Teaching
ETH Zurich
- Wahrscheinlichkeitstheorie und Statistik: (D-ITET), HS23, TA and coordination
- Stochastik: (D-MAVT, D-MATL), HS21, TA and coordination
- Machine Learning in Finance: ETHZ, FS20, FS21, project supervision
- Mathematical Foundations of Finance: ETHZ, (D-MATH), HS19, TA
- Wahrscheinlichkeit und Statistik: ETHZ, (D-INFK), FS19, TA and coordination
- Stochastik: ETHZ, (D-MAVT, D-MATL, RW), HS18, TA
Vienna University of Business and Economics
- Optimization: WU Vienna, (QFin), FS18, TA
- Statistics I: WU Vienna, (QFin), HS17, TA
Technical University of Vienna
- Risk Management in Finance and Insurance: TU Vienna, FS16, TA
Co-Advised Theses
Master Theses
- Feature Learning in Infinite-Width Neural Networks: by Sebastian Schein (ETH), 2022
- On the Inductive Bias Towards Multi-Task Learning of $L^2$-Regularized ReLU Networks: by Sven Rosenthal (ETH/UZH), 2022
- Bayesian Optimization with Neural Networks: by Marius Högger (UZH), 2020
Semester Theses
- ML-based Uncertainty Quantification on Real World Data: by Aurelio Dolfini (ETH), 2022