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Homology

– Abundant problem in mathematics:

Classify (some type of objects) up to (equivalence).
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Homology

Often classification problems can be recast as follows:
– Collection of vector spaces Vj with linear maps

· · · → Vj+1
δj+1
→ Vj

δj
→ Vj−1

δj−1
→ Vj−2 → · · ·

...such that δjδj+1 = 0.
– Objects to classify = elements x ∈ Vj such that δjx = 0.

(closed elements)
– Equivalence: x ' x′ if there is a y ∈ Vj+1 such that

x − x′ = δj+1y (← exact element)
– Can solve classification problem by computing homology

Hj = ker(δj)/im(δj+1)



I·Math Institute of Mathematics

Homology

– Compress notation:

V =
⊕

j

Vj

graded vector space, Vj in degree j
– Linear map of degree −1

δ : V → V

such that δ2 = 0. (V , δ) chain complex
– Homology (graded vector space)

H(V) = ker(δ)/im(δ)
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Kontsevich’s graph complexes

– Chain complex of Q-linear combinations of (isomorphism
classes of) graphs

+
5
2

– Differential δ: edge contraction

δΓ =
∑

e edge

± Γ/e︸︷︷︸
contract e

e
7→

– δ2 = 0,⇒ can compute graph homology kerδ/imδ.
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Kontsevich’s graph complexes GCn

For n ∈ Z define

GCn = spangr
Q {isomorphism classes of admissible graphs}

with

– Homological degree of vertices: n, of edges: 1 − n.
– Admissible:

– connected
– all vertices ≥ 2-valent
– no odd symmetries

– Differential: edge contraction
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Example

Example for n = 2:

Differential:

δ = + 2
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Graph homology

– Main (long standing) open problem: Compute the graph
homology H(GCn) = kerδ/imδ
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Zoo of other versions

– Ribbon graphs (R. Penner ’88):

– Directed acyclic graphs:

– ...and a couple of others
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Origins and applications

Topology

Algebra

Physics

Graph complexes

plain GC
directed

ribbon
Lie dec.

Aut(En)

H(Diff(Sn))

π(Emb(Rm,Rn))

H(Aut(M))

H(Mg,n)

Def. quant

Quantum groups

H(Out(Fn))

AKSZ Field theories
Knot theory
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Plan for today

1. Graph homology: What is known?

2. Example of a reduction to graph homology
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Graph complexes - state of the art in 2015

– What is known about graph homology?

only low degrees
(computers)

understand some
series of classes

full understanding

other types

Ordinary graphs Now

Ribbon graphs
H(Mg,n)
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Cheap information

– Differential does not change loop order⇒ can study
pieces of fixed loop order separately

– Have classes in GCn

Wk =

· · ·

(k vertices and k edges)

Theorem (Kontsevich)

H(GCn) = H(GC≥3−valent
n ) ⊕

⊕
k≡2n+1 mod 4

Wk
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Cheap information II

Useful because:
– Can obtain degree bounds:

– Highest degree classes have many vertices (v), few edges
(e)

– Trivalence condition: e ≥ 3
2 v

– ⇒ upper bound on degree

(degree) ≤ (#loops)(3 − n) − 3
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Not so cheap results (n=2)

Theorem (T.W., Invent. ’14)

H0(GC2) � grt1

H−1(GC2) � K

H<−1(GC2) � 0

grt1: Grothendieck-Teichmüller Lie algebra

Theorem (F. Brown, Annals ’12)

FreeLie(σ3, σ5, σ7, . . . ) ↪→ grt1

Deligne-Drinfeld conjecture: It is an isomorphism
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Computer results

n = 2, degree (↑), loop order (→), values
dim Hj(GC2)k loops

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 1 0 0 0 0 0 0 0 0 1
6 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 1 2
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 1 2 2 3
-1 1 0 0 0 0 0 0 0 0 0 0 0 0
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Other degrees

Theorem (A. Khoroshkin, M. Živković, T.W., 2014)
Graph cohomology classes come in pairs, that kill each other
on some page of a spectral sequence.
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Cancellations in spectral sequence (even case)

n = 2, degree (↑), loop order (→)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
7 1 0 1
6 0 0 0 0
5 0 0 0 0 0
4 0 0 0 0 0 0
3 1 0 0 0 0 1 0 1 1 2
2 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 1 1 1 1 2 2 3
-1 1 0 0 0 0 0 0 0 0 0 0 0 0
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In summary

– Have known series of classes in one degree + their
”partners”

– Explains all classes in H(GCn) in computer accessible
regime

– But: Computer cannot see very far
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Origins and applications

– Graph complexes are linked to many problems in
mathematics

– Today: Only discuss one specific case

– Goal: see interplay algebra - topology - physics
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Topology: Little n-cubes operad

– Space of rectilinear embeddings of n-dimensional cubes

Ln(k) = Embrl([0, 1]n t · · · t [0, 1]n︸                    ︷︷                    ︸
k×

, [0, 1]n])

1

2

3

– Can glue configuration into another

1

2

3
◦3 a b =

1

2

a b
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Topology: Little n-cubes operad

– Obvious relations:
– Gluing into different slots commutes
– Nested gluing associative
– ⇒ Operad structure

– Ln : Little n-cubes (balls/disks) operad, or (topological) En

operad

– Very important and long studied in topology
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Physics: (Topological) quantum field theories

Perturbative n-dimensional quantum field theory (simplified):

– Want: Expectation value of
O[Ψ] =

#
f(x1, . . . , xr)Ψ(x1)α1 · · ·Ψ(xr)

αr

– Perturbation theory

〈O〉 =
∑

Γ

cΓ

∫
Conf#vert(Γ)(Rn)

f(x1, . . . , xr)ωΓ

sum is over Feynman diagrams, e.g.,

1 2 3 · · · r

the integrand is determined by Feynman rules.
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Physics: (Topological) quantum field theories

– Our case: TFT of AKSZ type (kinetic part = de Rham
differential)

1 2 3 4

– Feynman rules assign to Γ a differential form on
Confk+r(Rn):

ωΓ =
∧

(i,j) edge

ΩSn−1(xi − xj)
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Link Physics - Topology

The connection is as follows:
– Shrinking cubes links Ln(r) to Confr(Rn)

 
×

×

×

⇒ can build an equivalent operad out of configuration
spaces.

– Assemble linear combinations Feynman diagrams with r
“external” vertices into space

Graphsn(r) = span 〈Feynman diag. w/ r ext. vert.〉



I·Math Institute of Mathematics

Link Physics - Topology

– Feynman rules give a map

ω : Graphsn(r)→ Ω(Confr(R
n))

Theorem (Kontsevich)
This map is compatible with the operad structure: The Feynman
diagrams Graphsn can be made into a real Suillvan model for
Ln.
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Link to graph complex

Theorem (T.W.)
GC∗n is a Lie algebra and acts on Graphsn, compatibly with the
operad structure. This action exhausts all rational
automorphisms of Ln up to homotopy.

– Physically this action is analogous to a renormalization
group action.



I·Math Institute of Mathematics

An application

– Of particular interest: H1(GCn)∗ and H0(GCn)∗, controlling
obstructions and choices of weak equivalences

– Recall that

H(GCn) �
⊕

k≡2n+1 mod 4 · · ·︸                 ︷︷                 ︸
≤ 1 class can contribute

⊕ H(GC≥3−valent
n )︸             ︷︷             ︸

degree bounded⇒no contr.

Theorem (B. Fresse, T.W.)
The little n-cubes operads are rationally rigid and intrinsically
formal for n ≥ 3.



I·Math Institute of Mathematics

The End

Thanks for listening!



I·Math Institute of Mathematics

Peek into high loop orders

How to access high loop orders?

– Computer - no way.

– But: Can count graphs and compute Euler characteristic.
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Theorem (T.W., M. Živković, Adv. in Math. ’15)
Define generating functions for numbers of graphs:

Podd(s, t) :=
∑
v ,e

dim
(
GCodd

v ,e

)
sv te Peven(s, t) :=

∑
v ,e

dim
(
GCeven

v ,e

)
sv te .

There exists an explicit formula.

Podd (s, t) :=
1(

−s, (st)2
)
∞

(
(st)2 , (st)2

)
∞

∑
j1 ,j2 ,···≥0

∏
α

(−s)αjα

jα!(−α)jα

1

((−st)α , (−st)α)
jα
∞


(
t2α−1 , (st)4α−2

)
∞(

(−s)2α−1 t4α−2 , (st)4α−2
)
∞


j2α−1/2


(
tα , (st)2α

)
∞(

(−s)α t2α , (st)2α
)
∞


j2α ∏

α,β

1(
t lcm(α,β) , (−st)lcm(α,β)

)gcd(α,β)jα jβ/2
∞

,

Peven(s, t) :=

(
s, (st)2

)
∞(

−st , (st)2
)
∞

∑
j1 ,j2 ,···≥0

∏
α

sαjα

jα!αjα

1

((−st)α , (−st)α)
jα
∞


(
(−t)2α−1 , (st)4α−2

)
∞(

s2α−1 t4α−2 , (st)4α−2
)
∞


j2α−1/2


(
(−t)α , (st)2α

)
∞(

sα t2α , (st)2α
)
∞


j2α ∏

α,β

(
(−t)lcm(α,β) , (−st)lcm(α,β)

)gcd(α,β)jα jβ/2

∞

where (a, q)∞ =
∏

k≥0

(
1 − aqk

)
is the q-Pochhammer symbol.
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Even Odd
loop order χ̃even

b χ̃odd
b

1 0 1
2 1 1
3 0 1
4 1 2
5 -1 1
6 1 2
7 0 2
8 0 2
9 -2 1
10 1 3
11 0 1
12 0 3
13 -2 4
14 0 2
15 -4 2

Even Odd
loop order χ̃even

b χ̃odd
b

16 -3 6
17 -1 4
18 8 -5
19 12 -14
20 27 -21
21 14 -11
22 -25 21
23 -39 44
24 -496 504
25 -2979 2969
26 -412 413
27 38725 -38717
28 10583 -10578
29 -667610 667596
30 28305 -28290
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