EULER SYSTEMS

DAVID LOEFFLER / SARAH ZERBES

These are the notes from my talk at the Harris conference at MSRI in December 2014.

1. A CONJECTURE OF PERRIN-RIOU

Let M be a motive over \mathbb{Q} which is not the trivial motive. Denote by L(M,s) the L-function of M.

Assumption 1.1. L(M,s) has analytic continuation to \mathbb{C} and satisfies a functional equation.

Denote by M_p the p-adic realisation of M, so M_p is a finite-dimensional \mathbb{Q}_p -vector space with a continuous action of $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. Denote by $H_f^1(\mathbb{Q}, M_p)$ the Bloch-Kato Selmer group of M_p , which is a subgroup of $H^1(\mathbb{Q}, M_p)$, cut out by local conditions

- the unramified local condition at $\ell \neq p$;
- the H_f^1 -local condition at p.

The Bloch-Kato conjecture predicts the size of $H_f^1(\mathbb{Q}, M_p^*(1))$ in terms of the L-function of M:

Conjecture 1.2. (Bloch-Kato)

$$\operatorname{ord}_{s=0} L(M, s) = \dim H_f^1(\mathbb{Q}, M_p^*(1)) - \dim H^0(\mathbb{Q}, M_p^*(1)),$$

together with an explicit formula for the leading term up to a p-adic unit.

Definition. The motive M is effective if all Hodge numbers (= steps in the Hodge filtration of M_{dR}) are ≥ 0 .

Example. The trivial motive $M = \mathbb{Q}$ and the motive M(f) attached to a modular form of weight ≥ 2 are effective, but $M = \mathbb{Q}(1)$ is not effective.

Fact 1.3. If M is effective and $M \neq \mathbb{Q}$, then

- ullet the H_f^1 =local condition at p is the relaxed local condition unless the local L-factor vanishes;
- $\operatorname{ord}_{s=0} L(M,s) = \dim(M_{\operatorname{Betti}})^{c=1}$, where c denotes complex conjugation \Rightarrow the Bloch-Kato conjecture predicts that

$$\dim H_f^1(\mathbb{Q}, M_p^*(1)) = \dim(M_{\text{Betti}})^{c=1} =: d^+.$$

Euler systems are a tool for proving special cases of the Bloch-Kato conjecture for effective motives:

Conjecture 1.4. (Perrin-Riou [PR98]) If M is effective, there exists a non-trivial system of elements $(z_m)_{m>1}$,

$$z_m \in \bigwedge^{d^+} H^1\left(\mathbb{Q}(\mu_m)^+, M_p^*(1)\right),\,$$

such that

$$\operatorname{cores}_{\mathbb{Q}(\mu_m)^+}^{\mathbb{Q}(\mu_{m\ell})^+}(z_{m\ell}) = \begin{cases} z_m & \text{if } \ell | m \text{ or } M_p^*(1) \text{ is ramified at } \ell \\ P_{\ell}(\sigma_{\ell}^{-1}) z_m & \text{otherwise,} \end{cases}$$

where $P_{\ell}(X) = \det(1 - X\sigma_{\ell}^{-1}|M_p)$ and σ_{ℓ}^{-1} denotes the arithmetic Frobenius at ℓ .

Definition. Such a system of elements $(z_m)_{m\geq 1}$ is called a rank d^+ Euler system for M_p .

Remark. If M is defined over a number field K, then an Euler system for M should have classes over all the abelian extensions of K.

1

Theorem 1.5. (Kolyvagin, Rubin [Rub00], Perrin-Riou [PR98]) If such a rank d^+ Euler system exists and $z_1 \neq 0$, then (under some technical hypotheses) the Selmer group $H_f^1(\mathbb{Q}, M_p^*(1))$ is d^+ -dimensional, as prediced by the Bloch-Kato conjecture.

Remark. In proving this theorem, it is very important that the H_f^1 -local condition at p is the relaxed one.

Examples. (rank $d^+ = 1$ Euler systems)

- $M = \mathbb{Q}$ (cyclotomic units)
- M = M(f), where f is a modular form of weight ≥ 2 (Kato's Euler system, see [Kat04])
- $M = \mathbb{Q}$ over an imaginary quadratic field (eliptic units)

Remark. There exist other Euler systems attached to self-dual motives (i.e. $M \cong M^*(1)$) satisfying a sign condition, but these don't give access to non-central L-values.

Problem. There are no non-trivial examples for $d^+ > 1!$ (Unless one assumes the 'prectic conjecture' of Nekovar-Scholl, which gives access to certain settings related to totally real fields.)

2. A NEW EULER SYSTEM

Theorem 2.1. (Lei-LZ [LLZ14], Kings-LZ [KLZ14]) Let f, g be modular forms of weights $k+2, k'+2 \ge 2$, and let $0 \le j \le \min\{k, k'\}$. Then there exists a rank 1 Euler system for $M = M(f) \otimes M(g)(1+j)$, related to the p-adic L-value $L_p(f, g, 1+j)$.

The existence of this Euler system does not fit the setting of Perrin-Riou's conjecture:

• $d^+(M) = 2$, but M is not effective: its Hodge numbers are

$$-1-j,\quad ,k'-j,\quad k-j,\quad k+k'+1-j;$$

- $\operatorname{ord}_{s=0} L(M, s) = \operatorname{ord}_{s=1+j} L(f, g, s) = 1;$
- the H_f^1 -local condition at p is not the relaxed one;
- the Euler system classes take values in the Bloch-Kato Selmer group.

We therefore need a generalisation of Perrin-Riou's conjecture for motives which are not effective. We first generalize the notion of effective:

Definition. Let $r \geq 0$. Then M is r-critical if the Archimedean Γ -factor $L_{\infty}(M,s)$ has a pole at s=0 of order r, and $L_{\infty}(M^*(1),0) \neq \infty$.

Remarks. (1) 0-critical is precisely Deligne's definition of critical;

- (2) if M is r-critical, then $\operatorname{ord}_{s=0} L(M,s) \geq r$ (and this lower bound shold be sharp);
- (3) M is r-critical if and only if $d^+ r$ Hodge numbers are < 0
 - $\Rightarrow M$ is effective if and only if it is d^+ -critical.

Conjecture 2.2. If M is r-critical, there exists a non-trivial rank r Euler system $(z_m)_{m\geq 1}$,

$$z_m \in \bigwedge^r H_f^1\left(\mathbb{Q}(\mu_m)^+, M_p^*(1)\right).$$

Note. The Euler system in Theorem 2.1 is an example of an Euler system for a 1-critical motive.

- Remarks. Conjecture 2.2 reduces to Perrin-Riou's conjecture when $r = d^+$. (Note that in this case the H^1_f -local condition is relaxed, so the condition that the Euler system take values in $H^1_f\left(\mathbb{Q}(\mu_m)^+, M^*_p(1)\right)$ is pretty much automatic.)
 - A rank 0 Euler system should be thought of as a p-adic L-function. I will elaborate on this later.

Theorem 2.3. (LZ) If M is 1-critical and $(z_m)_{m\geq 1}$ is a rank 1 Euler system with $z_1\neq 0$, then (under some technical hypotheses) $H_f^1(\mathbb{Q}, M_p^*(1))$ is 1-dimensional, as predicted by the Bloch-Kato conjecture.

Remark. For proving this theorem, we need to adapt the Euler system machine to take into account the non-relaxed local condition at p.

Here are some examples of 1-critical motives:

- (1) $M = M(f) \otimes M(g)(1+j)$, where f, g are modular forms of weights $k+2, k'+2 \geq 2$ and $0 \le j \le \min\{k, k'\};$
- (2) $M = M_{Asai}(f)(1+j)$, where f is a quadratic Hilbert modular form of weights (k+2, k'+2) and $0 \le j \le \min\{k, k'\};$
- (3) $M = M_{Spin}(F)(1+j)$, where F is a genus 2 Siegel modular form of weights (k+3, k'+3), $k \ge k' \ge 0$ and $0 \le j \le k'$;
- (4) M(1), where $M \subset h^2(Sh(U(2,1)))$ is a rank 3 motive over an imaginary quadratic field.

Remark. There are lots more examples: if M is any motive with distinct Hodge numbers, then some twist of it will be 1-critical.

For the examples above, Conjecture 2.2 predicts the existence of a rank 1 Euler system: case (1) is

Theorem 2.1, and cases (2), (3) and (4) are joint work in progress with $\left. \left. \left. \right. \right. \right. \right. \right.$

In other words, we can construct some exmaples of Euler systems for 1-critical motives. However, the interesting cases are those twists of the motives which are 0-critical. We can get at those using p-adic deformation.

3. Euler systems in p-adic families

Definition. Let A be a complete local \mathbb{Z}_p -algebra, and let $X = \operatorname{Spf}(A)$. A family of motivic Galois representations is a finite free A-module V with an A-linear action of $G_{\mathbb{Q}}$ such that for a Zariski dense set $X_{\rm cl} \subset X$, we have

$$V_x \cong M_{x,p}$$
 for some motive M_x .

The key example is that of the cyclotomic deformation of a motivic Galois representation:

Example. Let $A = \Lambda(\mathbb{Z}_p^{\times})$ and $V = M_p \otimes A$, where $G_{\mathbb{Q}}$ acts on A via multiplication by the canonical character $G_{\mathbb{Q}} \to \mathbb{Z}_p^{\times} \hookrightarrow \stackrel{p}{A^{\times}}$. Note that V specializes to $M_p(j)$ for all j.

In order to vary a rank r Euler system in a p-adic family, we need to make an auxiliary choice called an r-refinement.

Definition. An r-refinement of V is an A-direct summand $W \subset V$ which is $G_{\mathbb{Q}_p}$ -stable together with a Zariski-dense set of points $X_{\text{cl},W} \subset X_{\text{cl}}$, such that $\forall x \in X_{\text{cl},W}$,

- M_x is r-critical,
- W_x has all Hodge-Tate weights ≥ 1 , and V_x/W_x has all Hodge-Tate weights ≤ 0 (Panchishkin condition).

Conjecture 3.1. Let V be a family of motivic Galois representations, and let $W \subset V$ be an r-refinement. Then there exists a non-trivial rank r Euler system $(z_m)_{m\geq 1}$,

$$z_m \in \bigwedge^r H^1\left(\mathbb{Q}(\mu_m)^+, V\right)$$

such that

- $loc_p(z_m) \in im \left(H^1(\mathbb{Q}(\mu_m)^+, W) \to H^1(\mathbb{Q}(\mu_m)^+, V)\right)$, $\forall x \in X_{cl,W}$, the specialisation of the Euler system at x agrees with the Euler system from Conjecture 2.2.

Remark. $\forall x \in X_{\text{cl.}W}$ (generically), one has

$$H_f^1\left(\mathbb{Q}(\mu_m)^+, V_x\right) = \operatorname{i} m\left(H^1\left(\mathbb{Q}(\mu_m)^+, W_x\right) \to H^1\left(\mathbb{Q}(\mu_m)^+, V_x\right)\right),$$

so $z_{m,x} \in \bigwedge^r H_f^1$ as required.

Example: Rankin-Selberg convolutions

Let \mathbf{f} , \mathbf{g} be Hida families. Then there exists a 3-parameter of $G_{\mathbb{Q}}$ -representations

$$V(\mathbf{f})^* \hat{\otimes} V(\mathbf{g})^* \hat{\otimes} \Lambda(\mathbb{Z}_p^{\times})$$

(two Hida parameters and one cyclotomic parameter) interpolating $M_p(f_k)^* \otimes M_p(g_{k'})^* (1+j)$ for varying k, k', j. We have the following refinements:

 $\begin{aligned} & W_2 = \{0\}, & X_{\text{cl},W_2} = \{k,k' \geq 0, j \leq -1\} \\ & W_1 = \mathcal{F}^+V(\mathbf{f})^* \hat{\otimes} \mathcal{F}^+V(\mathbf{g})^* \hat{\otimes} \Lambda(\mathbb{Z}_p^{\times}), & X_{\text{cl},W_1} = \{0 \leq j \leq \min\{k,k'\}\} \\ & W_{0a} = \mathcal{F}^+V(\mathbf{f})^* \hat{\otimes} V(\mathbf{g})^* \hat{\otimes} \Lambda(\mathbb{Z}_p^{\times}), & X_{\text{cl},W_{0a}} = \{k'+1 \leq j \leq k\} \\ & W_{0b} = V(\mathbf{f})^* \hat{\otimes} \mathcal{F}^+V(\mathbf{g})^* \hat{\otimes} \Lambda(\mathbb{Z}_p^{\times}), & X_{\text{cl},W_{0b}} = \{k+1 \leq j \leq k'\} \end{aligned}$ 2-refinement: 1-refinement: 0-refinements:

Here, $\mathcal{F}^+V(\mathbf{f})$ denotes the rank 1 submodule as constructed by Wiles in [Wil88].

Theorem 3.2. (Kings-LZ, [KLZ14])

- (1) Our Euler systems from Theorem 2.1 for $M(f_k)^* \otimes M(g_{k'})^* (1+j)$ interpolate along W_1 ;
- (2) (Explicit reciprocity law) There exist rank-lowering operators corresponding to the inclusions $W_1 \hookrightarrow \begin{cases} W_{0a} \\ W_{0b} \end{cases}$ mapping the rank 1 Euler system to Hida's two 2-variable p-adic L-functions;
- (3) if a rank 2 Euler system exist, then it maps to our Euler system under the rank-lowering operator.

Remarks. • The rank-lowering operators are multi-variable analogues of Perrin-Riou's regulator map, as constructed in [LZ14].

• (KLZ, in progress) The Hida families can be replaced by Coleman families. In this case, the subrepresentations are replaced by sub- (φ, Γ) -modules over the Roba ring.

In general, we expect there to be a hierarchy of Euler systems, governed by inclusion of refinements, and related to each other via rank-lowering operators: if W' and W are r'-, resp. r-refinements of V, then Conjecture 3.1 predicts the existence of rank r', resp. rank r Euler systems. If $W' \subset W$, then these Euler systems should be related to each other via a rank-lowering operator

$$\bigwedge^{r} H^{1}\left(\mathbb{Q}(\mu_{m})^{+}, V\right) \longrightarrow \bigwedge^{r'} H^{1}\left(\mathbb{Q}(\mu_{m})^{+}, V\right).$$

References

- [Kat04] Kazuya Kato, P-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117-290, Cohomologies p-adiques et applications arithmétiques. III. MR 2104361
- [KLZ14] Guido Kings, David Loeffler, and Sarah Zerbes, Rankin-Selberg Euler systems and p-adic interpolation, preprint, 2014.
- [LLZ14] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin-Selberg convolutions of modular forms, Ann. of Math. 180 (2014), no. 2, 653-771.
- David Loeffler and Sarah Livia Zerbes, Iwasawa theory and p-adic L-functions for \mathbb{Z}_p^2 -extensions, Int. J. Number Theory (to appear) (2014).
- Bernadette Perrin-Riou, Systèmes d'Euler p-adiques et théorie d'Iwasawa, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 5, 1231-1307. MR 1662231 (99m:11124)
- Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, 2000. [Rub00]
- [Wil88] A. Wiles, On ordinary λ-adic representations associated to modular forms, Invent. Math. 94 (1988), no. 3, 529-573. MR 969243