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These are the notes from my talk at the Harris conference at MSRI in December 2014.

1. A conjecture of Perrin-Riou

Let M be a motive over Q which is not the trivial motive. Denote by L(M, s) the L-function of M .

Assumption 1.1. L(M, s) has analytic continuation to C and satisfies a functional equation.

Denote by Mp the p-adic realisation of M , so Mp is a finite-dimensional Qp-vector space with a continuous

action of GQ = Gal(Q/Q). Denote by H1
f (Q,Mp) the Bloch-Kato Selmer group of Mp, which is a

subgroup of H1(Q,Mp), cut out by local conditions

• the unramified local condition at ` 6= p;
• the H1

f -local condition at p.

The Bloch-Kato conjecture predicts the size of H1
f (Q,M∗p (1)) in terms of the L-function of M :

Conjecture 1.2. (Bloch-Kato)

ords=0 L(M, s) = dimH1
f (Q,M∗p (1))− dimH0(Q,M∗p (1)),

together with an explicit formula for the leading term up to a p-adic unit.

Definition. The motive M is effective if all Hodge numbers (= steps in the Hodge filtration of MdR)
are ≥ 0.

Example. The trivial motive M = Q and the motive M(f) attached to a modular form of weight ≥ 2
are effective, but M = Q(1) is not effective.

Fact 1.3. If M is effective and M 6= Q, then

• the H1
f=local condition at p is the relaxed local condition unless the local L-factor vanishes;

• ords=0 L(M, s) = dim(MBetti)
c=1, where c denotes complex conjugation

⇒ the Bloch-Kato conjecture predicts that

dimH1
f (Q,M∗p (1)) = dim(MBetti)

c=1 =: d+.

Euler systems are a tool for proving special cases of the Bloch-Kato conjecture for effective motives:

Conjecture 1.4. (Perrin-Riou [PR98]) If M is effective, there exists a non-trivial system of elements
(zm)m≥1,

zm ∈
d+∧
H1
(
Q(µm)+,M∗p (1)

)
,

such that

cores
Q(µm`)

+

Q(µm)+ (zm`) =

{
zm if `|m or M∗p (1) is ramified at `

P`(σ
−1
` )zm otherwise,

where P`(X) = det(1−Xσ−1` |Mp) and σ−1` denotes the arithmetic Frobenius at `.

Definition. Such a system of elements (zm)m≥1 is called a rank d+ Euler system for Mp.

Remark. If M is defined over a number field K, then an Euler system for M should have classes over all
the abelian extensions of K.
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Theorem 1.5. (Kolyvagin, Rubin [Rub00], Perrin-Riou [PR98]) If such a rank d+ Euler system exists
and z1 6= 0, then (under some technical hypotheses) the Selmer group H1

f (Q,M∗p (1)) is d+-dimensional,
as prediced by the Bloch-Kato conjecture.

Remark. In proving this theorem, it is very important that the H1
f -local condition at p is the relaxed

one.

Examples. (rank d+ = 1 Euler systems)

• M = Q (cyclotomic units)
• M = M(f), where f is a modular form of weight ≥ 2 (Kato’s Euler system, see [Kat04])
• M = Q over an imaginary quadratic field (eliptic units)

Remark. There exist other Euler systems attached to self-dual motives (i.e. M ∼= M∗(1))) satisfying a
sign condition, but these don’t give access to non-central L-values.

Problem. There are no non-trivial examples for d+ > 1! (Unless one assumes the ‘prectic conjecture’ of
Nekovar-Scholl, which gves access to certian settings related to totally real fields.)

2. A new Euler system

Theorem 2.1. (Lei-LZ [LLZ14], Kings-LZ [KLZ14]) Let f, g be modular forms of weights k+2, k′+2 ≥ 2,
and let 0 ≤ j ≤ min{k, k′}. Then there exists a rank 1 Euler system for M = M(f) ⊗M(g)(1 + j),
related to the p-adic L-value Lp(f, g, 1 + j).

The existence of this Euler system does not fit the setting of Perrin-Riou’s conjecture:

• d+(M) = 2, but M is not effective: its Hodge numbers are

−1− j, , k′ − j, k − j, k + k′ + 1− j;
• ords=0 L(M, s) = ords=1+j L(f, g, s) = 1;
• the H1

f -local condition at p is not the relaxed one;
• the Euler system classes take values in the Bloch-Kato Selmer group.

We therefore need a generalisation of Perrin-Riou’s conjecture for motives which are not effective. We
first generalize the notion of effective:

Definition. Let r ≥ 0. Then M is r-critical if the Archimedean Γ-factor L∞(M, s) has a pole at s = 0
of order r, and L∞(M∗(1), 0) 6=∞.

Remarks. (1) 0-critical is precisely Deligne’s definition of critical;
(2) if M is r-critical, then ords=0 L(M, s) ≥ r (and this lower bound shold be sharp);
(3) M is r-critical if and only if d+ − r Hodge numbers are < 0

⇒ M is effective if and only if it is d+-critical.

Conjecture 2.2. If M is r-critical, there exists a non-trivial rank r Euler system (zm)m≥1,

zm ∈
r∧
H1
f

(
Q(µm)+,M∗p (1)

)
.

Note. The Euler system in Theorem 2.1 is an example of an Euler system for a 1-critical motive.

Remarks. • Conjecture 2.2 reduces to Perrin-Riou’s conjecture when r = d+. (Note that in this
case the H1

f -local condition is relaxed, so the condition that the Euler system take values in

H1
f

(
Q(µm)+,M∗p (1)

)
is pretty much automatic.)

• A rank 0 Euler system should be thought of as a p-adic L-function. I will elaborate on this later.

Theorem 2.3. (LZ) If M is 1-critical and (zm)m≥1 is a rank 1 Euler system with z1 6= 0, then (under
some technical hypotheses) H1

f (Q,M∗p (1)) is 1-dimensional, as predicted by the Bloch-Kato conjecture.

Remark. For proving this theorem, we need to adapt the Euler system machine to take into account the
non-relaxed local condition at p.

Here are some examples of 1-critical motives:
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(1) M = M(f) ⊗ M(g)(1 + j), where f, g are modular forms of weights k + 2, k′ + 2 ≥ 2 and
0 ≤ j ≤ min{k, k′};

(2) M = MAsai(f)(1 + j), where f is a quadratic Hilbert modular form of weights (k+ 2, k′+ 2) and
0 ≤ j ≤ min{k, k′};

(3) M = MSpin(F )(1 + j), where F is a genus 2 Siegel modular form of weights (k + 3, k′ + 3),
k ≥ k′ ≥ 0 and 0 ≤ j ≤ k′;

(4) M(1), where M ⊂ h2 (Sh(U(2, 1))) is a rank 3 motive over an imaginary quadratic field.

Remark. There are lots more examples: if M is any motive with distinct Hodge numbers, then some
twist of it will be 1-critical.

For the examples above, Conjecture 2.2 predicts the existence of a rank 1 Euler system: case (1) is

Theorem 2.1, and cases (2), (3) and (4) are joint work in progress with


Antonio Lei

Francesco Lemma

Chris Skinner

.

In other words, we can construct some exmaples of Euler systems for 1-critical motives. However, the
interesting cases are those twists of the motives which are 0-critical. We can get at those using p-adic
deformation.

3. Euler systems in p-adic families

Definition. Let A be a complete local Zp-algebra, and let X = Spf(A). A family of motivic Galois
representations is a finite free A-module V with an A-linear action of GQ such that for a Zariski dense
set Xcl ⊂ X, we have

Vx ∼= Mx,p for some motive Mx.

The key example is that of the cyclotomic deformation of a motivic Galois representation:

Example. Let A = Λ(Z×p ) and V = Mp ⊗ A, where GQ acts on A via multiplication by the canonical

character GQ → Z×p ↪→ A×. Note that V specializes to Mp(j) for all j.

In order to vary a rank r Euler system in a p-adic family, we need to make an auxiliary choice called an
r-refinement.

Definition. An r-refinement of V is an A-direct summand W ⊂ V which is GQp -stable together with a
Zariski-dense set of points Xcl,W ⊂ Xcl, such that ∀x ∈ Xcl,W ,

• Mx is r-critical,
• Wx has all Hodge-Tate weights ≥ 1, and Vx/Wx has all Hodge-Tate weights ≤ 0 (Panchishkin

condition).

Conjecture 3.1. Let V be a family of motivic Galois representations, and let W ⊂ V be an r-refinement.
Then there exists a non-trivial rank r Euler system (zm)m≥1,

zm ∈
r∧
H1
(
Q(µm)+, V

)
such that

• locp(zm) ∈ im
(
H1 (Q(µm)+,W )→ H1 (Q(µm)+, V )

)
,

• ∀x ∈ Xcl,W , the specialisation of the Euler system at x agrees with the Euler system from
Conjecture 2.2.

Remark. ∀x ∈ Xcl,W (generically), one has

H1
f

(
Q(µm)+, Vx

)
= im

(
H1
(
Q(µm)+,Wx

)
→ H1

(
Q(µm)+, Vx

))
,

so zm,x ∈
∧r

H1
f as required.
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Example: Rankin-Selberg convolutions

Let f , g be Hida families. Then there exists a 3-parameter of GQ-representations

V (f)∗⊗̂V (g)∗⊗̂Λ(Z×p )

(two Hida parameters and one cyclotomic parameter) interpolating Mp(fk)∗⊗Mp(gk′)
∗(1+j) for varying

k, k′, j. We have the following refinements:

2-refinement: W2 = {0}, Xcl,W2
= {k, k′ ≥ 0, j ≤ −1}

1-refinement: W1 = F+V (f)∗⊗̂F+V (g)∗⊗̂Λ(Z×p ), Xcl,W1
= {0 ≤ j ≤ min{k, k′}}

0-refinements: W0a = F+V (f)∗⊗̂V (g)∗⊗̂Λ(Z×p ), Xcl,W0a = {k′ + 1 ≤ j ≤ k}
W0b = V (f)∗⊗̂F+V (g)∗⊗̂Λ(Z×p ), Xcl,W0b

= {k + 1 ≤ j ≤ k′}

Here, F+V (f) denotes the rank 1 submodule as constructed by Wiles in [Wil88].

Theorem 3.2. (Kings-LZ, [KLZ14])

(1) Our Euler systems from Theorem 2.1 for M(fk)∗ ⊗M(gk′)
∗(1 + j) interpolate along W1;

(2) (Explicit reciprocity law) There exist rank-lowering operators corresponding to the inclusions

W1 ↪→

{
W0a

W0b

mapping the rank 1 Euler system to Hida’s two 2-variable p-adic L-functions;

(3) if a rank 2 Euler system exist, then it maps to our Euler system under the rank-lowering operator.

Remarks. • The rank-lowering operators are multi-variable analogues of Perrin-Riou’s regulator
map, as constructed in [LZ14].

• (KLZ, in progress) The Hida families can be replaced by Coleman families. In this case, the
subrepresentations are replaced by sub-(ϕ,Γ)-modules over the Roba ring.

In general, we expect there to be a hierachy of Euler systems, governed by inclusion of refinements, and
related to each other via rank-lowering operators: if W ′ and W are r′-, resp. r-refinements of V , then
Conjecture 3.1 predicts the existence of rank r′, resp. rank r Euler systems. If W ′ ⊂ W , then these
Euler systems should be related to each other via a rank-lowering operator

r∧
H1
(
Q(µm)+, V

)
-

r′∧
H1
(
Q(µm)+, V

)
.
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