $\lambda > \lambda_0$
- $L := 3 \times \frac{\lambda + \lambda_0}{\lambda - \lambda_0}$
- $S_* := \{j : |\beta_j^0|/\sigma_0 > L(\lambda + \lambda_0)\}$

and

$$s_0 := |S_0|, \quad S_0 := \{j : \beta_j^0 \neq 0\},$$

$$s_r := \sum_{j=1}^p |\beta_j^0|^r / \sigma_0^r, \quad 0 < r < 1,$$

With probability at least $1 - \alpha$

$$\|\hat{\beta} - \beta^0\|_1 \leq C \times \left[(\lambda + \lambda_0)^{1-r} s_r \right] \frac{\sigma_0}{\hat{\phi}^2(L, S_*)}$$

□

Asymptopia

$$[(\lambda + \lambda_0)^{1-r} s_r] = \mathcal{O}\left(\sqrt{\frac{\log p}{n}}\right)^{1-r} s_r.$$

So modulo compatibility

$$s_r = o\left(\sqrt{\frac{n}{\log p}}\right)^{1-r} \Rightarrow \|\hat{\beta} - \beta_0\|_1 = o_{\mathbb{P}}(1).$$

Special case: strong sparsity ($r = 0$)

Modulo compatibility

$$s_0 = o\left(\sqrt{\frac{n}{\log p}}\right) \Rightarrow \|\hat{\beta} - \beta_0\|_1 = o_{\mathbb{P}}(1).$$

recall Lasso

$$\hat{\beta} = \arg \min_{\beta \in \mathbb{R}^p} \left\{ \|Y - X\beta\|_2^2/n + 2 \underbrace{\lambda \sigma_0}_{\text{tuning parameter}} \|\beta\|_1 \right\}$$

the tuning parameter of the Lasso depends on (an estimate) of
the unknown variance σ_0^2

~~> square-root Lasso

for the construction of confidence intervals
we will perform *many* Lasso's

the square-root Lasso can do this
using only *one* tuning parameter

The square-root Lasso

$\sqrt{\text{Lasso}}$

$$\hat{\beta} := \arg \min_{\beta \in \mathbb{R}^p} \left\{ \|Y - X\beta\|_2 / \sqrt{n} + \lambda \|\beta\|_1 \right\}$$

[Belloni et al. 2011]

ℓ_1 -error of the $\sqrt{\text{Lasso}}$

Lemma

- Let $\lambda_0 := \sqrt{\frac{2 \log(2p/\alpha)}{n-1}}$, $\bar{\alpha} := \mathbb{P}\left(\left|\|\epsilon\|_2^2/n - \sigma_0^2\right| > \eta\right)$
 \uparrow
 $n-1$ instead of n
 \uparrow
 $= \sum_{i=1}^n \epsilon_i^2/n$

- Assume

$$\frac{1}{1-\eta} \boxed{\lambda_0} < \boxed{\sigma_0 / \|\beta^0\|_1} \eta^2.$$

- Take

$$\frac{1}{1-\eta} \boxed{\lambda_0} < \lambda < \boxed{\sigma_0 / \|\beta^0\|_1} \eta^2.$$

Then with probability at least $1 - \alpha - \bar{\alpha}$

$$\boxed{\|\hat{\beta} - \beta^0\|_1} \leq C \times \boxed{(\lambda(1 + \eta) + \lambda_0)^{1-r} s_r} \frac{\sigma_0}{\hat{\phi}^2(L, S_*)}$$

Asymptopia

If $\|\beta^0\|_1 = o(\sqrt{\frac{n}{\log p}})$

then also for the $\sqrt{\text{Lasso}}$, modulo compatibility

$$s_r = o\left(\sqrt{\frac{n}{\log p}}\right)^{1-r} \Rightarrow \|\hat{\beta} - \beta^0\|_1 = o_{\mathbb{P}}(1).$$

Narrator

we now consider bounds for ℓ_∞ -error of the Lasso

and bounds for the expectation

this reveals the bias

which is then removed

ℓ_∞ -bounds for the Lasso

Consider the Lasso¹

$$\hat{\beta} := \arg \min_{\beta \in \mathbb{R}^p} \left\{ \|Y - X\beta\|_2^2/n + 2\lambda\sigma_0\|\beta\|_1 \right\}.$$

Notation

- $\hat{\Sigma} := X^T X/n$ Gram matrix
- $\Theta \in \mathbb{R}^{p \times p}$ some matrix
- $\Theta := (\Theta_1, \dots, \Theta_p)$
- $\|\Theta\|_1 := \max_k \|\Theta_k\|_1$ “ ℓ_1 -operator norm”

¹Similar results for $\sqrt{\text{Lasso}}$

Lemma

Let

- $\lambda_0 := \sqrt{2 \log(2p/\alpha)/n}$ (as before)
- $\tilde{\lambda} := \|I - \Theta^T \hat{\Sigma}\|_\infty$ (Θ is a “surrogate inverse” of $\hat{\Sigma}$)

Then with probability at least $1 - \alpha$

$$\|\hat{\beta} - \beta^0\|_\infty \leq (\lambda + \lambda_0)\sigma_0 \|\Theta\|_1 + \tilde{\lambda} \underbrace{\|\hat{\beta} - \beta^0\|_1}_{=o_{\mathbb{P}}(1) \text{ under sparsity} \\ (\text{see before})}$$

□

Asymptopia²

- $\tilde{\lambda} \asymp \lambda \asymp \lambda_0$
- $\|\hat{\beta} - \beta^0\|_1 = o_{\mathbb{P}}(1) \Rightarrow \|\hat{\beta} - \beta^0\|_\infty = \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{\log p}{n}}\right) \|\Theta\|_1$

²When $\mathbb{E}\hat{\Sigma} = \Sigma_0$ and $\Theta = \Sigma_0^{-1}$

then $\tilde{\lambda}$ is the maximum of $\sim p^2$ averages-minus-expectations

The bias of the Lasso

Lemma We have

$$\left\| \mathbb{E}(\hat{\beta} - \beta_0) \right\|_{\infty} \leq \underbrace{\lambda \sigma_0 \|\Theta\|_1}_{\substack{\text{bias} \\ (\text{no } \lambda_0)}} + \tilde{\lambda} \underbrace{\mathbb{E}\|\hat{\beta} - \beta^0\|_1}_{\substack{=o_{\mathbb{P}}(1) \text{ under sparsity} \\ (\text{see later})}} .$$

↑
note the norm is
outside the expectation

□

Conclusion

The **bias** of the Lasso is mainly the term

$$\lambda \sigma_0 \|\Theta\|_1$$

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other

Partly removing the bias:

Definition

The *de-sparsified Lasso* is

$$\hat{b} := \hat{\beta} + \Theta^T X^T (Y - X\hat{\beta})/n.$$

[Zhang and Zhang, 2014]

Lemma We have

$$\left\| \mathbb{E}(\hat{b} - \beta_0) \right\|_{\infty} \leq \dots \tilde{\lambda} \mathbb{E} \|\hat{\beta} - \beta^0\|_1.$$

Partly removing the bias:

Definition

The *de-sparsified Lasso* is

$$\hat{b} := \hat{\beta} + \Theta^T X^T (Y - X\hat{\beta})/n.$$

[Zhang and Zhang, 2014]

Lemma We have

$$\left\| \mathbb{E}(\hat{\beta} - \beta_0) \right\|_{\infty} \leq \lambda \sigma_0 \|\Theta\|_1 + \tilde{\lambda} \mathbb{E} \|\hat{\beta} - \beta^0\|_1.$$

Partly removing the bias:

Definition

The *de-sparsified Lasso* is

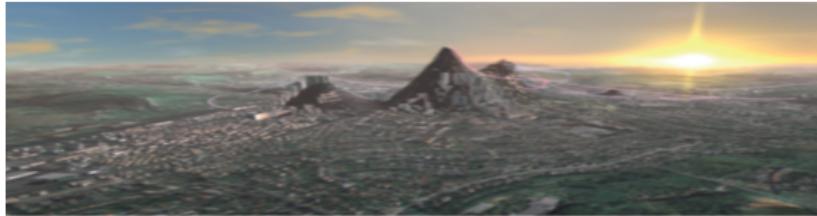
$$\hat{b} := \hat{\beta} + \Theta^T X^T (Y - X\hat{\beta})/n.$$

[Zhang and Zhang, 2014]

Lemma We have

$$\left\| \mathbb{E}(\hat{b} - \beta_0) \right\|_{\infty} \leq \dots \tilde{\lambda} \mathbb{E} \|\hat{\beta} - \beta^0\|_1.$$

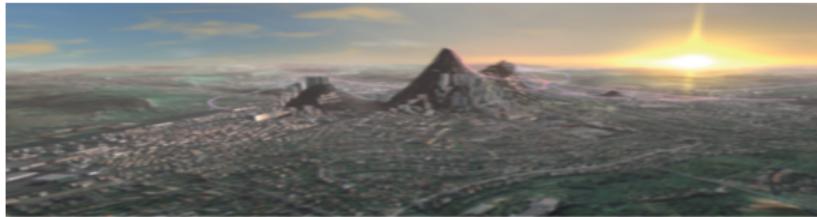
Asymptopia



$$\begin{aligned} \tilde{\lambda} &= \mathcal{O}(\sqrt{\log p/n}) \\ \& \quad \Rightarrow \quad \left\| \mathbb{E}(\hat{b} - \beta_0) \right\|_{\infty} = o(1/\sqrt{n}). \\ \mathbb{E} \|\hat{\beta} - \beta_0\|_1 &= o(1/\sqrt{\log p}) \end{aligned}$$

³This will come back...

Asymptopia



$$\begin{aligned} \tilde{\lambda} &= \mathcal{O}(\sqrt{\log p/n}) \\ &\quad \& \quad \Rightarrow \quad \left\| \mathbb{E}(\hat{\beta} - \beta_0) \right\|_\infty = o(1/\sqrt{n}). \\ \mathbb{E}\|\hat{\beta} - \beta_0\|_1 &= o(1/\sqrt{\log p}) \end{aligned}$$

Recall :

compatibility conditions on X

&

(weak) sparsity conditions

e.g. $s_0 = o(\sqrt{n}/\log p)$

$\|\hat{\beta} - \beta_0\|_1 = o_{\mathbb{P}}(1/\sqrt{\log p})$
and actually indeed³

$\mathbb{E}\|\hat{\beta} - \beta_0\|_1 = o(1/\sqrt{\log p})$

³This will come back...

De-sparsifying using the node-wise $\sqrt{\text{Lasso}}$

Let for $j = 1, \dots, p$

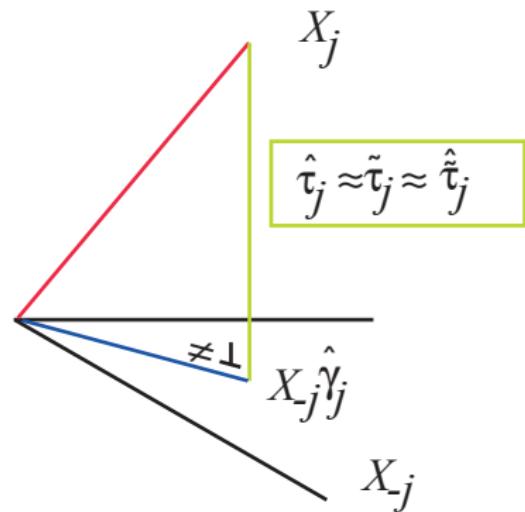
$$\hat{\gamma}_j := \arg \min_{\gamma \in \mathbb{R}^{p-1}} \left\{ \|X_j - X_{-j}\gamma\|_2 / \sqrt{n} + \lambda_{\sharp} \|\gamma\|_1 \right\},$$

&

$$\hat{\tau}_j^2 := \|X_j - X_{-j}\hat{\gamma}_j\|_2 / \sqrt{n}$$

$$\tilde{\tau}_j^2 := \hat{\tau}_j^2 + \lambda_{\sharp} \hat{\tau}_j \|\hat{\gamma}_j\|_1$$

$$\hat{\tilde{\tau}}_j := \tilde{\tau}_j^2 / \hat{\tau}_j$$



Let

$$\hat{\Theta} := \begin{pmatrix} 1/\tilde{\tau}_1^2 & -\hat{\gamma}_{1,2}/\tilde{\tau}_2^2 & \cdots & -\hat{\gamma}_{1,p}/\tilde{\tau}_p^2 \\ -\hat{\gamma}_{2,1}/\tilde{\tau}_1^2 & 1/\tilde{\tau}_2^2 & \cdots & -\hat{\gamma}_{2,p}/\tilde{\tau}_p^2 \\ \vdots & \vdots & \ddots & \vdots \\ -\hat{\gamma}_{p,1}/\tilde{\tau}_1^2 & -\hat{\gamma}_{p,2}/\tilde{\tau}_2^2 & \cdots & 1/\tilde{\tau}_p^2 \end{pmatrix}$$

Then

$$\left| I - \hat{\Theta}^T \hat{\Sigma} \right| \underbrace{\leq}_{\text{entry wise}} \lambda_{\sharp} \begin{pmatrix} 0 & \hat{\tau}_2^{-1} & \cdots & \hat{\tau}_p^{-1} \\ \hat{\tau}_1^{-1} & 0 & \cdots & \hat{\tau}_p^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{\tau}_1^{-1} & \hat{\tau}_2^{-1} & \cdots & 0 \end{pmatrix}$$

Definition The *de-sparsified Lasso* using $\hat{\Theta}$ is

$$\hat{\hat{b}} := \hat{\beta} + \hat{\Theta}^T X^T (Y - X\hat{\beta})/n.$$

[Zhang and Zhang, 2014]

Lemma For all j

$$\hat{\tau}_j(\hat{\hat{b}}_j - \beta_j^0) = \mathcal{N}(0, \sigma_0^2/n) + \Delta_j,$$

where $\|\Delta\|_\infty \leq \lambda_\sharp \|\hat{\beta} - \beta^0\|_1$.

Asymptopia

$$\begin{aligned} \lambda_{\sharp} &= \mathcal{O}_{\mathbb{P}}(\sqrt{\log p/n}) \\ &\quad \& \\ \|\hat{\beta} - \beta^0\|_1 &= o_{\mathbb{P}}(1/\sqrt{\log p}) \end{aligned} \Rightarrow \hat{b}_j - \beta_j^0 \approx \mathcal{N}\left(0, \frac{\sigma_0^2}{n\hat{\tau}_j^2}\right)$$

Remark

No sparsity conditions on the design X are imposed⁴

⁴but they do occur when looking at asymptotic efficiency!

Asymptopia

$$\begin{aligned} \lambda_{\sharp} &= \mathcal{O}_{\mathbb{P}}(\sqrt{\log p/n}) \\ &\quad \& \\ \|\hat{\beta} - \beta^0\|_1 &= o_{\mathbb{P}}(1/\sqrt{\log p}) \end{aligned} \Rightarrow \hat{b}_j - \beta_j^0 \approx \mathcal{N}\left(0, \frac{\sigma_0^2}{n\hat{\tau}_j^2}\right)$$

Remark

No sparsity conditions on the design X are imposed⁴

Recall :

compatibility conditions on X

&

$$\Rightarrow \|\hat{\beta} - \beta_0\|_1 = o_{\mathbb{P}}(1/\sqrt{\log p})$$

(weak) sparsity conditions

$$\text{e.g. } s_0 = o(\sqrt{n}/\log p)$$

⁴but they do occur when looking at asymptotic efficiency!

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

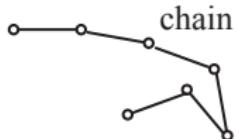
Other

Extensions

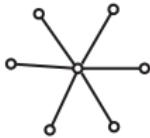
- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 -
- -
 -
 -
 -

- Some simulations with graphical Lasso⁵

chain graph



star graph



Chain graph	S_0 Avgcov	S_0 Avglength	S_0^c Avgcov	S_0^c Avglength
graphical Lasso	0.934	0.247	0.972	0.215
MLE with specified S_0	0.963	0.293	-	-
Sample covariance	0.459	0.428	0.897	0.367

Star graph, $d = 8$	S_0 Avgcov	S_0 Avglength	S_0^c Avgcov	S_0^c Avglength
graphical Lasso	0.948	0.328	0.951	0.247
MLE with specified S_0	0.956	0.337	-	-
Sample covariance	0.124	0.499	0.897	0.367

⁵all simulations shown carried out by Jana Janková

Extensions

- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 -

Extensions

- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 - using the node-wise Lasso [Janková and vdG, 2016]

Extensions

- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 - using the node-wise Lasso [Janková and vdG, 2016]
- Confidence intervals in GLM's [Janková and vdG, 2016]

Extensions

- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 - using the node-wise Lasso [Janková and vdG, 2016]
- Confidence intervals in GLM's [Janková and vdG, 2016]
 - LAD

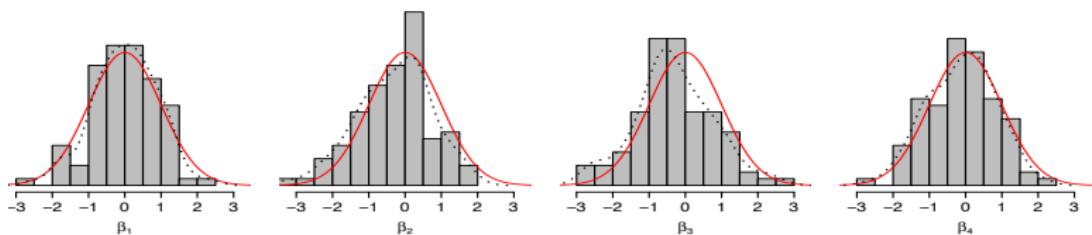
Extensions

- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 - using the node-wise Lasso [Janková and vdG, 2016]
- Confidence intervals in GLM's [Janková and vdG, 2016]
 - LAD
 - Huber

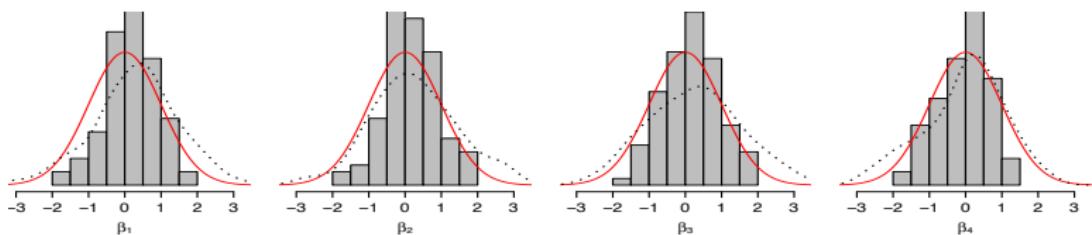
Extensions

- χ^2 -confidence sets for groups [vdG and Stucky, 2015]
- Confidence intervals for the precision matrix
 - using the graphical Lasso [Janková and vdG, 2015]
 - using the node-wise Lasso [Janková and vdG, 2016]
- Confidence intervals in GLM's [Janková and vdG, 2016]
 - LAD
 - Huber
 - logistic regression

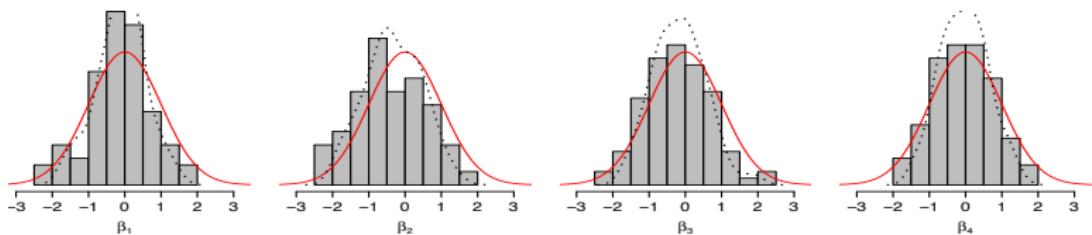
De-sparsified Lasso



De-sparsified LAD

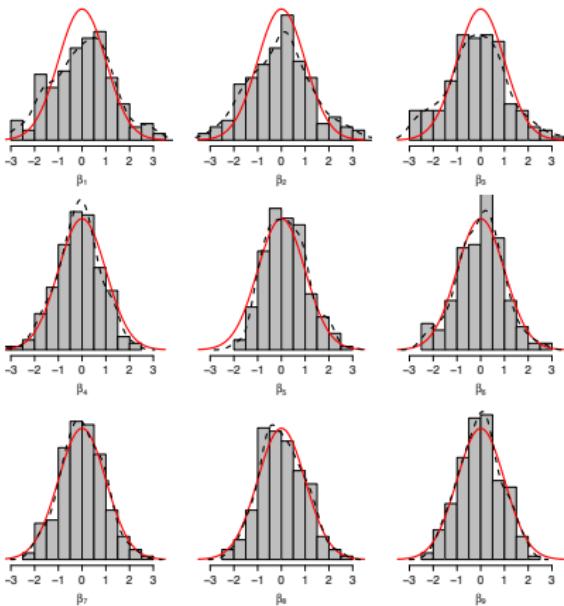


De-sparsified Huber estimator

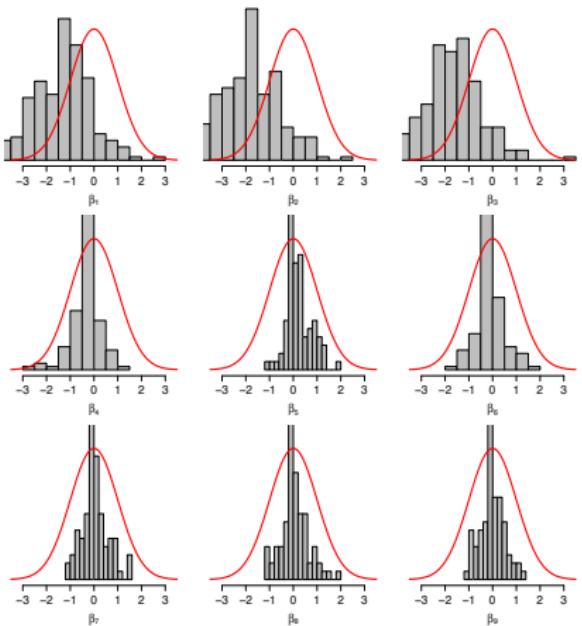


Histograms for coefficients in logistic regression

De-sparsified logistic Lasso



Logistic Lasso



Estimated coverage probabilities and lengths

p	n		avgcov	avglength	avgcov	avglength
100	400	D-S Logistic Lasso	0.816	0.423	0.927	0.402
		Maximum likelihood	0.320	0.730	0.891	0.638

Conclusion from simulations:

(for $p < n$)

the de-sparsified estimator seems to be better than MLE

Narrator

based on the asymptotic results
one constructs (asymptotic) $(1 - \alpha)$ -confidence intervals
the question is now:

does the proposed method give the shortest intervals?

or

is the variance about the smallest possible?

as we are in high-dimensions, this requires some thought....
as the model changes with n !

let us set up the situation in general terms

Lower bounds and efficiency

- Let $\mathbf{X}_n := (X_{1,n}, \dots, X_{n,n})$ have distribution \mathbf{P}_n , $n = 1, 2, \dots$

Supermodel:

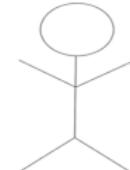
$$\mathbf{P}_n \in \mathcal{P}_n := \{\mathbf{P}_{\beta_n, n} : \beta_n \in \mathcal{B}_n\}$$

with $\mathcal{B}_n \subset \mathbb{R}^{p_n}$ convex and open

- Let $S_{\beta_n} := \{j : \beta_{j,n} \neq 0\}$, $s_{\beta_n} := |S_{\beta_n}|$.
- Let $m_n \in \mathbb{N}$ given, $m_n/n \rightarrow 0$
- Let $\mathcal{B}_n(m_n) := \{\beta_n \in \mathcal{B}_n : s_{\beta_n} \leq m_n\}$

⁸ Sparse model:

$$\mathbf{P}_n \in \mathcal{P}_n(m_n) := \{\mathbf{P}_{\beta_n, n} : \beta_n \in \mathcal{B}_n(m_n)\}$$



⁸Possible extension to weakly sparse models

let $g_n(\beta_n) \in \mathbb{R}$ be the parameter of interest.

Preview:

we will eventually show a Le Cam type of result.

the *main condition* will be

$$\boxed{\beta_n^0 + \mathcal{I}_n^{-1}(\beta_n^0) \dot{g}_n(\beta_n^0) \in \mathcal{B}_n(m_n)}, \quad m_n = o(\sqrt{n/\log p}).$$

here

- \dot{g}_n is the derivative of g_n
- \mathcal{I}_n be the Fisher-information matrix
- β_n^0 is a fixed sequence

then the asymptotic variance
of an asymptotically linear estimator
is at least

$$\dot{g}_n(\beta_n^0)^T \mathcal{I}_n^{-1}(\beta_n^0) \dot{g}_n(\beta_n^0)$$

Narrator

but

we first consider

- “strong asymptotic unbaisedness”
- in the linear
- and the graphical model.

Let d_n be some norm on \mathbb{R}^{p_n}

Let $\sqrt{n}\delta_n \rightarrow 0$.

Let $\mathcal{B}_n(m_n, \delta_n) := \{\beta_n \in \mathcal{B}_n(m_n) : d_n(\beta_n - \beta_n^0) \leq \delta_n\}$
(neighbourhood of the fixed (sequence) β_n^0)

Definition

We call $T_n = T_n(\mathbf{X}_n)$ a *strongly asymptotically unbiased estimator at β_n^0* if

$$\mathbb{E}_{\beta_n}(T_n) = g_n(\beta_n) + o(\delta_n) \quad \forall \beta_n \in \mathcal{B}_n(m_n, \delta_n).$$

↑
parameter of interest

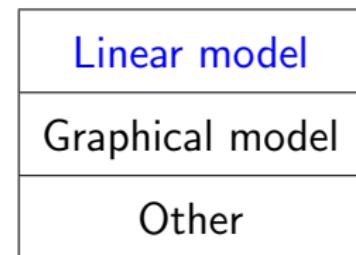
ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:



Lower bounds for the linear model

Let $Y_n \in \mathbb{R}^n$ and $X_n \in \mathbb{R}^{n \times p_n}$, $\mathcal{B}_n := \mathbb{R}^{p_n}$.

Supermodel:

$\mathbf{P}_{\beta_n, n}$ corresponds to the linear model

$$Y_n = X_n \beta_n + \epsilon_n, \quad \epsilon_n \sim \mathcal{N}_n(0, I), \quad \beta_n \in \mathbb{R}^{p_n}$$

Sparse model:

$$\beta_n \in \{\beta_n : s_{\beta_n} \leq m_n\}$$

- Let $\hat{\beta}_n$ be the Lasso with tuning parameter $\lambda := 2\lambda_0$
- Let $\hat{\Theta}_n$ be the node-wise square root Lasso estimator with tuning parameter $\lambda_{\sharp} = \mathcal{O}(\sqrt{\log p_n/n})$.
- Let $\hat{\hat{b}}_n$ be the de-biased estimator

$$\hat{\hat{b}}_n := \hat{\beta}_n + \hat{\Theta}_n^T X_n^T (Y_n - X_n \hat{\beta}_n) / n$$

Consider estimating $g_n(\beta_n) := \beta_{j,n}$ (say).

Theorem

Suppose that

- $m_n = o(\sqrt{n}/\log p)$
- $\hat{\Theta}_{j,j,n} = \mathcal{O}(1)$
- $\max_{S \subset \{1, \dots, p_n\}: |S| \leq m_n} \hat{\phi}_n^{-2}(3, S) = \mathcal{O}(1).$

Then $\hat{b}_{j,n}$ is a strongly asymptotically unbiased estimator. □

Theorem [Janková and vdG, 2016]

Suppose that T_n is a strongly asymptotically unbiased estimator at β_n^0 .

Assume that $\beta_n^0 + \hat{\Theta}_{j,n} \in \mathcal{B}_n(m_n)$.

↑
the j^{th} column of $\hat{\Theta}_n$

Then

$$\text{var}_{\beta_n^0}(T_n) \geq \frac{\hat{\Theta}_{j,j,n}}{n}(1 - o(1)).$$

Corollary

Under the above condition $\boxed{}$ with

- $m_n = o(\sqrt{n}/\log p)$,
- $\hat{\Theta}_{j,j,n} = \mathcal{O}(1)$,
- $\max_{S \subset \{1, \dots, p_n\}: |S| \leq m_n} \hat{\phi}_n^{-2}(3, S) = \mathcal{O}(1)$.

the de-sparsified estimator $\hat{\hat{b}}_{j,n}$ has asymptotically
the smallest variance

among all strongly asymptotically unbiased estimators.

An example of a model for the design:

The rows of X_n are i.i.d. copies of $X_n^0 \sim \mathcal{N}_{p_n}(0, \Sigma_n^0)$

The largest eigenvalue of Σ_n^0 is bounded

The smallest eigenvalue of Σ_n^0 is bounded away from zero.

Let Θ_n^0 be the inverse of Σ_n^0 .

Theorem

Assume

- for some $m'_n = o(\sqrt{n}/\log n)$:

$\beta_n^0 \in \mathcal{B}_n(m'_n)$ as well as $\Theta_{j,n}^0 \in \mathcal{B}_n(m'_n)$.

\uparrow
 j^{th} column of the population
precision matrix Θ_n^0

Then with high probability all the conditions of the previous corollary are met. □

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other

Lower bounds for the graphical model

Supermodel:

The rows of X_n are i.i.d. copies of $X_n^0 \sim \mathcal{N}_{p_n}(0, \Sigma_n^0)$

The largest eigenvalue of Σ_n^0 is bounded

The smallest eigenvalue of Σ_n^0 is bounded away from zero.

Let Θ_n^0 be the inverse of Σ_n^0 .

Let the maximal degree of a matrix $\Theta_n \geq 0$ in $\mathbb{R}^{p_n \times p_n}$ be

$$s_{\Theta_n} := \max_k |\{j \neq k : \Theta_{j,k,n} \neq 0\}|$$

Sparse model: $\mathcal{B}_n(m_n) := \{\Theta_n > 0 : s_{\Theta_n} \leq m_n\}.$

Let $g_n(\Theta_n) := \Theta_{j,k,n}$ for some fixed (sequences) j and k .

Theorem [Janková and vdG, 2016]

Suppose that T_n is a strongly unbiased estimator at $\Theta_{j,k,n}^0$.

Assume that

$$\Theta_n^0 + \left[\Theta_{j,n}^0 \Theta_{k,n}^{0T} + \Theta_{k,n}^0 \Theta_{j,n}^{0T} \right] \in \mathcal{B}_n(m_n)$$

Then

$$\text{var}_{\Theta_n^0}(T_n) \geq \frac{\Theta_{j,k,n}^{02} + \Theta_{j,j,n}^0 \Theta_{k,k,n}^0}{n} (1 - o(1)).$$

Under the additional condition

$$m_n = o(\sqrt{n}/\log p_n)$$

the de-sparsified node-wise estimator of Θ_n^0 is strongly asymptotically unbiased

and hence asymptotically efficient among such.

Narrator

well...

the asymptotics for $\text{var}(T_n)$ is something else than the asymptotic variance

let us now look at Le Cam's 3rd Lemma

Narrator

well...

the asymptotics for $\text{var}(T_n)$ is something else than the asymptotic variance

let us now look at Le Cam's 3rd Lemma

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other

Le Cam theory

We assume $X_{1,n}, \dots, X_{n,n}$ are independent in \mathcal{X}

Notation

For functions $f_i : \mathcal{X} \rightarrow \text{Euclidean space}$ ($i = 1, \dots, n$):

$$\mathbf{P}_{\beta_n, n} f := \mathbb{E}_{\beta_n} f_i(X_{i,n})/n.$$

Definition We call T_n *asymptotically linear* at β_n^0 if

$$T_n - g_n(\beta_n^0) = \frac{1}{n} \sum_{i=1}^n \ell_{i,n}(X_i) + o_{\mathbf{P}_{\beta_n^0, n}}\left(\frac{1}{\sqrt{n}}\right),$$

where

$$\mathbb{E}_{\beta_n^0} \ell_n(X_{i,n}) = 0, \quad i = 1, \dots, n$$

$$v_n^2 := \mathbf{P}_{\beta_n^0, n} \ell_n^2 = \mathcal{O}(1)$$

Remark

$\ell_n = (\ell_{1,n}, \dots, \ell_{n,n})$ is called the *influence function*

v_n^2 is called the *asymptotic variance*

Let $\mathbf{p}_{i,\beta_n,n}$ be the density of $X_{i,n}$ under $\mathbf{P}_{\beta_n,n}$ w.r.t. some dominating measure μ_n ($i = 1, \dots, n$).

Definition

We say that the *score condition* is met at β_n^0 if for

$$\mathbf{s}_{i,n} := \left. \frac{\partial \log \mathbf{p}_{i,\beta_n,n}}{\partial \beta_n} \right|_{\beta_n = \beta_n^0}, \quad i = 1, \dots, n$$

it holds that

- $\mathbb{E}_{\beta_n^0} \mathbf{s}_{i,n}(X_{i,n}) = 0, \quad i = 1, \dots, n$
- $\mathcal{I}_n(\beta_n^0) := \mathbf{P}_{\beta_n^0, n} \mathbf{s}_{i,n} \mathbf{s}_{i,n}^T = \mathcal{O}(1)$
- $\max_{1 \leq i \leq n} \|\mathbf{s}_{i,n}\|_\infty = \mathcal{O}(1)$

and

- $$\left\| \frac{1}{n} \sum_{i=1}^n \mathbf{s}_{i,n}(X_{i,n}) \mathbf{s}_{i,n}^T(X_{i,n}) + \mathcal{I}_n(\beta_n^0) \right\|_\infty = o_{\mathbf{P}_{\beta_n^0, n}} \left(\sqrt{\frac{\log p_n}{n}} \right)$$

Remark

$\mathbf{s}_n = (s_{1,n}, \dots, s_{n,n})$ is called the score function

$\mathcal{I}(\beta_n^0) \in \mathbb{R}^{p_n \times p_n}$ is called the Fisher information matrix

Theorem Suppose

- ◊ asymptotic linearity at $\beta_n^0 \in \mathcal{B}_n(m_n)$
- ◊ the score condition at β_n^0
- ◊ Lindeberg conditions

$$\diamond m_n = \begin{cases} o(\sqrt{n/\log p}) & \text{if } \ddot{\mathbf{s}}_n \neq 0 \\ o(n^{1/3}) & \text{if } \ddot{\mathbf{s}}_n = 0 \end{cases}$$

Let $\beta_n := \beta_n^0 + h_n \in \mathcal{B}_n(m_n)$ where $\|h_n\|_2 = \mathcal{O}(1)$.

Then

$$\frac{1}{\nu_n} \left\{ \sqrt{n}(T_n - g_n(\beta_n)) - \underbrace{\left(h_n^T \mathbf{P}_{\beta_n^0, n} \mathbf{s}_n \ell_n - h_n^T \dot{g}_n(\beta_n^0) \right)}_{\text{asymptotic bias}} \right\}$$

is asymptotically $\mathcal{N}(0, 1)$ under $\mathbf{P}_{\beta_n, n}$.

Corollary

No asymptotic bias

$$\forall \beta_n^0 + h_n/\sqrt{n} \in \mathcal{B}_n(m_n)$$

$$\left(h_n^T \mathbf{P}_{\beta_n^0, n} \mathbf{s}_n \ell_n - h_n^T \dot{g}_n(\beta_n^0) \right) \Leftrightarrow$$
$$\Leftrightarrow$$
$$\left(h_n^T \mathbf{P}_{\beta_n^0, n} \mathbf{s}_n \ell_n - h_n^T \dot{g}_n(\beta_n^0) \right) = 0 \quad \forall \beta_n^0 + h_n/\sqrt{n} \in \mathcal{B}_n(m_n)$$

asymptotic variance $v_n^2 \geq \max_{h_n: \beta_n^0 + h_n/\sqrt{n} \in \mathcal{B}_n(m_n)} \frac{h_n^T \dot{g}_n(\beta_n^0)}{h_n^T \mathcal{I}_n(\beta_n^0) h_n} (1 - o(1))$

Hence, if

$$\boxed{\beta_n := \beta_n^0 + \mathcal{I}_n^{-1}(\beta_n^0) \dot{g}_n(\beta_n^0) \in \mathcal{B}_n(m_n)}$$

we have

$$v_n^2 \geq \dot{g}_n(\beta_n^0) \mathcal{I}_n^{-1}(\beta_n^0) \dot{g}_n(\beta_n^0) (1 - o(1)).$$

ℓ_1 - and ℓ_∞ -bounds
for the Lasso

De-sparsifying

Asymptotic lower
bound for the variance

Lower bound for the
asymptotic variance

Model:

Linear model

Graphical model

Other

Some conclusions

de-sparsifying for obtaining
confidence sets in high dimensions
works theoretically when
 $s_0 = o(\sqrt{n}/\log p)$
(or weak versions thereof)

it works in simulations for p not too large
may beat MLE for $p < n$

asymptotic efficiency may require sparseness of the inverse
Fisher information

THANK YOU!

