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Narrator

we will first study confidence intervals
for the high-dimensional linear model

for that we need bounds for the `1-estimation error
of the Lasso



The Lasso

Y ∈ Rn response
X = (X1, . . . ,Xp) ∈ Rn×p co-variables
p > n

Linear model:

Y = Xβ0 + σ0ε, ε ∼ Nn(0, I )

Lasso
`1−norm

∑p
j=1 |βj |

↓

β̂ = arg min
β∈Rp

{
‖Y − Xβ‖2

2/n + 2 λσ0︸︷︷︸
tuning parameter

‖β‖1

}



Notation
◦ S ⊂ {1, . . . , p}, s := |S |
◦ ‖βS‖1 =

∑
j∈S |βj |

◦ ‖β−S‖1 =
∑

j /∈S |βj |

β =




∗
...
∗
∗
∗
...
∗




βS :=




∗
...
0
0
∗
...
0




←∈ S
...

←/∈ S
←/∈ S
←∈ S

...
←/∈ S

Definition
The compatibility constant is

φ̂2(L, S) := min{s‖XβS−Xβ−S‖2
2/n : ‖βS‖1 = 1, ‖β−S‖1 ≤ L}

◦ L ≥ 1 is a “stretching factor”
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Example: S := {1}

φ̂2(L, {1}) = min

{
‖X1 − X−1β−1‖2

2/n : ‖β−1‖1 ≤ L

}

Wald lecture 3 (Friday):

Discussion of bounds for φ̂2(L, S)



Strong sparsity:

p∑

j=1

l{β0
j 6= 0} is “small”

(r = 0)

Weak sparsity:
For some 0 < r < 1,

p∑

j=1

|β0
j |r is “small”



`1-estimation error of the Lasso

Lemma (See Tuesday’s lecture)
Let ∼“noise level”

↓

- λ0 :=
√

2 log(2p/α) and λ > λ0

- L := 3×λ+λ0

λ−λ0

- S∗ := {j : |β0
j |/σ0 > L(λ + λ0)}

and

s0 := |S0|, S0 := {j : β0
j 6= 0},

sr :=

p∑

j=1

|β0
j |r/σr

0, 0 < r < 1,

With probability at least 1− α

‖β̂ − β0‖1 ≤ C× (λ + λ0)1−r sr
σ0

φ̂2(L,S∗) tu



Asymptopia

(λ + λ0)1−r sr = O
(√

log p
n

)1−r

sr .

So modulo compatibility

sr = o

(√
n

log p

)1−r

⇒ ‖β̂ − β0‖1 = oP(1).

Special case: strong sparsity (r = 0)
Modulo compatibility

s0 = o

(√
n

log p

)
⇒ ‖β̂ − β0‖1 = oP(1).



Narrator

recall Lasso

β̂ = arg min
β∈Rp

{
‖Y − Xβ‖2

2/n + 2 λσ0︸︷︷︸
tuning parameter

‖β‖1

}

the tuning parameter of the Lasso depends on (an estimate) of
the unknown variance σ2

0

 square-root Lasso

for the construction of confidence intervals
we will perform many Lasso’s

the square-root Lasso can do this
using only one tuning parameter



The square-root Lasso

√
Lasso

β̂ := arg min
β∈Rp

{
‖Y − Xβ‖2/

√
n + λ‖β‖1

}

[ Belloni et al. 2011]



`1-error of the
√

Lasso

Lemma

- Let λ0 :=
√

2 log(2p/α)
n−1

,
↑

n−1 instead of n

ᾱ := P
(∣∣∣∣‖ε‖2

2/n − σ2
0

∣∣∣∣ > η

)

↑
=
∑n

i=1 ε
2
i /n

- Assume
1

1−η λ0 < σ0/‖β0‖1 η2.

- Take
1

1−η λ0 < λ < σ0/‖β0‖1 η2.

Then with probability at least 1− α− ᾱ
‖β̂ − β0‖1 ≤ C× (λ(1 + η) + λ0)1−r sr

σ0

φ̂2(L,S∗)



Asymptopia

If ‖β0‖1 = o(
√

n
log p

)

then also for the
√

Lasso, modulo compatibility

sr = o

(√
n

log p

)1−r

⇒ ‖β̂ − β0‖1 = oP(1).



Narrator

we now consider bounds for `∞-error of the Lasso

and bounds for the expectation

this reveals the bias

which is then removed



`∞-bounds for the Lasso

Consider the Lasso1

β̂ := arg min
β∈Rp

{
‖Y − Xβ‖2

2/n + 2λσ0‖β‖1

}
.

Notation
◦ Σ̂ := XTX/n Gram matrix
◦ Θ ∈ Rp×p some matrix
◦ Θ := (Θ1, · · · ,Θp)
◦ |||Θ|||1 := maxk ‖Θk‖1 “`1-operator norm”

1Similar results for
√

Lasso



Lemma
Let
- λ0 :=

√
2 log(2p/α)/n (as before)

- λ̃ := ‖I −ΘT Σ̂‖∞ (Θ is a “surrogate inverse” of Σ̂)
Then with probability at least 1− α

‖β̂ − β0‖∞ ≤ (λ + λ0)σ0|||Θ|||1 + λ̃

=oP(1) under sparsity

(see before)︷ ︸︸ ︷
‖β̂ − β0‖1

tu
Asymptopia2

- λ̃ � λ � λ0

- ‖β̂ − β0‖1 = oP(1)
⇒ ‖β̂ − β0‖∞ = OP

(√
log p
n

)
|||Θ|||1

2When IEΣ̂ = Σ0 and Θ = Σ−1
0

then λ̃ is the maximum of ∼ p2 averages-minus-expectations



The bias of the Lasso

Lemma We have
∥∥∥∥ IE(β̂ − β0)

∥∥∥∥
∞
≤ λσ0|||Θ|||1︸ ︷︷ ︸

bias
(no λ0)

+λ̃ IE‖β̂ − β0‖1︸ ︷︷ ︸
=oP(1) under sparsity

(see later)

.

↑
note the norm is

outside the expectation

tu

Conclusion
The bias of the Lasso is mainly the term λσ0|||Θ|||1
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Partly removing the bias:

Definition
The de-sparsified Lasso is

b̂ := β̂ + ΘTXT (Y − X β̂)/n.

[Zhang and Zhang, 2014]

Lemma We have
∥∥∥∥ IE(b̂ − β0)

∥∥∥∥
∞
≤ · · · λ̃IE‖β̂ − β0‖1.
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[Zhang and Zhang, 2014]

Lemma We have
∥∥∥∥ IE(β̂ − β0)

∥∥∥∥
∞
≤ λσ0|||Θ|||1 + λ̃IE‖β̂ − β0‖1.



Partly removing the bias:

Definition
The de-sparsified Lasso is

b̂ := β̂ + ΘTXT (Y − X β̂)/n.

[Zhang and Zhang, 2014]

Lemma We have
∥∥∥∥ IE(b̂ − β0)

∥∥∥∥
∞
≤ · · · λ̃IE‖β̂ − β0‖1.



Asymptopia

λ̃ = O(
√

log p/n)
&

IE‖β̂ − β0‖1 = o(1/
√

log p)

⇒
∥∥∥∥IE(b̂ − β0)

∥∥∥∥
∞

= o(1/
√

n).

Recall :
compatibility conditions on X

&
(weak) sparsity conditions

e.g. s0 = o(
√

n/ log p)

⇒
‖β̂ − β0‖1 = oP(1/

√
log p)

and actually indeed3

IE‖β̂ − β0‖1 = o(1/
√

log p)

3This will come back...
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De-sparsifying using the node-wise
√

Lasso
Let for j = 1, . . . , p

γ̂j := arg min
γ∈Rp−1

{
‖Xj − X−jγ‖2/

√
n + λ]‖γ‖1

}
,

&

τ̂ 2
j := ‖Xj − X−j γ̂j‖2/

√
n

τ̃ 2
j := τ̂ 2

j + λ]τ̂j‖γ̂j‖1

ˆ̃τj := τ̃ 2
j /τ̂j

Xj

X-j

X-jgj
ˆ

tĵ ≈tj˜

≠

t̃j≈ ˆ



Let

Θ̂ :=




1/τ̃ 2
1 −γ̂1,2/τ̃

2
2 · · · −γ̂1,p/τ̃

2
p

−γ̂2,1/τ̃
2
1 1/τ̃ 2

2 · · · −γ̂2,p/τ̃
2
p

...
...

. . .
...

−γ̂p,1/τ̃ 2
1 −γ̂p,2/τ̃ 2

2 · · · 1/τ̃ 2
p




Then

∣∣∣∣I − Θ̂T Σ̂

∣∣∣∣ ≤︸︷︷︸
entry wise

λ]




0 ˆ̃τ−1
2 · · · ˆ̃τ−1

p
ˆ̃τ−1

1 0 · · · ˆ̃τ−1
p

...
...

. . .
...

ˆ̃τ−1
1

ˆ̃τ−1
2 · · · 0






Definition The de-sparsified Lasso using Θ̂ is

ˆ̂b := β̂ + Θ̂TXT (Y − X β̂)/n.

[Zhang and Zhang, 2014]

Lemma For all j

ˆ̃τj(
ˆ̂bj − β0

j ) = N (0, σ2
0/n) + ∆j ,

where ‖∆‖∞ ≤ λ]‖β̂ − β0‖1.



Asymptopia

λ] = OP(
√

log p/n)
&

‖β̂ − β0‖1 = oP(1/
√

log p)

⇒ b̂j − β0
j ≈ N

(
0,
σ2

0

nˆ̃τ 2
j

)

Remark
No sparsity conditions on the design X are imposed4

Recall :
compatibility conditions on X

&
(weak) sparsity conditions

e.g. s0 = o(
√

n/ log p)

⇒ ‖β̂−β0‖1 = oP(1/
√

log p)

4but they do occur when looking at asymptotic efficiency!
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Extensions

• χ2-confidence sets for groups [vdG and Stucky, 2015]

• Confidence intervals for the precision matrix
◦ using the graphical Lasso [Janková and vdG, 2015]
◦
•
◦
◦
◦



◦ Some simulations with graphical Lasso5

chain graph

star graph

Chain graph
S0 S0 Sc

0 Sc
0

Avgcov Avglength Avgcov Avglength
graphical Lasso 0.934 0.247 0.972 0.215

MLE with specified S0 0.963 0.293 - -
Sample covariance 0.459 0.428 0.897 0.367

Star graph, d = 8
S0 S0 Sc

0 Sc
0

Avgcov Avglength Avgcov Avglength
graphical Lasso 0.948 0.328 0.951 0.247

MLE with specified S0 0.956 0.337 - -
Sample covariance 0.124 0.499 0.897 0.367

Fig 1. Tables showing a comparison of graphical Lasso with the maximum likelihood estimator
with specified set S0 and an estimator based on the sample covariance matrix Σ̂. The results

were obtained for p = 80 and n = 250. The regularization parameter was chosen λ =
√

log p
n

.

The active sets have cardinality 238 for the chain graph and cardinality 94 for the star graph.
The constant ρ in the definition of Θ∗ was set to 0.3 for both graphical models.

Chain graph
S0 S0 Sc

0 Sc
0

Avgcov Avglength Avgcov Avglength
p = 100 0.931 0.401 0.978 0.348
p = 200 0.917 0.400 0.984 0.349
p = 300 0.893 0.401 0.988 0.349
p = 500 0.832 0.401 0.988 0.350

Fig 2. A table showing the performance of the graphical Lasso (P1) for number of parameters
p taking values 100, 200, 300, 500 and n = 100. The regularization parameter was chosen

λ =
√

log p
n

. The constant ρ is 0.3 in the definition of Θ∗.

4. Proofs

Proof of Lemma 2. The KKT conditions for the optimization problem (P1)
read

Σ̂− Θ̂−1 + λẐ = 0, (4.1)

where the matrix Ẑ is the subdifferential of ‖.‖1,off at the optimum Θ̂. Vector-

izing the equation and multiplying by the matrix Θ̂⊗ Θ̂, we obtain

Θ̂⊗ Θ̂vec(Σ̂)− Θ̂⊗ Θ̂vec(Θ̂−1) + Θ̂⊗ Θ̂vec(λẐ) = 0.

Adding the expression Θ̂ − Θ∗ to both sides and rearranging to obtain the
asymptotic pivot (i.e. subtracting expectation from Σ̂), it follows

vec(Θ̂) + Θ̂⊗ Θ̂vec(λẐ)− vec(Θ∗) = −Θ∗ ⊗Θ∗vec(Σ̂− Σ∗) (4.2)

+ (Θ∗ ⊗Θ∗ − Θ̂⊗ Θ̂)vec(Σ̂− Σ∗)︸ ︷︷ ︸
Rem1

+vec(Θ̂−Θ∗)− Θ̂⊗ Θ̂vec(Θ∗−1) + Θ̂⊗ Θ̂vec(Θ̂−1)︸ ︷︷ ︸
Rem2

.

10

5all simulations shown carried out by Jana Janková
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6
Asymptotic normality of regression parameters

De-sparsified Lasso
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De-sparsified Huber estimator
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Figure 1: Histograms of
√
n(b̂j − β0

j )/σ̂j , j = 1, . . . , 4 for the de-sparisfied LAD, de-sparsified
Lasso, and de-sparsified Huber estimator (K = 0.5). Here, n = 300, p = 100, β0 =
(1, 1, 1, 0, . . . , 0). The error distribution is N (0, 1). Superimposed is the density of N (0, 1) (red

curve) and a kernel estimate of the density of
√
n(b̂j − β0

j )/σ̂j (dotted curve).

procedure for controlling FWER. From 200 generated samples, the testing procedure
had 100% true positive rate and FWER value 0.015, as reported in Table 3.

Finally, we test the classification performance of the model selected using de-sparsified
logistic Lasso with multiple testing on newly generated independent sample of size
n = 10000. We calculate the true positive rates and false positive rates for different
values of the threshold. The corresponding ROC curve is depicted in Figure 3. The
ROC curve of the selected model is similar to that of the true model and outperforms

22

6[Janková and vdG, 2016]



7the model selected by the Lasso.

Histograms for coefficients in logistic regression
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β1

−3 −2 −1 0 1 2 3
β2

D
en

si
ty

−3 −2 −1 0 1 2 3
β3

D
en

si
ty

−3 −2 −1 0 1 2 3

β4

−3 −2 −1 0 1 2 3
β5

D
en

si
ty

−3 −2 −1 0 1 2 3
β6

D
en

si
ty

−3 −2 −1 0 1 2 3

β7

−3 −2 −1 0 1 2 3
β8

D
en

si
ty

−3 −2 −1 0 1 2 3
β9

D
en

si
ty

−3 −2 −1 0 1 2 3

β1

−3 −2 −1 0 1 2 3
β2

D
en

si
ty

−3 −2 −1 0 1 2 3
β3

D
en

si
ty

−3 −2 −1 0 1 2 3

β4

−3 −2 −1 0 1 2 3
β5

D
en

si
ty

−3 −2 −1 0 1 2 3
β6

D
en

si
ty

−3 −2 −1 0 1 2 3

β7

−3 −2 −1 0 1 2 3
β8

D
en

si
ty

−3 −2 −1 0 1 2 3
β9

D
en

si
ty

−3 −2 −1 0 1 2 3

Figure 2: Histograms of the de-sparsified logistic Lasso (left panel) for β1, . . . , β9. For compar-
ison, histograms of the logistic Lasso (right panel) are also displayed. Here, n = 400, p = 100.
Even for low-dimensional settings, the de-sparsifying step turns out to be useful.

Estimated coverage probabilities and lengths

p n avgcov avglength avgcov avglength

100 400
D-S Logistic Lasso 0.816 0.423 0.927 0.402
Maximum likelihood 0.320 0.730 0.891 0.638

Table 2: A table showing the averages coverages and lengths over the active and non-active set. Here,
β0 = (1, 1, 1, 0, . . . , 0). The number of generated random samples was N = 200.

23

7[Janková and vdG, 2016]
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Figure 2: Histograms of the de-sparsified logistic Lasso (left panel) for β1, . . . , β9. For compar-
ison, histograms of the logistic Lasso (right panel) are also displayed. Here, n = 400, p = 100.
Even for low-dimensional settings, the de-sparsifying step turns out to be useful.

Estimated coverage probabilities and lengths

p n avgcov avglength avgcov avglength

100 400
D-S Logistic Lasso 0.816 0.423 0.927 0.402
Maximum likelihood 0.320 0.730 0.891 0.638

Table 2: A table showing the averages coverages and lengths over the active and non-active set. Here,
β0 = (1, 1, 1, 0, . . . , 0). The number of generated random samples was N = 200.
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Conclusion from simulations:
(for p < n)
the de-sparsified estimator seems to be better than MLE



Narrator

based on the asymptotic results
one constructs (asymptotic) (1− α)-confidence intervals

the question is now:

does the proposed method gives the shortest intervals?

or

is the variance about the smallest possible?

as we are in high-dimensions, this requires some thought....
as the model changes with n!

let us set up the situation in general terms



Lower bounds and efficiency

◦ Let Xn := (X1,n, . . . ,Xn,n) have distribution Pn, n = 1, 2, . . .

Supermodel:
Pn ∈ Pn := {Pβn,n : βn ∈ Bn}
with Bn ⊂ Rpn convex and open

◦ Let Sβn := {j : βj ,n 6= 0}, sβn := |Sβn |.
◦ Let mn ∈ N given, mn/n→ 0
◦ Let Bn(mn) := {βn ∈ Bn : sβn ≤ mn}

8 Sparse model:
Pn ∈ Pn(mn) := {Pβn,n : βn ∈ Bn(mn)}

8Possible extension to weakly sparse models



Narrator

let gn(βn) ∈ R be the parameter of interest.

Preview:
we will eventually show a Le Cam type of result.
the main condition will be

βn
0 + I−1

n (βn
0)ġn(βn

0) ∈ Bn(mn) , mn = o(
√

n/ log p).

here
- ġn is the derivative of gn

- In be the Fisher-information matrix
- βn

0 is a fixed sequence

then the asymptotic variance
of an asymptotically linear estimator

is at least

ġn(βn
0)TI−1

n (βn
0)ġn(βn

0)



Narrator

but

keep calm

down to earth
and

we first consider
-“strong asymptotic unbaisedness”
- in the linear
- and the graphical model.



Let dn be some norm on Rpn

Let
√

nδn → 0.
Let Bn(mn, δn) := {βn ∈ Bn(mn) : dn(βn − βn0) ≤ δn}

(neighbourhood of the fixed (sequence) βn
0)

Definition
We call Tn = Tn(Xn) a strongly asymptotically unbiased
estimator at βn

0 if

IEβn(Tn) = gn(βn) + o(δn) ∀ βn ∈ Bn(mn, δn).

↑
parameter of interest
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Lower bounds for the linear model

Let Yn ∈ Rn and Xn ∈ Rn×pn , Bn := Rpn .
Supermodel:

Pβn,n corresponds to the linear model
Yn = Xnβn + εn, εn ∼ Nn(0, I ), βn ∈ Rpn

Sparse model:
βn ∈ {βn : sβn ≤ mn}

- Let β̂n be the Lasso with tuning parameter λ := 2λ0

- Let Θ̂n be the node-wise square root Lasso estimator
with tuning parameter λ] = O(

√
log pn/n).

- Let ˆ̂bn be the de-biased estimator

ˆ̂bn := β̂n + Θ̂T
n XT

n (Yn − Xnβ̂n)/n



Consider estimating gn(βn) := βj ,n (say).

Theorem
Suppose that
◦ mn = o(

√
n/ log p)

◦ Θ̂j ,j ,n = O(1)

◦ maxS⊂{1,...,pn}: |S |≤mn φ̂
−2
n (3, S) = O(1).

Then ˆ̂bj ,n is a strongly asymptotically unbiased estimator. tu



Theorem [Janková and vdG, 2016]
Suppose that Tn is a strongly asymptotically unbiased
estimator at βn

0.

Assume that βn
0 + Θ̂j ,n ∈ Bn(mn) .

↑
the jth column of Θ̂n

Then

varβn0(Tn) ≥ Θ̂j ,j ,n

n
(1− o(1)).

Corollary
Under the above condition with

◦ mn = o(
√

n/ log p),
◦ Θ̂j ,j ,n = O(1),

◦ maxS⊂{1,...,pn}: |S |≤mn φ̂
−2
n (3, S) = O(1).

the de-sparsified estimator ˆ̂bj ,n has asymptotically
the smallest variance

among all strongly asymptotically unbiased estimators.



An example of a model for the design:
The rows of Xn are i.i.d. copies of X 0

n ∼ Npn(0,Σ0
n)

The largest eigenvalue of Σ0
n is bounded

The smallest eigenvalue of Σ0
n is bounded away from zero.

Let Θ0
n be the inverse of Σ0

n.
Theorem
Assume
◦ for some m′n = o(

√
n/ log n):

β0
n ∈ Bn(m′n) as wel as Θ0

j ,n ∈ Bn(m′n).

↑
jth column of the population

precision matrix Θ0
n

Then with high probability all the conditions of the previous
corollary are met. tu
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Lower bounds for the graphical model

Supermodel:
The rows of Xn are i.i.d. copies of X 0

n ∼ Npn(0,Σ0
n)

The largest eigenvalue of Σ0
n is bounded

The smallest eigenvalue of Σ0
n is bounded away from zero.

Let Θ0
n be the inverse of Σ0

n.
Let the maximal degree of a matrix Θn ≥ 0 in Rpn×pn be

sΘn := max
k
|{j 6= k : Θj ,k,n 6= 0}|

Sparse model: Bn(mn) := {Θn > 0 : sΘn ≤ mn}.



Let gn(Θn) := Θj ,k,n for some fixed (sequences) j and k .

Theorem [Janková and vdG, 2016]
Suppose that Tn is a strongly unbiased estimator at Θ0

j ,k,n.
Assume that

Θ0
n +

[
Θ0

j ,nΘ0T
k,n + Θ0

k,nΘ0T
j ,n

]
∈ Bn(mn)

Then

varΘ0
n
(Tn) ≥

Θ02
j ,k,n + Θ0

j ,j ,nΘ0
k,k,n

n
(1− o(1)).



Under the additional condition

mn = o(
√

n/ log pn)

the de-sparsified node-wise estimator of Θ0
n is strongly

asymptotically unbiased

and hence asymptotically efficient among such.



Narrator

well...
the asymptotics for var(Tn) is something else than the
asymptotic variance

let us now look at Le Cam’s 3rd Lemma

keep calm
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Le Cam theory

We assume X1,n, . . . ,Xn,n are independent in X
Notation
For functions fi : X → Euclidean space (i = 1, . . . , n):

Pβn,nf := IEβn fi(Xi ,n)/n.

Definition We call Tn asymptotically linear at βn
0 if

Tn − gn(βn
0) =

1

n

n∑

i=1

`i ,n(Xi) + oPβn0,n

(
1√
n

)
,

where
IEβn0 `n(Xi ,n) = 0, i = 1, . . . , n
v 2
n := Pβn

0,n `
2
n = O(1)

Remark
`n = (`1,n, . . . , `n,n) is called the influence function
v 2
n is called the asymptotic variance



Let pi ,βn,n be the density of Xi ,n under Pβn,n

w.r.t. some dominating measure µn (i = 1, . . . , n).

Definition
We say that the score condition is met at βn

0 if for

si ,n :=
∂ log pi ,βn,n

∂βn

∣∣∣∣
βn=βn

0

, i = 1, . . . , n

it holds that
◦ IEβn0 si ,n(Xi ,n) = 0, i = 1, . . . , n

◦ In(βn
0) := Pβn

0,n s,nsTn = O(1)
◦ max1≤i≤n ‖s̈i ,n‖∞ = O(1)

and

◦
∥∥∥∥

1

n

n∑

i=1

ṡi ,n(Xi ,n)ṡTi ,n(Xi ,n) + In(βn
0)

∥∥∥∥
∞

= oPβn0,n

(√
log pn

n

)



Remark
sn = (s1,n, . . . , sn,n) is called the score function
I(βn

0) ∈ Rpn×pn is called the Fisher information matrix



Theorem Suppose
� asymptotic linearity at βn

0 ∈ Bn(mn)
� the score condition at βn

0

� Lindeberg conditions

� mn =

{
o(
√

n/ log p) if s̈n 6= 0

o(n1/3) if s̈n = 0

Let βn := βn
0 + hn ∈ Bn(mn) where ‖hn‖2 = O(1).

Then

1

vn

{√
n(Tn − gn(βn))−

(
hT
n Pβn

0,nsn`n − hT
n ġn(βn

0)

)

︸ ︷︷ ︸
asymptotic bias

}

is asymptotically N (0, 1) under Pβn,n.



Corollary
No asymptotic bias ∀ βn0 + hn/

√
n ∈ Bn(mn)

⇔(
hT
n Pβn

0,nsn`n − hT
n ġn(βn

0)

)
= 0 ∀ βn0 + hn/

√
n ∈ Bn(mn)

⇔

asymptotic variance v 2
n ≥ max

hn: βn
0+hn/

√
n∈Bn(mn)

hT
n ġn(βn

0)

hT
n In(βn

0)hn

(1−o(1))

Hence, if

βn := βn
0 + I−1

n (βn
0)ġn(βn

0) ∈ Bn(mn)

we have

v 2
n ≥ ġn(βn

0)I−1
n (βn

0)ġn(βn
0)(1− o(1)).
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Some conclusions

de-sparsifying for obtaining
confidence sets in high dimensions
works theoretically when
s0 = o(

√
n/ log p)

(or weak versions thereof)

C
on

cl
u

si
on

it works in simulations for p not too large
may beat MLE for p < n

asymptotic efficiency may require sparseness of the inverse
Fisher information




